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Abstract 

Researcher: Alexander Fumiyoshi Dori 

Title: Computational Modeling of Thoracic Injury Response due to Impact of a 

Small Unmanned Aerial System  

 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Mechanical Engineering 

Year: 2017 

This study aims to establish a computational model that will predict the injury 

response after a sUAS impacts the thorax. A rotary and fixed winged sUAS were chosen 

for analysis. A vast number of numerical simulations were carried out with varying 

masses, impact velocities, and impact angles. From the simulation results, the maximum 

viscous criterion was then calculated. A nonlinear surrogate model was established by 

setting the impact parameters as independent variables and the viscous criterion as the 

dependent variable. A correlation analysis showed the impact velocity and angle to 

significantly influence the results more, when compared to the mass. The surrogate model 

was then tested against randomly selected cases and showed to have good agreement. The 

highest percent difference was 9.49%. Simulating a wider range of masses can improve 

the validity of this model. The surrogate model would become useful in estimating the 

maximum viscous criterion for possible injury responses. 
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Chapter I: Introduction 

1.1 Motivation 

 

 In recent years, Unmanned Aerial Systems (UAS) has been gaining enormous 

amounts of popularity in almost every business industry. Small Unmanned Aerial 

Systems (sUAS) are especially popular in military, cinematography/photography, 

academic, and recreational use. They are used to perform various tasks such as 

reconnaissance, object following, and filming action scenarios, just to name a few. 

Regardless of the use, if the sUAS strikes a person’s chest there is possibility that it may 

injure a person or be fatal.  

 Impacts between a rotary/fixed wing sUAS and a thorax of an Anthropomorphic 

Testing Device (ATD) will be the main focus. A physical test with cadavers will be able 

to provide more useful data and give a better injury response but the cost of cadaver 

testing is quite expensive, and the data is highly scattered. Instead, a numerical simulation 

will be conducted using a finite element crash test dummy, or ATD, to save cost and 

time. An ATD will be used as a surrogate since it is readily available to download from 

Livermore Software Technology Corporation (LSTC) and have been used in many 

impact studies in automotive safety. The methods used in assessing the injury from an 

automotive crash will assist in assessing the injuries that may arise from a sUAS and 

human interaction. An ATD will be much more computationally stable during localized 

loading conditions when compared to a human model with soft tissues and internal 

organs. A human model will require specific material properties in order to simulate 

organ responses to blunt impacts, which may lead to the instability. The Rotary wing 
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sUAS used is a DJI Phantom 3 quad-copter, which is similar in size of the ATD’s chest, 

shown in Figure 1.1.  

 

 

Figure 1.1: DJI Phantom 3 sUAS CAD Model used in the simulations. 

 

 

The Fixed wing sUAS used is a GZ500 flying wing, which from winglet to 

winglet is no longer than the arm-span of the ATD, shown in Figure 1.2. These specific 

sUAS were selected due to their popularity among the consumer market. The possibility 

of a chest impact is unlikely, but if it does happen it can be dangerous depending on 

several key parameters such as impacting speed, angle of impact, weight of the sUAS, 

and the material of the sUAS itself. 
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Figure 1.2: GZ500 sUAS CAD Model used in the simulations. 

 

1.2 Background 

The number of SUASs flying in our skies has increased exponentially within 

recent years. Main commercial use for sUAS is to capture amazing videos and photos, 

and for academic research. The military has a similar purpose, reconnaissance and 

surveillance from a very high altitude. sUAS are useful, but with enormous amounts of 

people using these devices, there is bound to be incidents such as colliding with a human 

and potentially hurting them. During the Madonna di Campiglio in Italy, Marcel 

Hirscher, a World Cup Champion skier, was nearly hit from a sUAS that was filming his 

second run in the slalom race [Grez, 2015]. Luckily, the sUAS missed hitting Hirscher. 

Many of the accidents are from drones falling from the sky due to engine failure, loss of 

power, or hitting obstacles.  

sUAS/human collisions are still considered to be fairly new, therefore, automotive 

crash testing data and predictors are used to correlate injuries since there is an abundance 

of this data. Injury to the upper torso (i.e. head, neck, chest, back) is imminent in a 
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sUAS/human impact. Modeling an impact to the head is quite challenging since there are 

countless scenarios that may occur causing an injury. The head is capable of flexion, 

extension, adduction, abduction, circumduction, and rotation. In order to properly model 

the behavior of the head post impact, all of these motions would have to be considered as 

well as a combination of these motions. Head and sUAS collisions are similar to that of a 

general blunt impact problem. These problems have been researched extensively, but 

thoracic impact injuries have not been. Therefore, focusing on impacts between the chest 

and sUAS will shed some light on this topic.   

The chest is the next vulnerable region since the vital organs are exposed. In 

fatal/serious automotive collisions, chest injury is considered to be second from a head 

injury according to the U.S. Center of Disease Control (CDC) [CDC, 2007]. In 

automotive accidents, the thorax is exposed to many interior components such as the 

steering wheel, dash, and the restraint system. These components may come in contact 

with the thorax at any point during the collision. The back of the body is not considered 

since the seat protects it during automotive impacts. In sUAS impacts, posterior body 

wall is much thicker than the anterior since the thickness would include the spine, 

scapula, and the musculature surrounding it. The added thickness would provide 

additional protection from a deep blunt impact [Sturdivan et al., 2004]. 

 

 

 

 

 



5 

 

 

 

1.2.1 Anatomy of the Thorax 

 The upper torso consists of many regions as stated earlier. It contains the head, 

neck, chest, back, and abdomen. To clearly show the division of the regions, Figure 1.3 is 

provided. This will properly show which body part belongs to which region.  

 

Figure 1.3: Portioned Body Regions.  

Different letters and represent the separate regions of the body,  

(A) Head, (B) Thorax, (C) Abdomen, and (D) Limbs (Arms and Legs.) 
 

 

The thorax contents are separated from the abdomen contents by a thin muscular 

sheet called the diaphragm. The contents themselves are as follow: the heart, lungs, 

mediastinum, and the ribcage. The injuries that will be experienced within the torso are 

separated into internal organ injuries and ribcage injuries. Internal organ injuries occur 

when the impacting force of the object surpasses the ribcage and causes damage to the 

organs themselves. Therefore, we will only be analyzing the ribcage compression that is 
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caused by the sUAS when impacting the thorax. Using current injury surrogate models 

from automotive crash testing, the injury that will be sustained by the body can be 

predicted.  

The rib cage consists of twelve pairs of ribs, which are connected to the thoracic 

vertebrae posteriorly and to the sternum anteriorly. The first seven ribs connect to the 

sternum at the Chondro-Sternal Junction. Ribs eight-to-ten have cartilaginous 

attachments to the seventh rib. Ribs eleven and twelve are floating ribs, meaning they 

have no attachment to the sternum or any other skeletal structures [Yoganandan et al., 

2015]. Figure 1.4 is provided to show the structure of the ribcage. The numbers shown 

correspond to the anatomy as described above. 

 

 
Figure 1.4: Basic anatomy of the ribcage anteriorly.  
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1.3 Existing Injury Assessments 

 Predicting the injury level that a person will experience is a challenging task. 

There are countless numbers of factors that play a role such as, velocity of the projectile, 

chest compression, age, physical health, impact location, etc. When constructing an 

Anthropomorphic Testing Device (ATD) for crash testing, many of these factors cannot 

be accounted for such as the health and age of the victim, because everyone is unique in 

their own right. Meaning predicting injury for each person becomes a challenge but is not 

impossible. For instance, material selection is quite challenging when simulating an 

impact. Selecting the correct material to mimic the human flesh is known to be quite 

difficult, due to the nature of our bodies. There are layers and layers of muscle along with 

organs with different material properties that makes predicting injury levels difficult. 

However, Post Mortem Human Specimen (PMHS) experimental testing can actually help 

predict the injury levels through observation and measuring impact parameters. PMHS 

has similar material properties to that of the living; therefore rough injury predictions can 

be produced.  

 The following sections describe the existing injury assessments that are widely 

used in the automotive industry to assess the victim’s injury. These injury assessments 

utilize both a qualitative and quantitative criteria when predicting the injury risks. A 

comparison of these scales will help select the correct criteria for the impact scenario. 
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1.3.1 Injury Severity Score (ISS) and Abbreviated Injury Scale (AIS) 

If a patient has experienced multiple injuries, the Injury Severity Score (ISS) is 

used. The ISS is an anatomical based scoring system used to provide a medical score to 

evaluate trauma severity to a victim with multiple injuries with an overall score. The ISS 

divides the patient’s body into five separate regions:  

 

 Head & Neck: Head, Neck, and Cervical  Spine 

 Face: Eyes, Nose, Mouth, Ears, and the Facial Skelton 

 Chest: Diaphragm and Thoracic Spine 

 Abdomen: Pelvis Contents, Abdominal Organs, and Lumbar Spine 

 Extremity: Pelvic Girdle and Legs 

 

Then the Abbreviated Injury Scale (AIS) is used to assess each injury for that 

particular region. AIS is an anatomical based scoring system that was created by the 

Association for the Advancement of Automotive Medicine and was introduced in 1969. 

This scale has been revised and updated since its introduction to provide a much more 

accurate ranking of injury severity. The most recent major update was last updated in 

2008. AIS is based on a scale from one to six, with one being minor injury and six being 

“un-survivable.” AIS six is currently untreatable and is not an arbitrary ranking for fatal 

injury, but instead is a ranking for injuries that are fatal to the victim. An AIS value of 

nine is used to describe any injuries that do not provide enough information for the AIS 

ranking. Table 1.1 shows the basic AIS ranking [Copes et al., 1989]. Table 1.2 shows a 

summary of different levels of injuries that may be associated from a blunt impact. The 
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table shows rib fractures and thoracic organ injuries, along with the correlating AIS 

ranking. The table will also show the correlating chest compression percentage and the 

viscous criterion value associated with the injury [Fundamentals, 2017]. 

Table 1.1: Abbreviated Injury Scale 

AIS Score Injury 

1 Minor 

2 Moderate 

3 Serious 

4 Severe 

5 Critical 

6 Un-survivable 

9 Not Specified 

 

Table 1.2: Ribcage and Thoracic organ injuries and the associated AIS levels. 

Injury 

Levels  

Level 0 

No 

Injury 

Level 1 

Minor 

Injury 

Level 2 

Major 

Injury 

Level 3 

Severe 

Injury 

Level 4 

Potentially 

Non-

survivable 

Frontal 

Rib 

Fracture 

Tolerance Level 
No 

Fracture 

1 Rib 

Fracture 

2-3 

Fractures 
Flail Chest Flail Chest 

AIS Score AIS 0 AIS 1 AIS 2-3 AIS 4 AIS 4 

Chest Deflection (mm) <58 58 – 70 70 –92 > 92 >93 

Chest Compression (%) 25 30 35 40 40 

Thorax 

Internal 

Organ 

Injury 

Tolerance Level 
No 

Injury 

Very 

Minor 

Contusions 

Minor 

Lacerations 

Major 

Lacerations 

Potentially 

Non-

Survivable 

AIS Score AIS 0 AIS 1 AIS 2-3 AIS 4-5 AIS 6 

Viscous Criterion (m/s) <0.5 0.5 – 0.75 0.75 – 1.0 1.0 – 1.5 >1.5 

 

To produce an ISS, only the highest AIS score is used for that particular region. 

Only the top three regions that have experienced the most severe injuries will be used to 

square their scores and be added together to produce the overall ISS score. Table 1.3 

shows example ISS Calculation table. ISS only ranges from 0 to 75. An AIS value of six 
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in any region is considered “un-survivable” and to proceed with any medical care in 

preserving life will be pointless. So AIS of six may indicate a suspension of medical care 

for the patient. If a patient is assigned an ISS of anything above 75, they are 

automatically assigned to 75. The ISS correlates linearly with hospitalization, mortality, 

mobility and other measures of severity after trauma [Barker SP et al., 1974]. 

Table 1.3: Example ISS calculation table. 

Region Injury Description AIS 
Top 3 

Squared 

Head & Neck No Injury 0 
 

Face No Injury 0 
 

Chest > 3 Fractured Ribs 3 9 

Abdomen 
Complete Ruptured 

Spleen 
5 25 

Extremity No Injury 0 
 

External No Injury 0 
 

ISS Score: 34 

 

There are some errors associated with this score. If there were any error 

associated with the AIS scoring then that would propagate to the ISS accumulating error. 

This is not a weighted scale; therefore, many different combinations of injured regions 

may yield to the same ISS, which may not be entirely correct. This scale should not be 

used as a triage tool since a full description of the patient’s injuries is not known prior to 

scoring [Barker SP et al., 1974]. 
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1.3.2 Probability of Death Score (PODS) 

 Probability of Death Score (PODS) or PODSa (accounting for age) was 

developed similar to the ISS. The main difference between these two predictors is that 

ISS shows the probability of survivability where PODS/PODSa shows probability of 

death as it states in the name. Equation 1.1 shows the basic expression for PODS and 

PODSa. 

𝑃𝑂𝐷𝑆 =  
𝑒𝑥

(1 + 𝑒𝑥)
 

(1.1) 

where x is: 

 For PODS: 

𝑥 = 2.2(𝐴𝐼𝑆1) + 0.9(𝐴𝐼𝑆2) − 11.25 + 𝐶 
(1.2) 

 

 For PODSa: 

𝑥 = 2.7(𝐴𝐼𝑆1) + 1.0(𝐴𝐼𝑆2)—15.4 + 𝐶 + 0.06(𝐴𝑔𝑒 𝑜𝑓 𝑃𝑎𝑡𝑖𝑒𝑛𝑡) 
(1.3) 

 

 AIS1 and AIS2 are the highest and second highest AIS. C is -0.764 for 

automobiles [Somer, 1983]. PODS/PODSa has a better coefficient of determination (R2 

value) compared to the ISS. This predictor also has a better understanding of the health 

outcome, making it a much desirable score to use. 

PODS, AIS, and ISS were developed considering the ‘threat of life’ as a main 

driving factor. If additional factors can be used to assess the injury, such as quality of life 

or societal cost, then Injury Priority Rating (IPR) and HARM can be used. IPR is able to 

distinguish impairments that may be associated with the sustained injuries even within 

the same AIS values. IPR also provides a post accident survival rating [Carsten et al., 
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1984]. The HARM concept is used to help mitigate a varying economical cost when 

treating the patient’s injuries. AIS does a great job in evaluating the injury severity, but 

does not consider the long-term consequences associated with the injury. By assigning an 

economical cost to an AIS value, it eliminates the variations in cost per injury [Ambrosio, 

2001]. This method is useful when calculating the cost of injury from the AIS value, but 

also has a limiting use. 

 

1.3.3 Compression Criteria 

 After analyzing large quantities of blunt impact data to the thorax, Kroell et al. 

found that there is a linear relationship between AIS and chest compression. The blunt 

impact data were performed throughout the 60’s and 70’s using a PMHS, in order to 

improve their comprehension of the thoracic impact response and injury tolerances. The 

authors recognized that the global acceleration and force could be used to evaluate the 

body’s motion; this would be ineffective predictor of risk in a localized area. Evaluating 

the global acceleration and force actually neglects the local loading experienced by the 

body. For instance, the whole body acceleration is negligible for a front impact pendulum 

test, but the injury that is experienced is very severe. Therefore, using the chest 

compression is found to be a more suitable predictor for injury risk. Using regression 

techniques, AIS and chest compression have a correlation value, R, of 0.730. With this 

being said the maximum plateau force did not correlate well with AIS, having a 

correlation value, R, of 0.524 [Kroell et al., 1974]. The linear expression between AIS 

and the chest compression is shown in Equation 1.4.  
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𝐴𝐼𝑆 = −3.78 + 19.56𝐶 
(1.4) 

 Equation 1.4 essentially predicts the AIS level by using the chest compression 

divided by the chest depth, C, which can be measured. The authors also found that when 

C is 30% (C=0.3), it correlates to an AIS value of 2; if C is 40% (C=0.4), it will correlate 

to an AIS value of 4. This way, the AIS value can be relative to the actual chest 

compression rather than having a set value for the general public. 

 Using the same experimental data, Viano and Lau conducted a logistic analysis in 

order to construct a more extensive injury tolerance level. This study showed that a chest 

compression of 35% correlated to an AIS value greater than or equal to 4 with a 25% 

probability and a chest compression of 37.86% correlated to an AIS value greater than or 

equal to 4 with a 50% probability [Viano et al. 1988]. 

 Testing shows that to cause a rib fracture a projectile must be traveling 5-7 m/s 

and impact the sternum. In PMHS impacts, this speed commonly compressed the chest 

by twenty-percent, which caused rib fractures. A forty-percent compression commonly 

produced a flail chest. A forty-percent tolerance will extrapolate to a maximum 

obtainable compression of 75 mm to a Hybrid III front impact crash test dummy 

[Neathery et al.1972]. 

 

1.3.4 Viscous Criterion 

The vital organs that are essential to our survival are located in the thorax as 

stated in the previous sections. In order to predict injury risks from an impact, the thorax 

may not be considered as a rigid structure. In the preliminary stages of injury prediction 

this may be applicable just for simplicity sake, but will not be completely accurate. 



14 

 

 

 

Instead, the body must be considered to be a deformable structure [Viano et al., 1985]. 

Due to the fact that the chest can be compressed during an impact, the injury criteria 

needed for the thorax must consider the compression experienced as well as the rate at 

which it is being compressed. Equation 1.5 shows the expression for the Viscous 

Criterion (VC).  

 

𝑉𝐶(𝑡) = 𝑉(𝑡) ∗ 𝐶(𝑡) 

(1.5) 

V(t) is the velocity of the chest relative to the spine, also referred to as the 

deformation velocity. C(t) is the compression of chest relative to the spine.  V(t) has the 

units of m/s, where C(t) is unitless since it is a ratio of the chest compression. C(t) is the 

chest deformation divided by the unreformed chest thickness, therefore making it 

unitless. The previous section stated that the compression criteria can sufficiently 

correlate the local chest compression with an AIS value which will in turn show the rib 

and soft tissue deformation; it fails to show any rate dependency with soft tissues. In 

order to account for the soft tissue rate sensitivity, Kroell et al. explored the effects of 

local chest compression and velocity during a blunt thoracic impact. Swine was used 

instead of PMHS. The authors showed that a high velocity with a low compression 

impact had a greater injury level than that of a low velocity with a high compression 

impact [Kroell et al. 1981]. An abdominal impact test was conducted on rabbits to 

analyze the effects of a blunt injury. Viano et al. conducted this test and consisted of 

variable velocities. The results showed that there was a constant abdominal compression 

at both low and high velocities. At low velocities (8 m/s), no noticeable injuries were 
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apparent but at the higher velocities (20 m/s) showed minor to multiple liver lacerations 

[Viano et al., 1981]. 

 Viano et al. again analyzed a large quantity of frontal and lateral impact 

experiments. These experiments consisted of a wide variety of velocities and thoracic 

compressions, ranging from 5-22 m/s and 4-55% compression, respectively [Viano et 

al.,1983]. The authors were able to confirm that both the velocity and the compression 

experienced by the thorax are sensitive tolerances. The chest is able to tolerate 50% 

compression with a 5 m/s deformation, whereas the tolerance changed significantly when 

experiencing 20% compression at 20 m/s. The data also showed that by multiplying the 

maximum deformation velocity and the compression experienced by the chest wall 

produced an effective predictor for injury risk. The viscous criterion is known to be a rate 

sensitive torso compression that defines the biomechanical index of potential for soft 

tissues. 

The maximum compression of the chest can be used when assessing the ribcage 

damage for low speed impacts (V<5 m/s). For higher speed collisions (V>5 m/s), both the 

deformation velocity (V(t)) and the chest compression (C(t)) are needed to predict the 

injury risk. VC is the best indicator for predicting soft tissue injury for deformation 

velocities of 3-30 m/s [Viano et al., 1986]. For blunt impacts that have velocities less that 

3 m/s, the compression criteria, shown in Equation 1.4, should be used. For impact 

velocities above 30 m/s, the loading becomes such a large factor in which neither the 

compression criteria or VC can be used to predict the injury risk. Based on the Probit 

Analysis (type of regression used to examine binomial response variables), a VC of 1.3 
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m/s yielded to 50% thoracic AIS value that was greater than 3, and a VC of 1.0 m/s 

yielded to a 25% thoracic AIS value that was greater than 3 [Viano et al., 1986]. 

 

 

Figure 1.5: Lobdell’s thoracic model.  

Ms is the mass of the spine, MR is the mass of the ribs, and MP is the mass of the 

incoming projectile. 

 

 The viscous response (VC) is also known to be a time-varying product of the 

deformation velocity and the compression of the chest. To further understand the viscous 

nature of the thorax, Lobdell’s thoracic model is shown in Figure 1.5, to show 

mechanical representations for the contents of the thorax [Lobdell, 1972]. This 

mechanical analogy shown is a biomechanical response of the thorax during a collision. 

The springs and dashpots in Figure 1.5 represent parts of the chest. The spring represents 

the stiffness of the ribcage, which in turn will store the energy during the impact along 

with the force/compression relationship.  This particular stored energy in the spring can 

show the energy capacity of the chest since the energy capacity is proportional to the 

compression of the spring itself. The dashpots can simulate the viscous nature of the 
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thorax. This can show the energy that is absorbed during the impact along with the 

deformation of the particular element. The maximum dissipated energy (viscous limit) is 

proportional to VCMax while the maximum stored energy (elasticity) is proportional to the 

square of the maximum compression, C(t). VC is also a measure of the energy dissipated 

by the viscous elements in the thorax [Viano et al. 1985]. 

It is also apparent that the Lobdell thoracic analytical model is comprised of a 

parallel Voigt and a Maxwell material model. The parallel Voigt material model is the 

spring and dashpot being parallel to one another. The spring element represents the 

elasticity of the rib cage and the dashpot represent the soft tissue of the thorax. The 

Maxwell material model is where the spring and dashpot is in series of one another. This 

material model shows the viscoelastic element such as the pectoral muscles [Lobdell, 

1972]. 

   

1.3.5 Blunt Criterion 

 The original Blunt Criterion for small projectiles impacting a large body is shown 

in the equation below: [Sturdivan et al., 2004]. 

𝐵𝐶 = 𝑙𝑛 (
𝐸

𝑊
1

3⁄ 𝑇𝐷
) 

(1.6) 

The Blunt Criterion is defined in Equation 1.6; where BC is the Blunt Criterion 

variable used to predict the injury risk, E is the kinetic energy of the projectile at impact 

in Joules (J), W is the weight of individual represented in kilograms (kg), T is the 

thickness of the body wall in centimeters (cm), and D is the effective diameter of the 

projectile in centimeters (cm).  When working out the units, it is clear that they do not 
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cancel each other out, and this is because BC is an empirical equation. This means, any 

unit will suffice, and will only change the BC value. The authors chose these units to 

relate the BC to the AIS better.  

The expression inside the parenthesis in Equation 1.6 is an energy ratio. The 

numerator is the kinetic energy of the projectile impacting the body, which can be 

thought of as the energy available to produce damage. The denominator shows how much 

energy the animal or person is able to absorb without damaging vulnerable organs. This 

expression is dependent on the mass of the body and is scaled accordingly. Scaling the 

mass is necessary to show the tolerance of the body by the quantity of tissue available. 

For instance, the amount of damage required to kill a small animal would be tolerable for 

a human and would be negligible for a large animal such as a rhino. To properly account 

for the denominator, other physical quantities such as strength and density of tissue must 

be taken in consideration. These quantities were taken out of the equation and remained 

constant for all animals to simplify the BC. These physical traits can become curve-fitting 

constants to relate the BC to the injury level. 

Body wall thickness measurements are taken center of the lungs and directly over 

the ribs. The thickness is approximated by the following expression: 

𝑇 = 𝑘𝑊
1

3⁄  
(1.7) 

In the equation to calculate the body wall thickness in Equation 1.7, T is the body 

wall thickness, the k value for females are 0.59 and 0.711 for males [Radi, 2013], and W 

is the weight of body. The k values above are for thoracic impacts because if the 

projectile would strike the human in the back, it would experience a much thicker body 

wall.  
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Since the original BC was formulated for projectiles, which were relatively small 

in size and mass compared to the body being impacted, the kinetic energy virtually is 

absorbed by the surrounding impact [Sturdivan et al., 2004]. In our case, the impacting 

object has a similar size to the body so there will be remaining kinetic energy from the 

input energy in the following motion of the projectile. However, the residual energy will 

not distort or cause any damage to the tissue, but must be subtracted from the predicting 

model. This can be thought of the object bouncing off of the chest, post-impact. By 

assuming a perfect inelastic collision between the projectile and the body, the effective 

energy can be estimated. The perfectly inelastic collision will produce the maximum 

transfer of kinetic energy into potential injury forms. In reality, the object will have a 

small rebound off of the chest; this assumption will be able to predict most concerns.  

In order to predict the effective energy from an inelastic collision, the 

conservation of momentum is used. Consider a thoracic collision with a sUAS; the sUAS 

is moderate in size when compared to the chest. During the impact, the body mass used in 

the equation is the “effective mass” and will move along with the impact. The mass will 

have a slow transfer in momentum and energy relative to the rate of production of injury. 

Post-impact, the projectile will become a part of the body conserving the momentum. The 

derivation is shown in Equation 1.10. 

𝑀1𝑉1 = (𝑀1 + 𝑀2)𝑉2 
(1.8) 

𝐸 =
1

2
𝑀1𝑉1

2 −
1

2
(𝑀1 + 𝑀2)𝑉2

2 

(1.9) 

𝐸 =
1

2
𝑀1𝑉1

2 (1 −
𝑀1

𝑀1 + 𝑀2
) 

(1.10) 
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The variables in the equations above are as follows: E is the energy, M1 is the 

mass of the projectile, and in our example it is the sUAS, M2 is the “effective mass” as 

stated above, V1 is the velocity of the projectile, and V2 is the velocity of the combined 

mass. This modification will generalize the BC to any impact variety. 

Modifications will have to be made to the effective diameter variable as well. 

Since the sUAS is significantly larger than a bullet, the cross-sectional area of the 

impacting sUAS arm will not be acceptable. For larger objects, an effective diameter will 

have to be calculated, which will show the area of the contact between the projectile and 

the body. To be considered a small projectile, the object must have a radius less than or 

equal to the impacting body wall thickness. As the object size increases, the area of the 

contact is dictated by the curvature of the object that is striking the body. An example of 

this is shown in Figure 1.6, where a large sphere is impacting the Hybrid III ATD.  
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Figure 1.6: Clearly showing the effective diameter lodging into the dummies chest.  

Left: Global Reaction from the Ball Impacting the Test Dummy.  

Right: A close up of the projectile impacting the dummies thorax. 

 

 

The effective diameter is derived in the following steps; first find the contact area 

of the object, then calculate the effective diameter as shown in Equations 1.11 and 1.12, 

respectively, where D is the effective diameter that will be used in the BC, A is the 

contact area between the object and the body, T is the body wall thickness, and D’ is the 

diameter of the object. 

𝐴 = 𝜋𝑇(𝐷′ − 𝑇);𝐷′ >  2𝑇 
(1.11) 

𝐷 = 2√
𝐴

𝜋
 

(1.12) 
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Effective mass of the body parts will also need slight modification as well. This is 

a sensitive parameter since this can vary from person to person. In the past, only certain 

portions of the total body mass were obtained from disarticulated cadavers. Obtaining 

body mass in this way led to inaccurate approximations of estimating effective mass. The 

post mortem water loss was not measureable and not correctable either. As new 

technologies developed, Pignolet et al. suggested a new method of measuring the mass of 

body parts by determining the mass supported by each vertebra. The experiment 

consisted of eleven women and seventeen men, all in good physical condition, and all 

having normal weight for their height. The data was combined to estimate the effective 

mass of each body parts. These masses would move independently relative to the 

neighboring body parts post impact. The results of this experiment are shown in Table 1.4 

[Pignolet et al., 1990]. 

 

Table 1.4: Body Part Proportions for Injury Surrogate for both Men and Women. 

Body Part Men and Women (%) 

Head N/A 

Arm 7 

Thorax 21 

Mid-abdomen 21 

Pelvis 20 

Leg 33 

 

 It is obvious that when adding the percentages that the total does not equal one 

hundred percent. This is due to the inaccuracies in the experiment itself, mainly the lower 

limb portion. Part of the lower limb weight has been transferred to the pelvis. The 

original data determined the mass supported by the vertebrae ended at the femoral 
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support. Meaning the authors combined part of the pelvic girdle in with the lower limb 

when they should have been separated. If there is a full body collision then this would 

affect the results, but since we are looking at individual body regions, the effective mass 

will remain the percentage shown in Table 1.4. The head percentage is also not shown 

since the body weight percentage cannot be well represented. Head impact is not being 

considered in this at all, even though the head is highly vulnerable.  

Viano et al. similarly derived an estimate of effective mass of the thorax using 

cadaver data for their impact study [Viano et al.,1989]. In the estimate, there was a large 

difference in the values, but the averages for each region were close, as shown in Table 

1.4. It considers that the individual body regions will move as whole together. The 

discrepancy seen in Pignolet et al. study is apparent here where the lower abdomen will 

contain the pelvic girdle and will move as unit as well. One other consideration is that 

there is no skeletal structure in the mid-abdomen area, which makes estimating this 

region difficult. Even though there is no actual skeletal structure in this area, it is clear 

that the various organs and the body wall cannot move independently of one another or 

the spine. 

 Sturdivan et al. found that there is no statistical difference in the body part 

portions between men and women in their study. There was only a slight difference in the 

thorax percentage between the different genders, but was neglected from being a 

relatively small variance [Sturdivan et al., 2004]. 

By combining and simplifying the modifications stated above from the following: 

Equations 1.6, 1.7, 1.10, and 1.12; the modified BC for projectiles that are similar in size 

of the thorax is shown in the expression below: 
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𝐵𝐶 = 𝑙𝑛

[
 
 
 𝑀1𝑉1

2 (1 −
𝑀1

𝑀1 + 𝑀2
)

4𝑘𝑊
2

3⁄ √𝐴
𝜋⁄ ]

 
 
 

 

(1.13) 

 Equation 1.13 incubuses all of the modifications required for this type of impact, 

where the projectile is similar in size as the targeted body.  

 

1.3.6 Differences in VC and BC 

 

When analyzing an impact to the human chest there are number of criteria created 

to predict the injury from the collision. As mentioned in the previous sections, these 

criterions were formulated using physical measures such as acceleration, force, impulse, 

and the compression of the body. Both VC and BC are both energy-based predictions. 

Viano and Lau developed the Viscous Criterion (VC) and are used throughout the 

automotive industry in crashworthiness [Viano et al.,1985]. VC is used when there is a 

whole-body reaction rather than a localized one. This criterion is derived from the 

instrumentation of a dynamic experiment, where BC is derived from physical properties 

of impacts. VC may be used if the experiment is a global event such as automobile 

testing or structural collapses. VC assesses the potential injury from an experiment, such 

as a blunt impact, where the energy input and other factors may not be apart of the BC.   

The Blunt Criterion was developed to assess the vulnerability of humans to blunt 

weapons, projectile impacts, and the behind-body armor exposures within the U.S. 

Department of Defense. The original BC is better suited for the target body to be much 

larger than the projectile with low mass and a high velocity (i.e. a bullet impacting a 
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human). BC would consider the possible penetration that may occur during the collision 

as well. Modifications can be made to the BC so it can be better suited for larger 

projectiles, so the object may be similar in size of the target. Equation 1.13 shows the 

modified BC, in order for the modification to be effective, every physical parameter must 

be known. This can become problematic when the projectile has multiple components to 

it rather it being a single mass object. The modified BC will only augment the local 

impact area, instead of small area as the BC was originally intended for.  

Due to the nature of the two different criterions, VC would be better suited to for 

a sUAS/ATD collision. As stated earlier, VC is the best predictor when the impact 

velocity is between 3-30 m/s. This velocity range will cover the minimum and maximum 

speeds in which the consumer sUAS will be able to go. In fact, the DJI Phantom 3 used 

for the sUAS/ATD collision has a max speed of roughly 16 m/s [DJI, 2015]. For speeds 

less than 3 m/s, the compression criteria should be used [Viano et al., 1986]. BC is not 

applicable since the projectiles, sUAS’s, are larger or nearly the same size of the 

impacting thorax. These physical quantities alone will produce inaccurate results from the 

BC.   

 

1.4 Biomechanical Responses 

 Understanding the biomechanical responses of the ATD is very important. Being 

able to predict the response will ensure a more accurate prediction of the injury severity. 

Analyzing biomechanical responses can come from several tests, such as the pendulum 

and sled test that is widely used in the automotive industry. Many of these tests were 

performed on PMHS under controlled laboratory conditions. These tests were able to 
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provide measurable biomechanical responses such as deformation, acceleration, and 

forces. Using these parameters and necropsy post-impact, a detailed injury level were 

produced, which led to the development of the injury criteria as well as crash test 

dummies like the Hybrid III. The following sections will show the blunt impact testing 

and injury that is expected from those tests. 

 

1.4.1 Pendulum Impact 

 PMHS are used in biomechanical testing to gather biomechanical responses such 

as forces, accelerations, deformations, and pressures, in order to analyze the resulting 

injuries through necropsy. PMHS will not provide completely accurate results but will 

show a good idea of what injuries will be sustained after a body has experienced an 

impact [Yoganandan et al., 2015]. This analysis of injury is much more realistic than 

using an Anthropomorphic Testing Device. Within the vehicle crashworthiness realm, 

pendulum and sled testing are commonly used. Pendulum testing is used predominantly 

for impact scenarios whereas sled testing is mainly used to test the effectiveness of a 

restraint system. Sled testing criteria will be neglected since there is no need for this kind 

of testing in a sUAS/Human collision. From the data that has been collected from these 

tests, a frontal lateral crash test dummies and injury criteria that can be utilized for more 

testing has been developed. 

 Pendulum testing includes a six-inch diameter rigid pendulum impacting the 

sternum of a PMHS. The data that was collected from this testing shows that an idealized 

deflection vs. force curve can be derived. This would come from the response of the body 

and can be categorized in loading and unloading stages [Melvin et al., 1985]. The loading 
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stage can be broken down to three separate components: (1) initial peak, (2) plateauing of 

the force, and (3) the maximum deflection. Component 1 is the peak force that the body 

will experience when the pendulum is contacting it. This initial stiffness or rapid growth 

is due to the viscous properties that are within the thorax. Component 2 is where the force 

plateaus due to the viscous response of the thorax. Component 3 shows the maximum 

deflection of the pendulum. This part is similar to that of an elastic collision, since the 

two masses (pendulum and thorax) are moving together. The unloading stage is where the 

impactor starts to come back to its starting location and will detach itself from the thorax; 

they will be together in the previous component [Yoganandan et al., 2015]. Figure 1.7 

shows an example of the deflection vs. force curve in order to easier understand the body 

response from the pendulum testing. This is an idealized case. The force and the 

deflection are dependent on the impact velocity. A slower velocity will yield a lower 

pendulum force and a higher velocity will yield a higher force output. 
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Figure 1.7: Example of an ideal chest Deflection vs. Pendulum Force curve. 

 

 

1.4.2 Thoracic Injury 

 When there is a blunt impact to the chest, one of the most common injuries is a rib 

fracture and a flail chest. A flail chest is a life-threatening condition that occurs when a 

portion of a rib cage is detached from the chest wall due to trauma. Some common 

symptoms include shortness of breath and chest pains [Athanassiadi et al., 2004]. As for 

assigning an AIS value, when there is a unilateral flail chest and three-to-five ribs are 

involved, it is considered to be AIS 3. When there are more than five ribs involved, it is 

AIS 4. A bilateral flail chest is considered AIS 5 since this may be life threatening. A rib 
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fracture can be expected for an AIS 3 value or higher, since the ribcage will be absorbing 

most of the energy during the impact. 

 In a cadaver study conducted by Melvin, Mohan, and Stalnaker, it was found that 

a determining factor for a rib fracture is the maximum compression that is experienced by 

the chest [Melvin et al., 1975]. Meaning the number of rib fractures is purely dependent 

on the magnitude of the compression rather than the rate at which it deflects. When 

reviewing the injuries and the response data, the authors found that rib fractures were 

much more apparent when the chest depression is over 3 in. (76.2mm). At the same time, 

virtually no rib fractures were found with a chest deflection less than 2.3 in. (58.4 mm). 

This may seem contradicting since the force applied to the chest is rate dependent. This is 

caused by the viscous nature of the thorax itself.  With that in mind, the force is related to 

the number of rib fractures depending on a given loading rate. 
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Chapter II: Model Development 

2.1 LS-DYNA 

 The following sections will explain the LS-DYNA software that was used to 

conduct the vast number of simulations. The sections will go into detail of how the LS-

DYNA calculates the FEM solutions and what parameters were used to set up the 

experiment. 

 

2.1.1 Brief History 

 
LS-DYNA (Version 971), Commercial software by Livermore Software 

Technology Corporation (LSTC) was chosen to perform all of the impact simulations 

between the sUAS and the ATD. This software has explicit and implicit finite element 

program uses in which explicit time integration is used to analyze nonlinear dynamic 

problems. LS-DYNA is used in a variety of industries (automotive, military, 

bioengineering, etc.) to solve various engineering problems. It is important to understand 

the proper inputs and outputs of this program, along with knowing how LS-DYNA 

calculates contacts between objects. LS-DYNA originated at the Lawrence Livermore 

National Laboratory (LNLL) in 1976, and came from a 3D FEA software called 

DYNA3D, developed by Dr. John O. Hallquist [LSTC, 2007]. Originally, DYNA3D was 

created to simulate the impact of a nuclear bomb, called the Full Fusion Option (FUFO) 

nuclear bomb, when released at low altitude. The original intent for DYNA3D was to 

analyze stress in structures undergoing a variety of impact loadings. This required 

significant computer resources and was immediately apparent that speed at which the 
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software was executing the explicit time integration needed to be updated. To have a 

gauge of reference, in 1976 the supercomputers were much slower than the common 

computer of today. [LSTC, 2007]. Due to the computational power at the time, the code 

was written very simply. The first version of the software contained trusses, membranes, 

and a few solid elements. The solid elements available ranged anywhere from a one-point 

quadrature eight-noded elements with hourglass control to a twenty-noded element with 

eight-integration points. As FUFO got canceled, the development of the software 

continued. In 1978, the source code of DYNA3D became the public domain per request 

from France [Benson, 2017].  

 The 1979 version of DYNA3D was programmed to operate with the CRAY-1 

supercomputers. This version contained improved sliding interface treatment and was 

faster than the previous version’s contact treatment by several magnitudes. This version 

also eliminated the structural elements, solid elements, and higher order solid elements 

from the first version [LSTC, 2007]. There were many features that were added to 

DYNA3D during the 1980’s. In the 1982 version, there were nine additional materials 

that were incorporated to the program. These new materials allowed for new simulations 

to be conducted, such as soil-to-structure and explosive-to-structure interactions. This 

update also allowed for the analysis of a projectile that would penetrate an object to be 

possible. The speed was improved by roughly ten percent as well. DYNA3D acquired 

many new features in the 1986 version such as beams, shells, rigid bodies, interface 

friction, discrete springs and dampers to name a few. The program expanded its range as 

well by expanding to more operating systems such as VAX/VMS, IBM, UNIX, and COS. 

DYNA3D became the first code to have a generalized single surface contact algorithm 
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[LSTC, 2007]. The 1987 version brought metal forming simulations and composite 

analysis possible. More elements and materials were added as well [LSTC, 2007]. 

 Towards the end of 1988 it was apparent that the software would need more 

development in order to solve problems in crashworthiness. Due to this reason, LSTC 

was founded by Dr. Hallquist to continue the development of DYNA3D as commercial 

software, called LS-DYNA3D, shortened to LS-DYNA later [LSTC, 2007]. There has 

been considerable progress made to the software for further advancement in 

crashworthiness studies. The list of additions made to LS-DYNA are shown on the LSTC 

website or in the LS-DYNA user manual. To understand the jargon and the concept of 

using LS-DYNA, please refer to the Appendix B or the LS-DYNA user manual. 

Appendix A will show an example of how to solve a simple problem using the finite 

element method. LS-DYNA will conduct similar steps in solving the more complex 

problems. 

 

 

2.2 Numerical Methods 

  Calculating an analytical solution for real-life problems that are modeled by 

ordinary differential equations (ODE) or partial differential equations (PDE) are near 

impossible, numerical methods are used to approximate the solution. There are various 

numerical schemes on solving these types of equations and in the following sections; 

differences in the implicit and explicit equations, finite element analysis, and the Galerkin 

Method will be discussed. 
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2.2.1 Implicit vs. Explicit  

 Since LS-DYNA is an explicit and implicit finite element program, it is important 

to know the differences between the two equations and methods. An explicit numerical 

scheme is when a direct computation of a dependent variable can be made and Equation 

2.1 shows a simple example of this. Notice that y is a dependent variable and is defined 

by the independent variable x. 

𝑦 = 𝑥2 

(2.1) 

 An implicit numerical scheme refers to the dependent variables being defined by a 

set of equations, matrix, or an iterative technique. Equation 2.2 shows a simple example 

of this. There are multiple ways to solve an implicit numerical scheme. 

𝑦 − 𝑥2 = 1 

(2.2) 

 Both Equation 2.1 and 2.2 represents the same parabola. Notice that implicit 

functions can be written as an explicit function. It is often easier to differentiate an 

implicit function without rearranging the function. 

 When analyzing both implicit and explicit equations, LS-DYNA will approach 

this separately depending on the type of analysis, static and dynamic. In a static analysis, 

the effects of damping or inertia are not present. This kind of analysis can be 

accomplished through the implicit solver in LS-DYNA. In a dynamic analysis, such as an 

impact and a crash, the inertia and damping effects are included since they are related to 

the nodal forces. This type of analysis can be accomplished using either the implicit or 

the explicit solver [Dynasupport, 2014]. In implicit analysis, the numerical solver 
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conducts a computationally expensive operation and will invert the stiffness of the matrix 

once or several times during the current load or time step.  For an explicit analysis, this is 

operation is not required. 

If the function requires a nonlinear implicit analysis, then the solution at each step 

must go through several iterations in order to establish equilibrium, depending on the 

tolerance. For a nonlinear explicit analysis, it is the opposite of the implicit solver where 

no iterations are needed since the nodal accelerations are solved directly by taking the 

inverse of the diagonal mass matrix and multiplying that by the net nodal force vector. 

This net nodal force vector includes external forces, damping, bulk viscosity, stress, and 

hourglass control. During the current time n the acceleration is calculated, then the 

velocities are calculated at time n+1/2, and then the displacement at n+1. Once this is all 

calculated, the displacement will show the strain and then the stress can be computed 

from the strain. This cycle will repeat until the end time. [Dynasupport, 2014] Explicit 

analysis also handles nonlinearities much easier when compared to the implicit analysis. 

The nonlinearities would include the treatment of contacts and materials as well. 

In an implicit transient analysis, there is no time step size limitation and also 

allows for a larger time step to be used. For an explicit transient analysis, the time step is 

limited by the Courant and Fourier conditions [Dynasupport, 2014]. Table 2.1 will show 

the difference between the implicit and explicit analysis that were discussed above. 
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Table 2.1: Brief summary showing the differences in Implicit and Explicit Analysis 

Implicit Analysis Explicit Analysis 

Implicit Solver solves Static Analysis 
Dynamic Analysis can be solved by 

explicit or implicit solver 

No effects of damping or inertia Damping and inertia effects are included 

Inverts the stiffness matrix once or 

several time during the current load or 

time step 

Nodal accelerations are solved directly and 

no iteration is required 

Several iterations are needed to establish 

equilibrium, depending on the tolerance 

When the acceleration is known t time n, 

then the velocity is calculated at time 

n+1/2, and then the displacement at time 

n+1 

No time step size limit 
Handles material and contact nonlinearities 

with relative ease 

It allows use of larger time step to be 

used. 

Time step is limited by the Courant and 

Fourier conditions. 

 

It is apparent that the time step size is crucial for both the implicit and the explicit 

solvers. Knowing the time step for any simulation is one of the most difficult tasks. Time 

step size is roughly related to the time it takes for an acoustic wave to pass through an 

element by using the shortest distance available. In order to determine the new time step 

(tn+1) for the next iteration; LS-DYNA will loop through the time step through every 

element. Once the N amounts of elements have been looped through, the minimum value 

will be taken, and be multiplied by a scale factor α, to produce the new time step size. 

Equation 2.3 shows the expression used to find the new time step size. For stability 

reasons, scale factor α is used and is set to a default value of 0.90 or smaller. Any value 

that is larger than 0.90 will lead to instabilities in the solution. If possible, the largest 

stable time step size will lead to a decrease in solution time [LSTC, 2007]. 
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∆𝑡𝑛+1 = 𝛼 min(∆𝑡1, ∆𝑡2, … , ∆𝑡𝑁, ) 

(2.3) 

 As stated earlier, the time step size is roughly the speed of sound traveling 

through a material. This means that it is important to know what material will be used 

during a simulation. For instance, two materials that are commonly used in the 

automotive industry are steel and aluminum; sound roughly travels 5000 m/s or 5 mm/μs 

through the material. If the steel structure used had an element size of 5mm then the 

computed time step size would be 1 μs [LSTC, 2007].  Table 2.2 shows how the speed of 

sound differs depending on the material. A simple example suggests that elements made 

with materials that do not allow sound to travel as fast, the time step size will have to be 

increased. The example showed that with a “reasonable” time step size, the element size, 

is 5mm; if this was an automotive geometry it could not be represented fully with FE 

[LSTC, 2007]. It is a balance game between element size, stability, and the time step size, 

but as computers are becoming more advanced the obstacles are becoming less apparent. 

 

Table 2.2: Different speed of sound in different materials. 

Material Speed of Sound (m/s) 

Air 340 

Water 1478 

Steel 5240 

Titanium 5220 

Plexiglass 2598 
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2.3 Surrogate Model for Impact Response Prediction 

 Once the simulation results have been gathered, a non-linear surrogate equation 

will be created to predict the relationship between the Viscous Criterion (VC) and 

different impact parameters, such as the impact velocity (V), sUAS mass (M), and the 

impact angle (θ). This surrogate model solely depends on the input and output parameters 

of the problem. A Response Surface Method (RSM) approach was selected since it is 

well established and has been extensively applied to engineering design. This approach is 

also best suited for applications that have random errors within the system [Simpson et. 

al., 2001]. Considering there are vast amounts of numerical simulations conducted, it is 

assumed that there will be random errors. Typically response surfaces are second-order 

polynomial models but in this case a higher order response surface was used. Instabilities 

in the model would typically arise from doing this from not having adequate amounts of 

sample points to estimate the coefficients. In this experiment, this isn’t a problem since 

there are many sample points being taken. The surrogate model can be represented in 

Equation 2.4.  

 

𝑉𝐶𝑀𝑎𝑥 = 𝑎 + 𝑏𝑉 + 𝑐𝜃 + 𝑑𝑀 + 𝑒𝑉𝜃 + 𝑓𝑉𝑀 + 𝑔𝜃𝑀 

+ ℎ𝑉2 + 𝑖𝜃2 + 𝑗𝑀2 + 𝑘𝑉3 + 𝑙𝜃3 + 𝑛𝑀3 

(2.4) 

 The various combinations of the impact parameters populated the data table for 

each aircraft to assure that most of the cases were considered. Equation 2.16 will be 

curve-fitted in order to determine the coefficients a, b, c, d, e, f, g, h, i, j, k, l, and n. An 

general optimization software package known as 1stOPT was used to curve-fit the 
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function. 1stOPT is based on a Universal Global Optimization algorithm [1stOPT, 2014]. 

Typically an optimization process will find certain points in order to minimize a function. 

Global optimization is different from a traditional optimization by finding the maximum 

and minimum from its inputs rather than finding the local maximum or minimum 

[Liberti, 2008]. In mathematical programming, a problem can be broken down into two 

categories, convex and non-convex optimization. Fundamentally, the results of a convex 

analysis will state that the optimal local solution is also the optimal global solution. It is 

important to note that after each iteration there is an algorithmic termination test, which 

tests whether the current solution is locally optimal dependent on the predefined 

neighbors. For a convex optimization problem, this can ensure that the solution is 

globally optimal and will be the only optimal solution or there will be no other feasible 

solution. A non-convex problem is different because there are many different local 

optima’s and is a difficult task to choose the best one from the set [Liberti, 2008].  

 A Simplex Method algorithm was used for the curve fitting. This algorithm is 

used to solve problems in linear programming, and will essentially go through a set of 

feasible solutions, one at a time, until an optimal solution is found, if it exists. Once there 

is a feasible set or a polytope, the algorithm will test adjacent vertices in order so that the 

objective function in each new vertex will wither improve or remain unchanged. This 

method is efficient when in use since it will generally take about 2m to 3m iterations (m is 

the number of constraints) and converges in the expected polynomial time (number of 

steps needed to complete an algorithm for the given input is O(nk), where n is complexity 

of the input and k is a positive integer) for a certain distribution of random inputs 

[Forsgren, 2002]. 
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The independent (V, M, θ) variables were also normalized in order assure that one 

variable will not overcome another one. Equation 2.5 shows the expression used to 

normalize the variables and Table 2.3 shows the normalization factors used for each 

variable. The dependent variable (VC) was not normalized since it does not affect the 

curve fitting. If the VC were normalized, then the user would have to multiply the 

Prediction VC with the Normalization Factor used for the VC to get the actual VC value. 

From testing both cases of normalizing and non-normalizing the VC, the results and the 

percent differences were identical.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =
|𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒|

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 

(2.5) 

Table 2.3: Normalization Factors used. 

Variable Normalization Factor 

V (m/s) 50 

M (kg) 2.0 

θ (°) 180 

 

Once the surrogate model is created, a correlation analysis will be conducted to 

analyze the input parameters of the predicted VC. To measure the linear dependence 

between the variables, a Pearson correlation coefficient will be used. The coefficient will 

have a value between +1 and -1. A value of +1 is a positive linear correlation, -1 is a 

negative linear correlation, and a value of 0 means there is no linear correlation 

[Correlation, 2017]. The p-value will also be calculated to see the significance of the 

results as well. The p-value will indicate whether the variable has a strong correlation or 

not. Typically when p ≤0.05 or (5%), this will indicate a strong correlation, if it is greater 

than 5% then there a weak correlation [Wasserstein et al., 2016]. 
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Chapter III: Model Development 

3.1 Rotary & Fixed Winged Unmanned Aerial System/Vehicle  

Current day sUAS’s are very diverse in design and can be categorized in many 

ways. The two most popular types of sUAS’s are rotary and fixed wing sUAS’s. The 

rotary winged sUAS’s are capable of vertical take off and flight. The kinematics of this 

type of winged aircraft is similar to that of a helicopter. The main difference is that a 

helicopter uses two rotors, a main vertical mast and a tail rotor for stability. A rotary 

winged sUAS needs at least four rotors in order to maintain stable flight. These devices 

are very nimble, can execute very tight maneuvers and are often utilized in media 

production. 

Fixed winged sUAS’s work similar to the classic remote-controlled airplanes. 

These sUAS’s are very popular due to its simplicity when compared to the rotary wing. 

Design can vary from a flying wing to a glider type aircraft. These devices are 

predominantly popular in military applications such as surveillance missions.   

The preprocessing will be performed using meshing software called Hypermesh 

by Altair Engineering in Troy Michigan. This software will be used to process the CAD 

models and convert them to finite element (FE) models to setup the sUAS/Human 

interaction. 
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3.1.1 Converting CAD Models to Finite Element Models 

 Figure 1.1 shows the DJI Phantom 3 sUAS that will be used as the rotary sUAS 

in the simulations. This CAD model is available to download to the public from a website 

called grabcad.com [Hanmao, 2015]. This website contains various CAD models from 

users that want to share their drawings. There is no scaling of the obtained models are 

required since the models have the correct dimensions. The Phantom 3 is approximately 

1.3 kg and has diagonal size of 350 mm, excluding the propellers [DJI, 2015]. The GZ500 

Flying-Wing was also obtained from grabcad.com and was designed by Kavian Niazi, 

shown in Figure 1.2 [Niazi, 2016]. The Flying-Wing is approximately 2.0 kg in weight 

and has a wingspan of 1.214 m. 

 In the preprocessing stage, the CAD model will be converted into a FE model to 

prepare it for simulation. The preprocessing steps include cleaning up geometry, applying 

mesh, material and properties selection, and boundary/initial conditions. The 

preprocessing stage is where most of the time should be focused due to the amount of 

detail is needed for the simulation. Figure 3.1 and Figure 3.2 show the converted DJI 

Phantom 3 and the GZ500 Flying-Wing FE model that were used for the simulations, 

respectively. The predominate mesh shape used is a quadrilateral in a structured surface 

mesh with having average size of 5 mm for both aircrafts to ensure precision. This can be 

easily seen in Figures 3.1 and 3.2 as well. 
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Figure 3.1: DJI Phantom 3 FE Model 

 

 
Figure 3.2: GZ500 Flying-Wing FE Model 

 

The first step is to clean up the geometry of the CAD model. This can be 

performed using CAD software, such as CATIA or Solidworks, both by Dassualt 
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Systemes, or use the meshing software, such as Hypermesh. Once the geometry is 

cleaned up, the model can be exported in an IGES format, because this format will 

describe the profile of the sUAS. By comparing the original and FE models, there are 

significant differences in the features of the sUASs. By eliminating redundant features on 

the model, this will allow LS-DYNA to perform its calculations much faster, which will 

cut down on computational time. The redundant features in the Phantom 3 model include 

things such as rubber grommets for the camera bracket, the ribs in the legs, and the 

detailed motor design. The redundant features on the GZ500 are minor things, such as the 

flaps on the wing and the ribs inside the structure itself. Structural support are very 

important to the sUAS during its operations, but will not be needed during a human 

impact collision. Since we are only concerned about the response of the human and not 

the crashworthiness of the sUAS, structural supports were removed. 

 Once the geometry is cleaned and simplified as much as possible, the next step is 

meshing. When applying the mesh on the geometry, it is important to keep track of the 

mesh size and the geometry to perform quality checks along the way. Making the mesh 

size smaller throughout the model will produce a very accurate result, but will also be 

taxing computationally. A larger mesh size will show a much more general result and 

will not be as taxing computationally. Usually a combination of structured and 

unstructured mesh will be used to construct the FE model; in a wide range of sizes.  

 The material used for all of the parts on the Phantom 3 and the GZ500 is MATL3 

(Keyword: MAT_PLASTIC_KINEMATIC). This is an engineering plastic, which has a 

typical elasto-plastic behavior. Engineering plastic tend to have better mechanical and 

thermal properties when compared to common plastics.  This plastic has been replacing 
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traditional materials, such as metal or wood, in certain applications due to its weight and 

strength. Engineering plastics can equal or surpass the traditional materials in strength 

and other properties. Generally, engineering plastics are a lot easier to manufacture when 

compared to the traditional counterparts [IAPD, 2017]. The specific material and 

property characteristics are shown in Appendix C. 

 

3.2 Anthropomorphic Testing Device (ATD) 

In the automotive industry, physical surrogates, such as crash test dummies, are 

being used for collision instead of humans. These crash test dummies have been designed 

to predict the human body response that will occur during an automotive collision. These 

crash test dummies are in constant development so the most accurate human response 

data can be provided. The validation of these dummies using numerical models is 

essential in the advancement of the automotive industry. Anthropometric data provides 

the physical measures such as dimensions and the masses of the various body 

components. The anthropometric data is important for the development of the numerical 

models. 

 For a sUAS/Human collision, an Anthropomorphic Testing Device (ATD, crash 

test dummy) will be used in place of the human in the crash test simulations. The ATD 

that will be used is a Hybrid III 50th Percentile. The specific details for this model will be 

discussed in the following sections. 
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3.2.1 Anthropomorphic Measurements 

 Understanding the biomechanical responses of a person after a thoracic impact is 

crucial, but before that is possible, an accurate anatomical numerical model is needed. 

Before constructing an accurate depiction of a person, an understanding of how ATD’s 

were developed is important. Anthropometry is used to measure an individual’s physical 

traits such as, height, width, and weight [Moss et al., 2000]. In recent times, this plays an 

important role in ergonomic designs, clothing, architecture, and industrial designs, in 

order to optimize products that would require human measurements.  Anthropometric 

data is needed for a numerical modeling application in order to represent the human body 

model correctly. Theoretically, creating numerical model for each body size and shape 

with every combination would revolutionize safety design. This is not a feasible option 

due to time constraints and economical cost that is associated with creating these 

numerical models. More importantly, the computational cost associated with such model 

development is substantial. Instead, average measurements are used to develop the crash 

test dummies. For frontal impacts, there are 5th, 50th, and 95th percentile male dummies 

available. There are many different kinds of crash test dummies, each designed for 

specific testing parameters.  

 

Table 3.1: AMVO and RAMSIS anthropometric database summary. 

Body Measurements AMVO 
RAMSIS 

US & Canada Germany Japan & Korea 

Body Mass (kg) 76.7 72.7 79.2 66.6 

Stature (mm) 1753 1755 1771 1695 

Chest Width (mm) 

(Taken from 10th Rib) 
312 296 308 300 
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Anthropometric data is obtained through volunteers and currently exists through 

several databases. The databases typically include the weight and height measurements of 

the individual then categorizing the information based on the geographic residence, 

gender, age, and race. There are two automotive databases that provide enough detail in 

order to develop an ATD, Anthrometry of Motor Vehicle Occupants (AMVO) and 

Rechnergestiiztes Anthropologisch-Matchematisches System zur Insassen Simulation 

(RAMSIS) [Moss et al., 2000]. RAMSIS is a mathematical software that predicts the 

internal and external anthropometric measurements using three key parameters, waist 

circumference, sitting height and stature. By adding extra parameters, such as age and 

race, will only improve the data. RAMSIS gathers the data from the following regions, 

US and Canada, Germany, and Japan and Korea. The AMVO data was used to determine 

the anthropometric size of the mid-sized 50th percentile dummy. Twenty-five adult males 

with similar stature were chosen to gather all of the data. Table 3.1 shows the some of the 

findings from Moss et al., it shows the measurements from AMVO and RAMSIS 

databases of the 50th percentile male. For a sUAS/Thoracic impact, we would only 

require some of these parameters, such as height, weight, and the chest width of the 

individual. Notably there are slight variations in the data between the different databases 

[Moss et al., 2000]. 
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3.2.2 Biofidelity 

 Assuring the use of a Hybrid III will react correctly to a sUAS impact the chest, 

the biofidelity of the Hybrid III dummy is very important. Biofidelity is the passive 

human like mechanical behavior that is simulated through a surrogate, in our case the 

crash test dummy. Comparing the mechanical and kinematic responses between a human 

volunteer and the crash test dummy can assess this [Kallieris et al., 1995]. The 

comparison is only valid if the crash test dummy and the human volunteer are exposed to 

the same impact conditions. Not only do the same conditions have to apply but the same 

measurement techniques must be carried out as well, to ensure the mechanical response 

and the biological responses are compared effectively. 

 The Hybrid III dummy and cadavers have under gone identical collisions by 

Kallieris et al. The global kinematic behaviors were compared and found slight 

differences. The acceleration measurements were taken at Th12 between the two 

subjects. For the trials where the acceleration of the dummy was higher than the cadaver, 

there was a difference in the acceleration measurements at the Th1 and the sternum 

[Kallieris et al., 1995]. This would suggest that the torso and torso articulation of the 

Hybrid III might be stiffer than that of the cadaver.  

 The deformation experienced by the thorax was measured using chest bands. 

Backaitis et al. and Kallieris et al. both observed that the deformation observed by the 

cadaver was almost twice as greater than the Hybrid III deformation. This will result in 

twice the VC value as well. This can suggest that the Hybrid III thorax is stiffer than the 

cadavers [Kallieris et al., 1995]. 
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3.2.3 Anthropomorphic Testing Device Finite Element Model 

For a sUAS/Human collision, the Hybrid III 50th percentile male dummy will be 

used, as shown in Figure 3.3. This dummy was chosen because it is the most widely used 

crash test dummy in the world. The dummy is also capable of being used outside of 

automotive uses as well. The Hybrid III FE model is available to the public to download 

from the LSTC website. The company specializes in creating both computational and 

physical ATD’s ready to use in a simulation or a car collision. Table 3.2 will show the 

total number of finite element (FE) entities needed to construct the ATD model. 

These devices are originally intended for vehicle collision testing, but can be used 

for other impact situations. The Hybrid III crash test dummy is capable of simulating the 

human responses during an impact. The parameters needed to generate a collision are 

accelerations, forces, deflections, and moments. As discussed, the biofidelity of any ATD 

model is vital in order to obtain accurate results. The findings from Kallieris et al. will be 

taken into account if applicable. Since that study was conducted for automotive testing 

biofidelity, there is no guarantee that a sUAS will impact the thorax to that magnitude.  

 

Table 3.2: Summary of FE entities used for the ATD. 

 
Node Element Components Material Properties 

Dummy 7302 4376 125 126 163 
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Figure 3.3: Standing Hybrid III 50th percentile Male Crash Test Dummy 

 

 

3.3 sUAS and ATD Integration 

3.3.1 Integration 

 There are two key parameters that need to be considered in a sUAS/Chest impact, 

the impact angle (θ) and velocity (V). A suitable impact angle will have a range of 30° to 

90° [Ball et al. 2012]. The angle measurement is taken from the Z-Axis, which runs 

parallel to the spine, as shown in Figure 3.4. The impact velocity can be characterized in 

two different impact scenarios, loss of control and unexpected descent. When the sUAS 
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is experiencing unexpected descent, the expected velocity range of this is anywhere from 

10 to 15 m/s. When the pilot has lost control of the aircraft, the velocity can reach up to 

30 m/s. Under normal operation, the sUAS have a max speed of 16 m/s, and can operate 

within any range under the max speed [DJI, 2015]. Keeping these considerations in mind, 

the impact velocity range used was from 5 to 30 m/s. The impact velocities were 

increased by 3 m/s increments. Since the impact velocities can be expressed in two 

different scenarios, for impact angles 50° to 90°, the max velocity used was 26 m/s. For 

angles 30° and 40°, simulating a loss of control, the max velocity used was 30 m/s.  

 

Figure 3.4: Impact angle relative to the ATD. 

 

  

The FE sUAS model and the ATD were integrated in order to simulate their 

interactions. Figure 3.5 shows the integration of both the Phantom 3 and the GZ500 with 

the ATD, respectively. Table 3.3 will also show the total number of FE entities used for 

both cases as well. Both models will start fairly close to the chest in order to save 

computational time and memory. If there was a large gap between the projectile and the 

target, then the simulation time will be extended. 
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Figure 3.5: Left: Phantom 3 and ATD Integration Right: GZ500 and ATD Integration 

 

 

Table 3.3: Summary of FE entities used for the ATD/Aircraft integration. 

 
Node Element Components Material Properties 

Fixed with Dummy 17234 14566 126 126 163 

Rotary with Dummy 24323 29703 136 136 173 

 

 

3.3.2 Contact 

From the previous chapter, we know that the main focus of the software is 

crashworthiness. This means that the contact algorithms are crucial for the prediction 

capabilities for LS-DYNA. There are many contact algorithms some for specific use and 

others are common types, such as: Surface-to-Surface, Node-to-Surface, and Single-

Surface.  

 Before contact between two bodies can occur, it is important to note which 

geometry (node, element, component, set, segment, etc.) will be the slave and which will 

be the master [Contact, 2012]. Once the slave and master components have been 
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identified, it is crucial to check for initial penetration, as shown in Figure 3.6. Initial 

penetration is when a body of object 1 is penetrating object 2 before the simulation. This 

can cause the simulation to be unstable when the simulation is running and may crash 

within a few time steps. LS-DYNA will try and correct the geometry by moving the 

penetrating node to the master surface during the first iteration. This in turn may alter 

another contact surface. To avoid this, geometry should be modified, but keep in mind 

that some geometry will be more troubling than others. 

 

 

Figure 3.6: Initial penetration of a ball penetrating the ATD chest. 

 

 Once there is no initial penetration, the program will search for penetration at 

every time step through its multiple algorithm depending on what the user has defined. 

Figure 3.7 shows some contacts that are commonly used in simulations.  
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Figure 3.7: Contact Examples.  

Surface-to-Surface Contact (Top-Left), Single-Surface Contact (Top-Right), and 

Nodal-to-Surface Contact (Bottom-Middle) 

 

A surface-to-surface contact is a two-way treatment of contact. First the slave 

nodes will be checked for penetration, then the master nodes will be checked for 

penetration through the slave segments. The orientation of the shell segments normal is 

also important for this type of contact [Contact, 2012]. Figure 3.8 will show a 

representation of this in Hypermesh. The red shading that is shown in the figure is 

denoted as the master component and the blue shading is the slave element. In a single-

surface contact, the slave surface is defined, but the master surface is not. The contact is 

considered between all of the parts in the slave list. This contact is very accurate, reliable, 

and can perform self-contacts, but if there is any initial penetration then the energy 

balances may show a decay or growth of energy as the calculation is conducted. This 

contact can also be time consuming for the CPU [Contact, 2012]. A node-to-surface 

contact is a one-way treatment of contact and a slave node is checked for penetration 

through any master segment. This contact can also be used for deformable bodies such as 
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when there is a fine mesh (slave) element confronts a coarse mesh (master) element 

[Contact, 2012].   

 

Figure 3.8: Surface-to-Surface contact boundary condition.  

Blue denotes the slave component and the Red denotes the master component. 

 

If more problems do persist in simulating a contact, there are some corrections 

that may help. The slave surface should have a much finer mesh than that of the master. 

If the slave meshes do have similar densities then the slave surface should have a softer 

underlying material. On the other hand, if the materials are similar then the slave surface 

should be the curved surface if applicable [Contact, 2012]. Also offsetting the adjacent 

surfaces will account for the material thickness during the simulation, which will avoid 

the initial penetration. 

 

3.3.3 Hourglassing 

 LS-DYNA offers hourglass (HG) modes, which are nonphysical and zero-energy 

modes of deformation. This will produce a zero strain and no stress. The HG effect can 
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be seen as a deformation of the mesh, which results in zero-energy degrees of freedom. 

The individual element may appear to have a zigzag or an hourglass shape due to the 

deformation experienced for that simulation, hence the name hourglass. Hourglassing 

occurs in under-integrated elements such as solid, shell, and thick-shelled (Tshell) 

elements. Under-integrated meaning single integration point, and in sold elements this is 

a single integration point; in shell or Tshells, this is with a single in-plane integration 

point [Hourglass, 2009]. Single point integration is faster and can be controlled by the 

various HG algorithms available in LS-DYNA.  

Diagnosing the HG effect can be done in several ways. The effect may be seen by 

inspecting the mesh deformation and can be resolved by decreasing the scale factor. The 

more reliable way of diagnosing the effect is by directly comparing the energy that is in 

the zero energy mode to the internal energy of the system. The HG energy should not 

surpass the internal energy. The algorithms that control the hourglassing in LS-DYNA 

applies the internal force to resist the hourglass modes. The work done by the internal 

resisting force calculates the HG energy it takes to resist the hourglass mode and will take 

away physical energy from the system [Hourglass, 2009].  

Hourglassing can be mitigated by using artificial viscosities, using artificial 

stiffness to the hourglass deformation, refine the mesh and the use of fully integrated 

elements. Hourglass forces can also be applied in order to resist the hourglass 

deformation. Not all elements are susceptible to the hourglass mode. Fully integrated 

elements such as solids and shells do not hourglass because they are more expensive to 

compute and these elements can be less robust for large deformations. Tetrahedrons and 
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triangles also do not have hourglassing modes either, but may have stiff behavior 

depending on the application [Hourglass, 2009]. 

 

3.3.4 Post Processing 

Once the simulation is successful, post-processing of the model is required. This 

can be done using LS-PrePost, which is free on the LSTC website [LSTC, 2017]. The 

desired end result is to create a predicting equation of the maximum Viscous Criterion. 

As stated in the previous chapter, the surrogate model will be created from the vast 

number of simulations conducted. Several measurements will have to be taken such as 

the chest deflection, and the chest deflection velocity in order to calculate the maximum 

VC for each simulation. The maximum VC value can be calculated by multiplying the 

maximum deflection velocity and compression percentage, as seen in Equation 1.5. The 

standard chest thickness for the 50th percentile male crash test dummy is 118.54mm 

[Schmitt et al., 2004]. This is measured from the middle of the sternum (node: 9103) to 

the anterior of the thoracic spine (node: 1787) as shown in Figure 3.9. The compression 

ratio is the change in compression from the two nodes mentioned above divided by 

118.54mm. For the deflection velocity, a similar approach will be taken by calculating the 

change in velocity between the two nodes. It should be noted that the impact location 

should stay consistent through out the different simulation cases. As the impact angle 

increases, the user should be aware of where the object will impact the chest. If the 

impact locations are different, then this will create a larger error when producing the 

predicting equation. 
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Figure 3.9: Locations of Node 9103 and Node 1787. 

 

   

To ensure that the simulation results obtained are accurate, an energy check is 

required. By plotting the total and internal energies, the user will immediately know if 

there was an error during the simulation. The energy balance is considered to be perfect if 

the total energy is the sum of the internal energy and the external work, or the energy 

ratio is equal to one. The energy ratio is the total energy over the sum of the internal 

energy and the external energy [Total Energy, 2013]. If there is any energy that has 

dissipated during the simulation, it can be attributed to deleted elements and nodes. 

Deleted elements are associated with the internal energy, whereas deleted nodes are 

associated with the kinetic energy. If eroded energy is not present then the energy ration 

will be equal to one, typically. Deleted elements will have no effect on the total 

energy/internal energy ratio [Total Energy, 2013]. 
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 Positive and negative contact energies should be considered as well when 

checking the energy ratio. Positive energy contact is expected when friction is included in 

a contact definition. Friction should result in a positive contact energy if included [Total 

Energy, 2013]. For the simulations conducted, a static and dynamic friction coefficient of 

0.23 and 0.2 respectively, were considered for the automatic single surface contact. Static 

and dynamic friction coefficient of 0.33 and 0.3 respectively, were considered for a 

surface-to-surface contact.  

If the energy plots show a decrease in in the total energy, a negative contact 

energy may be the culprit. Negative contact energy may be caused by undetected initial 

penetration. This can be easily avoided by assuring that the geometry used is carefully 

defined so that the shells have a proper offset. This is one of the most effective ways to 

reduce negative contact energy [Total Energy, 2013]. Parts simply sliding with one 

another can also generate this type of energy. This energy is not friction, but when there 

is a normal contact force and normal penetration, a node will slide from its original 

segment into an adjacent unconnected segment. This will cause penetration resulting in 

negative contact energy. If the internal energy seems to mirror the negative contact 

energy then it is possible that there is a localized problem. This will have a small impact 

in the overall simulation validity. Fringing internal energy of the shell part can help in 

isolating these localized areas. Some other ways to mitigate the negative contact energy 

are checking and eliminating redundant contact conditions, reducing the time step scale 

factor, and also eliminating initial penetration as stated earlier [Total Energy, 2013]. 
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Chapter IV: Results 

4.1 Surrogate Model  

 Figures 5.1 and 5.2 shows a typical interaction between the ATD and the sUAS 

with the parameters: impact angle at 80°, impact velocity 17 m/s, and with the mass of 

1.372kg (rotary) and 1.6kg (fixed). The fringe levels represent the overall displacement 

experienced by the ATD during the impact. The figures show a step-by-step process of 

the thoracic impact. The results show the impact causing a large indentation in the chest. 

Once the contact is complete and the torso and the sUAS are separated, we see that ATD 

starts a global motion reacting to the impact. 

 
t = 0 ms   t = 5 ms 

 
t = 15 ms   t = 40ms 

Figure 4.1: A typical interaction between the ATD and the rotary sUAS. (θ=80°, V=17 

m/s, M=1.72kg) 
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t = 0 ms    t = 5 ms 

 

 
t = 15 ms    t = 40ms 

Figure 4.2: A typical interaction between the ATD and the fixed sUAS. (θ=80°, V=17 

m/s, M=1.6kg) 

 

In order to ensure that the independent variables (V, θ, M) will contribute in 

calculating the dependent variable (VC), a correlation analysis was conducted. The results 

of the Pearson Correlation and the significance for both rotary and fixed wing aircrafts 

are shown in Table 4.1 and 4.2, respectively. From the correlation analysis, we see that 

the velocity and the impact angle are the most important factors in determining the 

viscous criterion, VC. This can be confirmed with the significance value as well. 
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Table 4.1: Correlation analysis of the independent variables for the Rotary Wing sUAS. 

  Velocity  Angle Mass 

VC 
Pearson Correlation 0.582779 0.52927 0.186016 

Significance 3.27*10-17 6.00*10-14 0.0014 

 

 

 

Table 4.2: Correlation analysis of the independent variables for the Fixed Wing sUAS. 

  Velocity  Angle Mass 

VC 
Pearson Correlation 0.510331 0.589988 0.150564 

Significance 6.32*10-13 1.07*10-17 0.0474 

  

 As mentioned in previous chapters, optimization software called 1stOpt was used 

to curve-fit the data and approximate the surrogate equation. The coefficients that were 

determined by the software are shown in Table 4.3. The coefficient of correlation is 

0.9830 and 0.9755 for the rotary and fixed wing equations respectively. This coefficient 

shows the relationship between the dependent and independent variables, and thus we see 

that in both cases they are in good agreement with one another. The determination 

coefficients for the rotary and fixed wing cases are 0.9663 and 0.9515, respectively, 

showing the accuracy of the curve fitting. 
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Table 4.3: Coefficients for the respective surrogate equations. 

  
Rotary 

Wing 

Fixed 

Wing 

a 7.48 25.68 

b -24.24 -22.90 

c -46.24 -78.38 

d -2.95 -55.41 

e 30.21 36.29 

f 9.00 8.06 

g 12.65 10.01 

h 41.76 25.87 

i 120.00 197.25 

j -2.11 62.91 

k -37.79 -19.91 

l -130.02 -185.48 

n 0.58 -25.51 

 

 

 

4.2 Surrogate Model Verification 

 Verification of the surrogate model is needed in order to verify the accuracy. 

Twelve additional cases within each aircraft type were randomly selected and simulated. 

Once the twenty-four cases were chosen and simulated, the Viscous Criterion’s were 

calculated and compared. The model configurations as well as the response that was 

calculated by both the numerical simulation and the surrogate model are shown in Tables 

4.4 and 4.5, respectively for the rotary wing and the fixed wing. 
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Table 4.4: Comparing the VC’s from the Surrogate model and the Simulations for the 

Rotary Case. 

 

 
Viscous Criterion (m/s) 

Percent Difference (%) 

Mass (kg) Angle (°) 
Velocity 

(m/s) 

Surrogate 

Model 
Simulations 

1.084 80 5 0.08 0.07 8.85 

1.084 70 20 1.75 1.66 5.18 

1.084 50 17 0.49 0.51 3.46 

1.084 30 30 0.21 0.21 2.57 

1.372 90 14 1.22 1.22 0.04 

1.372 80 17 2.00 2.06 2.85 

1.372 70 26 3.23 3.52 8.65 

1.372 50 11 0.17 0.18 2.26 

1.6 90 8 0.35 0.35 0.68 

1.6 60 14 1.03 0.95 7.64 

1.6 50 23 1.67 1.72 2.54 

1.6 30 30 0.43 0.46 4.92 

  

 

Table 4.5: Comparing the VC’s from the Surrogate model and the Simulations for the 

Fixed Case. 

Impact Parameters Viscous Criterion (m/s) 

Percent Difference (%) 
Mass (kg) Angle (°) 

Velocity 

(m/s) 

Surrogate 

Model 
Simulations 

1.084 80 5 2.58 2.51 2.63 

1.084 70 20 0.31 0.31 1.17 

1.084 50 17 0.36 0.37 3.15 

1.084 30 30 0.09 0.09 6.17 

1.372 90 14 0.90 0.82 9.49 

1.372 80 17 0.11 0.11 2.59 

1.372 70 26 0.28 0.27 3.03 

1.372 50 11 0.14 0.14 1.85 

1.6 90 8 4.50 4.29 4.89 

1.6 60 14 2.52 2.62 3.91 

1.6 50 23 0.37 0.36 3.61 

1.6 30 30 0.09 0.09 3.69 

 

 

In the rotary wing case, the highest percent difference value that was calculated 

between the simulated VC and the predicted VC was 8.85%. For the fixed wing case, the 
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highest percent difference is 9.49%. For the fixed wing case, most of the predictions were 

fairly close to the simulated results, as shown in the table above, when compared to the 

rotary wing cases. To graphically see the comparison, Figures 4.3 and 4.4 show the data 

on a diagonal line whose slope is 1, representing a perfect correlation.  

 

 

Figure 4.3: Graphically comparing predicted and simulated results for the Rotary case. 
 

 

 

Figure 4.4: Graphically comparing predicted and simulated results for the Fixed case. 
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Chapter V: Discussion, Conclusions, and Recommendations 

5.1 Discussion and Limitations 

 For both aircrafts and the different masses, we see that impact angles of 90° and 

80° caused the highest VC value. This is primarily due to the sUAS impacting the thorax 

directly. As the impact angle decreases, the sUAS tends to deflect down the body as seen 

in Figure 5.1. The chest will compress significantly less as well due to the energy being 

transferred downward rather than directing into the ATD. For example, in Figure 5.1, the 

chest compression experienced by the ATD is 45% and 18%, respectively for 90° and 

50°.  

 

 

 

Figure 5.1: Comparing the sUAS responses. 

Top: 90° Impact at 23 m/s. 

Bottom: 50° Impact at 23 m/s 

 

 

For both sUAS types, in the highest mass case (1.6kg for rotary and 1.9kg for 

fixed wing) an impact angle of 80° and velocity of 26 m/s caused the most significant 
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chest compression of 47% and 51%, respectively for rotary and fixed wing. A chest 

compression of that magnitude will cause AIS ≥ 4, which can be very fatal [Viano et al. 

1988]. The maximum VC value that was calculated for these cases is 4.8 m/s and 5.86 

m/s, which is a fatal impact. It is questionable if the aircraft will ever reach those speeds 

at the impact angle listed above. The maximum velocity for these aircrafts to travel is 16 

m/s and the highest chest compression experienced is roughly 30%, which is equivalent 

Level 1 injury which is equivalent to a AIS 1 rating for the rotary case. For the fixed wing 

case this was increased to 35% and equivalent Level 2 injury which is equivalent to a AIS 

2-3 rating [Fundamentals, 2017]. 

As mentioned in the results, the impact velocity and impact angle were more 

significant in the contribution of calculating the maximum viscous criterion when 

compared to the mass. When comparing the chest compression ratio between the lightest 

and heaviest sUAS, there is nearly a 10% difference in the compression for both aircrafts. 

This shows that the mass does affect the injury response. Due to the increase in chest 

compression resulting in a larger VC value, which in turn will correlate to a greater injury 

to the victim. With this being said, the impact velocity and impact angle still hold a 

greater significance because as these variables change, the chest compression ratio and 

the VC value changes along with it.  

 

5.1.1 FE Models 

 The Hybrid III 50th percentile male ATD is not necessarily a correct depiction of 

the human thorax. Figure 5.1 will show a direct comparison between the ATD skeleton 

and a human body skeleton. It is easily seen that there is some resemblance, but the ATD 
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is much more robust than an actual human is. The reason for this is the actual purpose of 

the device. An ATD is built with engineering materials that can withstand multiple high-

energy impacts, whereas the human body consists of soft tissue and fragile bones, which 

cannot withstand repeated impacts.  Keeping this in mind, the material selection that is 

used in impact studies is very important in order to produce an accurate response. The 

Hybrid III dummies use six high strength steel ribs, which can produce a over-predict the  

response. Using the correct material characteristics for the human body is currently a 

challenging task, but it is important to use materials that are similar in order to produce 

the correct injury response. 

 

Figure 5.2: Comparison between ATD ribcage and realistic FE ribcage 

 

 Human vulnerability itself is dependent on a large number of factors. These 

factors include the persons posture, clothing, sex, health status, age, height, and weight 

[Haber et. al, 2005]. The age is a very big factor because this can approximate the 

condition of their body. For instance, a ten year old child falling off a ledge at five-feet 

will most likely walk away unharmed when compared to a person in their sixties. A 

motor-vehicle crash study that was conducted in the UK by Morris et al. examined the 
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relative injury risk in different age groups. The authors found that older to middle-aged 

occupants had a greater risk of sustaining AIS 3+ for thoracic injuries. Various amounts 

of people from different age groups were included in this study [Morris et. al, 2003]. This 

shows the importance of impact testing for different age groups because the injury 

response would differ.  

 

5.1.2 Surrogate Equation Limitations 

  The accuracy of the surrogate equation is dependent on the simplex algorithm that 

was chosen. This algorithm was chosen for the curve fitting because it can be applied to 

address problems that have two or more variables. It is also much more desirable than the 

least-square method, since simplex does not require a derivative function and the 

orthogonality condition would not be needed. With this in mind, the accuracy of the 

predicted VC results is highly relied on the curve-fitting algorithm that was chosen. 

Currently the surrogate model that is proposed in this paper is a over-predictive 

model due to the simple fact that the maximum velocities for both of these aircraft are 16 

m/s [DJI]. This maximum velocity is what the aircraft is able to produce on its own 

traveling on a linear path. Simulations were carried out to either 26 m/s or 30 m/s, for 

each impact angle and mass. The sUAS would impact the user differently during an 

unexpected descent. For the rotary wing, the aircraft will most likely have an unexpected 

descent and impact the users head or upper torso region with the aircrafts legs, whereas 

for the fixed wing, most likely the nose cone will strike the user. So the velocities of the 

simulations can be reduced significantly to roughly around 20 m/s, which is roughly 45 

mph. This assumption is highly dependent on the altitude of the sUAS before the user 
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loses control. If the user is maintaining visual line of sight, as stated in the FAA 

regulations, then the sUAS should not fall directly onto the user [FAA, 2015]. 

 The number was data points might also have been too low as well. There were 

seven different angles and eight to nine different velocities that were simulated within 

each mass case. For each aircraft type, there were only three different masses that were 

simulated. This can cause the surrogate equation to either over or under-estimate when 

the user selects a mass that was not simulated. Simulating different mass cases can 

combat this. 

 

5.2 Conclusion 

 This research intent was to produce a surrogate model that will involve key 

impact parameters such as the impact velocity, angle, and the mass of two different types 

of sUAS models. The sUAS models that were chosen were the Phantom 3 drone, which 

is a rotary type aircraft, and a GZ500 flying wing, which is a fixed wing aircraft. A vast 

number of simulations were conducted with varying masses, velocities, and impact 

angles. From the simulations, the maximum Viscous Criterion was calculated to complete 

the data set. With the complete data set, a surrogate model was created using normalized 

mass, normalized velocity, and normalized impact angle as the independent variable; 

using the calculated max VC as the dependent variable. The purpose of the surrogate 

equation is to predict the maximum VC without running numerical simulations, which in 

turn will save computational time and money.   

The nonlinear surrogate equations coefficients were approximated using a 

simplex algorithm.  This algorithm was used due its simplicity of application. To verify 
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the model, twelve respective cases for each aircraft were then selected and a numerical 

simulation was conducted. These cases have parameters within the dataset, but the data 

was not used when approximating the surrogate model. The simulation and prediction 

results were plotted, graphically showing the differences between the two results. Based 

on the results, the model is in good agreement with the parameters within the data set. 

The statistical analysis showed that the impact velocity and the impact angle were the two 

most important factors in predicting the maximum VC. 

 The current predictive model does have its limitations that originate from the 

modeling and the curve fitting that was selected. The limitations will cause the predictive 

model to become over-predictive, and the changes needed to make a more realistic model 

will be timely task. In the FE sUAS models, internal structures were not modeled in 

detail for simplicity. There currently is not any experimental data set between sUAS and 

the chest. As this information may become available, this model can be further modified 

and verified for improvement. 

 
 

5.3 Recommendations 

 Since this is still a relatively new impact study, there are still many ways to 

improve the surrogate equation so that it is much more realistic. In the following sections, 

recommendations will be listed in order to improve the validity of the current surrogate 

equation to ensure the safety of the sUAS users. 
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5.3.1 ATD Improvements 

 The first recommendation would be to further improve the biofidelity of the ATD 

model to achieve a more accurate biomechanical response. As discussed in the Limitation 

section, the Hybrid III ATD model was originally desired for automotive 

crashworthiness, therefore using it in other impact scenarios may differ from the desired 

results. Meaning that building a much more accurate model will be ideal, such as an FE 

model that has actual organs, skin, and muscles to represent the human body. It is not a 

simple task to build a more realistic human body model since it is difficult due to the 

diverse material properties of a human body and also the various number of contacts that 

will occur during a thoracic impact. Although difficult, using a more realistic human 

model would be ideal, since the response of the human model will be much more 

accurate. There are obvious limitations with building a human model, such as the size of 

the soft tissue, material properties of the soft tissues, stability of the overall model during 

the impact, and the body composition (since everyone has a different amount of soft 

tissue, body fat, and muscle mass). If building a human FE model is too challenging with 

the technology we have now, cadaver testing may be a consideration. Cadaver testing 

will give much more realistic results than actual simulations. A wide range of body 

compositions and age must be used to comprise a general expression for the predictive 

equation. 

 

5.3.2 sUAS Considerations 

 In this current experiment, only three different masses for each sUAS type were 

examined. In total, there were 346 different cases that were tested, but there has to be 
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much more to consider the wider range of masses, velocities, and angles for the different 

sUAS. The center-of-gravity (CG) location for these models was not considered. The CG 

location would actually be in a different place when compared to the static location. To 

further improve the surrogate model, this should be considered. This may seem like an 

endless task of conducting impact simulations, but the number of cases can be reduced. 

As discussed in the previous section, the velocities can be reduced to roughly 20 m/s, 

which lends the possibility to simulate more cases within a condensed range. This will 

make the surrogate equation much more robust. As stated earlier, a wider range of mass 

must be considered as well, and this is so there are more data points for the optimization 

software to use in order to estimate the surrogate function. By adding a wider range of 

masses, this can represent the different attachments that the user may have on their 

specific sUAS.  

 A wider variety of materials must be considered as well, such as foam. Simulating 

a foam structure in LS-DYNA is a difficult task, but it is needed to create a much more 

robust surrogate equation. Majority of fixed wing sUAS are made of foam due to the size 

and mass constraints. Simulations that will utilize only foam, engineering plastic, and a 

combination of foam and engineering plastics would be very beneficial. However, this 

would only be applicable for the fixed wing aircraft, because the rotary wing needs a 

rigid structure for its engine and rotors. 

Different sUAS models must be considered as well since the consumer market for 

this sector is growing and becoming more popular by the day. It is true that for a quad-

rotor, aircraft structures are similar to one another; therefore a single FE model can be 

used to represent this type of aircraft. As for the fixed winged sUAS, there is much more 
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of a variety, so different types must be considered. This impact study can be can be 

branched out to remote-controlled (RC) aircrafts as well since they share a similar 

structure to that of a fixed wing sUAS. This would mean that, more models must be 

considered, such as, fixed wing with a rotary engine in the front, fixed wing with a rotary 

motors on the wing, a RC bi-plane, and much more. By expanding out to different aircraft 

types, the VC surrogate equation will become much more applicable. 

 

5.3.3 Other Recommendations 

 As stated in the previous section, the surrogate equation is only as good as the 

curve-fitting algorithm used. With this in mind, it would be beneficial to explore different 

types of approximation algorithms such as, Least-Squared Method, Levenverg-

Marquardt, or Quasi-Newton. By comparing the results from the different methods, this 

would eliminate the debate of knowing which algorithm is better suited for this sort of 

problem.  

Meshless methods may also be explored. This is a class of methods that do not 

require a connection from node to node. These methods do not require interior 

discretization, integration, polygonalization, and boundaries.  The general idea is to 

minimize or to eliminate the user interaction by automating the process (i.e. solid model 

to solution in one step). Instead of using a mesh, this is based on the interaction with the 

neighboring nodes. This method is typically used to find solutions for nonlinear material 

behaviors, complex 3D geometries, and much more complicated problems; so using this 

method to approximate a nonlinear equation may be applicable.  
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In this study, only a thoracic impact was considered. Simulating a rear impact 

may deem more applicable since the user will not see the sUAS coming towards them. 

With this being said, the body will able to withstand a posterior impact much better than 

an anterior impact due to the muscle and skeletal composition [Sturdivan et al., 2004]. 

Nonetheless, posterior impacts must be explored.  
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Appendix A 

Finite Element Analysis (FEA) Example 

 As stated earlier, LS-DYNA is a program that performs finite element analysis, 

better known as FEA. This numerical technique is used to approximate solutions for 

boundary value problems with partial differential equations (PDE). This method will 

subdivide the domain into simpler parts [Reddy, 2006]. By subdividing the domain, we 

will be able to accurately represent complex geometry much easier, easily represent the 

solution of a complex problem, able to show the local effects, and also able to use 

different material properties in the geometry.  

 The basic concept for solving a finite element problem is to first divide the 

domain into a series of subdomains. Each subdomain will contain a set of element 

equations or the original problem. Then is followed by systematically recombining the 

sets of element equations into a global set of equations then is calculated globally. The 

global system of equations can be solved using initial values from the original problem to 

produce a numerical answer [Reddy, 2006]. 

 As stated above, the first step is to divide the original domain into subdomains 

containing a set of element equations. The element equations are simple equations that 

will locally approximate the original equation. This step in often times will use the 

Galerkin Method to construct the polynomial approximation [Reddy, 2006]. The 

algebraic expression for the Galerkin approximation is shown in Equation A1. 
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∑𝐴𝑖𝑗𝑐𝑗 = 𝐹𝑖

𝑁

𝑗=1

 

(A1) 

Where Aij and Fi are defined by the following: 

 

𝐴𝑖𝑗 = ∫ 𝜙𝑖𝐴(𝜙𝑗)𝑑𝑥𝑑𝑦
Ω

 

(A2) 

𝐹𝑖 = ∫ 𝜙𝑖[𝑓 − 𝐴(𝜙0)]𝑑𝑥𝑑𝑦
Ω

 

(A3) 

In Equations A1 and A2, Aij is the basis function and is not symmetric. By using 

the coefficient cj, error of the approximation can be minimized. ϕi is the weight function 

and f is the analytical equation [Reddy, 1993]. The Galerkin Method or the weighted 

residual method is essentially a procedure that will minimize the approximation error by 

fitting trial functions to the PDE. By fitting the trial functions there will some error that 

will occur and this is called residual and the polynomial functions or the weight 

functions, will predict the residuals. This process will approximate the PDE locally by 

eliminating the spatial derivatives of the PDE. The PDE is approximated locally by the 

set of ordinary differential equations (ODE) for a transient case and set of algebraic 

equations for a steady state case, which are both element equations. The set of algebraic 

equations for a steady state problem is solved using numerical linear algebra methods 

[Reddy, 2006]. The set of ODE equations for a transient problem are approximated 

through numerical integration using methods such as Runge-Kutta and Euler’s methods.  
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 After this step, the element equations will produce equations for the global 

system. Transforming the local subdomain nodal coordinates to the global nodes of the 

domain will generate the global system of equations [Reddy, 2006]. This process is often 

conducted using FEA software such as LS-DYNA.  

 To illustrate the concept with FEA, consider a problem to find a circumference of 

a circle. Summation of the line segment lengths is used to approximate the circumference 

of the circle. Figure A1 visually shows the shape and the mesh that is used to 

approximate of the circumference.  

 

Figure A1: Different Mesh Examples. 

(Left) Circumference of circle that is being approximated. (Middle) Uniform Mesh. 

(Right) Non-uniform Mesh. 
 

 

  In the first step of a finite element analysis is to divide the domain into finite 

number of n-subdomains or elements, in this case line segments. This is also known as 

discretization of the domain [Reddy, 1993]. The elements are connected together through 

nodes, and a collection of elements is called the finite element mesh or mesh. In the 

example the mesh will have six line segments, n=6. It is considered to be a uniform mesh 

when all of the line segments have the same length, if different then it is called a non-

uniform mesh. [Reddy, 1993] Figure A1 will show both uniform and a non-uniform 

mesh. 
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 Each element will have its own specific properties; in this case the lengths may 

vary. The equation that would be used to find the length of the line segment is the 

equation to find the chord of the circle, shown in Equation A4. This will be the computed 

for each of element in the mesh individually. 

 

𝐶𝑒 = 2𝑅 sin
Θ𝑒

2
 

where: Θe < π 

(A4) 

 By summing each element equation, we will be able to obtain an approximation 

of the circumference. Equation A5 will show a summation of the element lengths. Cirn is 

the approximate value of the circumference. Equation A6 will show if Ce were all equal 

length elements or has a uniform mesh. 

𝐶𝐼𝑅𝑛 = ∑𝐶𝑒

𝑛

𝑒=1

 

(A5) 

𝐶𝐼𝑅𝑛 = 2𝑛𝑅 sin
𝜋

𝑛
 

where: Θe=2π / n 

(A6) 

 Once the element equations are computed globally the next step is to estimate the 

error in the system. To estimate the element error, the approximate solution CIRn must 

converge to 2πR with a limit of n  ∞. In this case, the error is approximated by the 

difference in the sector length and the line segment itself, shown in Equation A7 [Reddy, 

1993],  
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𝐸𝑟𝑟𝑜𝑟𝑒 = |𝑆𝑒 − 𝐶𝑒| = [𝑅Θ𝑒 − 2𝑅 sin
𝜋

𝑛
] = 2𝑅 (

𝜋

𝑛
− sin

𝜋

𝑛
) 

(A7) 

 From this the global error, GE can be calculated by multiplying Errore by n, 

shown in Equation A8. 

 

𝐺𝐸 = 2𝑅 (𝜋 − 𝑛 sin
𝜋

𝑛
) = 2𝜋𝑅 − 𝐶𝐼𝑅𝑛 

(A8) 

 To complete the convergence, the global error must go to zero as n  ∞. To do 

this, a limit will be taken of CIRn, as shown in Equation A9. 

 

lim
𝑛→∞

𝐶𝐼𝑅𝑛 = lim
𝑛→0

(2𝑛𝑅 sin
𝜋

𝑛
) = lim

𝑛→0
(2(1)𝑅 cos

𝜋

𝑛
) = 2𝜋𝑅 

(A9) 

 This example simply shows that a circumference of a circle can be approximated 

with n-number of piecewise functions. Another important factor to note is that the error 

decreases as the number of elements is increased [Reddy, 1993]. By having a finer mesh, 

the approximation of the solution improves, and as the approximation improves the error 

decreases. Creating a finer mesh will increase the computational load so it isn’t wise to 

use the finest mesh each time. 
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Appendix B 

LS-DYNA Simulation Basics 

 Every simulation is unique in its own right but there are some general guidelines 

to follow when preparing FE models for an impact simulation. Some key features to be 

cautious are keeping consistent units, the keyword inputs, material models used, and 

boundary conditions to name a few. 

Having consistent units is one of the most important characteristics that are 

commonly overlooked when preparing a simulation. The units must be consistent in order 

to obtain correct results. The consistent system is defined by Equations B1, B2, and B3. 

This shows a simple test to see if a set of units is consistent [LSTC, 2007]. Table B1 is 

provided by LSTC to show an example of consistent systems of units. 

 

 

1 𝐹𝑜𝑟𝑐𝑒 𝑈𝑛𝑖𝑡 = 1 𝑀𝑎𝑠𝑠 𝑈𝑛𝑖𝑡 ∗ 1 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡 
(B1) 

 

1 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡 =  
1 𝐿𝑒𝑛𝑔𝑡ℎ 𝑈𝑛𝑖𝑡

(1 𝑇𝑖𝑚𝑒 𝑈𝑛𝑖𝑡)2
 

(B2) 

 

 

1 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑈𝑛𝑖𝑡 =  
1 𝑀𝑎𝑠𝑠 𝑈𝑛𝑖𝑡

(1 𝐿𝑒𝑛𝑔𝑡ℎ 𝑈𝑛𝑖𝑡)3
 

(B3) 
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Table B1: Consistent System of Units used in LS-DYNA.  

Mass 
Lengt

h 
Time Force Stress Energy 

Density 

(Steel) 

Young’s 

Modulus 

(Steel) 

Gravity 

kg m s N Pa J 7.83e+03 2.07e+11 9.806 

kg cm s 1.0e-02N 
  

7.83e-03 2.07e+09 9.806e+02 

kg cm ms 
1.0e+04

N   
7.83e-03 2.07e+03 9.806e-04 

kg cm us 
1.0e+10

N   
7.83e-03 2.07e-03 9.806e-10 

kg mm ms kN Gpa kN-mm 7.83e-06 2.07e+02 9.806e-03 

g cm s dyne dyne/cm2 erg 7.83e+00 2.07e+12 9.806e+02 

g cm us 
1.0e+07

N 
Mbar 1.0e+07Ncm 7.83e+00 2.07e+00 9.806e-10 

g mm s 1.0e-06N Pa 
 

7.83e-03 2.07e+11 9.806e+03 

g mm ms N Mpa N-mm 7.83e-03 2.07e+05 9.806e-03 

ton mm s N Mpa N-mm 7.83e-09 2.07e+05 9.806e+03 

lbf-s2/in in s lbf psi lbf-in 7.33e-04 3.00e+07 386 

slug ft s lbf psf lbf-ft 1.52e-01 4.32e+09 32.17 

kgf-s2/mm mm s kgf kgf/mm2 kgf-mm 7.98e-10 2.11e+04 9.806e+03 

kg mm s mN 
1.0e+03

N 
 7.83e-06 2.07e+08 9.806e+03 

g cm ms 1.0e+1N 
1.0e+05

N 
 7.83e+00 2.07e+06 9.806e-04 

 

LS-DYNA inputs are called keyword inputs, and provide an organized and 

flexible database that is simple to understand. Similar functions can be grouped together 

under the same keyword. The LS-DYNA User Manual has an alphabetically organized 

keyword section that makes debugging and preparing a simulation much more 

straightforward. These sections would pertain to a certain input. For instance there are 

sections for control, material, element, and etc. [LSTC, 2007]. As an example, Figure B1 

will show how flexible the input data can be. This shows how different entities can relate 

to each other as well as the input organization. It is easily seen that during the 

preprocessing stage, the program will relate the entities that pertain to that specific 
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geometry. For more detail, the LS-DYNA User’s Manual will provide information of 

specific details when preparing the geometry for simulation. 

 

 

Figure B1: Example of a .k file and how each keyword relates to one another. 
 
 

Most of the model data can be input in block form. The input data block begins 

with a keyword followed by the data pertaining to the keyword. The program will go 

through the keyword data until another keyword is found, which means the end of that 

data block and the beginning of a new data block. Using data blocks is not required in 

LS-DYNA, but can make data management must easier [LSTC, 2007]. For instance, the 

user may group together multiple nodes to assign a loading condition rather than 

assigning each node the same loading condition multiple times. The input deck is order 

independent, so there is no need to have the file in a linear order. The keyword is left 

justified and has an asterisk (*) to denote it. To add a comment, a dollar sign ($) must be 

added and the program will ignore this line. There is an optional keyword, “*END”, 

which denotes the termination of the file. If this optional keyword is not found at the end 
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of the .k file, then the *END is assumed when it is at end of file. The keyword is not case 

sensitive, which makes it easier for the user as well [LSTC, 2007]. 

 A keyword block will typically have multiple input lines and each line in the input 

deck is called a “card.” Most cards have eight fields with a length of 10 fields as shown 

in Figure B2. When using the LS-DYNA User Manual, the card details will be shown for 

each keyword.  Most cards will allow up to eight characters to be used in each field. “F” 

will denote a floating point and “I” will denote an integer. If defaults are used then the 

code will leave the fields blank, or the card will not be defined [LSTC, 2007]. 

 

Card 1 1 2 3 4 5 6 7 8 9 10 

Variable NID X Y Z TC RC 
 

Type I F F F F F 
 

Default none 0 0 0 0 0 
 

Remarks 
       

1 1 
 

Figure B2: Card information for keyword *NODE. This card will define the node in the 

global coordinate system. 

 

 

 The cards have two different formats that LS-DYNA will accept the inputs as, 

Rigid and Free Format. The structures of the rigid and free formats are identical, but the 

main difference is how the data is separated. The free format separates the data with 

commas, whereas the rigid format separates it with spaces. The free and rigid formats 

have the same conditions as described earlier in the card formats. Rigid and free formats 

can be mixed together throughout the .k file but not within the card itself. Figure B3 

shows an example of the free format [LSTC, 2007]. 
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*NODE 

10101,x,y,z 

10201,x,y,z 

Figure B3: Simple *NODE card example in Free Format 

 
 

 Figure B4 shows the basic input and output scheme of LS-DYNA. The execution 

syntax and sense switch control commands that further explain each block is shown in the 

LS-DYNA Users Manual. The execution syntax will provide the user with information 

that is required for the correct result. The sense switch control commands are commands 

that can be sent to the solver while it is performing its calculation to check things like 

estimated time left and, etc. Since every simulation is unique, the desired inputs and 

outputs are user selected, therefore saving time and memory of the computer.  
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Figure B4: Flow chart of the input/output scheme in LS-DYNA. 

 

 There are many factors to keep track of when preparing a simulation and hours 

can be spent on debugging. Some of the most common errors that may cause a sudden 

interruption include: inconsistent units, incorrect input format, initial penetration, 

incorrect material properties, and inconsistent loading conditions. Even after a successful 

run, errors with the model may still arise, such as a numerical error with a boundary 

condition. Some common errors are the following: units, element size, duplicate 

node/elements, and incorrect time steps. The user manual and the support website will 

provide some guidance in how to resolve these issues.     
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Appendix C 

Tables 

 

C1 Phantom 3 Rotary Wing Properties 

C2 Phantom 3 Rotary Wing Materials 

 

C3 GZ500 Rotary Wing Properties 

C4 GZ500 Rotary Wing Materials 

 

C5 Phantom 3 Rotary Wing Simulation Data 

C6 GZ500 Fixed Wing Simulation Data
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Table C1: Phantom 3 Rotary Wing Properties 

Property Name Keyword Card Image Uniform Thickness, T1 

Propeller *SECTION_SHELL SectShll 2.00 

Connection *SECTION_SHELL SectShll 2.00 

Plate  *SECTION_SHELL SectShll 2.00 

Camera Fixture *SECTION_SHELL SectShll 2.00 

Camera *SECTION_SHELL SectShll 1.00 

Camera Bracket *SECTION_SHELL SectShll 2.00 

Body *SECTION_SHELL SectShll 2.00 

Leg *SECTION_SHELL SectShll 2.00 

Rubber Cylinder *SECTION_SHELL SectShll 2.00 

Engine *SECTION_SHELL SectShll 1.00 

 

 

Table C2: Phantom 3 Rotary Wing Materials 

Material Name Card Image Density (kg/m^3) 
Young's 

Modulus (GPa) 

Engineering 

Plastic  
MATL3 1.42e^-6 4.5 

Engineering 

Plastic 

(Camera) 

MATL3 2.68e^-6 66 

Engineering 

Plastic (Engine ) 
MATL3 2.68e^-6 66 

Poisson's Ratio 
Yield Strength 

(MPa) 
Static Friction Coefficient 

 0.3 0.09 0 

 0.33 0.08 0.18 

 0.33 0.08 0.18 

  

 

 

Table C3: GZ500 Fixed Wing Properties 

Property Name Keyword Card Image Uniform Thickness, T1 

Drone Body *SECTION_SHELL SectShll 1.00 
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Table C4: GZ500 Fixed Wing Materials 

Material Name Card Image Density (kg/m^3) 
Young's 

Modulus (GPA) 

Drone MATL3 1.42e^-6 4.5 

Poisson's Ratio Yield Strength (MPa) Static Friction Coefficient 

 0.3 0.09 0 

  

 

Table C5: Phantom 3 Rotary Wing Simulation Data 

Mass 

(kg) 

Angle 

(°) 

Velocity 

(m/s) 

Max Deflection 

(mm) 

Max Deflection 

Velocity (m/s) 

Max Calculated 

VC (m/s) 

1.08 90 5 7.11 1.22 0.07 

1.08 90 8 11.59 1.92 0.19 

1.08 90 11 16.29 2.78 0.38 

1.08 90 14 21.38 3.77 0.68 

1.08 90 17 26.69 4.92 1.11 

1.08 90 20 32.29 6.38 1.74 

1.08 90 23 36.72 7.97 2.47 

1.08 90 26 39.84 7.84 2.63 

1.08 80 5 7.19 1.21 0.07 

1.08 80 8 12.07 2.01 0.20 

1.08 80 11 16.88 2.77 0.40 

1.08 80 14 21.98 3.74 0.69 

1.08 80 17 27.56 4.95 1.15 

1.08 80 20 33.37 6.20 1.75 

1.08 80 23 37.86 7.23 2.31 

1.08 80 26 41.22 7.89 2.75 

1.08 70 5 6.99 1.18 0.07 

1.08 70 8 11.81 1.89 0.19 

1.08 70 11 16.62 2.69 0.38 

1.08 70 14 21.79 3.59 0.66 

1.08 70 17 27.31 4.75 1.09 

1.08 70 20 33.20 6.22 1.74 

1.08 70 23 38.11 7.05 2.27 

1.08 70 26 41.88 7.86 2.78 

1.08 60 5 6.41 0.94 0.05 

1.08 60 8 10.29 1.61 0.14 

1.08 60 11 14.29 2.07 0.25 

1.08 60 14 19.21 2.70 0.44 

1.08 60 17 25.61 3.83 0.83 

1.08 60 20 31.30 5.08 1.34 
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1.08 60 23 36.23 5.99 1.83 

1.08 60 26 39.33 6.65 2.21 

1.08 50 5 5.32 0.77 0.03 

1.08 50 8 7.94 1.37 0.09 

1.08 50 11 9.64 1.43 0.12 

1.08 50 14 13.09 2.06 0.23 

1.08 50 17 20.30 2.97 0.51 

1.08 50 20 24.52 3.92 0.81 

1.08 50 23 27.24 4.66 1.07 

1.08 50 26 27.60 4.94 1.15 

1.08 40 5 3.30 0.61 0.02 

1.08 40 8 6.29 1.04 0.06 

1.08 40 11 6.29 1.21 0.06 

1.08 40 14 7.54 1.43 0.09 

1.08 40 17 8.44 1.52 0.11 

1.08 40 20 13.08 2.37 0.26 

1.08 40 23 17.10 3.25 0.47 

1.08 40 26 18.55 3.73 0.58 

1.08 40 30 20.66 3.87 0.67 

1.08 30 5 3.15 0.56 0.01 

1.08 30 8 4.60 0.78 0.03 

1.08 30 11 5.17 1.00 0.04 

1.08 30 14 5.07 1.03 0.04 

1.08 30 17 5.39 1.07 0.05 

1.08 30 20 6.21 1.16 0.06 

1.08 30 23 7.26 1.21 0.07 

1.08 30 26 10.46 1.51 0.13 

1.08 30 30 14.40 1.85 0.22 

1.37 90 5 9.28 1.33 0.10 

1.37 90 8 15.40 2.29 0.30 

1.37 90 11 22.10 3.54 0.66 

1.37 90 14 29.37 4.83 1.20 

1.37 90 17 36.14 6.48 1.98 

1.37 90 20 41.03 7.77 2.69 

1.37 90 23 45.15 8.72 3.32 

1.37 90 26 48.70 9.68 3.98 

1.37 80 5 9.45 1.37 0.11 

1.37 80 8 15.90 2.34 0.31 

1.37 80 11 22.49 3.44 0.65 

1.37 80 14 30.19 4.72 1.20 

1.37 80 17 37.16 6.46 2.03 
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1.37 80 20 41.85 7.70 2.72 

1.37 80 23 46.44 8.77 3.44 

1.37 80 26 50.71 9.35 4.00 

1.37 70 5 9.13 1.31 0.10 

1.37 70 8 15.41 2.15 0.28 

1.37 70 11 22.35 3.30 0.62 

1.37 70 14 30.13 4.61 1.17 

1.37 70 17 36.93 6.05 1.88 

1.37 70 20 42.14 7.70 2.74 

1.37 70 23 46.78 7.70 3.04 

1.37 70 26 50.63 7.85 3.35 

1.37 60 5 8.22 1.08 0.07 

1.37 60 8 12.76 1.74 0.19 

1.37 60 11 19.12 2.32 0.37 

1.37 60 14 26.00 3.50 0.77 

1.37 60 17 33.55 5.07 1.43 

1.37 60 20 38.76 6.17 2.02 

1.37 60 23 42.24 7.25 2.58 

1.37 60 26 43.89 7.30 2.70 

1.37 50 5 6.65 0.82 0.05 

1.37 50 8 9.07 1.40 0.11 

1.37 50 11 12.54 1.75 0.19 

1.37 50 14 18.11 2.49 0.38 

1.37 50 17 22.66 3.43 0.66 

1.37 50 20 31.70 5.35 1.43 

1.37 50 23 31.34 5.74 1.52 

1.37 50 26 28.19 4.72 1.12 

1.37 40 5 5.16 0.70 0.03 

1.37 40 8 7.48 1.14 0.07 

1.37 40 11 6.86 1.26 0.07 

1.37 40 14 7.58 1.45 0.09 

1.37 40 17 9.46 1.41 0.11 

1.37 40 20 10.34 1.76 0.15 

1.37 40 23 12.96 1.95 0.21 

1.37 40 26 19.63 2.48 0.41 

1.37 40 30 23.76 2.52 0.51 

1.37 30 5 3.03 0.53 0.01 

1.37 30 8 4.92 0.81 0.03 

1.37 30 11 5.88 0.99 0.05 

1.37 30 14 7.25 1.27 0.08 

1.37 30 17 5.74 1.10 0.05 
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1.37 30 20 6.87 1.07 0.06 

1.37 30 23 8.51 1.05 0.08 

1.37 30 26 10.85 1.13 0.10 

1.37 30 30 13.85 1.23 0.14 

1.60 90 5 10.02 1.66 0.14 

1.60 90 8 16.65 2.47 0.35 

1.60 90 11 24.43 3.77 0.78 

1.60 90 14 32.42 5.37 1.47 

1.60 90 17 38.79 7.05 2.31 

1.60 90 20 43.75 8.28 3.06 

1.60 90 23 48.48 9.47 3.87 

1.60 90 26 53.52 10.43 4.71 

1.60 80 5 10.28 1.49 0.13 

1.60 80 8 17.21 2.46 0.36 

1.60 80 11 24.61 3.64 0.76 

1.60 80 14 33.30 5.65 1.59 

1.60 80 17 39.51 7.03 2.34 

1.60 80 20 44.59 8.33 3.13 

1.60 80 23 49.97 9.54 4.02 

1.60 80 26 55.62 10.34 4.85 

1.60 70 5 9.95 1.50 0.13 

1.60 70 8 16.83 2.30 0.33 

1.60 70 11 24.59 3.58 0.74 

1.60 70 14 33.12 5.00 1.40 

1.60 70 17 39.70 6.74 2.26 

1.60 70 20 44.91 8.05 3.05 

1.60 70 23 49.92 8.48 3.57 

1.60 70 26 51.13 9.38 4.04 

1.60 60 5 8.86 1.22 0.09 

1.60 60 8 13.36 1.80 0.20 

1.60 60 11 21.29 2.49 0.45 

1.60 60 14 27.24 4.11 0.94 

1.60 60 17 35.88 5.43 1.64 

1.60 60 20 41.48 6.84 2.39 

1.60 60 23 43.23 7.54 2.75 

1.60 60 26 41.88 6.90 2.44 

1.60 50 5 6.91 0.95 0.06 

1.60 50 8 10.19 1.60 0.14 

1.60 50 11 13.28 2.12 0.24 

1.60 50 14 18.04 2.53 0.39 

1.60 50 17 27.51 3.84 0.89 
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1.60 50 20 34.47 5.13 1.49 

1.60 50 23 37.33 5.43 1.71 

1.60 50 26 37.56 5.49 1.74 

1.60 40 5 5.37 0.73 0.03 

1.60 40 8 8.14 1.28 0.09 

1.60 40 11 8.50 1.33 0.10 

1.60 40 14 10.02 1.54 0.13 

1.60 40 17 14.41 2.12 0.26 

1.60 40 20 19.74 3.38 0.56 

1.60 40 23 22.89 4.33 0.84 

1.60 40 26 24.37 4.25 0.87 

1.60 40 30 31.49 4.10 1.09 

1.60 30 5 4.12 0.62 0.02 

1.60 30 8 5.60 0.92 0.04 

1.60 30 11 6.28 1.09 0.06 

1.60 30 14 5.75 1.13 0.05 

1.60 30 17 7.05 1.20 0.07 

1.60 30 20 11.74 1.38 0.14 

1.60 30 23 15.21 1.89 0.24 

1.60 30 26 16.90 1.97 0.28 

1.60 30 30 21.07 2.60 0.46 

 

 

 

Table C6: GZ500 Fixed Wing Simulation Data 

Mass 

(kg) 

Angle 

(°) 

Velocity 

(m/s) 

Max Deflection 

(mm) 

Max Deflection 

Velocity (m/s) 

Max Calculated 

VC (m/s) 

1.37 90 5 9.49 1.49 0.12 

1.37 90 8 15.78 2.49 0.33 

1.37 90 11 22.20 3.54 0.66 

1.37 90 14 28.45 4.62 1.11 

1.37 90 17 34.89 6.00 1.76 

1.37 90 20 39.45 7.44 2.48 

1.37 90 23 43.39 8.75 3.20 

1.37 90 26 47.42 9.00 3.60 

1.37 80 5 9.33 1.46 0.11 

1.37 80 8 15.20 2.40 0.31 

1.37 80 11 20.55 3.41 0.59 

1.37 80 14 27.46 4.54 1.05 

1.37 80 17 34.56 5.86 1.71 

1.37 80 20 38.96 7.17 2.36 

1.37 80 23 43.39 8.59 3.14 
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1.37 80 26 47.76 8.77 3.53 

1.37 70 5 8.00 1.28 0.09 

1.37 70 8 12.30 2.03 0.21 

1.37 70 11 16.88 3.02 0.43 

1.37 70 14 20.93 3.78 0.67 

1.37 70 17 26.80 4.47 1.01 

1.37 70 20 32.26 5.31 1.45 

1.37 70 23 36.49 6.29 1.94 

1.37 70 26 41.00 7.59 2.63 

1.37 60 5 5.89 1.06 0.05 

1.37 60 8 8.88 1.67 0.13 

1.37 60 11 11.73 2.26 0.22 

1.37 60 14 15.48 2.74 0.36 

1.37 60 17 17.43 3.12 0.46 

1.37 60 20 22.35 4.00 0.75 

1.37 60 23 26.21 4.90 1.08 

1.37 60 26 31.52 6.04 1.61 

1.37 50 5 3.96 0.84 0.03 

1.37 50 8 6.27 1.25 0.07 

1.37 50 11 8.52 1.66 0.12 

1.37 50 14 9.76 1.98 0.16 

1.37 50 17 11.40 2.22 0.21 

1.37 50 20 13.47 2.58 0.29 

1.37 50 23 15.58 2.86 0.38 

1.37 50 26 18.00 3.33 0.51 

1.37 40 5 2.62 0.52 0.01 

1.37 40 8 4.05 0.94 0.03 

1.37 40 11 5.96 1.24 0.06 

1.37 40 14 7.56 1.63 0.10 

1.37 40 17 8.94 1.91 0.14 

1.37 40 20 10.66 2.16 0.19 

1.37 40 23 12.21 2.44 0.25 

1.37 40 26 13.70 2.81 0.32 

1.37 40 30 16.55 3.12 0.44 

1.37 30 5 1.98 0.37 0.01 

1.37 30 8 3.19 0.66 0.02 

1.37 30 11 4.63 0.90 0.04 

1.37 30 14 5.75 1.20 0.06 

1.37 30 17 6.86 1.48 0.09 

1.37 30 20 7.94 1.66 0.11 

1.37 30 23 9.12 1.88 0.14 
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1.37 30 26 10.65 2.03 0.18 

1.37 30 30 12.48 2.27 0.24 

1.60 90 5 10.72 1.64 0.15 

1.60 90 8 17.91 2.78 0.42 

1.60 90 11 25.51 3.88 0.83 

1.60 90 14 32.36 5.23 1.43 

1.60 90 17 38.28 6.84 2.21 

1.60 90 20 43.14 8.55 3.11 

1.60 90 23 47.22 8.99 3.58 

1.60 90 26 52.38 9.63 4.26 

1.60 80 5 10.63 1.56 0.14 

1.60 80 8 17.08 1.96 0.28 

1.60 80 11 23.39 3.75 0.74 

1.60 80 14 31.42 5.12 1.36 

1.60 80 17 38.25 6.56 2.12 

1.60 80 20 42.47 8.22 2.94 

1.60 80 23 48.04 9.54 3.87 

1.60 80 26 53.38 9.80 4.41 

1.60 70 5 9.07 1.44 0.11 

1.60 70 8 14.03 2.34 0.28 

1.60 70 11 19.09 3.33 0.54 

1.60 70 14 23.97 4.17 0.84 

1.60 70 17 30.80 5.03 1.31 

1.60 70 20 37.44 5.94 1.88 

1.60 70 23 40.85 7.29 2.51 

1.60 70 26 45.09 8.85 3.37 

1.60 60 5 6.84 1.15 0.07 

1.60 60 8 10.30 1.83 0.16 

1.60 60 11 13.19 2.55 0.28 

1.60 60 14 17.46 3.06 0.45 

1.60 60 17 18.81 3.52 0.56 

1.60 60 20 26.30 4.67 1.04 

1.60 60 23 29.27 5.59 1.38 

1.60 60 26 37.02 7.02 2.19 

1.60 50 5 4.53 0.90 0.03 

1.60 50 8 7.19 1.35 0.08 

1.60 50 11 9.60 1.90 0.15 

1.60 50 14 10.75 2.11 0.19 

1.60 50 17 13.13 2.48 0.27 

1.60 50 20 15.43 2.92 0.38 

1.60 50 23 17.87 3.31 0.50 
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1.60 50 26 20.63 3.78 0.66 

1.60 40 5 2.96 0.60 0.02 

1.60 40 8 4.69 1.04 0.04 

1.60 40 11 6.81 1.31 0.08 

1.60 40 14 8.55 1.78 0.13 

1.60 40 17 10.19 2.03 0.17 

1.60 40 20 11.92 2.39 0.24 

1.60 40 23 13.90 2.73 0.32 

1.60 40 26 15.89 3.18 0.43 

1.60 40 30 18.92 3.44 0.55 

1.60 30 5 2.27 0.41 0.01 

1.60 30 8 3.66 0.73 0.02 

1.60 30 11 5.30 1.02 0.05 

1.60 30 14 6.37 1.32 0.07 

1.60 30 17 7.48 1.61 0.10 

1.60 30 20 9.01 1.80 0.14 

1.60 30 23 10.59 2.02 0.18 

1.60 30 26 12.16 2.18 0.22 

1.60 30 30 14.40 2.46 0.30 

1.90 90 5 12.27 1.81 0.19 

1.90 90 8 20.45 3.11 0.54 

1.90 90 11 28.52 4.29 1.03 

1.90 90 14 36.43 5.84 1.80 

1.90 90 17 41.91 7.77 2.75 

1.90 90 20 47.63 9.40 3.78 

1.90 90 23 53.10 9.57 4.29 

1.90 90 26 59.47 10.77 5.40 

1.90 80 5 12.17 1.68 0.17 

1.90 80 8 19.42 2.94 0.48 

1.90 80 11 27.13 4.08 0.93 

1.90 80 14 35.92 5.65 1.71 

1.90 80 17 41.61 7.45 2.62 

1.90 80 20 46.96 9.29 3.68 

1.90 80 23 54.01 10.28 4.68 

1.90 80 26 61.30 11.34 5.86 

1.90 70 5 10.36 1.54 0.13 

1.90 70 8 16.10 2.62 0.36 

1.90 70 11 21.75 3.69 0.68 

1.90 70 14 28.57 4.64 1.12 

1.90 70 17 35.82 5.69 1.72 

1.90 70 20 41.12 6.98 2.42 
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1.90 70 23 45.32 8.46 3.23 

1.90 70 26 49.57 8.90 3.72 

1.90 60 5 7.78 1.26 0.08 

1.90 60 8 11.69 1.97 0.19 

1.90 60 11 15.15 2.83 0.36 

1.90 60 14 19.66 3.41 0.57 

1.90 60 17 23.66 3.96 0.79 

1.90 60 20 29.17 5.09 1.25 

1.90 60 23 37.43 7.02 2.22 

1.90 60 26 40.87 7.83 2.70 

1.90 50 5 5.06 0.98 0.04 

1.90 50 8 8.45 1.51 0.11 

1.90 50 11 10.77 1.98 0.18 

1.90 50 14 12.48 2.34 0.25 

1.90 50 17 15.23 2.82 0.36 

1.90 50 20 18.43 3.19 0.50 

1.90 50 23 21.10 3.74 0.67 

1.90 50 26 23.95 4.22 0.85 

1.90 40 5 3.38 0.65 0.02 

1.90 40 8 5.49 1.11 0.05 

1.90 40 11 7.49 1.59 0.10 

1.90 40 14 9.81 1.95 0.16 

1.90 40 17 11.91 2.31 0.23 

1.90 40 20 13.86 2.65 0.31 

1.90 40 23 16.09 3.14 0.43 

1.90 40 26 18.96 3.43 0.55 

1.90 40 30 21.90 3.09 0.57 

1.90 30 5 2.64 0.44 0.01 

1.90 30 8 4.26 0.83 0.03 

1.90 30 11 6.01 1.10 0.06 

1.90 30 14 7.28 1.46 0.09 

1.90 30 17 8.75 1.76 0.13 

1.90 30 20 10.58 19.88 1.77 

1.90 30 23 12.07 2.16 0.22 

1.90 30 26 14.00 2.41 0.28 

1.90 30 30 16.73 2.67 0.38 
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