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ABSTRACT

The performance of a coaxial rotor system has been analyzed by establishing a proper

basis of comparison between a conventional single rotor and coaxial rotor. An attempt

has also been made to better understand the complicated aerodynamic interactions asso-

ciated with coaxial rotor wakes by using a free-vortex methodology (FVM). The FVM is

a Lagrangian-based wake convection methodology, which solves for the evolution of the

vortical wake produced by the rotor blades under the influence of an external flow. The

extent to which the two rotors interact with each other was found to be highly dependent

on the inter-rotor spacing. To this end, parametric variations of inter-rotor spacing were

performed to show the effect on performance on each rotor and also as a system. An at-

tempt was made to quantify the effect of aerodynamic interference on the performance of

the upper and lower rotor by comparing them to an isolated rotor. It was shown that the

equivalent single rotor performs better than the coaxial rotor at moderately high advance

ratios, while the coaxial rotor performs better in hover. The inter-rotor spacing profoundly

affected the performance of the coaxial rotor system, giving higher power requirements at

lower inter-rotor spacing. Finally, it was shown that the upper rotor becomes affected by

the lower rotor in hover, and while this was an expected result in hover and low advance

ratios, the performance of the upper rotor was also affected at higher advance ratios.

xiii
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1. Introduction

Helicopters lifted by counter-rotating coaxial rotor systems have existed since the ear-

liest days of attempts at vertical flight. In fact, most of the earliest helicopter contraptions

built prior to 1930 were twin rotor concepts of various types, with either coaxial, tandem or

side-by-side rotor placements. However, various technical challenges building and flying

the coaxial rotor configuration led to the adoption of the single rotor/tail rotor helicopter

configuration, which has been the basis for most helicopters built since 1940. Neverthe-

less, the last few years have seen engineers revisit the coaxial rotor concept as a config-

uration that could potentially open up the flight envelope of the helicopter, allowing it to

reach higher forward speeds and also reach better levels of operational efficiency. Recently,

much effort has been put into developing the coaxial helicopter configuration in the U.S.,

the most notable one being Sikorsky’s X2 demonstrator, which was followed by the S-97

Raider [1] as pre-production flight demonstrator.

The present work analyzes the performance of coaxial helicopters, particularly from

the perspective of better understanding the aerodynamic interactions between the upper

and lower rotors. In addition, the overall performance of a coaxial helicopter is com-

pared to an “equivalent”conventional single rotor, the objective being to objectively assess

any performance benefits for a coaxial rotor. This thesis discusses the motivation for the

present work, which is followed by the literature review of the prior work done previously
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and being done currently on coaxial rotors, including numerical and experimental efforts.

Following this, the specific goals set down for the present study are discussed in detail.

1.1 History

Early forms coaxial rotor concepts actually date back over two centuries. The first

coaxial rotor concept seems to have been developed by Mikhail Lomonosov, his bench-top

“Aerodynamic” machine being demonstrated around 1754. While the rotors were able to

create thrust, the machine contained many gears and other mechanisms and was far too

heavy to fly.

During the 18th century, several French scientists including Ponton d’Amecourt began

to study various small rotor devices that could make short free-flights. Most of these de-

vices were composed of turkey feathers that were attached at the end of a stick, which were

then spun by the tension in a bowstring and released into free flight. While mostly toys,

many inventors and engineers were inspired to think about how to scale up the idea to a

human-carrying rotor concept.

In 1912, Jacob Ellehammer from Denmark built a coaxial helicopter, which was also

one of the first helicopters to takeoff under its own power and sustain free flight with a

pilot on board; see Fig. 1. During early 1930s, an Italian aeronautical engineer Corradino

d’Ascanio, built a coaxial rotor helicopter, as shown in Fig 2. The d’Ascanio helicopter

held modest records for the era, including time aloft, forward speed and altitude reached.

With the overwhelming success of the modern helicopter in the single rotor/tail rotor

configuration, one might think that it was this configuration that would taste success be-
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fore any other configuration. Yet, the first practical helicopter was actually a coaxial rotor

helicopter [2], which is shown in Fig. 3. Louis Breguet and René Dorand developed this

helicopter, which for its time held a number of records, yet it did not go into production.

Boulet [3] and Liberatore [4] discuss various other coaxial rotor helicopter prototypes, but

not all of them were able to achieve successful flight.

By 1935, Igor Sikorsky’s VS-300 was able to hover, fly sidewards and backwards un-

der complete control. Sikorsky’s huge success with the VS-300 and shortly after with the

R-4 and R-5 quickly popularized the single rotor configuration. Meantime, other config-

urations, including the coaxial and side-by-side rotor configurations, saw little further de-

velopment during the following decades as the single rotor helicopter platform continued

to mature.

Fig. 1: Jacob Ellenmahher’s coaxial helicopter in free flight.
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Fig. 2: Corradino d’Ascanio’s coaxial helicopter designed in 1930, which held flight

records during its time.

However, the coaxial rotor design was adopted the Kamov company in Russia in the

1950s, and they have continued to develop their coaxial rotor helicopter concepts into the

21st century. Their first machines were Ka-8 and Ka-10, which because of the relatively

compact size of a coaxial rotor compared to a single rotor could be more easily operated

off ships. The most notable Kamov machines are the Ka-15, Ka-18 and Ka-20, which were

very successful light- and medium-weight helicopters and have seen operational service

in many countries. The more recent Ka-50 is an attack helicopter, Fig 4, which has been

exclusively used by the Russian Army since 1995 [5].

One of the earliest coaxial rotor helicopters developed in the U.S. was called the Ad-

vancing Blade Concept (ABC) helicopter [6]. This new rotorcraft design was meant to ad-

dress the major problems faced by the conventional helicopter, namely the lifting potential
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Fig. 3: First successful coaxial helicopter designed by Louis Breguet and René Dorand.

and maximum speed capability. Two ABC aircraft were built, which showed the potential

for the coaxial rotor design to reach airspeeds above 200 knots. But this aircraft did not

go into production. This ABC design received renewed attention in 2008 when Bagai [1]

presented the blade design for the X2 Technology Demonstrator aircraft, a derivative of

the ABC helicopter. The innovative and unorthodox rotor design consisted of non-uniform

planform, different airfoils and varying blade twist distributions, and showed the potential

for significantly improved speed and efficiency. In 2010, the X2 reached speeds of up to

250 knots, which was much faster than any other helicopters at that time. A derivative

of the X2, called the S-97 Raider, has completed multiple successful test flights and is

expected to fly at speeds up to 250 knots.



6

Fig. 4: Ka-50 light-weight attack helicopter (Source: http://Airliners.net).

1.2 Motivation for the Present Work

Over the years, conventional thinking has led designers to believe that a conventional

single main rotor and tail rotor helicopter configuration is superior, and hence it has be-

come the default or preferred configuration for most new helicopters. However, recent

analysis suggest that performance capabilities and other abilities of a coaxial rotor system

may have been underestimated, and they are certainly not as fully understood as single

rotors. Furthermore, the tail rotor of a conventional design consumes up to 10% of the

engine power, power that is not used to generate lift. For a coaxial helicopter the problem

of anti-torque is “naturally” solved because the counter-rotating upper and lower rotor can

be trimmed to achieve a torque balance, and hence all of the engine power can be used for

lift and propulsion. Furthermore, because of the different thrust sharing between the upper
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and lower rotors of the coaxial configuration, coaxial rotors are capable of carrying more

weight and/or higher load factors because of the naturally lower blade loading (CT/σ) and

lift coefficients on each rotor. From Naval operations perspective, the coaxial rotor heli-

copter often benefits because of its smaller footprint and so requires less space on aircraft

carrier decks. The smaller overall size of the rotor of a coaxial helicopter also enhances its

maneuverability, which is vital in combat situations.

However, there are a number of disadvantages of a coaxial configuration, some of them

being the increased total weight from the more mechanically complex power transmission

system, which is compounded by the weight and cost of the additional main rotor system.

Aerodynamic interactions between the two rotors can also degrade performance, and can

be a source of higher vibrations because of blade vortex interactions as the lower rotor

ingests the wake of the upper rotor.

Other than the obvious mechanical complexity, another reason that the coaxial has not

seen widespread use could be that the comparison between a conventional and coaxial

helicopter has not been done throughly by means of experiments or calculations, which

has led to a perception that conventional helicopters are better. Another reason could be

the lack of understanding of rotor-on-rotor aerodynamic interactions and the influence of

the wake on the power requirement for flight. However, with advances in computational

capabilities and development of high fidelity aerodynamic models that predict the wake

structure accurately, today it is possible to conduct more detailed research studies into

coaxial rotor systems so as to better understand how to design them to achieve desired

levels of performance.
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The aerodynamic interactions between the upper and lower rotors of a coaxial config-

uration are rather complex, and may appear to be detrimental to the overall performance

of the helicopter. Obviously, inter-rotor spacing is a major factor affecting these aerody-

namic interactions, which occur primarily in hover and may diminish in forward flight.

Generally, higher inter-rotor spacing is desired for efficient hovering performance [7], but

a higher inter-rotor spacing increases the parasitic drag (due to the larger exposed shaft

between the rotors) in forward flight. It is known that when the lower rotor operates in the

fully developed wake of the upper rotor the induced power factor for the system is mini-

mum [7]. The modern helicopter is also expected to fly at very high speeds (approaching

200 knots), so it is crucial that the inter-rotor spacing is minimized because the power re-

quirement increases rapidly with increase in airspeed from the parasitic drag. Clearly, a

better understanding of how the inter-rotor spacing affects the aerodynamic performance

of a coaxial rotor system in hover and forward flight will potentially lead to more efficient

designs.

1.3 Prior Work and Literature Review

Predicting the aerodynamic interactions for a coaxial rotor system is a difficult task.

Simple momentum theory (SMT) and blade element momentum theory (BEMT) have been

previously used for rotor analysis. Harrington [8] and Dingeldein [9] used momentum the-

ory to compare with experimental measurements of coaxial rotor performance. Recently,

Leishman [7] applied variations of the SMT and BEMT to coaxial rotors, and showed very

good comparisons with measurements of coaxial rotor performance in hovering flight.
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Another approach to solve this problem is to use a free-vortex method to obtain the

induced velocities in the rotor wake. Bagai and Leishman [10] used the free-wake method

(FVM) to study the performance of various multi-rotor systems, including coaxial rotors.

This method captures the three-dimensional wake interactions between the two rotors of

the coaxial configuration, but the analysis only considers the blade tip vortices. However,

their results showed very good agreement with the measured wake displacements and per-

formance measurements of a coaxial rotor. A similar free vortex wake methodology within

the CAMRAD II code has also been used for the analysis of coaxial rotors, good compar-

isons with experimental results for full-scale and model-scale coaxial rotors being shown

by Lim et al. [11].

Computational Fluid Dynamics (CFD) has also been used to examine the aerodynamic

interactions between the two rotors of a coaxial configuration. CFD techniques are usually

based on time-dependent solutions of the Navier-Stokes equations in the form of RANS

methods (Reynolds-Averaged Navier-Stokes). All the applicable flow physics in RANS

except for turbulence are treated from first principless and much better predictions of the

rotor flow can be potentially obtained because viscous effects are included. One of the

drawbacks of the various CFD tools, however, is the large computational requirements,

substantial processing power and data storage requirements. Another drawback of CFD

is the numerical dissipation within the finite difference schemes, which tends to diffuse

concentrated vorticity such as tip vortices. Numerical dissipation not only affects the con-

vection of the wake but introduces non-physical effects that makes the preservation of the

vortical wake to older wake ages very challenging. Even though such problems have been
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resolved by the use of finer computational grids, higher-order schemes and grid adaptation,

conducting CFD analysis for a coaxial rotor system still remains a very difficult task.

In general, all of the various computational methodologies from momentum theory to

CFD tend to give reasonably good predictions of rotor performance such as thrust and

power. These methods, of course, have very different levels of complexity and compu-

tational requirements. In some cases, BEMT despite its simplicity, better predicts rotor

performance then CFD. However, the physics of the complex three-dimensional flow that

occurs between the upper and lower rotors of a coaxial is better captured in the FVM

method and, at least in principle, with CFD.

Though the results obtained from all three methodologies give some success when com-

pared to the measurements, the need for more detailed experimental data for validation

(such as blade loads and wake surveys) should not be underestimated. Experiments have

always been the most reliable source of interpretation of rotor aerodynamics and several

have been conducted to study the performance of coaxial rotors. Simulations of flight con-

ditions in wind tunnels tend to give good assessments of rotor performance such as thrust

and power. However, the process of making measurements still carries with it a number

of issues and concerns, including the exact trim procedures used to set the rotor operating

state.

Previous research conducted on coaxial helicopters through the early 1990s has been

summarized by Coleman [12]. The effects of wake interference, wake modeling, perfor-

mance comparison, etc. have been discussed based on published information. The com-

parison between the coaxial and a “equivalent” single rotor suggests that coaxial performs
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better than an equivalent single rotor. However, the description of an “equivalent” single

rotor is not fully defined by Coleman. One questionable observation made in this paper that

is that inter-rotor spacing does not influence rotor performance, which seems surprising if

not downright questionable.

1.3.1 Experiments

Over the years, various experiments have been conducted to determine the performance

of coaxial rotor. The earliest systematic experiments on a coaxial configuration was by

Harrington at the NACA Langley Research Center [8]. In this experiment, the thrust and

power performance of a coaxial rotor was measured for various blade pitch settings and

blade tip speeds. The rotor was tested with two different sets of blades; both sets varied in

blade thickness from root to tip but one blade was also tapered in planform.

Tests on both the single rotor and coaxial rotor configurations were made to determine

the relative performance merits of the two rotor systems. The results obtained compared

well with performance based on a variation of momentum theory. For the hover perfor-

mance comparisons, the coaxial rotor was assumed to be a single four-bladed rotor with

same overall solidity. However, this assumption is critical and it will be shown in this the-

sis that such assumptions affects the conclusions drawn about the relative levels of rotor

performance. This latter study also states that accurate estimation of zero-lift profile drag

of the blade section is essential to obtain reliable predictions of overall rotor performance.

Several years later, Dingeldein conducted further experiments to measure the perfor-

mance of twin rotor configurations in the wind tunnel in forward flight operation, namely a
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coaxial rotor and a tandem rotor [9]. In this experiment, Dingeldein used the same coaxial

rotor configuration used previously by Harrington. The results that were presented sug-

gested that the conventional single rotor configuration is more efficient than a coaxial rotor

system because the results indicate that the coaxial requires about 14% more power than

the conventional rotor for same operating conditions. However, to come to this conclusion,

the basis used for comparison is important.

For example, the effects of various factors such as disk loading and rotor solidity have to

be carefully matched to be able to make meaningful comparisons of the two rotors systems.

Although the rotor solidity in both the cases was equal, the disk loading was not the same

and is well known that the disk loading as a parameter is fundamental to rotor performance.

In fact, if the performance metric were to be compared at the same disk loading, then the

geometry of the single rotor would be different. Later in this thesis it will be shown how an

“equivalent” single rotor must be properly derived from a coaxial rotor configuration such

that basis for meaningful comparisons of performance can be established.

Further hover performance studies of coaxial rotors were conducted in the following

years. In 1969, Cheney [6] concluded that coaxial configurations could represent an im-

portant technological advance in the evolution of the next-generation rotorcraft technology.

His reasoning included an improved and more efficient lifting system (no power required

for anti-torque and entire power is used for lifting), potential for higher cruise speeds, and

simplicity of rotor control. Rorke [13] measured the hover performance of a coaxial ro-

tor configuration and concluded that the coaxial outperformed a conventional rotor system.

However, the methodology used for rotor trim is not mentioned in these studies, hence the
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usefulness of these results for validation purposes remains somewhat uncertain. In 1977,

Arents [14] conducted various experiments on Sikorsky’s ABC rotor and concluded that it

performs better than most of the military helicopters in service at that time. The reasoning

behind this claim was once again the absence of a power-consuming tail rotor with the

coaxial configuration. Yet, the basis of comparison between the two configurations was

again left rather unclear, so the conclusions cannot be considered as substantiated.

More recently, Ramasamy [15] conducted experiments to study the hover performance

of coaxial rotor, tandem rotor and tilt rotor configurations. For the purpose of this study,

a sub-scale rotor with a radius of 0.66 m was used. The blades were uniform in chord

planform with a chord length of 0.0647 m. Twisted and untwisted blade sets were used

separately to study the aerodynamic interference between the two rotors. Ramasamy con-

cluded that the performance of the coaxial configuration was better than an “equivalent”

solidity single rotor because of axial separation effects and wake swirl recovery. The coax-

ial configuration, however, consumed up to 22% more induced power compared to two

isolated single rotors, which was consistent with the theoretical findings of Leishman and

Syal [7].

Additional claims that the lower rotor influences the performance of the upper rotor

are expected but more difficult to quantify. The reasons given were because of the low

axial separation distances between the upper and lower rotor, as a result of which the lower

rotor operates in the downwash of the upper rotor, which was not yet fully developed. The

performance characteristics showed similar trends when using twisted blades. However,
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the extent to which the performance of the upper rotor becomes affected was not fully

clear.

Cameron and Sirohi [16] measured the performance of a model coaxial rotor at the Uni-

versity of Texas. The rotor was tested at the Glen L. Martin Wind Tunnel at the University

of Maryland, and featured 2-bladed upper and lower rotors with a radius of 1 m. The rotor

blades were of uniform chord and untwisted along the span, and also used a VR-12 airfoil.

This rotor was tested at several advance ratios and at lift offsets of up to 20% for fixed

collective pitch angles of the upper rotor. The rotor system was trimmed for torque balance

based on fixed collective pitch of the upper rotor. The rotor system was not trimmed for a

constant thrust and hence the tests were not conducted in the manner consistent with the

previously conducted experiments by Dingeldien. Nevertheless, results suggested that as

the advance ratio increased the variation in lift-to-drag ratio was fairly small. However,

because the rotor was not trimmed for a constant thrust, the usefulness of these results for

validation purposes remains unclear.

Schmaus and Chopra [17] measured the performance of a coaxial rotor similar to the

one used by Cameron and Sirohi. It was stated that all the measurements were taken at a

physical shaft angle of 0◦ and the collective pitch of the lower rotor was adjusted to achieve

a torque balance. It was found that the lower rotor produces more thrust than the upper rotor

at high advance ratios. This outcome is quite unexpected because it has been well known

from previous work that the upper rotor must produce more thrust for all flight conditions,

which is because the lower rotor operates in the wake of the upper rotor and so results in
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higher induced losses for a given thrust. The 0◦ shaft angle is also not a realistic operational

state, and could be a reason for such an unexpected rotor behavior.

Cameron et al. [18] have studied coaxial rotor performance in hover. They also com-

pared the performance of a coaxial rotor and an “equivalent”single rotor. Through these

studies, the authors concluded that the coaxial configuration consumed 6% less power than

a four-bladed rotor of equivalent solidity. They also compared the upper and lower rotors

of a coaxial rotor with isolated rotors, and concluded that the upper and lower rotors con-

sumed 18% and 49% more induced power, respectively, when in operation as a coaxial

rotor system because of mutual interference.

1.3.2 Numerical Studies

A helicopter normally operates in under a wide range of flight regimes, i.e., hover,

climb, descent and forward flight, as well as combinations of these basic flight conditions.

Predicting the performance using mathematical models is very important, especially for de-

sign purposes. However, even with modern mathematical models, the prediction of coaxial

rotor performance is not an easy task. The flow around a rotor is comprised of a com-

plex, vortical wake structure, but even then the basic performance can be analyzed with

good validity by using a relatively simple approach known as the Rankine-Froude momen-

tum theory. The momentum theory is generally viewed as a first-order analysis to predict

rotor thrust and performance, and is applicable to hover, climb and forward flight.

Other forms of rotor analysis are based on the blade element momentum theory (BEMT),

which has good validity for hover and axial (climbing) flight. BEMT gives an improved
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prediction of the various aerodynamic loads acting on the rotor blades, and total rotor per-

formance is then found by spanwise integration. In the BEMT, the assumption is that each

blade section is a quasi-2-dimensional airfoil section producing aerodynamic forces. A

representation of quasi-3-dimensional effects can be introduced by including the so-called

Prandtl tip loss effects [19]. In principle, the BEMT does not account for the mutual influ-

ence of the neighboring blade sections, however, unlike the simple momentum theory, the

effects of non-uniform inflow are certainly accounted for. Like all blade element methods,

the strength of the BEMT lies in rapid and accurate calculation of the induced velocities

at each blade section. When the induced velocities are determined, then the forces and

moments acting on the rotor can be obtained.

In 1951, Harrington applied the BEMT to predict the hovering performance of a coaxial

rotor system based on an extension of the single rotor analysis [8]. The theoretical analysis

for single and coaxial rotors was based on method described by Gessow [20]. In this

analysis, the coaxial rotor was treated as a four-bladed single rotor and the blade section

drag was predicted using a quadratic sectional 2-dimensional drag model. The calculated

value of thrust was corrected for tip loss effects. The predictions were in good agreement

with measurements but, it was stated that prior knowledge of zero-lift drag of the rotor is

essential.

More recently, Leishman and Syal developed a series of figure of merit expressions for

a coaxial rotor [7]. For the purpose of this study, four configurations of a coaxial rotor were

studied using the BEMT. It was shown that for a coaxial rotor in torque balanced condition,

the lower rotor has to operate in the fully developed slipstream of the upper rotor. The
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induced loss was a maximum when the two rotors operated in the same plane at the torque

balanced condition.

Leishman and Ananthan discussed the basis for developing an optimum coaxial rotor

[21] using the BEMT and showed that the optimum blade twist for minimum induced

losses is of double hyperbolic form with a break point in twist located at the point where

the upper rotor wake impinges in the lower rotor. Additional claims were made that the

upper and lower rotor of an optimum hovering coaxial rotor system must have different

blade planforms if best overall performance is to be achieved.

It is clear that predicting the performance of a helicopter rotor is largely dependent

on the ability to accurately predict the behavior of the rotor wake because it is the wake

that mostly defines the net induced velocity field of a rotor. In 1995, Bagai and Leishman

developed a new, robust numerical scheme that predicted the tip vortex geometry of a ro-

tor wake, known as free-vortex method (FVM) [22]. This method was based on pseudo-

implicit predictor-corrector relaxation scheme, with five-point central differencing for the

wake equations that were derived using the principles of vorticity transport. This scheme

showed very good comparisons with experimental results for both hover and forward flight

regimes. Because of the pseudo-implicit nature, this scheme was computationally expen-

sive compared to the single-step explicit methods. But the robustness of this scheme and

much less susceptibility to numerical instabilities made it very usable for both single rotor

and multi-rotor analysis.

In 2008, Syal used the FVM to study the performance of a coaxial rotor for the pur-

poses of shape optimization of the rotor blades [23]. Parametric studies of inter-rotor spac-
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ing, blade planform (taper) and separate amounts of blade twist on upper and lower rotors

were conducted to study their effects. A formal optimization technique to maximize rotor

performance in hover and forward flight was also discussed. This study showed that rotor

performance improves if the rotor geometries of upper and lower rotor are different. It

is also stated that rotor performance is independent of blade geometry at higher advance

ratios because of the cleaner separation of the wakes from the upper and lower rotors.

Another method, the vorticity transport model (VTM), also better captures and pre-

serves the vortex structure associated with wakes of a rotor [24, 25]. The VTM solves the

vorticity-velocity form of Navier-Stokes equations on an Eulerian grid surrounding a rotor.

It is a time-dependent computational solution that preserves the vortical structures from the

adverse effects of numerical dissipation. The use of adaptive grid system to capture the

vortex wake as it moves downstream makes VTM very useful for the purposes of coaxial

rotor research. The VTM has previously been used to study performance of rotor-wake

encounters [26, 27], rotors in ground effect [28, 29], and even the vortex ring state [30, 31].

Kim and Brown compared the performance of coaxial rotor and a conventional rotor using

VTM [32]. The equivalent rotor geometry was, however, not adjusted so that the thrust

sharing remains the same for conventional and coaxial rotors [33]. It was concluded that

the coaxial system consumed less power than the “equivalent” single rotor in both hover

and forward flight.

As previously mentioned, computational fluid dynamics (CFD) such as RANS is a

more sophisticated approach to the problem of solving for the rotor aerodynamics. RANS

methods eliminate the semi-empirical approximations associated with vortices, although
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semi-empirical turbulence models are still required required. One such code that is used

for the CFD analysis of a coaxial rotor is NASA’s OVERFLOW 2. Ruzicka and Strawn [34]

used OVERFLOW 2 for a coaxial rotor analysis using overset grids. In OVERFLOW 2,

basically two types of grids were used, near-body and off-body grids. The grid attached

to the rotor comprise the near-body grid and the automatically generated grid away from

the solid surfaces is called the off-body grid. The inflow prior to 80% of rotor radius was

overpredicted for the upper and lower rotor. Yoon et al. [35] also used OVERFLOW

to analyze the interactional aerodynamics of a coaxial rotor in hover for next-generation

autonomous drones. This approach showed that the performance of the coaxial does not

become affected until the inter-rotor spacing is less that 50% of rotor radius.

Of the various numerical methods used for the purposes of coaxial research, none of

them are an obvious choice for the purpose of the present study. While the BEMT is a par-

simonious technique that gives rotor performance predictions, the inflow distributions are

not captured as well as might be desired. FVM and CFD methods better predict the inflow

distribution over the rotors, especially at the outboard blade sections where 3-dimensional

effects are stronger. However, Juhasz et al. [36] showed that the net rotor performance

predictions using BEMT compared well with experimental results, even better than those

from the FVM and CFD.

The computational time required by each of these methods is also very different. While

BEMT required negligible computational time on a modern computer, CFD requires al-

most 106 more units of computational time. Also, CFD methods do not preserve the wake

structure associated with rotor flows, whereas FVM methods preserves the wake structure
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indefinitely, and hence can be used for the purposes of coaxial research. Out of all the

methodologies available, it was decided to use the FVM in the current study for the pur-

poses of comparing a conventional and coaxial rotors, and also investigating the effects of

inter-rotor spacing on performance.

1.4 Goals of the Present Work

The goals of the present work were to use the FVM to compare the aerodynamics of

conventional and coaxial rotor configurations. The specific goals were to better understand

the aerodynamic interactions between the two rotors of a coaxial helicopter. In summary,

the objectives were:

1. To validate predictions made by a FVM by comparing against available experimental

results for conventional and coaxial rotor configurations, and in both hover and in

forward flight.

2. Compare the performance of a conventional rotor and a coaxial rotor in hover and

forward flight. This study involved deriving an “equivalent” single rotor from a coax-

ial configuration.

3. To investigate the aerodynamic interference between the upper and lower rotors of a

coaxial rotor in hover. This work involved examining the performance of the coaxial

by means of parametric variations of inter-rotor spacing.

4. To quatify the degree of aerodynamic losses by comparing the performance of coax-

ial rotor system with isolated upper and lower rotors.
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1.5 Outline of the Thesis

This thesis is divided into four chapters. The first chapter gives a background on coaxial

rotor systems and the various aerodynamic concerns that are associated with their opera-

tion. Previous research into coaxial rotor systems is also discussed, along with the objec-

tives for the current work. The second chapter discusses the FVM that solves for the rotor

wake to calculate induced velocities at the rotor blades. This is followed by a discussion of

the Maryland Free Wake (MFW) method developed at University of Maryland [37] and the

specific methodology used in the present work to solve for the flow around a coaxial rotor

system. The third chapter discusses the validation of the method and other results that were

obtained during the process of the present study. The final chapter contains the conclusions

drawn from the study, and also some recommendations for future research.
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2. Methodology

This chapter discusses the free-vortex method (FVM) that was used to predict the flow

field for a coaxial rotor helicopter system in both hovering flight and forward flight. The

FVM is Lagrangian-based wake convection methodology, which solves for the evolution of

the vortical wake produced by the rotor blades under the influence of an external flow. The

vortical elements in the flow comprise of the rotor blades themselves, which are attached

to and move with the blades (i.e., the so-called “bound” circulation), and the trailed vortex

filaments, the latter which are free to move in the downstream wake under the influence

the influence of the local velocity field. The wake becomes “free” when the wake filaments

reach equilibrium, force-free positions that are compatible with the bound circulation on

the lifting blades at the desired operational state of the rotor(s). It is assumed that all of the

vorticity in the flow field is confined to these free elements, and the flow everywhere else

is inviscid, incompressible, and irrotational.

2.1 The Free-Vortex Wake Problem

The essence of the FVM is that it solves for the rotor wake geometry and also com-

putes the strengths of the vortices trailed by the rotor blades at the desired flight conditions

consistently with the lift on the blades. The blades lay down curved blade tip vortices,

which are approximated by using interconnected straight line vortex filaments defined by
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markers or collocation points, as shown in Fig. 5. Each vortex filament represents a trailed

tip vortex, which is the dominant feature of the rotor wake flow [2]. The initial condition

for the simulation is based on an undistorted rigid wake or a prescribed wake, which helps

move the wake markers to positions that are closer to where they will ultimately end up. By

means of the repeated application of the Biot-Savart law with a desingularized core, which

also includes a vorticity diffusion model, the induced velocity field from all of the vortex

filaments at any point in space can be calculated. The markers then move to new positions

based on the local velocity field. The solution method is based either on time-stepping or

relaxation method, and the wake solution proceeds until convergence is obtained, i.e., the

wake becomes nominally periodic and repeats from rotor revolution to revolution. Previous

studies have shown very good correlations can be obtained between the results of the FVM

and measurements of the rotor wake and rotor performance such as thrust and power [22].

Fig. 5: Idealization of the curved rotor wake into straight line segments connected by col-

location points [2].



24

The foundations of the FVM is based on the vorticity transport equation. It is assumed

that the vorticity is confined to the vortices themselves and the flow outside is assumed

to be inviscid. Under the conditions of inviscid, incompressible and irrotational flow,

Helmholtz’s law [38] states that the vortex lines move as material lines at the local flow

velocities. The convection of points on these vortex lines is governed by

d
dt

(~r) = V(~r) (2.1)

The vector~r in Eq. 2.1 gives the position of the Lagrangian markers in the vortical wake. In

a blade fixed coordinate system, the left hand side of Eq. 2.1 can be expressed in terms of

the rate of change of~r with blade azimuth ψ (temporal) and wake age ζ (spatial). Therefore,

Eq. 2.1 can now be written in the following partial differential equation form

∂~r(ψ,ζ)
∂ψ

+
∂~r(ψ,ζ)

∂ζ
=

1
Ω

~V(~r(ψ,ζ)) (2.2)

where Ω is the angular velocity of the rotor. The right-hand side of Eq. 2.2 is a non-linear

source term that accounts for the net, instantaneous velocity of an element on the vortex

filament.

Equation 2.2 cannot, in general, be solved analytically because of the highly non-linear

terms on the right-hand side, and hence it has to be solved by numerical means. However,

under the conditions of a uniform flow the equation can indeed be solved analytically [2],

which results in a pure helical wake in hover and an epicycloidal wake in forward flight.

The numerical integration requires two steps: First, define the source terms in terms of

individual constituents; Second, discretize Eq. 2.2 into a finite number of finite difference

equations.
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The Source Terms

The net instantaneous velocity at a point~r(ψ,ζ) is composed of the external or free-

stream velocity and the net induced velocity at that location. This behavior can be denoted

by

~V(~r(ψ,ζ)) = ~V∞ (~r(ψ,ζ))+~Vind (~r(ψ,ζ)) (2.3)

The free-stream component from forward and/or climbing and/or descending flight can be

written as

~V∞ (~r(ψ,ζ)) = V∞x î+V∞y ĵ+V∞zk̂ (2.4)

which is is usually constant everywhere or at least uniform across the rotor.

The induced velocities from the vortices in the wake, however, are more difficult to

determine because they are non-uniform and are determined by the application of Biot-

Savart law, i.e.,

(2.5)

~Vind (~r(ψ,ζ)) =
1

4π

NVf

∑
j=1

∫
Γ f
(
ψ j,ζ

)
d~ζ j ×

(
~r(ψ,ζ)−~r f

(
ψ j,ζ

))
|~r(ψ,ζ)−~r f

(
ψ j,ζ

)
|3

+
1

4π

NVb

∑
j=1

imax

∑
i=1

∫
Γb
(
ψ j,ζ

)
d~l j,i ×

(
~r(ψ,ζ)−~rb

(
ψ j,ζ

))
|~r(ψ,ζ)−~rb

(
ψ j,ζ

)
|3

where~r(ψ,ζ) is the location of an element that is influenced by total contributions of the jth

free vortex located at~r f
(
ψ j,ζ

)
, of strength Γ f

(
ψ j,ζ

)
, plus the influence of the ith bound

vortex of the jth blade. The second term on the right-hand-side of Eq. 2.5 accounts for the

imax vortex segments from the NVb bound vortices on each blade, of strength, Γb
(
ψ j,ζ

)
.

The bound vortices also straight are line segments, hence, the Biot-Savart law can be com-
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puted analytically. Because the wake convects continuously, the Biot-Savart computations

have to be reevaluated repeatedly until convergence of the wake solution is obtained [39].

2.2 Maryland Free Wake Method

The partial differential equation (PDE), Eq. 2.2, as discussed in the preceding sec-

tion is difficult to solve even by numerical means, i.e., with a scheme that exhibits not

only good accuracy and but also stability. The Maryland Free Wake (MFW), developed

at the University of Maryland, is formulated to solve the PDE in Eq. 2.2 by using a spe-

cial predictor-corrector method with spatial and temporal differencing. In summary, the

formulation process is divided in to three steps.

1. Discretize the physical problem in space and time.

2. Transform the PDE in Eq. 2.2 in to a finite number of finite difference equations

(FDE).

3. Develop numerically stable numerical integration schemes that are not only accurate

(at least 2nd-order) but are also very stable.

These three steps will be discussed briefly in the following sections.

2.2.1 Discretization of the Physical Problem

The location of an element in the wake is given by~r(ψ,ζ), where ψ is the azimuth

position and is, therefore, a time variable. The spatial variable, ζ is the angular location

of an element on the wake that was trailed at azimuth location ψ. One rotor revolution is
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Fig. 6: Schematic showing the vortex wake of the coaxial rotor system [23].

Fig. 7: Discretization of the rotor wake [39].
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discretized into a finite number of points with a step size of ∆ψ, and the trailed wake is

divided into a finite number of straight line elements of ∆ζ angular resolution. The vortex

filaments are inter-connected through collocation points, as shown in Fig. 6. For ease of

explanation, a single rotor wake discretized into a finite number of points is shown in Fig. 7.

2.2.2 Transformation of PDE

In the previous section, the first step for transforming the PDE in to FDE was discussed,

i.e., discretization of the physical domain to a computational domain. The computational

domain is shown in Fig. 8. The abscissa represents the ψ direction and the ordinate is in ζ

coordinates. Recall that the PDE governing the rotor wake geometry is

∂~r(ψ,ζ)
∂ψ

+
∂~r(ψ,ζ)

∂ζ
=

1
Ω

~V(~r(ψ,ζ)) (2.6)

To transform the Eq. 2.6 into a FDE, the partial derivatives for the terms on the left-hand-

Fig. 8: Discretized computational domain [40].

side must approximated in terms of FDE’s. The formulation of MFW is based on 5-point

central differencing scheme and the computational stencil is shown in Fig. 8. The MFW

algorithm solves Eq. 2.6 by using the predictor-corrector 2nd-order backward difference
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(PC2B) approach that was developed by Bhagwat [41]. Using the PC2B approach, the

FDE’s for the two terms on the left-hand-side of Eq.2.6 are written as

∂~r
∂ψ

=
3r(ψ+∆ψ,ζ)− r(ψ,ζ)−3r(ψ−∆ψ,ζ)+ r(ψ−2∆ψ,ζ)

4∆ψ
(2.7)

∂~r
∂ζ

=
r(ψ+∆ψ,ζ+∆ζ)+ r(ψ,ζ+∆ζ)− r(ψ+∆ψ,ζ)− r(ψ,ζ)

2∆ζ
(2.8)

Equations 2.7 and 2.8 are at the midpoint of the grid cell, i.e., at~r(ψ+∆ψ/2,ζ+∆ζ/2).

Also, Eq 2.7 shows that the PC2B approach uses points from the previous three time

steps to evaluate the solution at the new time step. In Eq. 2.6, the velocity term at point

~r(ψ+∆ψ/2,ζ+∆ζ/2) is averaged using the neighboring four points and can be written as

~V
(
~r(ψ+∆ψ/2,ζ+∆ζ/2)

)
=

1
4

(
~V(ψ,ζ)+~V(ψ+∆ψ,ζ)

+~V(ψ+∆ψ,ζ−∆ζ)+~V(ψ,ζ−∆ζ)

)
(2.9)

Substituting Eqs. 2.7, 2.8 and 2.9 into Eq. 2.6 and simplifying, the position of~r(ψ,ζ) is

written as

~r(ψ,ζ) =
~r(ψ+∆ψ,ζ)

5
+

3~r(ψ−∆ψ,ζ)

5
−
~r(ψ−2∆ψ,ζ)

5

− 4~r(ψ+∆ψ,ζ+∆ζ)

5
− 4~r(ψ,ζ+∆ζ)

5
+

1
10Ω

(
~V(ψ,ζ)

+~V(ψ+∆ψ,ζ)+~V(ψ+∆ψ,ζ−∆ζ)+~V(ψ,ζ−∆ζ)

)
(2.10)

because the results discussed are for a uniform grid, i.e., for ∆ψ = ∆ζ, the equation for the

position of~r(ψ,ζ) reduces to Eq. 2.10. The PC2B method that solves Eq. 2.10 is discussed

in the following section.
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2.2.3 Numerical Integration Scheme

The solution to the FDE in Eq. 2.10 is governed by the non-linear velocity terms on the

right-hand side and must be computed for all collocation points in the rotor wake. Solving

the equation involves the following steps:

1. Compute the source terms at each collocation point from the instantaneous contribu-

tions of the Nv vortices in the wake trailed from the Nb blades.

2. Update the position vectors of all collocation points by solving Eq. 2.10 until the

root-mean-square value of the change in wake displacements (i.e., the L2 norm) drops

below a prescribed criterion, which is approximately 10−4.

The predictor step computes an approximate geometry at the new time step. Using the

updated wake geometry, the source terms are re-computed. The corrector step then uses

a weighted average of the velocities from the predictor step, and solves the equation to

determine the wake geometry at this new time step.

2.2.4 Blade Aerodynamic Model

The rotor comprises of Nb rotor blades, which are assumed to be rigid, but must be

allowed to exhibit free flapping motion about a hinge in a time-accurate manner. The blade

aerodynamic model implemented in the MFW is based on the Weissinger-L model [42];

see Fig. 9. Each rotor blade is divided into Ns segments and the blade bound circulation is

fixed at 1/4-chord and the blade control points are located at 3/4-chord location. While the

lift and bound vortex strengths are constant along any section, it varies from one section
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Fig. 9: Schematic of the Weissinger-L model [23].

to another. Consequently, vorticity has to be trailed at the end of each segment, and the

strength of this trailed vorticity is determined using Helmholtz laws of conservation of

vorticity, see Eq. 2.11, i.e.

Γt j = Γb j −Γb j+1 (2.11)

The trailed vorticity is modeled as a planar sheet fixed to the rotor blade for a fixed angular

distance, ∆ψ. The unsteady effects from shed vorticity are included using indicial response

functions [40]. Because of the need to impose flow tangency, the component of incident

velocity perpendicular to the blade segment at 3/4th-chord position is exactly zero, i.e.,

Vi · n̄i = 0 i = 1,2, ......,Ns (2.12)
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where the incident velocity, Vi is from the free stream, the bound vortices, the trailed

vortices, etc., and is written as

Vi = V∞ +VFW +VB +VNW (2.13)

In Eq. 2.13, VFW is computed by application of the the Biot-Savart law. VB and VNW

depend on the bound circulation strength, Γ j, and the influence coefficient matrix, I, i.e.,

VBi =
Ns

∑
j=1

IBi jΓ j (2.14)

VNW i =
Ns

∑
j=1

INW i jΓ j (2.15)

where IBi j and INW i j are the influence coefficient matrices for the bound vorticity and near

wake respectively. Substituting Eqs. 2.14 and 2.15 into Eq. 2.12 and rearranging gives

Γ j = [I]−1{(V∞ +VFW ) · n̄}i (2.16)

The strength of the bound vortex is determined by solving Eq. 2.16. Using this approach,

the lift at each part of the blade is by determined by applying the Kutta-Joukowski theorem

as

L = ρUΓ j (2.17)

The previous version of the MFW used Beddoes’s two-dimensional, non-linear airfoil

model [43] to compute airfoil coefficients. During validation, it was found that the pre-

dicted power did not match well with measurements for the coaxial rotor. Therefore, a

airfoil table lookup method was used to determine lift and drag coefficients for the sym-

metric NACA 0012 airfoil, which are shown in Fig. 10.
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(a) Lift coefficient

(b) Drag coefficient

Fig. 10: Airfoil coefficients for the NACA 0012.
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The blade flapping is dependent on the aerodynamic response, which in-turn is depends

on the wake solution. Also, the blade wake attachment boundary condition necessitates the

coupling between rotor wake and blade flapping. The flapping equation for a rigid blade is

written as
??

β +ν
2
β
β =

Mβ

IβΩ2 (2.18)

where νβ is the natural flap frequency, Iβ represents blade moment of inertia about the

flapping hinge. Writing Eq. 2.18 as a set of ordinary differential equations in matrix form

[40] we have

d
dψ


?

β

β

+

 ν2
β

0

0 1




?

β

β

=


Mβ

IβΩ2

0

 (2.19)

Eq. 2.19 is solved using PC2B scheme [41].

2.3 Rotor Trim Methodology

The aerodynamic response of a helicopter rotor is a highly coupled function of the

control input angles (collective and cyclic pitch) and the resulting aerodynamic forces on

the rotor. The changes in the collective and cyclic pitch inputs also affect the blade flapping.

Trimming a helicopter rotor is essential to maintain a balance of aerodynamic forces and

also to compare the results of the wake solutions at various flight conditions. The trim

methodology employed in the FVM is based on a Newton-Raphson approach [40].
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Single Rotor Trim Methodology

The control input vector of a rotor blade, x, comprises of the pilot control inputs which

are the blade collective θ0, the lateral cyclic, θ1c, and the longitudinal cyclic, θ1s. The

control input vector (i.e., x = {θ0,θ1c,θ1s}T ) is updated during the trim procedure using

the Newton-Raphson approach, which solves the rotor aerodynamic environment to obtain

the desired rotor response y, which comprises the conditions for thrust and TPP orientation.

The rotor response vector is written as, y = {CT ,β1c,β1s}T .

The Taylor series for the rotor response as a function of the input is written as

y(x+∆x) = y(x)+ [J]∆x+ ... (2.20)

where y(x+∆x) is the rotor response to the new control input (x+∆x). Rearranging the

terms of Eq. 2.20 we get

∆x = [J]−1 {y(x+∆x)−y} (2.21)

where y(x+∆x) is the response error vector which is written as

y(x+∆x)−y =


CT −CTreq

β1c

β1s


(2.22)

where CTreq is the target total system thrust and β1c and β1s are the lateral and longitudinal

TPP tilt. The Jacobian matrix, J is written as

J =
∂y
∂x

=



∂CT

∂θ0

∂CT

∂θ1c

∂CT

∂θ1s
∂β1c

∂θ0

∂β1c

∂θ1c

∂β1c

∂θ1s
∂β1s

∂θ0

∂β1s

∂θ1c

∂β1s

∂θ1s


(2.23)
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Substituting Eqs. 2.22 and 2.23 in Eq. 2.21 gives

∆x = [J]−1


CT −CTreq

β1c

β1s


−→ 0 (2.24)

The trim cycle begins with an initial guess and is later updated by solving Eq. 2.24. The

Jacobian would be a diagonal matrix but because of aerodynamic coupling it is actually

fully populated. The partial derivatives in Eq. 2.23 are computed using first-order forward

difference approximation. The updated response is then used to re-calculate the Jacobian

matrix; this latter calculation is computationally expensive and is calculated only when

needed during the trim procedure.

Coaxial Rotor Trim Methodology

The aerodynamics of a coaxial rotor is more complicated because of the intermingling

of the rotor wakes and hence the rotor trim process is not straightforward because the two

rotors need to be trimmed simultaneously. Although the total system thrust is a sum of

the thrusts carried by the upper and lower rotors, they do not share the thrust equally i.e.,

Cu
T 6= Cl

T . The control inputs for the upper and lower rotor are interdependent, and hence

the trim of a coaxial rotor is a highly coupled problem.

One of the advantages of the coaxial rotor is the absence of a dedicated anti-torque

system because two rotors of the coaxial rotor must operate at equal and balanced torques;

because the upper and lower rotor are counter-rotating with respect to each the resultant
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torque of the system is zero. Also the orientation of the TPP is a necessary trim condition,

as it is for a single rotor.

The control input and the response vector of a coaxial rotor can be written as

x =



θu
0

θu
1c

θu
1s

θl
0

θl
1c

θl
1s



and y =



∑CT

∑CQ

βu
1c

βu
1s

βl
1c

βl
1s



(2.25)

In Eq. 2.25, the superscripts u and l indicate the upper and lower rotor respectively. The

rotor response is a function of the control input, hence Eq. 2.21 is applicable to the coaxial

system. The Jacobian for the coaxial system is written as

J =
∂y
∂x

=



∂∑CT

∂θu
0

∂∑CT

∂θu
1c

∂∑CT

∂θu
1s

∂∑CT

∂θl
0

∂∑CT

∂θl
1c

∂∑CT

∂θl
1s

∂∑CQ

∂θu
0

∂∑CQ

∂θu
1c

∂∑CQ

∂θu
1s

∂∑CQ

∂θl
0

∂∑CQ

∂θl
1c

∂∑CQ

∂θl
1s

∂βu
1c

∂θu
0

∂βu
1c

∂θu
1c

∂βu
1c

∂θu
1s

∂βu
1c

∂θl
0

∂βu
1c

∂θl
1c

∂βu
1c

∂θl
1s

∂βu
1s

∂θu
0

∂βu
1s

∂θu
1c

∂βu
1s

∂θu
1s

∂βu
1s

∂θl
0

∂βu
1s

∂θl
1c

∂βu
1s

∂θl
1s

∂βl
1c

∂θu
0

∂βl
1c

∂θu
1c

∂βl
1c

∂θu
1s

∂βl
1c

∂θl
0

∂βl
1c

∂θl
1c

∂βl
1c

∂θl
1s

∂βl
1s

∂θu
0

∂βl
1s

∂θu
1c

∂βl
1s

∂θu
1s

∂βl
1s

∂θl
0

∂βl
1s

∂θl
1c

∂βl
1s

∂θl
1s



(2.26)
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The perturbed input vector for the coaxial system is written as

∆x = [J]−1



∑CT −CTreq

∑CQ

βu
1c

βu
1s

βl
1c

βl
1s



−→ 0 (2.27)

where CTreq denotes target system thrust and ∑CQ denotes the net system torque. βu
1c and

βu
1s are the lateral and longitudinal tilt of the TPP for the upper rotor respectively. βl

1c and

βl
1s are the lateral and longitudinal tilt of the TPP for the lower rotor respectively. The TPP

is kept perpendicular to the rotor shaft by ensuring that the values of βu
1c, βu

1s, βl
1c and βl

1s

are zero at the end of the trim process.

The trim cycle begins with initial guesses for the control input vector x, which is used

to compute rotor responce y. Using x and y the Jacobian, J for the rotor is computed. Using

Eq. 2.21, the necessary perturbation to achieve rotor trim can be obtained. This trim cycle

is repeated until all the elements of the response vector are zero.
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3. Results and Discussion

3.1 Validation

The results obtained from the FVM were validated by comparing with measurements

conducted on three sets of single and coaxial rotor configurations. Two sets of coaxial

rotors used for the purpose of validation were the rotors used by Harrington [8]. These

two rotor sets were referred to as Harrington 1 and Harrington 2 rotors for convenience.

Both the rotor sets comprised of untwisted blades and had the same radius, however, the

Harrington 1 rotor blades were tapered in planform and thickness with a rotor solidity of

0.027 per disk. The Harrington 2 rotor blades were tapered in thickness only with a rotor

solidity of 0.076 per disk. The rotors used symmetric NACA airfoils; the FVM is a lifting

line model so that it does not explicitly take into consideration the varying thickness along

the span, this being done from the perspective of the airfoil section data. In the present

work, the airfoil coefficients were derived from generic NACA 0012 airfoil tables.

Another rotor that was used for the purpose of validation was the one used by Cameron

and Sirohi at The University of Texas [16]. This rotor is a small-scale, 2-bladed coaxial

rotor of radius 1 m; the blades were untwisted, with uniform planform and solidity of 0.05

per rotor disk. The blades used VR-12 airfoil section with a trailing edge tab. The detailed

rotor geometries for the three coaxial rotor systems are in Tables A.1, A.2 and A.3.
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The following sections discuss the validation of the FVM by comparing predictions

with existing experimental data that was obtained from tests conducted on the three rotors.

All the results discussed are for a given system thrust, zero net torque for the coaxial system,

and the rotor tip-path-plane (TPP) orientation is maintained perpendicular to rotor shaft.

Also, for forward flight, the shaft angle was adjusted so that the propulsive force is same

for the rotor systems being compared.

3.1.1 Harrington Rotors

Harrington 1

In this section, the results obtained from the FVM are compared with the experimental

results of Harrington, a schematic of the blade planform being shown in Fig. 11. To account

Fig. 11: Rotor blade shape of Harrington 1 rotor.

for the varying thickness of the blade, the average zero thrust profile drag i.e. Cd0 was

adjusted to 0.00904 using airfoil measurements. The zero-lift sectional drag coefficient for

the NACA symmetric series can be approximated by the equation

Cd0 ≈ 0.007+0.025
( t

c

)
(3.1)
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where t/c is the thickness-to-chord ratio. The result is valid in the range 0.06≤ t/c≤ 0.24,

which is in the range used on the Harrington 1 rotor. The effects of Mach number com-

pound the behavior of the drag, but at moderate angles of attack below the drag divergence

Mach number the effects of compressibility are small.

If the blade tapers in thickness from an airfoil with a 24% thickness-to-chord ratio at

the root to a 6% ratio at the tip then the drag coefficient can be written as

Cd0(r) = 0.007+0.025(0.24−0.18r) = 0.013−0.0045r. (3.2)

The profile power coefficient can now be estimated using the blade element model where

CP0 =
1
2

σ

∫ 1

0
Cd0r3dr =

1
2

σ

∫ 1

0
(0.013−0.0045r)r3dr (3.3)

Evaluation of this expression gives a value of 1
8σ(0.00904) compared to the value 1

8σ(0.013)

without the use of thickness. In the FVM, the drag coefficient from lookup table is about

0.008 which would give profile power coefficient of 1
8σ(0.008), which did not predict the

CP0 accurately when compared to measurements in Fig. 12. Using the method described

above the drag coefficient was adjusted by adding 0.00104 to the value obtained from the

lookup table. This ensured that the FVM predictions for CP0 were similar to measurements.

The predicted power polar for the Harrington 1 rotor is shown in Fig. 12. The power

predictions made by the FVM are in reasonable agreement with the measurements. Predic-

tions for the single rotor agree very well with the measurements, however there is a slight

overprediction in power for the coaxial rotor system. The coaxial rotor did not trim for

higher system thrust values and therefore the results were not available.
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Fig. 12: Power polar for the Harrington 1 rotor.

Fig. 13: Wake geometry of the Harrington 1 rotor in hover at CT = 0.004.
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Figure 13 shows the predicted wake geometry for the Harrington 1 rotor that was ob-

tained using the FVM. The wake geometry that is plotted is time history of tip vortices

released at different azimuth locations by the upper and lower rotors. The two wakes in-

teract without significantly distorting the helical structure of the wake. Notice that the

wake from the upper rotor has a different helical pitch than the lower rotor, confirming the

operation at different thrusts and also an interaction between the two wakes. Because the

experiment conducted by Harrington did not measure the wake geometry, there are no wake

data for comparison. However, the wake structure is consistent with the flow visualization

experiments conducted by Taylor [44] and McAlister et al [45].

Fig. 14: Predicted inflow ratio distribution of the upper and lower rotors for the

Harrington 1 rotor in hover at CT = 0.004.
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Figure 14 shows the predicted inflow ratio across the upper and lower rotors. The plot

is an average of the inflow ratio along the mid-span for one rotor revolution. The inflow

ratio is fairly uniform across the span of the upper rotor. However, the inflow across the

lower rotor is distinctly different. The effects of the wake from the upper rotor impinge

on the lower rotor, which can be clearly seen at about 80% of the blade span. At this

point, the inflow ratio is higher on the inboard sections of the lower rotor compared to the

inboard sections of the upper rotor, but then abruptly drops to a lower value, and eventually

equaling the inflow ratio across the upper rotor near the blade tip. Consequently the upper

rotor carries higher thrust compared to the lower rotor when operated at a torque trim

condition.

Fig. 15: Predicted spanwise distribution of thrust on the upper and lower rotors for the

Harrington 1 rotor in hover at CT = 0.004.
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Fig. 16: Predicted spanwise distribution of torque on the upper and lower rotors for the

Harrington 1 rotor in hover at CT = 0.004.

Figure 15 shows the spanwise thrust on the upper and lower rotors. Over the inboard

section, the upper rotor carries more thrust because of the lower inflow across the inboard

sections of the upper rotor, whereas in the outboard sections notice that the sectional thrust

for the upper and lower rotors is almost equal.

Figure 16 shows the corresponding predicted spanwise distribution of torque across the

upper and lower rotors of the Harrington 1 rotor. Because the coaxial rotor system is at a

torque balanced condition, the area under the curves is equal.

Figure 17 shows the lift distribution across the span of the upper and lower rotors of

the Harrington 1. Notice that the lower rotor has a lower coefficient of lift than the upper

rotor in the inboard sections. This outcome is because the downwash from the upper rotor
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Fig. 17: Predicted spanwise lift coefficient on the upper and lower rotors for the

Harrington 1 rotor in hover at CT = 0.004.

increases the inflow ratio over the lower rotor. The resultant increase in inflow velocity

increases the magnitude of the inflow angles at the blade elements, which can be seen by

using

φ = tan−1

(
UP

UT

)
(3.4)

where UP is the inflow. The increased inflow angle reduces the effective angle of attack α,

and, therefore, a lower coefficient of lift is produced because the value of lift coefficient

obtained from the airfoil lookup table is dependent on α.

Cl =Cl(α) =Cl (θ−φ) (3.5)

Figures 18(a) and 18(b) show the instantaneous inflow ratio and coefficient of lift dis-

tribution over the upper and lower rotors, respectively; notice that the upper rotor rotates in
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a counter-clockwise and lower rotor rotates in a clockwise direction. The upper rotor wake

impinging on the lower rotor can be clearly seen in Figs.18(a). Notice that the inflow ratio

is higher in the region where the upper rotor wake impinges upon the lower rotor.

(a) Inflow ratio

(b) Coefficient of lift

Fig. 18: Contour plot showing: (a) Inflow ratio and (b) Coefficient of lift across the

Harrington 1 rotor.

Harrington 2

In this section, the results obtained for the other coaxial rotor geometry, the Harrington 2

rotor, are discussed. A schematic of the blade planform is shown in Fig. 19. Because of
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the varying thickness of the blade; 24% thickness-to-chord ratio at the root and 15% ratio

at the tip, using Eq. 3.1, the zero-thrust profile drag, Cd0 , was adjusted by adding 0.00312

so that the FVM prediction for CP0 was similar to the measurements.

Fig. 19: Blade shape of the Harrintgon 2 rotor.

Figure 20 compares the predicted power polar for the Harrington 2 rotor with the ex-

perimental results, where it can be seen that the FVM results are in good agreement with

the measurements. For the coaxial rotor case, however, there is an overprediction in power,

similar to the observation made for the Harrington 1 rotor system.

Figures 21(a) and 21(b) show the instantaneous inflow ratio and coefficient of lift across

the Harrington 2 rotor, respectively. The effects of the upper rotor wake impinging on the

lower rotor can be seen in Figs. 21(a). Notice in Fig. 21(b), on the lower rotor contour

near the blade tip region there are darker bands, which correspond to a higher coefficient of

lift. These dark band are not axisymmetric and are a result of blade passage effects; blade

passage effects are basically the local effects of the counter-rotating blades passing close to

each other, which gives a local perturbation in angle of attack.
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Fig. 20: Power polar for the Harrington 2 rotor.

Other performance factors such as spanwise inflow ratio, thrust coefficient, power

coefficient, lift coefficient for the Harrington 2 rotor showed similar trends as for the

Harrington 1 rotor and hence not discussed.

3.1.2 University of Texas (UT) Rotor

This section compares the FVM results with the experimental results obtained by Cameron

and Sirohi at the University of Texas [16]; see Fig. 22 for a schematic of the blade planform

of this rotor. The experimental results obtained during this study were for a small scale ro-

tor, the tip chord Reynolds number of which is of the order of 0.45 million. The drag

coefficient decreases with increasing Reynolds number up to 20 million [46]. For NACA

0012 airfoil, the drag coefficient, Cd , for Reynolds number below 1 million increases, so to
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(a) Inflow ratio

(b) Coefficient of lift

Fig. 21: Contour plot showing: (a) Inflow ratio and (b) Coefficient of lift across the

Harrington 2 rotor.

account for the low Reynolds number drag characteristics, the profile drag coefficient for

the model scale rotor was adjusted to 0.0012.

Fig. 22: Blade shape of the University of Texas coaxial rotor.
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Figure 23 shows that the predictions compare very well with the experimental results for

the single rotor, but a slight overprediction is obtained for the coaxial rotor configuration.

It was found that the FVM could not trim this coaxial rotor at higher system thrust values,

hence no results were available.

Fig. 23: Power polar for the University of Texas coaxial rotor.

Figure 24(a) and 24(b) show the instantaneous inflow ratio and lift distribution for the

UT coaxial rotor respectively. The upper rotor wake impinging on the lower rotor can

be seen clearly near the blade tip of the lower rotor. Concentrated dark red bands on the

lower rotor shown in Fig. 3.24(b) are a result of blade passage effects. Other performance

parameters such as thrust, power, etc. showed similar trends, just like the Harrington rotors.

Now that the the FVM predictions in hover have been shown to compare fairly well

with the experimental results, a certain level of confidence has been established in the



52

methodology. The following section discusses the validation of the FVM for forward flight

operation.

(a) Inflow ratio

(b) Coefficient of lift

Fig. 24: Contour plot showing: (a) Inflow ratio and (b) Coefficient of lift across the UT

coaxial rotor.

3.2 Forward Flight Validation

The relative dearth of experimental measurements on coaxial rotors makes it difficult

to validate any type of performance prediction method. In fact, there are very few properly

documented experiments for coaxial rotors in forward flight that can be used for validation
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purposes. For most of the experiments, the wind tunnel trim conditions are not always

available (i.e., the collective and cyclic pitch values) or other trim state such as based on a

propulsive trim requirement to simulate free flight. Hence, without knowledge of the trim

state usefulness of any measurements for validation purposes is unclear. Nevertheless, the

following section discusses comparison between experiments conducted by Dingeldien and

the FVM predictions for forward flight.

Harrington 1

Dingeldien [9] conducted experiments to study the performance of a single and a coax-

ial rotor in both hover and forward flight. The Harrington 1 rotor was used for these exper-

iments. The coaxial rotor was tested at a constant system thrust coefficient of 0.0048 with

a constant rotational tip speed.

Wind tunnel trim conditions are not mentioned but it would seem that an equivalent flat

plate parasitic drag area of 0.929 m2 was used to simulate the variation in the shaft angle

with forward flight. The drag for the given equivalent flat plate parasitic drag area, f , is

defined as

D f =
1
2

ρ fV 2
∞ (3.6)

To overcome this drag, the TPP of the rotor is tilted forward by an amount

sinαs =
D f

T
(3.7)

where T is the thrust and αs is the rotor shaft angle, which is what would likely be used in

the wind tunnel tests.
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Fig. 25: Forward flight comparison for the Harrington 1 rotor with experimental results.

CT = 0.0048 Vtip = 142.95 m/s

For the single rotor simulations, the total system thrust coefficient was 0.0024, i.e., half

of the system thrust than for the coaxial rotor configuration. Similarly, the simulations were

done at various advance ratios (µ) up to 0.25. For µ ≥ 0.2, the coaxial rotor did not trim

properly and hence the predictions were not available.

The FVM predictions for the Harrington 1 single and coaxial rotor configuration are

plotted in Fig. 25. There is an overprediction in power, however the trend in power variation

with forward flight is well captured. Again, recall that trim conditions for the experiments

were not clearly stated, which could be a reason the the FVM predictions overpredict the

power.
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Fig. 26: Lift to drag ratio for the Harrington 1 rotor. CT = 0.0048 Vtip = 142.95 m/s

The Lift-to-drag (L/D) ratio for the Harrington 1 rotor is shown in Fig. 26. As the

forward flight speed increases, the induced power requirements decrease as a result L/D

increases and reaches a maximum and then reduces quickly because the increasing drag

of the rotor. Notice that in Fig. 26, the L/D ratio increases rapidly and then plateaus. In

practice, the maximum L/D ratio for a rotor is important because it corresponds to the

conditions of best aerodynamic efficiency.

The ratio of thrust carried by the upper (CTu/CT ) and lower rotor (CTl/CT ) to the total

system thrust for the Harrington 1 is shown in Fig. 27. It is seen that the upper rotor carries

more thrust than the lower rotor at all advance ratios, however the difference in thrust shar-

ing is not the same at all advance ratios. The aerodynamic interference between the upper

and lower rotors affects the lower rotor performance, increasing the torque required to pro-
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Fig. 27: Thrust sharing for the Harrington 1 rotor. CT = 0.0048 Vtip = 142.95 m/s

duce a given thrust. Hence, for a torque balance the upper rotor needs to carry more thrust

at all advance ratios to obtain a trimmed flight condition. As the advance ratio increases,

the upper rotor wake skews back so the lower rotor is less influenced by the upper rotor,

as shown in Fig 28. Eventually at higher advance ratios, the performance of the upper and

lower rotors become almost independent of each other.

Inflow Contours at Varying Advance Ratios

Figures 29 and 30 (the arrows indicate the direction of flow) show the instantaneous

inflow distributions across the upper and lower rotors of the Harrington 1 coaxial system.

The inflow is highest across the upper and lower rotors during hover, as would be expected

for any rotor, this is because the entire upper rotor wake is ingested by the lower rotor when
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(a) µ = 0.05

(b) µ = 0.18

Fig. 28: Geometry of the blade tip vortices for varying advance ratio.
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hovering. At an advance ratio of µ = 0.05, the upper rotor wake does not impinge over the

entire lower rotor, and a discontinuous inflow distribution is observed between the fore and

aft parts of the lower rotor.

(a) µ = 0

(b) µ = 0.05

Fig. 29: Instantaneous contours of inflow distribution over the upper and lower rotors of

the Harrington 1 rotor.

At a moderately higher advance ratio of µ = 0.10, the contours indicate that the aft

section of the lower rotor is mostly affected because of the wake from the upper rotor

(notice the bands of yellow and dark red on the aft section of lower rotor). At µ = 0.20,

the inflow distributions on the rotors mimic each other (mirror images because the rotors
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(a) µ = 0.1

(b) µ = 0.2

Fig. 30: Instantaneous contour of inflow distribution over the upper and lower rotors of the

Harrington 1 rotor.

are counter-rotating) and also the development of the reverse flow region can be seen near

blade root on the upper and lower rotors respectively (i.e., the dark blue regions on the

retreating sides of the rotors).

Comparison with Wake Geometry Measurements: Ka-32

This section discusses comparison between the FVM predicted wake geometries and

measured wake geometries for the Ka-32 coaxial rotor. Wake displacement data have been
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obtained from smoke flow visualization experiments conducted by Akimov et.al. [47]. The

results are plotted on a longitudinal plane passing through the rotor disk, i.e., for the ψ = 0◦

and 180◦ locations.

The comparison between predicted and measured wake geometries is shown in Figs. 31

and 32. Comparisons have been made at four different advance ratios, namely µ= 0.006,0.089,0.169

and 0.279. The total system thrust and shaft angle were adjusted to provide the same

propulsive force to mimic the flight conditions.

At the lowest advance ratios it can be seen that the wake geometry is almost symmet-

ric, with slight differences in the fore and aft locations; see Fig. 31(a). As the advance

ratios increases, the wake geometry becomes different and the upper rotor wake does not

impinge on the lower rotor entirely; see Fig. 31(b). At µ = 0.089, the wake in the forward

sections of the upper and lower rotors is close to the TPP, and this behavior is captured

well by the FVM predictions for the upper rotor. However, there are a few discrepancies

between the predictions and measurements for the lower rotor wake; see Fig. 31(b). But

the wake geometry is captured well near the rear end of the rotor as the wake moves further

downstream.

At moderately high advance ratios, i.e., µ = 0.169 and 0.279, the wake skews back and

begins to look entirely different; see Fig. 32(a) and 32(b). At µ = 0.169, the experiments

indicate the tip vortices are close to the the TPP, but the FVM predicts that the tip vortices

from the upper rotor are ingested by the lower rotor. At the downstream side of the rotor,

while the upper rotor wake is captured by the predictions, the skew angle of the lower rotor
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(a) µ = 0.006

(b) µ = 0.089

Fig. 31: Comparisons between the predicted and measured wake geometry for the Ka-32

rotor.



62

(a) µ = 0.169

(b) µ = 0.279

Fig. 32: Comparisons between the predicted and measured wake geometry for the Ka-32

rotor.
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wake is underpredicted. At µ = 0.279, the wake skew angle seems to be underpredicted for

both the upper and lower rotors.

Fig. 33: Condensation of the rotor wake of the Ka-32 helicopter in hover.

Overall, the trends in the wake behavior seems to be captured well at low advance

ratios, but as advance ratio increases the predictions are not as good. One reason for this

discrepancy is that the fuselage effects are not taken into consideration in the the FVM.

The Ka-32 fuselage is large and box-like, as shown Fig. 33, and at higher advance ratios

the flow perturbations from the fuselage will reduce the downward convection of the tip

vortices at the leading edge of the rotor disk and increase their convection at the rear of the

rotor wake. These effects are most likely the reason for most of the discrepancies shown

between the FVM and the measurements at the higher advance ratios.
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3.3 Coaxial Rotor and Equivalent Single Rotor

This section discuss the comparisons that were made between a conventional single

rotor and a coaxial rotor, in both hovering and in forward flight. A fair comparison between

single rotor and coaxial rotor is not a straightforward as it might appear, and any type of

comparisons need to be approached cautiously and also with careful qualification. The

following section discusses the method used to derive an equivalent single rotor from a

given coaxial rotor geometry.

3.3.1 Equivalent Single Rotor

To compare a single and a coaxial rotor on a fair basis, the rotors have to be identical

in terms of geometry and also operating state. The parameters that have to be the same for

the two rotor systems being compared are:

1. Number of blades, Nb

2. Disk loading, DL

3. Rotor solidity, σ

4. Tip speed, Vtip

Keeping the of blades, Nb, constant between the two rotor system ensures that the so-

lidity, σ, is maintained for the coaxial system. Therefore, to derive an equivalent single

rotor from a given coaxial rotor geometry, the total number of blades have to be equal. The

disk loading, DL, is a very important parameter in helicopter analysis, which potentially
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affects the hovering efficiency. Keeping the disk loading constant between any two rotor

systems ensures that the rotors are compared on a fair basis. Tip speed, Vtip, has to be kept

constant between the two rotor systems being compared because tip speed directly affects

the profile power.

The coaxial rotor consists of an upper and a lower rotor, so the disk loading can be

written as

(DL)coaxial =
T

Atot

=
T

Au +Al

(3.8)

The two rotor systems are loaded equally so

(DL)coaxial = (DL)eq

T
Acoaxial

=
T

Aeq

T
Au +Al =

T
Aeq

Aeq = 2Au (Au = Al)

π(Req)
2 = 2π(Ru)2

Req =
√

2Ru

(3.9)

The rotor solidity of the coaxial, σcoaxial, and the equivalent rotor solidity, σeq, for the

single rotor has to be equal so the equivalent single rotor will have blades of different chord

length, i.e.,

σeq = 2σ
u (σcoaxial = 2σ

u = 2σ
l)

Nbceq

πReq
=

Nbcu

πRu

ceq =
√

2cu

(3.10)
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The result from Eq. 3.9 shows that the radius of the equivalent single rotor will be greater

than for the coaxial rotor. If the rotational frequency for both the rotor systems is kept the

same, then the tip speeds will be different. Because of this, the rotational frequency of the

equivalent single rotor system has to be adjusted, i.e.,

(Vtip)eq = (Vtip)coaxial

ΩeqReq = ΩcoaxialRcoaxial

Ωeq =
Ωcoaxial√

2

(3.11)

Using Eqs. 3.9, 3.10 and 3.11, the equivalent rotor geometry for a given coaxial rotor

system can then be obtained. Using this approach, an equivalent single rotor for the

Harrington 2 rotor is shown in Table 3.1. A comparison between the Harrington 2 rotor

and its equivalent single rotor is discussed in the following section.

Table 3.1: Rotor geometry of the Harrington 2 rotor and its equivalent single rotor.

Parameter Harrington 2 Equivalent single rotor

No. of rotors, Nr 2 1

No. of blades, Nb 2 4

Radius, R 3.81 m 5.38 m

Chord, c 0.457 m 0.645 m

Solidity, σ 0.152 0.152

Rotational frequency, Ω 31.50 rad/s 22.3 rad/s

Tip speed, Vtip 120 m/s 120 m/s

Rotor spacing, z/R 0.19R -
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3.3.2 Hover Performance Comparison: Harrington 2

The performance of the equivalent single rotor was predicted in hover using the FVM

at several thrust values and the results plotted against Harrington 2 rotor; see Fig. 34. Prior

studies have shown that the coaxial performs better than its equivalent single rotor (the ge-

ometry of the “equivalent” rotor was unclear in the previous studies) in hover, and the same

trend was observed during this study. The coaxial rotor required about 9% less total sys-

tem power than its equivalent single rotor configuration for varying values of total system

thrust.

Fig. 34: Comparison between the Harrington 2 rotor and its equivalent single rotor in hover.

The breakdown of total system power in to induced and profile power components in

Fig. 35, shows that the profile power for both rotor systems is similar; the markers for CP0

for the equivalent single rotor lie exactly behind the markers of the Harrington 2 rotor. The
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Fig. 35: Variation in induced and profile power at varying system thrusts for the Harrington

2 rotor compared with its equivalent single rotor.

difference in performance is entirely a result of induced power requirements; the coaxial

rotor required between 11–17% less induced power over the system thrust range.

Notice the higher inflow ratio near blade tip of the equivalent single rotor, as shown in

Fig. 36. Figure 37 indicates the thrust distribution (thrust per unit span), dCT/dr, across

the span of the equivalent single rotor is higher than of the upper and lower rotors of the

coaxial rotor system.

3.3.3 Forward Flight Performance Comparison: UT Coaxial Rotor

Prior studies have suggested that the coaxial rotor performs better than its equivalent

single rotor in forward flight [9, 32, 33]. The geometry of the assumed equivalent single
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Fig. 36: Inflow distributions across the blade span of the Harrington 2 rotor and its equiva-

lent single rotor in hover. CT = 0.005

Fig. 37: Thrust gradient across the blade span of Harrington 2 and its equivalent single in

hover. CT = 0.005
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rotors used in these studies, however, were not compared on the basis of the approach used

in this thesis. Although the rotor solidity, σ, was kept constant, the disk loading was lower

for the coaxial rotor (since the coaxial rotor consists of both an upper and a lower rotor),

which is not a correct basis for comparison because a rotor with lower disk loading will

always have lower induced loses. Loading the coaxial rotor and the single rotor equally for

the same rotor disk loading establishes a much fairer basis for comparison.

The UT coaxial rotor tested at the University of Texas is used in the present study

to compare the performance of a coaxial rotor and its equivalent rotor in forward flight.

Equations. 3.9, 3.10 and 3.11 were used to derive the equivalent single rotor, as shown in

Table 3.2.

Table 3.2: Rotor geometry of the UT coaxial rotor and its equivalent single rotor.

Parameter UT coaxial rotor Equivalent single rotor

No. of rotors, Nr 2 1

No. of blades, Nb 2 4

Radius, R 1.016 m 1.437 m

Chord, c 0.080 m 0.113 m

Solidity, σ 0.10 0.10

Rotational frequency, Ω 83.66 rad/s 59.15 rad/s

Tip speed, Vtip 85 m/s 85 m/s

Rotor spacing, z/R 0.14R -
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Fig. 38: Power required by the UT coaxial rotor compared to its equivalent single rotor in

forward flight.

A plot showing a performance comparison between the UT coaxial rotor and its equiv-

alent single rotor for several advance ratios is given in Fig. 38. The coaxial rotor system

required less power than it equivalent single rotor in hover. As the advance ratio increases,

both rotor system require almost same power up to an advance ratio of µ = 0.125. Further

increasing the advance ratio, however, shows that the two rotor systems require different

power for operation; the coaxial rotor system required almost 38% more power at µ = 0.25.

This result is different from the previous studies, this result is not entirely unexpected be-

cause a different and more appropriate method is used in this thesis to derive the equivalent

single rotor.
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Fig. 39: Lift-to-drag ratios of the UT coaxial rotor compared to its equivalent single in

forward flight.

The L/D ratios for the UT rotor are very low compared to full-scale coaxial rotors; see

Fig 39. Notice, however, that the equivalent single rotor has a higher L/D compared to the

coaxial rotor. The maximum L/D for both rotor systems occurs at similar advance ratios

and hence the airspeed for maximum range will be same. As advance ratio increases, the

L/D ratio decreases because of increase in profile drag of the rotor.

The ratio of thrust shared by the upper and lower rotors to the total system thrust is

shown in Fig. 40. The thrust ratio of the upper rotor, CTu/CT , decreases and thrust ratio

of the lower rotor, CTl/CT , increases as advance ratio increases. Both the upper and lower

rotors performance is independent thus indicating lower aerodynamic interference at higher

advance ratios.
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Fig. 40: Thrust sharing between the upper and lower rotors of the UT coaxial rotor in

forward flight.

The wake geometry of the tip vortices is shown in Figs. 41(a) and 41(b) at µ = 0.15

and 0.25, respectively. Notice the wake from the upper rotor skews back, which has a

smaller influence on the lower rotor operation although it still does not operate indepen-

dently. Consequently the upper and lower rotors are loaded almost equally, and the ratio of

thrust shared is almost equal; see Fig. 40. Also, the CT/σ for lower rotor increases with ad-

vance ratio. Although operation at a higher CT/σ is desirable, flow separation is associated

with rotor operations at too high a blade loading.

The maximum attainable value of CT/σ depends on the local lift coefficient distribu-

tion across the rotor blade, the highest attainable lift coefficients being limited by stall. A

contour of lift coefficient at µ = 0.2 across an equivalent single rotor and UT coaxial rotor
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(a) µ = 0.15

(b) µ = 0.25

Fig. 41: Wake geometry produced by the UT rotor.
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(a) Equivalent single rotor

(b) UT rotor

Fig. 42: Lift coefficient distribution across the UT rotor compared to its equivalent single

rotor at µ = 0.2.

is shown in Fig. 42. The lift coefficient near the retreating side of the equivalent single

rotor is high; similarly, the lift coefficient across the upper and lower rotors is higher. At a

higher advance ratios, as shown in Fig. 43, lift coefficient across the equivalent single rotor

is higher. However, a section of the retreating sides of the upper and lower rotors has dark

red bands indicating high lift coefficients, which is an indicator of the occurrence of blade

stall.
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(a) Equivalent single rotor

(b) UT rotor

Fig. 43: Lift coefficient distribution across the UT rotor compared to its equivalent single

rotor at µ = 0.225.

At µ = 0.25, onset of blade stall is seen on the upper and lower rotors; see Fig. 44(b).

However, the equivalent single rotor does not show any evidence of blade stall in Fig. 44(a).

Figure 44(b) indicates that CT/σ is too high for the upper and lower rotors blades, espe-

cially for the lower rotor. The reason for this behavior is that the blades of the UT rotor

are untwisted and non-tapered, which increases local lift coefficients at the inboard blade

stations and produces premature stall at a lower value of CT/σ.
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(a) Equivalent single rotor

(b) UT rotor

Fig. 44: Lift coefficient distribution across the UT rotor compared to its equivalent single

rotor at µ = 0.25.

3.4 Inter-Rotor Spacing: Harrington 2

This section discusses the effect of inter-rotor spacing on the performance of the coax-

ial rotor system. Furthermore, the effect of lower rotor on the performance of the upper

rotor is also discussed. To this end, the Harrington 2 coaxial rotor system was used to in-

vestigate the effects of inter-rotor spacing. The coaxial system was tested for very low to

moderately high inter-rotor spacings. The original inter-rotor spacing of z/R = 0.19R of
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the Harrington 2 was used, in addition to z/R = 0.10 and z/R = 0.30. The gains/loss in per-

formance at different inter-rotor spacing were normalized with respect to the performance

of the Harrington 2 rotor operating at a spacing of z/R = 0.19R.

The rotor geometry of the Harrington 2 is shown in Table A.2. The results in Fig. 45

compares the performance of the coaxial rotor at varying inter-rotor spacing. At z/R =

0.30, the coaxial rotor required 12% less power at low thrust and 0.08% less power at a

higher thrust compared to an inter-rotor spacing of z/R = 0.19R. However, for a lower

inter-rotor spacing the performance of the coaxial rotor system degrades. At z/R = 0.10,

the coaxial rotor system required almost 24% more power for all values of thrust. This

outcome is because of increased aerodynamic interference between the upper and lower

rotors at lower values of inter-rotor spacing.

Fig. 45: Power polar of the Harrington 2 for varying inter-rotor spacings.
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Notice that for a spacing of z/R = 0.10, the coaxial rotor system does not trim at higher

thrust values. At low inter-rotor spacing the blade passage effects are more pronounced and

so affect the performance of the rotor system, as shown in Fig. 48(a).

Fig. 46: Decomposition of induced and profile power for varying inter-rotor spacing.

In Fig. 46, the induced and profile power requirements at different inter-rotor spacings

is plotted. Notice that the profile power requirements at all inter-rotor spacing remains the

same, while the induced power requirement is clearly different.

The spanwise inflow ratio across the upper and lower rotors of the Harrington 2 rotor at

a total system thrust of CT = 0.005 is shown in Figs. 47(a) and 47(b), respectively. Notice

the inflow distribution across the span is different for the upper rotor as the inter-spacing

varies. The inflow ratio increases by 7% at z/R = 0.10, whereas the inflow decreases by

4% at z/R = 0.30. Similarly, Fig. 47(b) shows that the inflow across the lower rotor varies



80

(a) Upper rotor

(b) Lower rotor

Fig. 47: Spanwise inflow ratio across the Harrington 2 rotor.
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for different inter-rotor spacings. The inflow ratio across the lower rotor decreases by 2%

at z/R = 0.10 while the inflow increased by 3.5% at z/R = 0.30. At z/R = 0.10, there is no

evidence of the upper rotor wake impinging on the lower rotor.

Figure 48 shows the inflow ratio contours across the upper and lower rotors at vary-

ing inter-rotor spacing of the Harrington 2 coaxial rotor system. Notice the inflow ratio

(increase in light blue region) on the upper rotor decreases as inter-rotor spacing increases.

Figure 49 shows the ratio of thrust shared by the upper and lower rotors at varying

inter-rotor spacings. At CT = 0.005, the upper rotor at z/R = 0.30 carries 57% of total

system thrust, whereas the upper rotor at z/R = 0.10 carries 54% of thrust. Consequently,

the lower rotor carries 43% and 46% at z/R = 0.30 and z/R = 0.10, respectively. Because

the thrust carried by the lower rotor increases as the rotor spacing decreases, the induced

power required increases. The coaxial rotor is trimmed for a torque balance, hence the

upper rotor operates at the same torque as the lower rotor, and so an increase in the power

is required at lower inter-rotor spacings.

The wake geometry for the Harrington 2 coaxial rotor at different inter-rotor spacings is

shown in Fig. 50. The upper rotor wake contracts up to 0.79R when it impinges on the lower

rotor at an inter-rotor spacing of z/R = 0.30. It is known that, induced loss is maximum

at low inter-rotor spacing [7], where it was stated that for minimum induced losses the

lower rotor has to operate in the fully developed wake of the upper rotor. Theoretically, the

wake contraction ratio is about 0.707R, and it has been found experimentally that is about

0.78R [2]. It is therefore necessary the wake contracts by this much for minimum induced

losses. Clearly, the results in Fig. 50 shows that the wake from the upper rotor contracts
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(a) z/R = 0.10

(b) z/R = 0.19

(c) z/R = 0.19

Fig. 48: Inflow ratio across the upper and lower rotors of the Harrington 2 rotor.

up to 0.83R at an inter-rotor spacing of z/R = 0.10. This explains why the coaxial system

performance degrades as inter-rotor spacing is reduced.
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Fig. 49: Thrust sharing for varying inter-rotor spacings of the Harrington 2 rotor.

3.5 Effects of Comparison with Isolated rotors: UT coaxial rotor

The aerodynamic interactions between upper and lower rotors influence the power re-

quirements of the coaxial rotor system. This section discusses the performance losses the

upper and lower rotors incur from the effects of aerodynamic interference. The UT coaxial

rotor was used to investigate aerodynamic losses of the upper and lower rotors operating as

a coaxial rotor system. For the isolated system simulations, the single rotor was trimmed

for a thrust that the upper and lower rotors of the coaxial rotor trimmed at when operating

in a coaxial system for varying advance ratios. The isolated system performance is a sum

of the performance of isolated upper and lower rotors.

Figure 51 shows the performance of the coaxial rotor and isolated system. The isolated

system required less power than the coaxial rotor system. This is an expected result because
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Fig. 50: Wake boundary as affected by varying inter-rotor spacing of the Harrington 2 rotor.

it is known that the aerodynamic interference deteriorates the performance. In hover, the

coaxial system required 37% more total power than the isolated system. This difference

in power requirement reduces as the advance ratio increases. At µ = 0.2, the total power

required by the coaxial system was 5% more than the isolated system. Therefore, the

aerodynamic interference is a maximum in hover and decreases as advance ratio increases.

Figure 52 compares the upper and lower rotors of the UT coaxial rotor as isolated rotors.

The upper rotor of the coaxial rotor was seen to require 33% more induced power in hover.
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Fig. 51: Performance of the UT rotor compared to isolated rotor system operating at the

same thrust.

This outcome indicates that the presence of the lower rotor affects its performance. Even

as the advance ratio increases, the upper rotor does not operate completely independently.

At moderately high advance ratio, the upper rotor performance is also affected because of

aerodynamic interference. At µ = 0.2, the upper rotor required 8% more induced power

than the isolated rotor. The lower rotor performance is affected much more than the upper

rotor. In hover, the lower rotor of the coaxial rotor required 77% more induced power than

for the isolated rotor. Induced power requirement of the lower rotor of the coaxial rotor

when compared to isolated rotor, dropped from 60% to 40% as advance ratio increased

from 0.1 to 0.125. Beyond this advance ratio, the induced power requirement dropped to

11% at µ= 0.2. While the induced power requirement varies, the profile power requirement

remained the same when the upper and lower rotors were compared with the isolated rotors.
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The L/D of the upper and lower rotors of the coaxial rotor system was compared with

the isolated rotors, the results of which is shown in Fig. 53. The L/D of both the upper and

lower rotors is less than isolated rotors. As the advance ratio increases the difference in the

L/D decreases, which similar to the trend observed previously for the power required.

Figures 54–56 show the inflow ratio contour across the rotors in hover, µ = 0.1 and 0.2,

respectively. In hover, the inflow across the upper rotor is much higher then the isolated

upper rotor. The inflow across the lower rotor is also higher. As advance ratio increases to

µ = 0.1, the presence of the lower rotor influences the inflow across the upper rotor. The

red regions in the aft section of the upper rotor of the coaxial rotor system indicate higher

inflow compared to the blue and green regions on the isolated upper rotor. The forward

part of the lower rotor does not become affected by the wake of the upper rotor, although

it is a very small region on the lower rotor. At µ = 0.2, the forward part of the upper rotor

of the coaxial rotor system does not have the same inflow as the isolated upper rotor, the

lower rotor affecting the inflow even at an advance ratio of µ = 0.2. The inflow ratio across

the aft part of the upper rotor is influenced by the lower rotor, a consequence of which the

inflow ratio is higher than the isolated upper rotor. Although, the wakes at higher advance

ratio skews back, the impingement of the upper rotor wake is apparent on the lower rotor;

the yellow streaks on the lower rotor indicating regions of wake impingement. Also, the

aft part of the lower rotor operates in the wake of the upper rotor.
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(a) Upper

(b) Lower

Fig. 52: Power in forward flight for the upper and lower rotors of UT rotor compared to

isolated rotors operating at same thrust.
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Fig. 53: Lift-to-drag ratios of the upper and lower rotors of the UT rotor compared to

isolated rotors.
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(a) Isolated rotor

(b) UT rotor

Fig. 54: Inflow ratio across UT rotor compared to isolated rotors in hover.
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(a) Isolated rotor

(b) UT rotor

Fig. 55: Inflow ratio across UT rotor compared to isolated rotors at µ = 0.1.
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(a) Isolated rotor

(b) UT rotor

Fig. 56: Inflow ratio across UT rotor compared to isolated rotors at µ = 0.2.
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4. Conclusions and Recommendations

This final chapter summarizes the observations made from the results found during the

research, draws some important conclusions, and also gives recommendations for future

work.

First, a free-vortex method was validated against experimental measurements for coax-

ial rotors. The study also compared the coaxial rotor system withs its “equivalent” single

rotor, first by deriving an equivalent single rotor for the given coaxial rotor system, and then

comparing thrust and power of both the rotor systems in hover and forward flight. Next,

the effect of inter-rotor spacing on the performance of the coaxial rotor system was inves-

tigated. Finally, the effects of aerodynamic interference on the performance of the upper

and lower rotor working in a coaxial system was quantified by comparing with an isolated

rotor operating at the same conditions.

4.1 Conclusions

The observations and conclusions that have been drawn from various studies during

this thesis research are as follows:

1. The FVM was validated for a coaxial rotor systems based on the measurements con-

ducted by Harrington [8] and Cameron [18]. For hovering flight validation, the single

rotor predictions compared very well with the experiments, while the power predic-



93

tions for the coaxial rotors were slightly overpredicted even though the trends were

captured very well.

2. The FVM predictions were compared against forward flight experiments conducted

by Dingeldien [9]. The power for both the single and coaxial rotors was overpre-

dicted, however the trends with airspeed was captured well. While the discrepan-

cies could be attributed to predictive capabilities of the free-vortex method, the trim

conditions used during the experiments was not explicitly mentioned and remains

a source of uncertainty. Attempts to resolve the discrepancies were made to try to

establish the trim conditions using the available data from Dingeldien’s research.

3. Rotor wake geometry predictions were compared against the smoke flow visualiza-

tions experiments for the Ka-32 coaxial rotor helicopter conducted by Akimov et. al.

[47]. The predictions compared well at low advance ratios, however, the wake skew

angles were under predicted for higher advance ratios. The differences, most likely,

can be attributed to fuselage interference effects on the developing rotor wake.

4. To compare the conventional rotor and a coaxial rotor on a fair basis, an “equiva-

lent” single rotor was derived for the given coaxial rotor geometry. The equivalent

rotor had the same total number of blades, disk loading, solidity and tip speed as the

coaxial rotor. The coaxial rotor was found to require about 9% less power than its

equivalent single rotor in hovering flight. A break down of the total system power

in to induced and profile power components showed that the induced power required

by the coaxial rotor was 11–17% lower than the equivalent single rotor for the same
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system thrust range. The profile power requirement for coaxial rotor and equivalent

rotor was almost the same.

5. While the coaxial rotor required less total power for hovering flight, the power re-

quirement at low advance ratios was almost the same when compared with its equiv-

alent single rotor. Beyond µ = 0.125, the coaxial rotor required more total power,

and up to 38% more power at µ = 0.25. At the higher advance ratios, there was evi-

dence of blade stall on retreating side of the upper and lower rotors, the reason being

that rotor blades were untwisted and uniform in planform.

6. The lift-to-drag ratio for the UT rotor is much lower than full scale rotors, however

when compared with its equivalent single rotor, lift-to-drag ratio of the equivalent

rotor was higher. The maximum lift-to-drag ratio for the UT rotor and its equivalent

single rotor occurred at similar advance ratios.

7. Comparing the coaxial rotor at varying inter-rotor spacings showed that the power

requirement increases as inter-rotor spacing reduces. All comparisons are made us-

ing the performance of the Harrington 2 with inter-rotor spacing of z/R = 0.19R as

the baseline. At a spacing of z/R = 0.30R the coaxial system required 12% less

power at low system thrusts and 0.08% at higher system thrust when compared with

baseline rotor. At z/R = 0.10R, the coaxial rotor required almost 24% more power

at all system thrusts. The increased power requirements at low inter-rotor spacings

is because of the increased aerodynamic interference between the two rotors. For all

inter-rotor spacings the profile power requirements remained the same.
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8. The coaxial rotor required 37% more power in hover when compared with in isolated

rotor system, which could be attributed to the aerodynamic interference between the

upper and lower rotors. At higher advance ratios, the difference in power requirement

reduced to 5% when compared with an isolated system. The upper and lower rotor

require more induced power when compared with the isolated rotors, the effects of

aerodynamic interference is maximum in hover and reduces with increasing advance

ratio. The lift-to-drag ratio of the upper and lower rotor of the coaxial are affected at

low advance ratio. Therefor, it is evident that even at moderately high advance ratios

(e.g., µ≥ 0.2), the upper rotor performance becomes affected by the lower rotor.

4.2 Recommendations for Future Work

This thesis has made an attempt to provide an insight in to the performance of a coaxial

rotor. While the questions set out at the beginning have been answered, at least in part,

several more questions have arisen and so require further research to resolve. Some sug-

gestions for future work are the following:

1. The relative scarcity of experimental data on coaxial rotors makes the validation of

performance prediction codes a difficult task, especially forward flight. Although

there are measurements for coaxial rotors in the form of power and thrust, there is

not much experimental data on the predicted wake geometry and blade loads. To fur-

ther the levels of confidence and dependability on the predictive tools (even for initial

design), it is recommended that a new series of experiments be conducted on coaxial

rotors with specific emphasis on wake measurements, spanwise load measurements,
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wake-blade interactions, etc., and also by using the necessary flow visualization tech-

niques.

2. Blade-vortex interactions (BVI) between the upper rotor wake and the lower rotor

blades result in highly unsteady aerodynamic loads, therefore, verification of the

efficacy of the modeling of BVI in the free-vortex method is vital. Although the tip

vortex model includes a “viscous” core growth model, BVI is inherently a viscous

phenomenon. More emphasis is, therefore, needed to verify the ability to FVM to

predict the basic quantitative behavior associated with BVI.

3. Comparing coaxial rotor with its “equivalent” rotor showed that the equivalent rotor

required less power in forward flight. However, it is worth noting that the develop-

ment of the reverse flow region affects the maximum attainable forward speed for the

single rotor configuration. It is, therefore, recommended that if the main objective is

higher cruise speed, the coaxial rotor design be further developed because it offers

significant potential. However, this statement must be qualified by the need to keep

the inter-rotor spacing to the minimum possible to reduce parasitic drag and while

also avoiding blade collisions between the upper and lower rotors.
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A. Appendix: Rotor Geometries

Table A.1: Rotor geometry of the Harrington 1.

Parameter Harrington 1

No. of rotors, Nr 2

No. of blades, Nb 2

Radius, R 3.81 m

Chord, c 0.287 m

Taper ratio, croot/ctip 2.61

Solidity, σ 0.027

Rotational frequency, Ω 40 rad/s

Tip speed, Vtip 150 m/s

Rotor spacing, z/R 0.19R



105

Table A.2: Rotor geometry of the Harrington 2.

Parameter Harrington 2

No. of rotors, Nr 2

No. of blades, Nb 2

Radius, R 3.81 m

Chord, c 0.457 m

Taper ratio, croot/ctip 1

Solidity, σ 0.076

Rotational frequency, Ω 31.5 rad/s

Tip speed, Vtip 120 m/s

Rotor spacing, z/R 0.19R
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Table A.3: Rotor geometry of the UT Rotor.

Parameter UT Rotor

No. of rotors, Nr 2

No. of blades, Nb 2

Radius, R 1.016 m

Chord, c 0.080 m

Taper ratio, croot/ctip 1

Solidity, σ 0.05

Rotational frequency, Ω 83.66 rad/s

Tip speed, Vtip 85 m/s

Rotor spacing, z/R 0.14R
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B. Appendix: Vortex Core Model

The Biot-Savart law assumes a potential vortex, which produces singularity value of

velocity at its center. This means that points very close to the vortex will experience un-

realistically large, non-physical induced velocities. Especially in the case of vortex and

rotor blade interactions, such non-physical responses can cause the evolving rotor wake

geometry to over-react and can quickly lead to numerical instabilities in the wake solution.

Experiments on rotary and fixed wings have shown that in real flows, the tip vortices have

viscous cores with finite radii. Implementing this physical behavior is vital to avoid all the

numerical instabilities that may result by assuming potential (inviscid) vortices.

The selection of a vortex model for numerical purposes has to be approached very

cautiously. In the FVM, the vortex model consists of a inner solid body rotation core,

whereas the outer part of the vortex resembles the profile of a potential vortex. In general,

the swirl velocity profile for a vortex is written as

Vθ (r) =
Γr

2π(r2n
c + r2n)

1
n

(B.1)

where n is an integer variable, r is the radial distance from the center. The boundary

separating the inner solid body (purely rotational) and the outer flow (potential) region lies

at r = rc; see Fig. 57.
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Fig. 57: Vortex core model [2].

Notice that if n→ ∞, the Rankine vortex profile is obtained; see Eq B.3. Although

the Rankine vortex exhibits the key features of a viscous vortex, it over-predicts the values

of swirl velocity. Another vortex model given by Oseen [48] and Lamb [49] for a single

viscous vortex in an unbounded incompressible, laminar flow is written as

Vθ (r) =
Γ

2πrcr

(
1− e−αr

)
(B.2)

where α = 1.25643. In Eq. B.1 if n = 1, the vortex is commonly known as the “Scully

vortex.” While the Scully vortex is a good representation of the physical nature of the

vortex, the FVM uses the velocity profile corresponding to n = 2, which is an algebraic

approximation to the Lamb-Oseen vortex. The FVM allows the option to the user to choose

between these two velocity profiles, i.e., n = 1,2 and the Rankine velocity profile. The

velocity profiles available in MFW are summarized as
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1. For n→ ∞, Rankine vortex:

Vθ (r) =


(

Γ

2πrc

)
r̄, 0≤ r̄ ≥ rc(

Γ

2πrc

)
1
r̄ , r̄ > rc

(B.3)

2. n = 1 Scully vortex:

Vθ (r) =
Γ

2πrc

r̄(
1+ r̄2

) (B.4)

3. n = 2 vortex (model used for present study):

Vθ (r) =
Γ

2πrc

r̄√
1+ r̄ 4

(B.5)

where r̄ = r/rc. The normalized velocity profiles are shown in Fig. 58. It is clearly seen

that the Rankine vortex defines a discontinuous boundary between the inner solid body and

the outer potential profile region. For n = 1 and n = 2, the peak velocities are lower than

the Rankine vortex but there is a smooth transition from the inner solid body rotation and

the outer potential flow region.
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Fig. 58: Non-dimensional tangential velocity profiles [2].
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C. Appendix: MATLAB Code for Contour Plots

c l e a r a l l

c l c

f o r m a t long

ns =40;

v t i p =85; % For h a r r i n g t o n 1 Vt ip = 152 .4 m/ s

% For h a r r i n g t o n 2 Vt ip = 119 .48 m/ s

% For S i r o h i V t ip =85 m/ s

dp =10;

p =360/ dp ;

n r =2;

% mu = 0 . 5 ;

% muc = 0 . 0 2 3 ;

c t = 0 . 0 0 5 ;



112

z R = 0 . 3 0 ;

mu= 0 . 2 5 ;

g e n e r a t e c o n t o u r =1; % 1 t o g e n e r a t e

s a v e f i g =1; % 1 t o e n a b l e save

h o v e r o n l y =0;

% H a r r i n g t o n 1 d i r e c t o r y

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 / Har r 1

coax / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 / Har r 1

S i n g l e / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 / Har r 1

coax f o r w a r d / ’ , num2s t r (mu) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 /

newharr1coaxfwd / ’ , num2s t r (mu) , ’ / run t ime ’ ] ) ;

% H a r r i n g t o n 2 d i r e c t o r y

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 2 / Har r 2

coax / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 2 / z R r u n s

/ ’ , num2s t r ( z R ) , ’ / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;
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% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 2 / z R r u n s

/ Har r 2 coax ( s i n g l e e q u i v ) / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 2 / Har r 2

s i n g l e / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

% S i r o h i D i r e c t o r y

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i C o a x i a l

/ ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

%cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i C o a x i a l

f o r w a r d / z R / ’ , num2s t r ( z R ) , ’ / run t ime ’ ] ) ;

%cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i C o a x i a l

f o r w a r d / mu / ’ , num2s t r (mu) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i C o a x i a l

f o r w a r d / mu / S i n g l e r o t o r / ’ , num2s t r (mu) , ’ / l ower / run t ime ’ ] )

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i S i n g l e

e q u i v / mu / ’ , num2s t r (mu) , ’ / run t ime ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i /

S i roh iS ingEquivNew / ’ , num2s t r (mu) , ’ / run t ime ’ ] ) ;

% For 2nd r o t o r
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i f n r ==2

% cd ( [ ’ / d a t a 2 / S t a n r i c h / R e s u l t s / mu ’ , num2s t r (mu) , ’ muc ’ ,

num2s t r ( muc ) , ’ a l p h a ’ , num2s t r ( a l p h a ) , ’ / run t ime ’ ] ) ;

%cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 / Har r 1

coax / ’ , num2s t r ( c t ) , ’ / run t ime ’ ] ) ;

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’ l i f t . d a t ’ , ’ S e l e c t a

f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

l i f t = l o a d ( f u l l n a m e ) ;

% l o a d i n f l o w d a t a ( VBZ mr . d a t )

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’VBZ mr . d a t ’ , ’ S e l e c t

a f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

i n f l o w = l o a d ( f u l l n a m e ) ;

% l o a d VBZ PSI . d a t

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’ VBZ PSI mr . d a t ’ , ’

S e l e c t a f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

i n f l o w p s i = l o a d ( f u l l n a m e ) ;
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% f o r lower r o t o r

% Augment a z i m u t h a l and r a d i a l l o c a t i o n s

f o r i =1 : ns

x l o c t ( i ) = i n f l o w ( ns + 1 i , 1 ) ;

end

x l o c = x l o c t ’ ;

d p s i d = l i n s p a c e ( 0 , 3 6 0 , p +1) ’ ;

d p s i =( p i / 1 8 0 ) ∗ d p s i d ;

d p s i ( p +1)= d p s i ( 1 ) ;

k =0;

f o r i = 1 : 4 0 : ns ∗p

k=k +1;

f o r j =1 : ns

l i f t ( i + j 1 , 1 2 ) = x l o c ( j ) ;

l i f t ( i + j 1 , 1 3 ) = d p s i ( k ) ;

end

end

dummy= i n f l o w p s i ( 1 + ( ns ∗p ) : 2∗ ns ∗p , 6 ) ;

% dummy= i n f l o w p s i ( 1 : ns ∗p , 6 ) ;

dummy p = 1 ∗ ( ( 1 / v t i p ) ∗dummy) ;

l i f t =[ l i f t dummy p ] ;
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r = l i f t ( 1 : 4 0 , 1 2 ) ;

t = d p s i ;

[R , T]= meshgr id ( r , t ) ;

z= l i f t ( : , 1 4 ) ;

z1= l i f t ( : , 5 ) ;

z2= l i f t ( : , 9 ) ;

z3= l i f t ( : , 7 ) ;

k =0;

f o r i =p + 1 : 1 : 2

f o r j =1 : ns

i n f l ( i , j ) =z ( k+ j ) ;

a o a e l ( i , j ) =z1 ( k+ j ) ;

c l m 2 l ( i , j ) =z2 ( k+ j ) ;

c l l ( i , j ) =z3 ( k+ j ) ;

end

k=k +40;

end

i n f l ( 1 , : ) = i n f l ( p + 1 , : ) ;

a o a e l ( 1 , : ) = a o a e l ( p + 1 , : ) ;



117

c l m 2 l ( 1 , : ) = c l m 2 l ( p + 1 , : ) ;

c l l ( 1 , : ) = c l l ( p + 1 , : ) ;

[X,Y]= p o l 2 c a r t ( T , R) ;

a o a e l o w e r = a o a e l ’ ;

a o a e l o w e r ( : , p +1)=r ’ ;

s ave ( ’ a o a e l o w e r . d a t ’ , ’ a o a e l o w e r ’ , ’ a s c i i ’ , ’ t a b s ’ )

i n f m a x l =max ( max ( i n f l ) ) ;

i n f m i n l =min ( min ( i n f l ) ) ;

i n f s t e p l =( i n f m a x l i n f m i n l ) / 1 5 ;

aoaemax l =max ( max ( a o a e l ) ) ;

a o a e m i n l =min ( min ( a o a e l ) ) ;

a o a e s t e p l =( aoaemax l a o a e m i n l ) / 1 5 ;

c lm2max l=max ( max ( c l m 2 l ) ) ;

c lm2min l =min ( min ( c l m 2 l ) ) ;

c l m 2 s t e p l =( clm2max l c lm2min l ) / 1 5 ;

c l m a x l =max ( max ( c l l ) ) ;
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c l m i n l =min ( min ( c l l ) ) ;

c l s t e p l =( c lmax l c l m i n l ) / 1 5 ;

i f g e n e r a t e c o n t o u r ==1

f i g u r e ( 1 ) ; c l f ;

f i g = g c f ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 5 1 . 5 ] ;

wh i t ebg ( ’ k ’ )

s u b p l o t ( 1 , 2 , 2 )

c o n t o u r f (X, Y, i n f l , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )

co lormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 0 . 0 5 , 0 . 1 4 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

i f mu>0

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

end

a x i s s q u a r e

g r i d on

y l a b e l ( ’\ p s i = 180 ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )
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x l a b e l ( ’ Lower r o t o r ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

f i g u r e ( 2 ) ; c l f ;

f i g = g c f ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 5 1 . 5 ] ;

wh i t ebg ( ’ k ’ )

s u b p l o t ( 1 , 2 , 2 )

c o n t o u r f (X, Y, a o a e l , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )

co lormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 2 . 4 3 , 2 . 9 5 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

% t e x t ( 1 , 0 . 7 5 , ’ \ Righ ta r row ’ )

% t e x t ( 1 , 0 . 7 5 , ’ \ Righ ta r row ’ )

a x i s s q u a r e

y l a b e l ( ’\ p s i =180 ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

x l a b e l ( ’ Lower r o t o r ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

f i g u r e ( 3 ) ; c l f ;

s u b p l o t ( 1 , 2 , 2 )

c o n t o u r f (X, Y, c lm2 l , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )
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colormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 0 . 0 1 6 , 0 . 1 4 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

a x i s s q u a r e

y l a b e l ( ’\ p s i =180 ’ , ’ F o n t S i z e ’ , 1 2 , ’ FontWeight ’ , ’ bo ld ’ )

x l a b e l ( ’ ’ , ’ F o n t S i z e ’ , 1 2 , ’ FontWeight ’ , ’ bo ld ’ )

f i g u r e ( 4 ) ; c l f ;

f i g = g c f ;

f i g . Co lo r = ’ b l a c k ’ ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 5 1 . 5 ] ;

wh i t ebg ( ’ k ’ )

s u b p l o t ( 1 , 2 , 2 )

c o n t o u r f (X, Y, c l l , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )

co lormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 1 . 2 9 , 1 . 2 4 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )
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i f mu>0

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

end

a x i s s q u a r e

y l a b e l ( ’\ p s i = 180 ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

x l a b e l ( ’ Lower r o t o r ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

end

end

%%

% f o r 1 s t r o t o r

i f n r ==1 | | n r ==2

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i C o a x i a l

f o r w a r d / mu / S i n g l e r o t o r / ’ , num2s t r (mu) , ’ / uppe r / run t ime ’ ] )

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’ l i f t u . d a t ’ , ’ S e l e c t

a f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

l i f t = l o a d ( f u l l n a m e ) ;



122

% l o a d i n f l o w d a t a ( VBZ mr . d a t )

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’VBZ mr . d a t ’ , ’ S e l e c t

a f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

i n f l o w = l o a d ( f u l l n a m e ) ;

% l o a d VBZ PSI . d a t

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’ VBZ PSI mr . d a t ’ , ’

S e l e c t a f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

i n f l o w p s i = l o a d ( f u l l n a m e ) ;

% Augment a z i m u t h a l and r a d i a l l o c a t i o n s

f o r i =1 : ns

x l o c t ( i ) = i n f l o w ( ns + 1 i , 1 ) ;

end

x l o c = x l o c t ’ ;

d p s i d = l i n s p a c e ( 0 , 3 6 0 , p +1) ’ ;

d p s i =( p i / 1 8 0 ) ∗ d p s i d ;

d p s i ( p +1)= d p s i ( 1 ) ;

k =0;
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f o r i = 1 : 4 0 : ns ∗p

k=k +1;

f o r j =1 : ns

l i f t ( i + j 1 , 1 2 ) = x l o c ( j ) ;

l i f t ( i + j 1 , 1 3 ) = d p s i ( k ) ;

end

end

dummy= i n f l o w p s i ( 1 : ns ∗p , 6 ) ;

dummy p = 1 ∗ ( ( 1 / v t i p ) ∗dummy) ;

l i f t =[ l i f t dummy p ] ;

r = l i f t ( 1 : 4 0 , 1 2 ) ;

t = d p s i ;

[R , T]= meshgr id ( r , t ) ;

z= l i f t ( : , 1 4 ) ;

z1= l i f t ( : , 5 ) ;

z2= l i f t ( : , 9 ) ;

z3= l i f t ( : , 7 ) ;

k =0;

f o r i =1 : p
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f o r j =1 : ns

i n f u ( i , j ) =z ( k+ j ) ;

a o a e u ( i , j ) =z1 ( k+ j ) ;

c lm2 u ( i , j ) =z2 ( k+ j ) ;

c l u ( i , j ) =z3 ( k+ j ) ;

end

k=k +40;

end

i n f u ( p + 1 , : ) = i n f u ( 1 , : ) ;

a o a e u ( p + 1 , : ) = a o a e u ( 1 , : ) ;

c lm2 u ( p + 1 , : ) =clm2 u ( 1 , : ) ;

c l u ( p + 1 , : ) = c l u ( 1 , : ) ;

[X,Y]= p o l 2 c a r t ( T , R) ;

a o a e u p p e r = aoae u ’ ;

a o a e u p p e r ( : , p +1)=r ’ ;

s ave ( ’ a o a e u p p e r . d a t ’ , ’ a o a e u p p e r ’ , ’ a s c i i ’ , ’ t a b s ’ )

i n fmax u =max ( max ( i n f u ) ) ;

i n f m i n u =min ( min ( i n f u ) ) ;

i n f s t e p u =( infmax u i n f m i n u ) / 1 5 ;
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aoaemax u=max ( max ( a o a e u ) ) ;

aoaemin u =min ( min ( a o a e u ) ) ;

a o a e s t e p u =( aoaemax u aoaemin u ) / 1 5 ;

clm2max u=max ( max ( clm2 u ) ) ;

clm2min u=min ( min ( c lm2 u ) ) ;

c l m 2 s t e p u =( clm2max u clm2min u ) / 1 5 ;

c lmax u =max ( max ( c l u ) ) ;

c l m i n u =min ( min ( c l u ) ) ;

c l s t e p u =( clmax u c l m i n u ) / 1 5 ;

i f g e n e r a t e c o n t o u r ==1

f i g u r e ( 1 ) ;

f i g = g c f ;

% f i g . Co lo r = ’ b lack ’ ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 5 1 . 5 ] ;

i f n r ==2

s u b p l o t ( 1 , 2 , 1 )

end

c o n t o u r f (X, Y, i n f u , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )
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colormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 0 . 0 5 , 0 . 1 4 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

i f mu>0

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

end

a x i s s q u a r e

y l a b e l ( ’\ p s i = 180 ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

x l a b e l ( ’ Upper r o t o r ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

f i g u r e ( 2 ) ;

f i g = g c f ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 5 1 . 5 ] ;

i f n r ==2

s u b p l o t ( 1 , 2 , 1 )

end

c o n t o u r f (X, Y, aoae u , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )

co lormap ( j e t )

hcb= c o l o r b a r ;
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c a x i s ( [ 2 . 4 3 , 2 . 9 5 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

% t e x t ( 1 , 0 . 7 5 , ’ \ Righ ta r row ’ )

% t e x t ( 1 , 0 . 7 5 , ’ \ Righ ta r row ’ )

a x i s s q u a r e

y l a b e l ( ’\ p s i = 180 ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

x l a b e l ( ’ Upper r o t o r ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

f i g u r e ( 3 ) ;

i f n r ==2

s u b p l o t ( 1 , 2 , 1 )

end

c o n t o u r f (X, Y, clm2 u , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )

co lormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 0 . 0 1 6 , 0 . 1 4 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

a x i s s q u a r e

y l a b e l ( ’\ p s i =180 ’ , ’ F o n t S i z e ’ , 1 2 , ’ FontWeight ’ , ’ bo ld ’ )

x l a b e l ( ’ ’ , ’ F o n t S i z e ’ , 1 2 , ’ FontWeight ’ , ’ bo ld ’ )
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f i g u r e ( 4 ) ;

f i g = g c f ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 5 1 . 5 ] ;

i f n r ==2

s u b p l o t ( 1 , 2 , 1 )

end

c o n t o u r f (X, Y, c l u , 1 5 0 , ’ L i n e S t y l e ’ , ’ none ’ )

co lormap ( j e t )

hcb= c o l o r b a r ;

c a x i s ( [ 1 . 2 9 , 1 . 2 4 ] )

s e t ( gca , ’ x t i c k ’ , [ ] , ’ y t i c k ’ , [ ] )

i f mu>0

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

t e x t ( 1 , 0 . 7 5 , ’\R i g h t a r r o w ’ )

end

a x i s s q u a r e

i f n r ==2

x l a b e l ( ’ Upper r o t o r ’ , ’ F o n t S i z e ’ , 1 0 , ’ FontWeight ’ , ’ bo ld ’ )

end

end
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cd ( ’ . . / ’ )

end

i f s a v e f i g ==1

f i g u r e ( 1 ) ;

s a v e a s ( f i g u r e ( 1 ) , ’ i n f l o w . png ’ )

p r i n t ( ’ i n f l o w ’ , ’ dpng ’ , ’ r600 ’ )

f i g u r e ( 2 ) ;

s a v e a s ( f i g u r e ( 2 ) , ’ aoae . png ’ )

p r i n t ( ’ aoae ’ , ’ dpng ’ , ’ r600 ’ )

f i g u r e ( 3 ) ;

s a v e a s ( f i g u r e ( 3 ) , ’ clm2 . png ’ )

f i g = g c f ;

f i g . P a p e r U n i t s = ’ i n c h e s ’ ;

f i g . P a p e r P o s i t i o n = [0 0 6 3 ] ;

p r i n t ( ’ clm2 ’ , ’ dpng ’ , ’ r600 ’ )

f i g u r e ( 4 ) ;

s a v e a s ( f i g u r e ( 4 ) , ’ c l . png ’ )

p r i n t ( ’ c l ’ , ’ dpng ’ , ’ r600 ’ )

end

i f h o v e r o n l y ==1



130

%% Hover on ly

i n f m e a n l = z e r o s ( ns +2 ,1 ) ;

i n f m e a n u = z e r o s ( ns +2 ,1 ) ;

c l m e a n l = z e r o s ( ns +2 ,1 ) ;

c l m e a n u = z e r o s ( ns +2 ,1 ) ;

a o a m e a n l = z e r o s ( ns +2 ,1 ) ;

aoa mean u = z e r o s ( ns +2 ,1 ) ;

r a d l o c = z e r o s ( ns +2 ,1 ) ;

r a d l o c ( ns +2 ,1 ) =1;

f o r i =1 : ns

t emp sum l =0;

temp sum u =0;

t e m p s u m l c l =0 ;

t e m p s u m u c l =0;

t e m p s u m l a o a =0;

t emp sum u aoa =0;

f o r j = 1 : 3 6 0 / dp

i f n r ==2

temp sum l = temp sum l + i n f l ( j , i ) ;

end

temp sum u=temp sum u+ i n f u ( j , i ) ;

i f n r ==2
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t e m p s u m l c l = t e m p s u m l c l + c l l ( j , i ) ;

end

t e m p s u m u c l = t e m p s u m u c l + c l u ( j , i ) ;

i f n r ==2

t e m p s u m l a o a = t e m p s u m l a o a + a o a e l ( j , i ) ;

end

temp sum u aoa = temp sum u aoa + a o a e u ( j , i ) ;

end

i n f m e a n l ( i +1)= temp sum l / ( 3 6 0 / dp ) ;

i n f m e a n u ( i +1)= temp sum u / ( 3 6 0 / dp ) ;

c l m e a n l ( i +1)= t e m p s u m l c l / ( 3 6 0 / dp ) ;

c l m e a n u ( i +1)= t e m p s u m u c l / ( 3 6 0 / dp ) ;

a o a m e a n l ( i +1)= t e m p s u m l a o a / ( 3 6 0 / dp ) ;

aoa mean u ( i +1)= temp sum u aoa / ( 3 6 0 / dp ) ;

r a d l o c ( i +1 ,1 ) = r ( i , 1 ) ;

end

i n f m e a n l =[ i n f m e a n l r a d l o c ] ;

i n f m e a n u =[ i n f m e a n u r a d l o c ] ;

c l m e a n l =[ c l m e a n l r a d l o c ] ;

c l m e a n u =[ c l m e a n u r a d l o c ] ;

a o a m e a n l =[ a o a m e a n l r a d l o c ] ;

aoa mean u =[ aoa mean u r a d l o c ] ;
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save ( ’ i n f m e a n l . d a t ’ , ’ i n f m e a n l ’ , ’ a s c i i ’ , ’ t a b s ’ )

s ave ( ’ i n f m e a n u . d a t ’ , ’ i n f m e a n u ’ , ’ a s c i i ’ , ’ t a b s ’ )

s ave ( ’ c l m e a n l . d a t ’ , ’ c l m e a n l ’ , ’ a s c i i ’ , ’ t a b s ’ )

s ave ( ’ c l m e a n u . d a t ’ , ’ c l m e a n u ’ , ’ a s c i i ’ , ’ t a b s ’ )

s ave ( ’ a o a m e a n l . d a t ’ , ’ a o a m e a n l ’ , ’ a s c i i ’ , ’ t a b s ’ )

s ave ( ’ aoa mean u . d a t ’ , ’ aoa mean u ’ , ’ a s c i i ’ , ’ t a b s ’ )

end
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D. Appendix: MATLAB Code for Wake Boundary

c l e a r a l l

c l c

n t =6 ;

dp =10;

dz =1+( n t ∗360 / dp ) ;

c t = 0 . 0 0 5 ;

z R = 1 . 5 ;

a l p h a s = 3 . 9 ;

b e t a 0 =0;

mu= 0 . 1 6 9 ;

TT=[ cosd ( a l p h a s ) 0 s i n d ( a l p h a s ) ; 0 1 0 ; s i n d ( a l p h a s ) 0

cosd ( a l p h a s ) ] ;

T= i n v ( TT ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 2 / Har r 2

s i n g l e / ’ , num2s t r ( c t ) , ’ / r u n t i m e / w a k e f i l e s ’ ] ) ;
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% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 / Har r 1

coax / ’ , num2s t r ( c t ) , ’ / r u n t i m e / w a k e f i l e s ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 2 / z R r u n s

/ ’ , num2s t r ( z R ) , ’ / ’ , num2s t r ( c t ) , ’ / r u n t i m e / w a k e f i l e s ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / H a r r i n g t o n 1 / Har r 1

coax f o r w a r d / ’ , num2s t r (mu) , ’ / r u n t i m e / w a k e f i l e s ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i S i n g l e

e q u i v / mu / ’ , num2s t r (mu) , ’ / r u n t i m e / w a k e f i l e s ’ ] ) ;

% cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / S i r o h i / S i r o h i C o a x i a l

f o r w a r d / mu / ’ , num2s t r (mu) , ’ / r u n t i m e / w a k e f i l e s ’ ] ) ;

cd ( [ ’ / d a t a 2 / S t a n r i c h / THESIS /CO AXIAL / ka32 / ’ , num2s t r (mu) , ’ /

r u n t i m e / w a k e f i l e s ’ ] ) ;

[ f i l e n a m e d i r e c t o r y n a m e ] = u i g e t f i l e ( ’FWGEOM mr 050 . d a t ’ , ’

S e l e c t a f i l e ’ ) ;

f u l l n a m e = f u l l f i l e ( d i r e c t o r y n a m e , f i l e n a m e ) ;

geom = l o a d ( f u l l n a m e ) ;

n r =2;

p s i =10;

p s i l o c = p s i / dp +0;

% wake loc = z e r o s ( dz , 3 ) ;
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% w a k e l o c f = z e r o s ( dz , 3 ) ;

A= z e r o s ( 3 , 1 ) ;

j =1 ;

f o r i =1 : dz ∗360 / dp∗ nr

i f geom ( i , 4 ) <=0.01 && geom ( i , 4 ) >= 0.01 && geom ( i , 5 )

>= 0.4 && geom ( i , 3 ) ˜=0

wake loc ( j , 1 ) =geom ( i , 3 ) ;

wake loc ( j , 2 ) =geom ( i , 4 ) ;

wake loc ( j , 3 ) =geom ( i , 5 ) ;

A=[ wake loc ( j , 1 ) ; wake loc ( j , 2 ) ; wake loc ( j , 3 ) ] ;

AA=T∗A;

wake loc ( j , 1 ) =AA( 1 , 1 ) ;

wake loc ( j , 2 ) =AA( 2 , 1 ) ;

wake loc ( j , 3 ) =AA( 3 , 1 ) ;

j = j +1 ;

end

end

cd ( ’ . . / ’ ) ;

s ave ( ’ wake boundary . d a t ’ , ’ wake loc ’ , ’ a s c i i ’ , ’ t a b s ’ ) ;

p l o t ( wake loc ( : , 1 ) , wake loc ( : , 3 ) , ’∗ ’ )

a x i s s q u a r e ;
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