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NOT ALL TRACES ON THE CIRCLE COME FROM

FUNCTIONS OF LEAST GRADIENT IN THE DISK

GREGORY S. SPRADLIN AND ALEXANDRU TAMASAN

Abstract. We provide an example of an L
1 function on the circle, which

cannot be the trace of a function of bounded variation of least gradient in the
disk.

1. Introduction

Sternberg et al. in [3], and Sternberg and Ziemer in [4] considered the question of
existence, uniqueness and regularity for functions of least gradient and prescribed
trace. More precisely for Ω ⊂ R

n a Lipchitz domain, and for a continuous map
g ∈ C(∂Ω), they formulate the problem

min{

∫

Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g}, (1.1)

where BV (Ω) denotes the space of functions of bounded varation, the integral is
understood in the sense of the Radon measure |Du| of Ω and the trace at the
boundary is in the sense of the trace of functions of bounded varation. Solutions to
the minimization problem (1.1) are called functions of least gradient. For domains
Ω with boundary of non-negative curvature, and which are not locally area mini-
mizing they prove existence, uniqueness and regularity of the solution. Moreover,
if the boundary of the domain fails either of the two assumptions they provide
counterexamples to existence.

It is known that traces of functions f ∈ BV (Ω) of bounded varation are in
L1(∂Ω), and that conversely, any function in L1(∂Ω) admits an extension (in the
sense of trace) in BV (Ω) (in fact in W 1,1(Ω)), see e.g., [1]. The question we address
here is whether solutions of the problem (1.1) exist in the case of traces that are
merely in L1(∂Ω) and not continuous. We answer this question in the negative
by providing a counterexample for the unit disk, which has a boundary of positive
curvature and which is not locally length minimizing.

Let D denote the unit disk in the plane and S be its boundary. We prove the
following:

Theorem 1.1. There exists f ∈ L1(S) such that the minimization problem

min{

∫

D

|Dw| : w ∈ BV (D), w|S = f} (1.2)

has no solution.

2000 Mathematics Subject Classification. Primary 30E20; Secondary 35J56.
Key words and phrases. traces of functions of bounded variation, least gradient problem.

A.T. supported by NSF, grant DMS-1312883.

1



2 GREGORY S. SPRADLIN AND ALEXANDRU TAMASAN

A renewed interest in functions of least gradient with variable weights appeared
recently due to its applications to current density impedance imaging, see [2] and
references therein. Our counterexample sets a limit on the roughness of the bound-
ary data one can afford to use.

2. Proof of Theorem 1.1

We will call the L1(S)-function satisfying Theorem 1.1 “f∞”. f∞ is the charac-
teristic function of a fat Cantor set. Define C0 ⊃ C1 ⊃ C2 ⊃ · · · inductively as
follows:

C0 = {(cos θ, sin θ)
∣

∣

∣

π

2
−

1

2
≤ θ ≤

π

2
+

1

2
},

and if Cn consists of 2n disjoint closed arcs, each with arc length

θn =
1

2n

n
∏

i=1

(1 −
1

2i
) (2.1)

(if n = 0, the “empty product” is interpreted as 1), then Cn+1 is obtained by
removing from the center of each of those arcs an open arc of arc length (1 −
1/2n+1)θn. Then Cn+1 consists of 2n+1 disjoint closed arcs, each with arc length
θn+1. For n = 0, 1, 2, . . ., with H1 denoting one-dimensional Hausdorff measure,

H1(Cn) = 2nθn =

n
∏

i=1

(1 −
1

2i
) ≡ Kn. (2.2)

Define

C∞ =

∞
⋂

n=0

Cn.

C∞ is a compact and nowhere dense subset of S, with

H1(C∞) =

∞
∏

i=1

(1 −
1

2i
) = lim

n→∞
Kn ≡ K∞ > 0.

Note that K∞ is well-defined and positive, since all the terms in the infinite product
are positive and

∑∞
i=1 1/2i < ∞.

We define f∞ ∈ L1(S) to be the characteristic function of C∞:

f∞ = χC∞
∈ L1(S).

From [1, Theorem 2.16, Remark 2.17] we have that

inf{

∫

D

|Du|
∣

∣

∣
u ∈ BV (D), u|S = f∞} ≤ ‖f∞‖L1(S) = K∞.

We will show that for any u ∈ BV (D) with u|S = f∞,
∫

D

|Du| > K∞,

proving Theorem 1.1.
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The idea of the proof is as follows: we construct a compact, nowhere dense subset
B∞ of D with the property that

(i) If u ∈ BV (D) with u|S = f∞ and

∫

D\B∞

|u| dx > 0, then

∫

D

|Du| > K∞,

and

(ii) If u ∈ BV (D) with u|S = f∞ and

∫

D\B∞

|u| dx = 0, then

∫

D

|Du| > K∞.

(2.3)
Theorem 1.1 obviously follows from this. B∞ has the form

B∞ =

∞
⋂

n=1

Bn, (2.4)

where B1 ⊃ B2 ⊃ B3 ⊃ · · · , and for each n ≥ 1, Bn is a compact subset of
D with 2n path components, with each path component the union of a polygon
and two circular segments (“circular segment” is the standard term for the region
between an arc and a chord connecting two points on a circle). That polygon will
be defined precisely as the union of at least one triangle with at least one trapezoid.
In Figure 2, B1 is the union of the two shaded regions. In Figure 3, the two shaded
regions constitute the upper portion of the right half of B2. The four shaded regions
in Figure 4 are indistinguishable from the top portion of B3 (the set S1 mentioned
in the caption does not include eight tiny circular segments that hug S and are so
small they are not visible in the figure). The entire set B3 is formed by extending
the shaded regions in Figure 4 downward to the bottom of S, similarly to B1 (see
Figure 2). In all four figures, the arclengths and lengths of arcs and line segments
are not necessarily scaled consistently with (2.1), but were chosen to try to make
the figures easy to read.

Unfortunately, defining each Bn precisely requires a slew of definitions. For
n ≥ 0, Cn is the disjoint union of 2n closed arcs. Call this collection of arcs An.
For example, A0 = {C0}. For each A ∈ An, we will define a set BA ⊂ D, then
define Bn as the disjoint union

Bn =
⊔

A∈An

BA. (2.5)

Each such BA is the connected union of a closed circular segment, n closed polygons,
which are all triangles or trapezoids (including at least one triangle), and a “bottom”
piece that is the union of a trapezoid and a circular segment (in Figure 2, the arc
in A1 in the right half of the x1-x2 plane is called “A”, and BA is the shaded region
in the right half of D. If we call the other arc in A1 “A′”, then the shaded region
in the left half of D is BA′ . In Figure 3, the shaded region on the left is the top
of Bα and the shaded region on the right is the top of Bβ , where α and β are the
two arcs in A2 in the right half of the x1-x2 plane. The other notations used in
Figures 2 and 3 will be defined momentarily).

For an arc A, let Cho(A) denote the chord connecting the endpoints of A, and
W (A) the closed circular segment enclosed by A and Cho(A). For A ∈ An with
n ≥ 1, define Par(A) (the “parent” of A) to be the arc in An−1 containing A:

Par(A) = A′ : A′ ∈ An−1, A ⊂ A′.
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Figure 1

More generally, for A ∈ An (n ≥ 0), define

Par0(A) = A, Par1(A) = Par(A), Par2(A) = Par(Par1(A)),

Par3(A) = Par(Par2(A)), . . . , Parn(A) = C0 ∈ A0.

For A ∈ An (n ≥ 0), define the two “children” of A, ChiL(A) and ChiR(A), by

ChiL(A), ChiR(A) ∈ An+1, ChiL(A), ChiR(A) ⊂ A, ChiL(A) ∩ ChiR(A) = ∅,

ChiL(A) is “to the left” or counterclockwise from ChiR(A).

For an arc A of S of arc length less than π, let v(A) denote the unit vector per-
pendicular to Cho(A) and pointing from Cho(A) toward 0 ∈ R

2. For A ∈ An with
n ≥ 1, let T (A) denote the unique closed right triangle whose longer leg is Cho(A)
and whose hypotenuse is a subset of Cho(Par(A)).

Figure 1 shows an arc A belonging to An for some n ≥ 1, along with Par(A),
Cho(A), Cho(Par(A)), T (A), and v(A). The lengths of the segments and arcs are
not necessarily to scale, and the length of v(A) is definitely not to scale, since v(A)
is a unit vector and Par(A) is an arc of S.

We are finally ready to define BA (for A ∈ An with n ≥ 1). We will do the n = 1
and n = 2 cases first, then the general case.

Suppose A ∈ A1 (so A = ChiL(C0) or ChiR(C0)). BA is the union of W (A),
T (A), and a “bottom” piece that is the union of a trapezoid and a circular segment.
In order to help establish the pattern for general n, we will introduce some notations
that are not needed here but will be necessary later. Define the line segment
L1(A) = Cho(A), the triangle T0(A) = T (A), and define the line segment L2(A) to
be the hypotenuse of T0(A), which can also be defined

L2(A) = {x ∈ ∂T0(A)
∣

∣

∣
x2 = sin(

π

2
−

1

2
)}. (2.6)
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Figure 2. B1

Define the “bottom” part of BA, Bot(A), to be the set of all points in D on or
directly “below” L2(A), that is,

Bot(A) = {x ∈ D

∣

∣

∣ x2 ≤ sin(
π

2
−

1

2
), x1 = y1 for some y ∈ L2(A)}. (2.7)

Bot(A) is the union of a closed trapezoid and a closed circular segment. Finally,
define

BA = W (A) ∪ T0(A) ∪ Bot(A). (2.8)

In Lemma 3.1 in the Appendix, it is proven that for any A ∈ An (for n ≥ 0),
T (ChiL(A)) and T (ChiR(A)) are disjoint (use θ = θn and α = θn/2n+1 ≥ θ2

n/2,
with θn as in (2.1)). It follows that BChiL(A) and BChiR(A) are disjoint. Now B1

is defined as in (2.5). The two shaded regions in Figure 2 comprise B1. The arc
ChiR(C0) is called A, and the parts of BA (which is the right half of B1) are labelled,
along with the vector v(A), which is perpendicular to Cho(A). The lengths of the
segments and arcs are not truly scaled, and the unit vector v(A) is drawn with
shorter than unit length in order to fit in the picture.

Next, suppose A ∈ A2. BA is the union of a chain of four sets: a closed circular
segment, followed by a closed triangle, then a closed triangle or trapezoid, then
finally a closed “bottom” piece which is the union of a trapezoid and a circular
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Figure 3. The upper part of the right half of B2.

segment, as in the n = 1 case. The intersection of any two consecutive sets in the
chain is a line segment.

Figure 3 shows the top of the right half of B2, so it shows the top portions of
the two rightmost of the four components of B2. As before, the lengths of segments
and arcs are not necessarily scaled truly, and v(ChiR(C0)) is actually a unit vector,

contrary to the picture. The arc
⌢
aj is ChiR(C0). For brevity in notation we have

defined α =
⌢
ae= ChiL(ChiR(C0)) and β =

⌢
fj= ChiR(ChiR(C0)). The two connected

gray regions are the upper portions of Bα and of Bβ . Bα is the union of W (α) (a
very thin circular segment in the figure), the triangle △ ade, the trapezoid abcd,
and a “bottom” piece Bot(α) consisting of all the points in D on or directly below
the line segment bc. Bβ is the union of W (β) (a very thin circular segment in
the figure), the triangle △ fgj, the triangle △ ghj, and a “bottom” piece Bot(β)
consisting of all the points in D on or directly below the line segment hj.

Generally, for A ∈ A2, define the line segment L1(A) = Cho(A) (so L1(α) =
ae and L1(β) = fj), and the triangle T0(A) = T (A) (so T0(α) = △ ade and
T0(β) = △ fgj). Define the line segment L2(A) = ∂T0(A) ∩ Cho(Par(A)). L2(A)
can also be described as the hypotenuse of T0(A). In Figure 3, L2(α) = ad and
L2(β) = gj. Define T1(A) ⊂ T (Par1(A)) to be the set of all points x in the
triangle T (Par1(A)) with the property that for some point y ∈ L2(A), the vector
x − y is parallel to v(Par1(A)) ≡ v(Par(A)). T1(A) is either a triangle (this occurs
if A = ChiL(ChiL(C0)) or ChiR(ChiR(C0))) or a trapezoid (this occurs if A =
ChiL(ChiR(C0)) or ChiR(ChiL(C0))). In Figure 3, T1(α) is the trapezoid abcd, with
α = ChiL(ChiR(C0)), and T1(β) is the triangle △ ghj, with β = ChiR(ChiR(C0)).
T1(A) can be defined succinctly by

T1(A) = {x ∈ T (Par1(A))
∣

∣

∣ x − y ‖ v(Par1(A)) for some y ∈ L2(A)}.
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Define the horizontal line segment L3(A), similarly to (2.6), to be the set of all
points in ∂T1(A) with x2-coordinate sin(π/2 − 1/2):

L3(A) = {x ∈ ∂T1(A)
∣

∣

∣
x2 = sin(

π

2
−

1

2
)}.

In other words, L3(A) is the side of the polygon ∂T1(A) that is a subset of the
horizontal line {x | x2 = sin(π/2−1/2)}. In Figure 3, L3(α) = bc and L3(β) = hj.
Like in (2.7), define the “bottom” part of BA, Bot(A), to be the set of all points in
D on or directly below L3(A), that is,

Bot(A) = {x ∈ D

∣

∣

∣
x2 ≤ sin(

π

2
−

1

2
), x1 = y1 for some y ∈ L3(A)}.

Like before, Bot(A) is the union of a trapezoid and a circular segment. Similar to
(2.8), define

BA = W (A) ∪ T0(A) ∪ T1(A) ∪ Bot(A).

As in the n = 1 case, by Lemma 3.1 in the Appendix, the sets BA for the four
elements of A2 are disjoint. B2 is defined by (2.5). Clearly B2 ⊂ B1.

Finally we consider the n > 2 case. Let A ∈ An. BA is the union of a chain of
n + 2 closed sets: a closed circular segment, followed by n closed polygons which
are all triangles or trapezoids, and finally a bottom piece called Bot(A) (as before)
which is the union of a closed trapezoid and a closed circular segment. Either all
n of the polygons are triangles, or (more likely), the first k of them are triangles
for some 1 ≤ k ≤ n − 1 and the remaining n − k polygons are trapezoids. The
intersection of any two consecutive sets in the chain is a line segment. BA has the
form

BA = W (A) ∪

n−1
⋃

k=0

Tk(A) ∪ Bot(A),

where Tk(A) and Bot(A) are defined precisely momentarily. In order to do so, we
must also name the intersections of consecutive sets in the chain, which are line
segments, and which we will call L1(A), . . . , Ln+1(A). We will also need to use
L1(A), . . . , Ln+1(A) to prove (2.3).
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Define

L1(A) = Cho(A),

T0(A) = T (A),

L2(A) = ∂T0(A) ∩ Cho(Par1(A)),

T1(A) = {x ∈ T (Par1(A))
∣

∣

∣ x − y ‖ v(Par1(A)) for some y ∈ L2(A)},

L3(A) = ∂T1(A) ∩ Cho(Par2(A)),

T2(A) = {x ∈ T (Par2(A))
∣

∣

∣ x − y ‖ v(Par2(A)) for some y ∈ L3(A)},

...

Tn−1(A) = {x ∈ T (Parn−1(A))
∣

∣

∣
x − y ‖ v(Parn−1(A)) for some y ∈ Ln(A)},

Ln+1(A) = {x ∈ ∂Tn−1(A)
∣

∣

∣ x2 = sin(
π

2
−

1

2
)},

Bot(A) = {x ∈ D

∣

∣

∣ x2 ≤ sin(
π

2
−

1

2
), x1 = y1 for some y ∈ Ln+1(A)}.

(2.9)
Like before, the BA’s are disjoint for all the 2n arcs A in An, and Bn is defined by
(2.5). Clearly B1 ⊃ B2 ⊃ B3 ⊃ · · · . We define B∞ by (2.4).

Having defined B∞, we show that it has property (2.3), from which Theorem 1.1
follows. This requires three lemmas, followed by an easy proof of (2.3)(i), then a
more involved proof of (2.3)(ii).

Lemma 2.1. Let u ∈ C∞(D) ∩ BV (D) with u|S = f∞, n ≥ 1, and A ∈ An. Let
T0(A), T1(A), . . . , Tn−1(A) and Bot(A) be as in (2.9). Then

∫

W (A)

|∇u · v(A)| dx +

n−1
∑

k=0

∫

Tk(A)

|∇u · v(Park(A))| dx+

+

∫

Bot(A)

|∇u · j| dx ≥ cos

(

Kn

2n+1

)

K∞

2n
.

(2.10)

Here, j = 〈0, 1〉, as usual. Kn is from (2.2). There is a slight abuse of notation
in (2.10): the domain of u is D, not D, but W (A) and Bot(A) intersect S ≡ ∂D,
and Tk(A) might intersect S. In all cases, the intersection has H2-measure zero.
It would be better formally to replace “W (A)”, “Tk(A)”, and “Bot(A)” in (2.10)
with their interiors, or with their intersections with D. However, this might make
the proof of Lemma 2.1 less readable, so we will keep the notation of (2.10) in the
proof of the lemma, and in the remainder of this section.

Proof of lemma: define sn = 2 sin(Kn/2n+1), which is the length of Cho(A). Let
L1(A), . . . , Ln+1(A) be as in (2.9). For k = 1, 2, . . . , n + 1, let φk : [0, sn] → D be
the linear map with φk(0) the left endpoint of Lk(A) and φk(sn) the right endpoint
of Lk(A) (Lk(A) is not vertical). Define φ0 : (0, sn) → A so that φ0(t) is the
projection of φ1(t) onto A in the direction −v(A) (the explicit formula for φ0(t) is
fairly complicated and we do not use it, so we omit it). Now define g0, g1, . . . , gn+1 ∈
L1((0, sn)) by

g0(t) = f∞(φ0(t)), gk(t) = u(φk(t)) for 1 ≤ k ≤ n + 1.
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Now, H1(C∞ ∩ A) = K∞/2n, so
∫

A
f∞ d H1 = K∞/2n. Recall θn from (2.5). Since

the angle between A and Cho(A) is at most θn/2 = Kn/2n+1,

‖g0‖L1((0,sn)) ≥ cos

(

Kn

2n+1

)∫

A

f∞ d H1 = cos

(

Kn

2n+1

)

K∞

2n
. (2.11)

Obviously,

g0 = (g0 − g1) + (g1 − g2) + (g2 − g3) + · · · + (gn − gn+1) + gn+1,

so by the triangle inequality,

‖g0‖L1((0,sn)) ≤ ‖g1 − g0‖L1((0,sn)) +

n
∑

k=1

‖gk+1 − gk‖L1((0,sn)) + ‖gn+1‖L1((0,sn)).

(2.12)
Now

‖g1 − g0‖L1((0,sn)) =

∫ sn

0

|g1(t) − g0(t)| dt ≤

∫

W (A)

|∇u(x) · v(A)| dx. (2.13)

For 1 ≤ k ≤ n, the Fundamental Theorem of Calculus yields

‖gk+1−gk‖L1((0,sn)) =

∫ sn

0

|gk+1(t)−gk(t)| dt ≤

∫

Tk−1(A)

|∇u(x)·v(Park−1(A))| dx.

(2.14)
Since f∞ = 0 on the bottom half of S, u|S = f∞, and Bot(A) ∩ S is a subset of the
bottom half of S, it follows that

‖gk+1‖L1((0,sn)) =

∫ sn

0

|gk+1(t)| dt ≤

∫

Bot(A)

|∇u · j| dx. (2.15)

Putting (2.11) and (2.12)-(2.15) together yields (2.10).
�

Define D− ⊂ D, the “lower part” of D, by

D− = {x ∈ D

∣

∣

∣
x2 < sin(

π

2
−

1

2
)}. (2.16)

From Lemma 2.1, there follows:

Lemma 2.2. Let u be as in Lemma 2.1: u ∈ C∞(D) ∩ BV (D) with u|S = f∞. Let
n ≥ 1. Then

∑

A∈An

∫

W (A)

|∇u · v(A)| dx +
n
∑

m=1

∑

A∈Am

∫

T (A)∩Bn

|∇u · v(A)| dx+

+

∫

Bn∩D−

|∇u · j| dx ≥ cos

(

Kn

2n+1

)

K∞.

(2.17)

Proof: By Lemma 2.1,

∑

A∈An

∫

W (A)

|∇u · v(A)| dx +
∑

A∈An

n−1
∑

k=0

∫

Tk(A)

|∇u · v(A)| dx+

+
∑

A∈An

∫

Bot(A)

|∇u · j| dx ≥ cos

(

Kn

2n+1

)

K∞.

(2.18)

We must prove that the inequalities (2.17) and (2.18) are equivalent. The right-
hand sides and the first terms of the left-hand sides are exactly the same. The third
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Figure 4. The set S1 (which equals S2) from the proof of Lemma 2.2

summands in the left-hand sides are equal because Bn ∩D− is the disjoint union of
the sets Bot(A) for the 2n arcs A in An. We must show that the second summands
on the left-hand sides of (2.17) and (2.18) are equal. Call the common integrand of
the integrals “g(x)”. Generally, any two distinct sets of the form Tk(A), for l ≥ 1,
A ∈ Al, and k ∈ {0, . . . , l − 1} have intersection of H2-measure zero. This includes
the case of k = 0, Tk(A) = T0(A) ≡ T (A). Therefore the second summands on the
left-hand sides of (2.17) and (2.18) have the form

∫

S1

g dx and
∫

S2

g dx, where

S1 =

n
⋃

m=1

⋃

A∈Am

(T (A) ∩ Bn) = Bn ∩

(

n
⋃

m=1

⋃

A∈Am

T (A)

)

,

S2 =
⋃

A∈An

n−1
⋃

k=0

Tk(A).

We must show S1 = S2. This is easy to see if one uses a picture, but unfortunately
it is difficult to explain in words. We will do both.

In Figure 4, the shaded region (comprised of eight components) is S1 (which
equals S2) in the case n = 3. On one hand, the shaded region is S2: A3 con-
tains eight disjoint closed arcs A. For each such A, the union of the polygons
T0(A), T1(A), and T2(A) equals one of the eight components of the shaded region:
on top, T0(A) is a tiny triangle that is barely visible, just below, T1(A) is a larger
triangle or trapezoid, and on the bottom, T2(A) is a triangle or trapezoid, one of
whose sides is a subset of the horizontal chord Cho(C0) at the bottom of Figure 4.
On the other hand, the shaded region is S1: each component of the shaded region is
the union of three polygons. The union of the polygons on the bottom of the compo-
nents (there are eight such polygons) is B3 ∩ ∪A∈A1

T (A). The union of the middle
polygons of the components (there are eight such polygons) is B3 ∩ ∪A∈A2

T (A).
Finally, the union of the top polygons of each of component (there are eight such
polygons, and they are all tiny triangles) is B3 ∩ ∪A∈A3

T (A).
To formally prove S1 = S2, we show that the two sets are subsets of each

other. First we show S1 ⊂ S2. Let m′ ∈ {1, . . . , n} and A′ ∈ Am′ . We will
show Bn ∩ T (A′) ⊂ S2. Let A ∈ An. Since T (A′) ⊂ D \ D− and Bot(A) ⊂ D−,
x2 = sin(π/2 − 1/2) along T (A′) ∩ Bot(A). Now

Bot(A) ∩ {x

∣

∣

∣ x2 = sin

(

π

2
−

1

2

)

} = Tn−1(A) ∩ {x

∣

∣

∣ x2 = sin

(

π

2
−

1

2

)

}.



11

Thus T (A′) ∩ Bot(A) ⊂ Tn−1(A). Also, since m′ ≤ n, T (A′) ∩ W (A) ⊂ T (A) ≡
T0(A). Therefore,

Bn ∩ T (A′) ≡
(

⋃

A∈An

(

W (A) ∪ Bot(A) ∪

n−1
⋃

k=0

Tk(A)
)

)

∩ T (A′) =

=
⋃

A∈An

(

(

W (A) ∪ Bot(A) ∪

n−1
⋃

k=0

Tk(A)
)

∩ T (A′)
)

=

=
⋃

A∈An

n−1
⋃

k=0

(Tk(A) ∩ T (A′)) ⊂
⋃

A∈An

n−1
⋃

k=0

Tk(A) = S2,

and S1 ⊂ S2. Next we prove S2 ⊂ S1. Let A′ ∈ An and k′ ∈ {0, . . . , n − 1}. We
will show Tk′(A′) ⊂ S1. First,

Tk′(A′) ⊂

n−1
⋃

k=0

Tk(A′) ⊂ BA′ ⊂ Bn. (2.19)

Next, let m′ = n − k′ ∈ {1, . . . , n}. Since Tk′(A′) ⊂ T (Park′

(A′)) and Park′

(A′) ∈
An−k′ = Am′ , it follows that

Tk′(A′) ⊂ T (Park′

(A′)) ⊂

n
⋃

m=1

⋃

A∈Am

T (A). (2.20)

By (2.19), (2.20), and the definition of S1, Tk′(A′) ⊂ S1. Therefore S2 ⊂ S1.
Lemma 2.2 is proven.

�

Now as n → ∞, H2(
⋃

A∈An
W (A)) → 0. Also Kn → K∞ as n → ∞. So taking

limits of both sides of (2.17) as n → ∞ yields the second inequality in the lemma
below:

Lemma 2.3. Let u ∈ C∞(D) ∩ BV (D) with u|S = f∞. Then
∫

B∞∩D

|∇u| dx ≥

∞
∑

n=1

∑

A∈An

∫

T (A)∩B∞

|∇u · v(A)| dx +

∫

D−∩B∞

|∇u · j| dx ≥ K∞.

The first inequality is obvious because any two different triangles in the collection
{T (A) | A ∈ Al, l ≥ 1} have intersection with zero H2-measure, and all such
triangles are disjoint with D−.

Now let us prove (2.3)(i). Suppose u ∈ BV (D) with u|S = f∞ and
∫

D\B∞

|u| dx >

0. D\B∞ consists of countably many open components. For at least one such com-
ponent Ω,

∫

Ω
|u| dx > 0. ∂Ω contains an arc of S of positive arc length along which

f∞ equals zero. Therefore
∫

Ω
|Du| > 0. By [1, Theorem 1.17, Remark 1.18, Re-

mark 2.12], there exists a sequence (um) ⊂ C∞(D)∩BV (D) with um|S = f∞ for all
m, um → u in L1(D), and

∫

D
|∇um| dx →

∫

D
|Du| as m → ∞. By [1, Theorem 1.19],

lim infm→∞

∫

Ω
|∇um| dx ≥

∫

Ω
|Du| > 0. Therefore, using Lemma 2.3,

∫

D

|Du| = lim
m→∞

∫

D

|∇um| dx ≥ lim inf
m→∞

(

∫

D∩B∞

|∇um| dx +

∫

Ω

|∇um| dx) ≥

≥ B∞ +

∫

Ω

|Du| > B∞.
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Next we prove (2.3)(ii), which will complete the proof of Theorem 1.1. Suppose
u ∈ BV (D) with u|S = f∞ and

∫

D\B∞

|u| dx = 0. Recall D−, defined in (2.16).

Since u 6= 0,
∫

D−

|u| dx > 0 or
∫

D\D−

|u| dx > 0. We examine the former case first.

Assume
∫

D−

|u| dx > 0. Then there exists a closed rectangle [a, b] × [c, d] ⊂ D− and

δ > 0 with
∫

[a,b]×[c,d]

|u| dx > δ.

B∞ is a compact, nowhere dense subset of D. The restriction of χB∞
to D− is

constant on vertical line segments. Therefore there exists an open, dense subset U
of [a, b] with

(U × [c, d]) ∩ B∞ = ∅.

Let a < a1 < b1 < b with a1, b1 ∈ U and

∫

[a1,b1]×[c,d]

|u| dx >
δ

2
.

Let (um) ⊂ C∞(D) ∩ BV (D) be given by the construction in [1, Theorem 1.17]:
um|S = f∞ for all m, um → u in L1(D) and

∫

D
|∇u| dx →

∫

D
|Du| > 0 as m → ∞.

Furthermore, the um’s are obtained by convolving u with C∞ mollifier functions,
supported on discs, with the radii of the discs approaching 0 as m → ∞ uniformly
on the rectangle [a, b] × [c, d]. Thus, for large enough m, um = 0 on the vertical
line segments {a1} × [c, d] and {b1} × [c, d]. By Lemma 3.2 in the Appendix,

∫

[a1,b1]×[c,d]

∣

∣

∣

∣

∂um

∂x1

∣

∣

∣

∣

dx ≥
2

b1 − a1

∫

[a1,b1]×[c,d]

|um| dx >
δ

b1 − a1
≡ δ2

for large enough m. Clearly, for large enough m,

∫

[a1,b1]×[c,d]

∣

∣

∣

∣

∂um

∂x2

∣

∣

∣

∣

dx ≤

∫

[a1,b1]×[c,d]

|∇um| dx ≤

∫

D

|∇um| dx < 2

∫

D

|Du|.

Therefore, for large enough m, by Lemma 3.3 in the Appendix (using g = |∂um/∂x1|
and h = |∂um/∂x2| = |∇um · j|),

∫

[a1,b1]×[c,d]

|∇um| dx ≥

∫

[a1,b1]×[c,d]

|∇um · j| dx +
δ2

2

4
∫

D
|Du| + δ2

≡

≡

∫

[a1,b1]×[c,d]

|∇um · j| dx + δ3.

(2.21)

The collection of triangles {T (A)
∣

∣

∣
A ∈ Al, l ≥ 1} is a countable family of sets, for

which the intersection of any distinct pair has zero H2-measure. All these triangles
are subsets of D \ D−. Therefore, applying (2.21) and Lemma 2.3, it follows that
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for large enough m,

∫

D

|∇um| =

∫

D−

|∇um| dx +

∫

D\D−

|∇um| dx ≥

≥

∫

D−

|∇um · j| dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T (A)

|∇um| dx ≥

≥

∫

D−∩B∞

|∇um · j| dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T (A)∩B∞

|∇um · v(A)| dx ≥

≥ K∞ + δ3.

Since
∫

D
|∇um| dx →

∫

D
|Du| as m → ∞, it follows that

∫

D
|Du| ≥ K∞ + δ3 > K∞.

Next, suppose
∫

D\D−

|u| dx > 0 (and
∫

D\B∞

|u| dx = 0). Since

((D \ D−) ∩ B∞) ⊂
∞
⋃

n=1

⋃

A∈An

T (A),

there exists n′ ≥ 1 and A ∈ An′ with
∫

T (A)
|u| dx > 0. There then exists a

closed rectangle R ⊂ T (A) ∩ D with sides parallel and perpendicular to v(A) and
∫

R
|u| dx > 0.
Let (um) be given by the construction in [1, Theorem 1.17], as before. Arguing

as before, let the line segment L be one of the two sides of R perpendicular to v(A).
L has an open and dense (with respect to the subspace topology on L) subset X
with X ∩ B∞ = ∅. From the way B∞ is constructed, if x ∈ R and the vector x − y

is parallel to v(A) for some y ∈ X, then x 6∈ B∞. Arguing as in the
∫

D−

|u| dx > 0

case, there exists δ3 > 0 with

∫

R

|∇um| dx ≥

∫

R

|∇um · v(A)| dx + δ3 (2.22)

for large enough m. Using Lemma 2.3 and (2.22), for large enough m,

∫

D

|∇um| dx =

∫

D−

|∇um| dx +

∫

D\D−

|∇um| dx ≥

≥

∫

D−∩B∞

|∇um| dx +

∞
∑

n=1

∑

A∈An

∫

T (A)

|∇um| dx ≥

≥

∫

D−∩B∞

|∇um · j| dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T (A)

|∇um · v(A)| dx ≥

≥

∫

D−∩B∞

|∇um · j| dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T (A)∩B∞

|∇um · v(A)| dx ≥

≥ K∞ + δ3.

Like before, since
∫

D
|∇um| dx →

∫

D
|Du| as m → ∞, it follows that

∫

D
|Du| ≥

K∞ + δ3 > K∞. The proof of Theorem 1.1 is complete.
�
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3. Appendix: Three Lemmas

This section contains three easy, self-contained lemmas, moved to the end of the
paper in order not to interrupt the flow of the main proof.

Lemma 3.1. Let θ ∈ (0, 1] and α ∈ [θ2/2, θ). Let P and S be points on S separated

by arc length θ. Let Q and R lie on the arc
⌢
PS, with

⌢
QR having arc length α,

⌢
PQ

and
⌢
RS having equal arc length, and Q between P and R. Let T and U lie on the

chord PS, chosen such that △PQT and △RSU are right triangles. Then △PQT
and △RSU have disjoint closures.

Proof: clearly it suffices to consider α = θ2/2. By rotating the arc
⌢
PS, we may

assume P = (cos(θ/2), sin(θ/2)), S = (cos(θ/2), − sin(θ/2)), Q = (cos(θ2/4), sin(θ2/4)),
and R = (cos(θ2/4), − sin(θ2/4)). Define V = (cos(θ/2), 0). It suffices to show the

angle ∠PQV is obstuse, using a dot product. We will show ~QP · ~QV < 0. Using
familiar trigonometric identities,

~QP = 〈cos(
1

2
θ) − cos(

1

4
θ2), sin(

1

2
θ) − sin(

1

4
θ2)〉,

~QV = 〈cos(
1

2
θ) − cos(

1

4
θ2), − sin(

1

4
θ2)〉,

~QP · ~QV = (cos(
1

4
θ2) − cos(

1

2
θ))2 − (sin(

1

2
θ) − sin(

1

4
θ2)) sin(

1

4
θ2) =

= cos2(
1

4
θ2) + cos2(

1

2
θ) − 2 cos(

1

4
θ2) cos(

1

2
θ)−

sin(
1

2
θ) sin(

1

4
θ2) + sin2(

1

4
θ2) =

= 1 + (
1

2
+

1

2
cos(θ)) − (cos(

1

2
θ +

1

4
θ2) + cos(

1

2
θ −

1

4
θ2))−

1

2
(cos(

1

2
θ −

1

4
θ2) − cos(

1

2
θ +

1

4
θ2)) =

=
3

2
+

1

2
cos θ −

1

2
cos(

1

2
θ +

1

4
θ2) −

3

2
cos(

1

2
θ −

1

4
θ2).

By the Maclaurin series for cos and properties of alternating series, 1 − x2/2 <
cos x < 1 − x2/2 + x4/24 for 0 < x < 1. Both θ/2 + θ2/4 and θ/2 − θ2/4 are
between 0 and 1. Therefore

~QP · ~QV <
3

2
+

1

2
(1 −

θ2

2
+

θ4

24
) −

1

2
(1 −

1

2
(
θ

2
+

θ2

4
)2) −

3

2
(1 −

1

2
(
θ

2
−

θ2

4
)2) =

= −
1

8
θ3 +

1

24
θ4 < 0.

�

Lemma 3.2. Let a < b, c < d, and u ∈ C1([a, b]×[c, d]) with u = 0 on {a, b}×[c, d].
Then

∫ d

y=c

∫ b

x=a

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx dy ≥
2

b − a

∫ d

y=c

∫ b

x=a

|u(x, y)| dx dy. (3.1)
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Proof: fix y ∈ [c, d]. Let x0 ∈ (a, b) with |u(x0, y)| = max[a,b]×{y} |u|. Then
∫ b

x=a

|u(x,y)| dx ≤ (b − a)|u(x0, y)| =

= (
b − a

2
)(|u(x0, y) − u(a, y)| + |u(b, y) − u(x0, y)|) =

= (
b − a

2
)(

∣

∣

∣

∣

∫ x0

a

∂u

∂x
dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

x0

∂u

∂x
dx

∣

∣

∣

∣

∣

) ≤

≤ (
b − a

2
)(

∫ x0

a

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx +

∫ b

x0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx) = (
b − a

2
)

∫ b

a

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx.

(3.2)

Multiplying both sides of (3.2) by 2/(b − a) and integrating from y = c to y = d
yields (3.1).

�

Lemma 3.3. Let M, δ > 0, let Ω be an open subset of Rn (n ≥ 1), let g, h ∈ L1(Ω)
with g, h ≥ 0 Lebesgue-a.e., and assume

∫

Ω
g dx ≥ δ,

∫

Ω
h dx ≤ M . Then

∫

Ω

√

g2 + h2 dx ≥

∫

Ω

h dx +
δ2

2M + δ
. (3.3)

Proof (this proof is courtesy of Oleksiy Klurman of the University of Manitoba):

since x2/(
√

x2 + y2 + |y|) → 0 as (x, y) → (0, 0), we will interpret the expression

“g2/(
√

g2 + h2 + h)” as zero when g = h = 0 below. By the Cauchy-Schwarz
Inequality,

(

∫

Ω

g dx)2 =





∫

Ω

g
√

√

g2 + h2 + h
·

√

√

g2 + h2 + h dx





2

≤

≤

(

∫

Ω

g2

√

g2 + h2 + h
dx

)

(∫

Ω

√

g2 + h2 + h dx

)

=

=

(∫

Ω

√

g2 + h2 − h dx

)(∫

Ω

√

g2 + h2 + h dx

)

≤

≤

(∫

Ω

√

g2 + h2 − h dx

)(

2

∫

Ω

h dx +

∫

Ω

g dx

)

≤

≤

(∫

Ω

√

g2 + h2 − h dx

)(

2M +

∫

Ω

g dx

)

.

Therefore,
∫

Ω

√

g2 + h2 − h dx ≥
(
∫

Ω
g dx)2

2M +
∫

Ω
g dx

≥
δ2

2M + δ
, (3.4)

because the map x 7→ x2/(2M + x) is an increasing function of x for x ≥ 0.
Rearranging (3.4) yields (3.3).

�
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