
Annual ADFSL Conference on Digital Forensics, Security and Law 2015
Proceedings

May 20th, 4:20 PM

Continuous Monitoring System Based on Systems' Environment Continuous Monitoring System Based on Systems' Environment

Eli Weintraub
Tel Aviv Afeka College of Engineering, Israel, Head of Information systems specialization

Yuval Cohen
Tel Aviv Afeka College of Engineering, Israel, Head of Information systems specialization

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Weintraub, Eli and Cohen, Yuval, "Continuous Monitoring System Based on Systems' Environment" (2015).
Annual ADFSL Conference on Digital Forensics, Security and Law. 10.
https://commons.erau.edu/adfsl/2015/wednesday/10

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2015/wednesday/10?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 151

CONTINUOUS MONITORING SYSTEM BASED ON SYSTEMS'
ENVIRONMENT

Eli Weintraub
Tel Aviv Afeka College of Engineering

Israel
Head of Information systems specialization

Yuval Cohen
Tel Aviv Afeka College of Engineering

Israel
Head of Production Management specialization

ABSTRACT

We present a new framework (and its mechanisms) of a Continuous Monitoring System (CMS) having
new improved capabilities, and discuss its requirements and implications. The CMS is based on the real-
time actual configuration of the system and the environment rather than a theoretic or assumed
configuration. Moreover, the CMS predicts organizational damages taking into account chains of impacts
among systems' components generated by messaging among software components. In addition, the CMS
takes into account all organizational effects of an attack. Its risk measurement takes into account the
consequences of a threat, as defines in risk analysis standards. Loss prediction is based on a neural
network algorithm with learning and improving capabilities, rather than a fixed algorithm which typically
lacks the necessary environmental dynamic updates. Framework presentation includes systems design,
neural network architecture design, and an example of the detailed network architecture.

Keywords: Continuous Monitoring, Computer security, Attack graph, Software vulnerability, Risk
management, Impact propagation, Cyber attack, Configuration management

1. INTRODUCTION

Personal and organizational computing systems
are sometimes subject to cyber-attacks which
may cause damage to organizational data,
software and computers (Mell et al. 2007). This
paper focuses on threats generated by hostile
attackers. Vulnerabilities are weaknesses or
exposures stemming from bugs that are potential
causes to security failures: loss of
confidentiality, integrity or availability. An
attack is performed by exploiting software
vulnerabilities in the target computing system.
Exploits are planned to attack certain
components having specific vulnerabilities.
Langer (2011) states that Stuxnet warm included
a process of checking hardware models and
configuration details, and also downloads
program code from the controller to check if it

was the “right” program before launching an
attack. This leads to planning defense systems
that are sensitive to changes in their
environment. Users' computers might be
damaged by exploited vulnerabilities.
Organizations make decisions on actions they
have to take, in order to limit their risks
according to the amount of potential damage and
vulnerability characteristics (Tom, 2008).
Several software products are usually used for
defending computers from cyber attacks.
Antivirus software, antispyware and firewalls
are examples to some of these tools. Several
tools are based on periodic assessment of the
target computer by comparing computers'
software to the known published vulnerabilities.
Antivirus engines store features of known
malware and hash signatures, using
classification algorithms to identify hostile

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 152

software. Signature scanning technique is the
most widely used technology in anti-virus
programs (Symantec, 1997). Those tools are
naturally effective only against known threats
and not against new unpublished threats.
Heuristic Antivirus scanners detect viruses by
analyzing the program’s structure or its behavior
instead of looking for signatures. Heuristic
scanners are able to identify new unpublished
malware. Intrusion Detection System (IDS)
monitor the events occurring in a computer or
network, searching for violations or threats to
computer security policies and security
practices. Static and dynamic code analysis
techniques are aimed to identify malicious
activities by analyzing attempts to execute code
or identifying unusual behavior (Scarfone and
Mell, 2007). Contrary to the popular techniques
such as antivirus, antispyware and firewall, our
model analyzes vulnerabilities at the time before
fixes are publicly distributed. Moreover, our
model uses a prediction algorithm which uses
historical data of exploits, together with
computer's configuration, to predict losses of the
new vulnerabilities.
Information Security Continuous Monitoring
system (ISCM) is defined by NIST as:
Maintaining ongoing awareness of information
security, vulnerabilities, and threats to support
organizational risk management decisions
(Dempsey et al., 2011). We use the acronym
CMS since we do not limit our model to
software. CMS's monitor computer systems in a
near real time process aimed at detecting
vulnerabilities and cyberspace security risks, and
alarming the appropriate functions within the
organization. Contemporary systems use
vulnerabilities databases (which are continually
updated as new vulnerabilities are detected) and
a scoring algorithm which predicts potential
business losses.
Computers are at risk to known threats until the
moment a patch is programmed for the
vulnerable specific software, an activity that
may last weeks or months. Even after a patch is
prepared by the software vendor a computer
might still be at risk until the moment the new
patch is loaded to the vulnerable system.
Loading patches to computer systems is usually
performed as a periodic process, not
continuously. The reason for this is avoiding too

many interrupts required for uploading and
activating the patch on the production
environment. In today's environment of zero-day
exploits, conventional systems updating for
security vulnerabilities has become a
cumbersome process. There is an urgent need
for a solution that can rapidly assess system
vulnerabilities and immediately fix them (Nũez,
2008). Although zero-day vulnerabilities are
kept secret by hackers for exploits programming,
after a 90-days period vendors like Google use
to automatically disclose the vulnerability to the
public even if no fix was written. Our system
deals with risks at the time the vulnerability is
published but not yet fixed in the operational
organizational environment.
Operating techniques for monitoring, detecting
and alerting of security threats on a regular basis
are defined as Security Continuous Monitoring
(SCM) systems. After identifying these risks,
tools evaluate the potential impacts on the
organization, sometimes suggesting risk
mitigation activities to the organization to
support organizational risk management
decisions (Dempsey, 2011). SCM's are aimed at
closing the gap between the zero-day of
identifying the vulnerability, until the moment
the computer is loaded by the corresponding
patch fixing the vulnerability. The time gap may
be considerably long.
In this paper we describe a mechanism of a new
SCM system framework that will produce better
detection and prevention than existing SCM
systems. Our framework is based on four main
elements: (1) Knowledge concerning the specific
computers' configuration of the target system
and interrelationships among systems'
components. (2) A prediction algorithm which
runs continuously and predicts the potential
losses. (3) Risk assessment is based on
vulnerability consequences. (4) A learning
algorithm which continuously improves the
predicted losses.
The rest of the paper is organized as follows: In
section 2 we describe current known solutions.
In section 3 we present the proposed framework
including systems' architecture. In section 4 we
describe the scoring algorithm which predicts
vulnerability losses. We present a neural
network model for loss prediction and learning.

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 153

In section 5 we conclude and describe future
research directions.

2. EXISTING SOLUTIONS

SCM systems are using external vulnerabilities
databases for evaluation of the target computers'
risk. There are several owners of vulnerability
databases (Dempsey et al., 2011): The Sans
Internet Storm Center services and The National
Vulnerability Database (NVD). Vulnerability
Identification Systems (VIS) aimed to identify
vulnerabilities according to three categories:
code, design, or architecture. Examples for VIS
are: the Common Vulnerabilities and Exposures
(CVE), and The Common Weakness
Enumeration (CWE). In this work we shall use
NVD vulnerabilities database as an example.

Risk evaluation uses scoring systems which
enable parameters estimation for assessing the
impacts of vulnerabilities on the organization.
The Common Vulnerability Scoring System
(CVSS) is a framework that enables user
organizations receive IT vulnerabilities
characteristics (Mell et al., 2007).
CVSS uses three groups of parameters to score
potential risks: Basic parameters, Temporal
parameters and Environmental parameters. Each
group is represented by a score compound
parameters ordered as a vector, used to compute
the score. Basic parameters represent the
intrinsic specifications of the vulnerability.
Temporal parameters represent the specifications
of a vulnerability that might change over time
due to technical changes. Environmental
parameters represent the specifications of
vulnerabilities derived from the local IT specific
environment used by users' organization. CVSS
enables omitting the environmental metrics from
score calculations, those are cases that users'
environment has no effect on the score. CVSS is
a common framework for characterizing
vulnerabilities and predicting risks, used by IT
managers, risk managers, researchers and IT
vendors, for several aspects of risk management.

CVSS is an open framework which enables
managers to deal with organizations' risks and
make decisions based on facts rather than

evaluations. User organizations adopting CVSS
framework may gain the following benefits:
• A standard scale for scoring vulnerabilities

and risks. The scale enables organizations
normalize vulnerabilities according to
specific IT platforms. The computed scores
enable users to get rational decisions in
correlation to vulnerability risks.

• Open framework: user organization can see
the characteristics of vulnerability and the
logical process of scores evaluation.

• Prioritized risks: organizations using the
environmental parameters may benefit by
considering changes in its IT environment
according to predicted risk scores.

There are few other vulnerability scoring
systems besides CVSS differing by what they
measure. CERT/CC puts an emphasis on
Internet infrastructure risks. SANS vulnerability
system considers users' IT configuration and
usage of default parameter definitions.
Microsoft’s scoring system emphasizes attack
vectors and impacts of the vulnerability.
Generally, Basic and Temporal parameters are
specified and published by products' vendors
who have the best knowledge of their product.
Environmental parameters are specified by the
users who have the best knowledge of their
environments and vulnerabilities' business
impacts.

This paper focuses mainly on environmental
metrics.

The organizational damage caused by
vulnerability is influenced by the specific IT
environment which is exploited. CVSS
environmental parameters specify the
characteristics of a vulnerability that is
associated with user’s IT components
compounding the environment. Environmental
parameters are of three groups:

I. Collateral Damage Potential (CDP):
A group of parameters which measure the
economic potential loss caused by a
vulnerability.

II. Target Distribution (TD):
Parameters indicating the percentage of
vulnerable components in user environment.
A large proportion indicates more impacts
on organizational potential damages.

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 154

III. Security Requirements (CR, IR, AR):
Security requirements are parameters which
indicate user's sensitivity to security risks.
This group of parameters is subdivided to certain
parameters indicating the Confidentiality (CR),
Integrity (IR), and Availability (AR) of the
vulnerable component. High security
requirements might cause higher security
damages, thus more economic losses.

Categorization of IT components according to
security requirement measures should be
performed by users encompassing all assets.
Doing so raises the possibility to predict the
organizational losses. Federal Information
Processing Standards (FIPS) requirements
demands implementation of a categorization
system (Dempsey et al., 2011), but does not
require using any particular scale, thus risk
comparisons among users systems is difficult.

3. THE PROPOSED FRAMEWORK
Federal organizations are moving from periodic
to continuous monitoring implementing SCM's
which will improve national cyber security
posture (Hardy, 2012). The proposed framework
includes four capabilities which are not found in
current models:

• Real time environmental metrics.
Metric evaluations are based on the components
of the system as updated in the systems' CMDB
(Keller and Subramanianm, 2009). There are
several commercial products for asset inventory
management such as IBM Tivoli or Microsoft
System center. This capability enables basing
predictions on real IT environment rather than
on user's evaluations. According to Grimalia et
al. (2009) it is impossible for organizations to
make precise estimates of the economic losses
caused by an attack without having full
knowledge of users' IT environment. Kotenko
and Chechulin (2012) state that network
configuration should be monitored continually
and available vulnerabilities must be analyzed in
order to provide the necessary security level.

The proposed CMS examines a database of
published asset vulnerabilities, compares in real
time computers' assets for existing exposures,
and calculates computers' potential losses. Loss

evaluation is performed by considering
vulnerabilities even before patches are prepared
and loaded on the computers' system.

• Components interdependencies.
Current systems focus on the IT infrastructure
but not on the interdependencies among
components. Several researchers stress the need
to deal with interdependencies (Albanese et al.,
2013; Jakobson, 2011). Jajodia S, et al. (2011)
presents a model that maps possible multi-step
environmental vulnerabilities, enabling
organizational damage estimations. Kotenko and
Chechulin (2012) present a system based on
attack modeling using attack graphs, evaluating
security risk based on attack model. Wang et al.
(2006) propose an automated process aimed at
hardening a network against multi-step
intrusions.
Our framework deals with loss prediction by
looking for past attacks on systems' components
by learning from their past organizational
impacts. The proposed algorithm takes into
account component dependencies, predicting all
potential direct and indirect impacts on the
organization stemming from the specific
vulnerable component. Loss prediction is
implemented by a neural network which
represents IT components and interdependencies
between components such as reading and
writing from neighboring components. The
process of predicting loss is based on
propagation of signals among components,
starting from the vulnerable component, ending
at the organizational losses as stated by the user.
Signals between components represent the
varying kinds of dependencies.

• Risk assessment based on consequences.
Risk analysis theory defines risk as a triple that
specifies the scenario of an event, the likelihood
that the occurring event and event consequences
appearing regularly as threat x vulnerability x
consequences. According to Collier et al. (2014)
CVSS fails to connect risk assessment to risk
management. According to CVSS, risk damage
potential values are estimated by organizations
(Mell et al., 2007). According to the proposed
framework, potential loss prediction is based on
the actual losses of similar past attacks on the
specific vulnerable component, performed

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 155

through the similar attack vector. In cases when
there has not been in the past a similar attack,
prediction will be based on past losses stemming
from past attacks on the specific component
concerning all attack vectors.

• A Learning algorithm.
Hardy (2012) states that predictive analysis
should be used for threat modeling. Threat
projection algorithms are also presented by
Holsopple and Yang (2008) to estimate plausible
futures. We use predictive analysis for loss
prediction, based on historical data of losses
caused by past attacks on vulnerable
components. The predictive analysis uses a
learning algorithm since the organization learns
how to deal with the vulnerable component,

improves its software, thus limiting or
preventing damages. According to the proposed
framework loss prediction is based on
environmental parameters, and actual losses of
past events. Both environmental parameters and
losses are related to changes: environmental
characteristics are subject to changes which
occur all the time in operational systems and
actual losses of past events which are
continuously updated according to users'
findings about incidents' impacts. Losses caused
by past attacks may be noticed long after the
time of the attack. Such late losses should update
the predicted loss calculated by the algorithm.
We describe the proposed framework
architecture (Figure 1) and its main components.

Figure 1 Continuous Monitoring System architecture

Vulnerabilities Database includes all known
vulnerabilities and their specification as
published by Database owners or government
agencies. As an example for vulnerability
specifications NVD defines: category, vendor
name, product name, published start and end
dates, vulnerability update dates, severity, access
vector, access complexity and security
requirements of a patch (Hardy, 2012).

Scoring module (CVSS) is an algorithm which
computes potential losses according to the
parameters of three groups. As stated above
there are also other known algorithms, some of
them for public use other commercial.

CMDB is a database which includes all
hardware and software components of the target

system and all components' characteristics.
Components are dealt in a resolution of a
hardware machine. Software is dealt in the
resolution of programs or physical exe files or
DLL's. Data is handled in the resolution of
database or table, not data items. Input/output
are dealt by screen-name or output message. The
target system might be one computer or a group
of organizations' computers. CMDB includes all
components in the computers' environment,
components which interface with the target
system directly or indirectly up to external and
end-users' interfaces. CMDB includes also the
security requirements (CR, IR, AR) of each
component. Security requirements are specified
by systems' owners according to business
potential losses. CMDB includes also all
interfaces among components. For each interface

Vulnerabilities
Database (NVD)

CMDB

Historical Events Database:
Potential Vulnerabilities,
Losses, IT Components

Potential Losses
Database

CMS

Learning
Module

Scoring
Module
(CVSS)

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 156

are indicated the direction of data transfer
between the components and the probability of
occurrence of that connection according to
systems' operational history.

Historical events database includes all cyber
attacks on the system and their details. For each
event indicated the vulnerability which was used
to exploit and all computer components involved
in the incident. Also are indicated the economic
loss caused to the organization by the attack as
evaluated by the organizational users or risk
management.

Potential Losses Database includes the predicted
losses computed by the system. Systems' owner
is informed about the potential predicted loss of
all components at risks and makes his decisions
concerning each component. The owner might
disable a component or a computer when loss
potential is high. In cases a patch is not yet
developed, the owner might continue using the
risky component or monitoring the component
closely with higher awareness to possible
exploits. In cases a patch was developed but not
yet loaded on operational systems the owner
might decide either remediate and deploy the
patch, defer deployment to appropriate times
considering organizational constraints, or reject
deployment in cases the potential loss is limited.

The system runs continuously based on the
neural network predicting losses of new
vulnerabilities. Updates to neural networks'
parameters due to the learning process are
performed periodically according to operational
constraints.
The system start the continuous process
computing loss prediction in two cases: first is
whenever a new vulnerability is publishes and
indicated in the NVD. Second is whenever a
change is made or intended to be made in a
system component or in systems' environment.
In the case of testing a new component, the
system computes losses as a simulation, before
decision is made to move the component to the
operational environment. Loss evaluation is
based on NVD, CVSS, CMDB and the
Historical Events Database. Whenever a
component is found to be vulnerable according
to NVD, the system performs a propagation

process which computes all impacts on
components which read or write data from the
vulnerable component. Propagation algorithm
runs until the final output is been transferred to
the users or written to the output files.
Propagation process uses CMDB to lead the
process of interactions among components. The
Learning algorithm writes the potential
computed losses in the Historical Events
Database. The Learning module forecasts the
future potential losses caused by a specific
vulnerability which was exploited on a
component. Prediction will performed by
running the neural network. Actual damage will
be updated by organizations' owner on a regular
basis to capture also delayed outcomes of a past
vulnerability. The learning algorithm will
improve economic prediction accuracy losses
which will be based on the updated environment
and the updated actual losses.

4. LOSS SCORING AND LEARNING
Scoring algorithm is implemented through the
neural network. The architecture of the network
is described in table 1 and a detailed design
example of a network illustrated in table 2.
Network design is based on Han and Kamber
(2006). Implementation may be done using data
mining software tool such as SAS business
analytics software, or Weka.
The network represents all parameters impacting
on the vulnerable component comprising the
input layer. Parameters include vulnerability
characteristics as updated in NVD.
Characteristic example parameters are
vulnerability category, vulnerability severity,
and parameters describing components'
specification such as vendor name and product
ID (such as operating system version).
The input layer includes all CVSS parameter
groups: Basic metrics, Temporal and
Environmental metrics. As illustrated in table 2
parameters are categorized as they appear in
CVSS. For example vulnerability access
complexity includes three categories: high,
medium and low.
The hidden layers include a number of layers
which represent messages from the exploited
component to all other systems' components
such as the operating systems in use, database,
communication protocols used, UI programming

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 157

language, and all other application components
called directly or indirectly by the vulnerable
component. The neural network represents the
logical workflow of messaging and data
transfers between the component and all other
systems' components.

The output layer of the neural net represents
losses occurring due to cyber attacks on
components. Losses are categorized to low,
medium, high and fatal. Losses represent actual
business damages by past attacks on a
component, as reported by the organization.
Losses are reported on a regular basis until all
late-effects are known, sometime in the future.
This requires the nomination of a security person
that would be responsible for regular reports of
the vulnerabilities and damages.
Neural net input signals are represented by zeros
and ones according to the existence of the
specific parameter. Messages between neural
network nodes are binary. Arcs between nodes
represent kinds of dependencies between
components. Output layer categories are also
binary.
At the end of the process the system presents the
predicted business loss category for attacks on
one component. Each activation process of the
network uses all computed weights between
network nodes. The network may be
programmed to predict attacks using a specific

vulnerability or otherwise attacks using all
vulnerabilities on that component.
After prediction of the business losses, the
organization decides ways of mediating the
vulnerability, whether to accept the risk, try to
attenuate the risk, wait for a patch or live
without the risky component.

The learning process is activated on a periodic
basis generating updated weights to network
arcs and components. The learning process is
activated by three event types: (1) accepting
indicators to a new vulnerability (2) Loss
updates concerning past organizational losses (3)
Changes performed to the computing
configuration or environment. The training and
learning process runs on the historical database
of attacks by several forward and backward
propagation processes until networks'
termination conditions exist.

The proposed approach differs from existing
scoring models such as CVSS by dynamic
generation of the calculations involved in the
scoring process. CVSS uses fixed coefficients
which were calculated at a specific point in the
past. Our framework predicts losses on a
continuous basis, and updates network
coefficients through learning on a periodic (or
nearly continuous) basis subject to operational
constraints.

Table 1 Neural Network architecture
Input layer
group

Input layer
parameter name

Input layer
parameters values

Intermediate
layer

Intermediate
layer

Output layer

 Component UI
protocol

Component
Operating system

Business
Losses

Vulnerability
Details

Vendor 1 Cross site scripting

 vendor 2 Untrusted search path HTML Low
(1-10k)

Basic
Metrics

Vul. Access
Complexity

Low

 High
 Windows 7
 Medium

(10k-100k)
Temporal
Metrics

Vul.
Exploitability

High java

 Functional

 Unix
Environmental
Metrics

Collateral damage
potential

High High
(100k-1000k)

 Medium

Table 2 Example of a Neural Network layer design

 Input layer Intermediate
layers

 Output
layer

Input layer group Input layer
parameter name

Input layer
param values

Component
UI protocol

Component
Operating
system

Database Application
components

Application
components

Business
Losses

Vulnerability
Details

Vulnerability
Category

Cross site
scripting

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 158

 Buffer overflow HTML
 SQL Injection
 Vul. Vendor Red Hat Windows 7 Com. x
 Algosec
 Quantum
 Vul. Product ID 1234
 3456 Unix
 Vul. Severity High Oracle
 Medium Com. 1
 Low
 Vul. start

duration
Less 1 week JAVA Windows 8

 Less 1 month
 Less 1 year
 More 1 year
Basic
Metrics

Vul. Access
Complexity

Medium Comp y

 High
 Low
 Vul. Access

Vector
Local Medium

(10k-
100k)

 Adjacent
 Network Javascript

 Vul. Access Multiple Windows XP Com. 2
 Authentication Single DB2
 None
 Vul.

Confidentiality
Impact

None

 Partial
 Complete
 Vul. Integrity

Impact

None Windows NT

 Partial
 Complete

 Vul. Availability None AJAX
 Partial
 Complete
 OS/360
Temporal
Mertics

Vul.
Exploitability

Unproven SQL

 Proof of concept
 Functional
 High
 Not Defined

 Vul.

Remediation
Level

Official Fix High
(100k-
1000k)

 Temporary Os X
 Workaround
 Unavailable
 Not Defined

 Report

Confidence
Unconfirmed .NET

 Uncorroborated
 Confirmed
 Not Defined
Environmental
Metrics

Collateral
damage
potential

 C Com. 3

 Input layer Intermediate
layers

 Output
layer

Input layer group Input layer
parameter name

Input layer
param values

Component
UI protocol

Component
Operating
system

Database Application
components

Application
components

Business
Losses

 Target
component
Distribution

Low

 Medium SQL
 High
 Target CR C++ Fatal

(1000k -)

 Target IR Com. 4
 android Comp w
 Target AR

5. CONCLUSIONS

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 159

In this work we described a new framework of
Security Continuous Monitoring (SCM) system
and its mechanisms, including neural network
architecture aimed at increasing security of
information systems by improving and
accelerating loss prediction. The system
introduces four new capabilities: (1) Continuous
real-time loss prediction software agent using
real time environmental parameters for an
improved loss prediction algorithm. (2)
Components' interdependencies are used by a
propagation algorithm for loss prediction, (3)
Risk prediction is based on actual losses
reported by the organization and (4) a learning
algorithm which is based on a process of
updating the facts concerning vulnerabilities'
actual losses and real-time IT configuration.
The framework enables getting improved
recommendations to computer owners
concerning new relevant vulnerabilities. The
framework also enables improved security
management of the operating systems. For
example, in cases where a vulnerability to the
new asset is publicly known but still un-patched,
loading a new version of a software component
will be prevented by performing a preliminary
simulation test which analyzes vulnerabilities of
the new component, incorporated in the
operational environment.

Several future research directions exist:
performing a proof of concept of the framework
for evaluation of the model, investigating
defense methods against attack vectors involving
several different vulnerabilities, searching new
hidden vulnerabilities in a production
environment. Further research could extend the
resolution of the entities used in our model so
that entities will include data items with the
appropriate specifications such as security
requirements, and interdependencies between
components indicating data transfer between
data items.

REFERENCES

Albanese M., Jajodia S., Jhawar R., and Piuri V.,
(2013). Reliable Mission Deployment in
Vulnerable Distributed Systems, proceedings of
the 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and
Networks, Budapest, Hungary, June 24-27,
2013.

Collier Z. A., DiMase D., Walters S.,
Tehranipoor M., Lambert J. H., Linkov I.,
(2014). Cybersecurity Standards: Managing Risk
and Creating Resilienc, Computer, Vol. 47 Issue
No. 09 September 2014, IEEE.

Dempsey K., Chawia N. S., Johnson A.,
Johnston R., Jones A., C., Orebaugh A., Scholl
M., and Stine K., (2011). Information Security
Continuous Monitoring (ISCM) for Federal
Information Systems and Organizations, NIST.

Grimalia M. R., Fortson L. W., and Sutton J. L.,
(2009). Design considerations for a cyber
Incident Mission Impact Assessment (CIMIA)
Process, Proceedings of the 2009 International
Conference on Security and Management
(SAM09), Las Vegas.

Han J., and Kamber M., (2006) Data Mining:
Concepts and Techniques, 2nd ed. San
Francisco, CA, Morgan Kaufmann Publishers.

Hardy M. G., (2012). Beyond Continuous
Monitoring: Threat Modeling for Real-time
Response, SANS Institute.

Holsopple J., and Yang S. J., (2008). FuSIA:
Future Situation and Impact Awareness, in
Proceedings of the 11th International
Conference on Information Fusion, Cologne,
Germany, July 1-3 2008, ISIS.IEEE.

Jajodia S., Noel S., Kalapa P., Albanese M., and
Williams J., (2011). Cauldron: Mission-Centric
Cyber Situational Awareness with Defense in
Depth, in Proceedings of the Military
Communications Conference, (pp. 1339-1344),
USA.

Jakobson G., (2011). Mission Cyber Security
Situation Assessment Using Impact Dependency
Graphs, The 14th International Conference on
Information Fusion, Chicago, USA, July 5-8,
2011.

Continuous Monitoring System Based on Systems’ Environment 2015 CDFSL Proceedings

© 2015 ADFSL Page 160

Keller A. and Subramanianm S., (2009). Best
practices for deploying a CMDB in large-scale
environments, Proceedings of the IFIP/IEEE
international conference on Symposium on
Integrated Network Management, pages 732-
745, NJ, IEEE Press Piscataway.

 Kotenko I. and Chechulin A., (2014). Fast
Network Attack Modeling and Security
Evaluation based on Attack Graphs, Journal of
Cyber Security and Mobility Vol. 3 No. 1 pp 27-
46.

Langer L., (2011). Stuxsnet: Dissecting a Cyber
Warfare Weapon, Security and Privacy IEEE,
Volume: 9 Issue: 3, pages 49-51, NJ, USA.

Mell P., Scarfone K., and Romanosky S.,
(2007). CVSS - A Complete Guide to the
Common Vulnerability Scoring System, Version
2.0, Retrieved on October 13, 2014
from http://www.first.org/cvss/cvss-guide.

Nũez Y. F., (2008). Maximizing an
organization's information security posture by

distributedly assessing and remeding system
vulnerabilities, 2008 IEEE, International
Conference on Networking, Sensing and
Control, China, April 6-8, 2008.

Scarfone K., and Mell P., (2007). Guide to
Intrusion Detection and Prevention Systems
(IDPS), NIST, 2007.

Symantec, (1997). Understanding Heuristics:
Symantec's Bloodhound Technology, White
paper XXXIV.

Tom S., Christiansen D., Berrett D., (2008).
Recommended Practice for Patch Management
of Control Systems, DHS National Cyber
Security Division Control Systems Security
Program.

Wang L., Noel S., and Jajodia S., (2006).
Minimum-cost network hardening using attack
graphs, Computer Communications 29, Issue 18,
pp. 3812–3824.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5772950
http://www.first.org/cvss/cvss-guide

	Continuous Monitoring System Based on Systems' Environment
	Scholarly Commons Citation

	1. Introduction

