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ABSTRACT 

 

This thesis presents the development and implementation of intelligent algorithms to 

increase autonomy of unmanned missions for quadrotor type UAVs. A six-degree-of 

freedom dynamic model of a quadrotor is developed in Matlab/Simulink in order to 

support the design of control algorithms previous to real-time implementation. A 

dynamic inversion based control architecture is developed to minimize nonlinearities and 

improve robustness when the system is driven outside bounds of nominal design.  The 

design and the implementation of the control laws are described. An immunity-based 

architecture is introduced for monitoring quadrotor health and its capabilities for 

detecting abnormal conditions are successfully demonstrated through flight testing. A 

vision-based navigation scheme is developed to enhance the quadrotor autonomy under 

GPS denied environments. An optical flow sensor and a laser range finder are used 

within an Extended Kalman Filter for position estimation and its estimation performance 

is analyzed by comparing against measurements from a GPS module. Flight testing 

results are presented where the performances are analyzed, showing a substantial increase 

of controllability and tracking when the developed algorithms are used under 

dynamically changing environments. Healthy flights, flights with failures, flight with 

GPS-denied navigation and post-failure recovery are presented. 
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1. Introduction 

In recent years, increased research efforts have been conducted towards increasing the 

reliability and safety of unmanned aerial vehicles (UAVs). The control of quadrotors is of 

special interest due to minimum flying quality requirements that vehicles of this nature 

require to execute different mission tasks. Quadrotor systems have been widely used in 

multiple quadrotor applications due to their quick maneuvering, robust hovering and 

vertical take-off and landing (VTOL) capabilities. However, new commercial and non-

commercial quadrotor applications demand more reliable and efficient systems able to 

optimize the endurance and performance of the vehicle within complex and unstructured 

operating environments. In addition, these systems are required to comply with the new 

regulations, policies, procedures and standards that the Federal Aviation Administration 

(FAA) is implementing to integrate unmanned aircraft systems (UAS) into the National 

Airspace System (NAS). Such autonomous aerial systems require on-board intelligent 

algorithms at different levels with the ability to perform timely status determination, 

diagnostics, prognostics, and decision making in order to increase the safety of missions, 

and guarantee successful mission completion. Moreover, such technologies are expected 

to increase autonomy by maintaining control of the vehicle while avoiding threats such as 

unrecoverable post-failure flight conditions caused by extreme weather, physical damage, 

equipment malfunction, and/or other unexpected nonlinearities. “Intelligent” decision 

making is also required to determine any available modifications to the mission or 

planned flight path.  
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In order to address the needs for more efficient and reliable autonomous systems able 

to be integrated within the NAS, this thesis proposes the study and implementation of 

three methodologies designed to increase autonomy of unmanned missions for quadrotor 

type UAVs. First, a nonlinear dynamic inversion (NLDI) control architecture is 

developed and implemented to increase stability of a quadrotor system by minimizing 

nonlinearities at nominal conditions. Second, an immunity-based health monitoring 

system is implemented to increase mission protection by enabling actuators-fault 

detection capabilities. Finally, an optical-flow vision-based navigation system is 

developed and implemented to enable navigation of the vehicle over Global Positioning 

System (GPS) denied environments. The implementation of these methodologies aims to 

accomplish the main objectives of this thesis:  

1. To enhance tracking capabilities, robustness to model uncertainties and attitude 

stabilization control; 

2. To test a bio-inspired fault detection scheme within quadcopter type UAVs; 

3. To allow autonomous navigation under GPS denied environments. 

 

The dynamics of a quadrotor are essentially a simplified form of helicopter dynamics 

that exhibits the basic problems including under actuation, strong coupling, multi-input 

and multi-output, and unknown nonlinearities (Abhijit, Lewis & Subbarao, 2011). This 

thesis utilizes a nonlinear controller architecture to handle these problems and improve 

the results obtained from traditional linear control methods that have been used in the 

past to control this type of UAV. Nonlinear controllers have shown many advantages 

over linear control methods in three main areas: analysis of hard nonlinearities, 
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management of model uncertainties and design simplicity (Slotine & Li, 1991). In this 

research, a NLDI type architecture is designed, tested in simulation and implemented on 

a quadrotor system at nominal and upset conditions.  A six-degree-of-freedom (6-DOF) 

simulation environment developed by researchers at the Flight Dynamics and Research 

Lab has been modified and used to design and implement the NLDI architecture. This 

simulation environment is developed using Matlab/Simulink software. Accurate 

simulation results are crucial to provide a safe and reliable starting point for the 

implementation process, especially during the tuning process of the inner stability control 

loop. A great part of this thesis deals with implementation of algorithms on a 3DR-X8 

quadrotor frame and accurate simulation results are essential for providing safe initial 

conditions for different purposes. At the same time, this simulation environment is 

utilized as a verification tool for the specific findings that are encountered during the 

implementation process. A NLDI control architecture is developed within this research 

for attitude stabilization and altitude control. Traditional proportional, derivative and 

integral (PID) control architectures are used for position control and navigation purposes.  

The performance of the NLDI control architecture is determined based on the tracking 

response of attitude angles as well as navigation states. This NLDI architecture is 

enhanced with an Artificial Immune System (AIS) approach that is designed to solve the 

actuator-fault detection problem.  

 

One of the most promising candidates that has offered a solution to the problem of on-

line heath monitoring is the Artificial Immune System (AIS) paradigm (Dasgupta, 1999) 

(Dasgupta, Krishna, Wong & Berry, 2004). Previous research efforts have shown that the 
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AIS based schemes are capable of automatically acknowledging when an abnormal 

condition has affected the normal behavior of one of the vehicle’s subsystems. AIS based 

schemes have been proven by the simulation results of fixed wings aircraft sub-systems 

under upset conditions over extended areas of the flight envelope (Moncayo, Perhinschi, 

Davis , 2010) (Moncayo, Perhinschi, Davis , 2011) (Dasgupta, Nino, 2009). This thesis is 

focused on the implementation of bio-inspired mechanisms on an UAV quadrotor type 

system that is stabilized using NLDI baseline control laws. The AIS approach for fault 

tolerance detection investigated in this research simulates biological immune mechanisms 

which protect living organisms. Negative selection process is one of the main principles 

emulated by this fault tolerant algorithm. Using this principle and a considerable amount 

of experimental data, this algorithm is able to determine the “self” or dynamic signature 

for the vehicle in the hyper-space. Similarly, sets of “detectors” are generated by 

covering the free regions of the hyper-space. This region of the hyper-space is generally 

known as the “non-self”. This process is executed for different combinations of features 

or states. However, this algorithm requires some off-line training in order to determine 

the best combinations of features depending on the type of failure. Features used in order 

to define “self” and “non-self” hyperspaces can be classified as follows: pilot inputs, 

variables calculated by the control laws and vehicle states. A Hierarchical Multi-Self 

Strategy (HMSS) approach can be used to enhance the results in terms of fault detection 

(Moncayo, Perhinschi, Davis, 2010). Fault detection is the process in which a system 

fault is declared. In general, faults can be classified by hardware faults and software 

faults. The detection process must be designed thoroughly and it must cover aspects such 

as the vehicles’ operational envelope, the sub-system targeted, and the nature and type of 
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the abnormal conditions that are expected to be detected (Moguel, 2014). A multi-self 

detection logic can be implemented in order to declare different type of failures in real 

time.  

Ease of autonomous navigation due to quick maneuvering and robust hovering are 

dynamic characteristics that make quadrotor type UAVs versatile and suitable for a 

variety of applications. However, most of these applications rely on the availability of a 

GPS signal. Unfortunately, when UAVs are required to navigate through indoor or urban 

environments, GPS signals might be noisy or unavailable. Vision-based approaches have 

been the focus of many research efforts as an alternative way for autonomous navigation 

of UAVs (Quelin, 2011). This thesis studies an optical-flow vision-based algorithm used 

for autonomous navigation within GPS denied environments. Optical flow sensors 

designed for computer mice have been successfully used to measure velocity and, 

through integration, horizontal displacement of a UAV (Hui, Yousheng, & Shing, 2014). 

“Px4flow” is an optical flow sensor based on a machine vision CMOS image that is 

designed for indoor and outdoor applications (Honegger, Meier, Tanskanen, Pollefeys, 

2013). CMOS image sensors are light sensitive which means this sensor requires 

minimum lighting conditions for being able to measure velocity accurately. A six-state 

extended Kalman filter (EKF) is designed and implemented for accurate position 

estimation. The “px4flow” sensor, a laser range finder, accelerometers and attitude angles 

are required within the EKF algorithm in order to provide a fully integrated alternative 

solution for autonomous navigation within GPS denied environments. Performance of 

this alternative solution for autonomous navigation is measured by comparing the results 

obtained from the optical flow EKF against measurements from a GPS sensor.     
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1.1 Literature Review 

The first Quadcopter prototype was built by the Breguet Brothers in 1907. The 

Gyroplane No.1 was one of the first attempts to create a practical rotary wing aircraft 

(Naduvilakandy, 2016). This event would serve as the proof of the early concept design. 

After this event, most of the improvements would come from military applications. Also, 

the automatic gyroscopic stabilizer, invented by Dr. Peter Cooper and Elmer Sperry, 

helped to develop the first radio controller UAV with autonomous flight. The 

development of UAVs had a rise during the late 1950’s when the US military used them 

largely during the Vietnam War and they successfully decreased the number of pilot 

causalities. Rotary wing UAV development would grow exponentially after the 

improvements that occurred regarding Micro Electro Mechanical Systems (MEMS) 

(Naduvilakandy, 2016). The great developments of MEMS allowed to have lighter and 

smaller sensors and microcontrollers which would set the perfect environment for UAVs 

development. Since then, most of the advances in quadrotor technology have taken place 

in academia, in industry and in the open-source project community.  

Ascending Technologies (Asctec) is one of the leaders of multirotor UAS drone 

technology development & manufacturing of technology for professional, 

civil and research UAV / drone use. Their main focus of research are: UAV Flight 

dynamics, Simultaneous Localization and Mapping (SLAM), Swarming and computer 

vision. In the same way, the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent 

Control (STARMAC) is the name of one of the oldest and most successful quadrotor 

projects in academia. Their main area of research is the use of multi-vehicle systems. On 

the open source project community area, Eidgenössische Technische Hochschule Zürich 

http://www.asctec.de/index.php?page_id=49&lang=en
http://www.asctec.de/index.php?page_id=49&lang=en
http://www.asctec.de/index.php?page_id=49&lang=en
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(ETHZ) is an interdisciplinary team of graduate students from the Swiss Federal Institute 

of Technology and a Computer Vision and Geometry Lab. They have developed Pixhawk 

autopilot software and hardware as well as different interfaces for the Gumstix board, 

QGround Control software, MAVCONN aerial middleware. Their main area of research 

includes vision-guided flight and recognition of natural features using the FAST detector 

and sometimes using as many as four cameras on a single aircraft (Naduvilakandy, 2016). 

Most of the research performed for quadrotor type UAVs falls in one of three 

main areas: effective control architecture design for stabilization and navigation, fault 

tolerance techniques to increase reliability and safety on unmanned missions, and vision-

based algorithms for alternative autonomous navigation capabilities. The main concepts 

and principles behind these three research areas are presented in this section.  

1.1.1. Linear & Non-linear Control Architectures for Quadrotor 

Stabilization 

Over the last decade, various control methodologies have been proposed to 

investigate the attitude control problem of UAVs (Wang, Man, Cao, & Zheng, 2016). 

Classical linear control techniques and non-linear control algorithms have been designed 

for attitude and position control (Younes, Drak, Noura, Rabhi & El Hajjaji, 2016). Within 

the linear control architectures, cascade PID feedback control and the Linear Quadratic 

Regulator (LQR) are some of the most successful techniques that have been 

implemented. In general, quadcopter type UAVs are treated as multiple input and 

multiple output (MIMO) systems. They present under actuated characteristics and they 

could normally adopt one of two configurations: plus or cross configuration. This type of 

vehicles are normally modelled as a 6-DOF system with coupling of rotational and 
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translational dynamics (Wang, Man, Cao, & Zheng, 2016). 

Linearization of a highly nonlinear model degrades the controller performance, 

and in such a situation, the linear control algorithms fail to control the vehicle at certain 

points of the flight envelope where the vehicle is not close to a linear region. This has 

been the reason for the development of alternative algorithms to control quadrotors using 

nonlinear control techniques.  

 

Cascade PID Feedback Control 

Cascade control is a multi-loop control structure that is mostly used on industrial 

processes implemented to improve the disturbance rejection properties of the controlled 

system (Marlin, 2000) (Seborg, Edgar & Mellichamp, 2004). A cascade PID feedback 

controller can also be used to separate the fast and slow dynamics of the process resulting 

in a nested loop configuration (Alfaro, Vilanova & Arrieta, 2009). This is achieved by 

adding a new sensor which can provide state feedback for that additional control loop. 

Figure 1 presents a cascade control architecture. The idea of a cascade control 

architecture considers that the disturbances affecting the fast secondary loop are 

compensated before they affect the main process output. This is only possible if the inner 

loop exhibits faster dynamics which allow for early compensation (Alfaro, Vilanova & 

Arrieta, 2009). In (Wang, Man, Cao, & Zheng, 2016), strong robustness against external 

disturbances of a cascade PID control architecture is determined using simulation results.   
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Linear Quadratic Regulator Architecture 

The theory of optimal control is concerned with operating a dynamic system at 

minimum cost. Most LQR architectures used in control systems of quadrotor type UAVs 

are designed for attitude stabilization. In this context LQR is used as the solution of an 

optimization problem for linear systems with a quadratic performance index. In (Esteves, 

Moutinho, Azinheira, 2015), (Younes, Drak, Noura, Rabhi & El Hajjaji, 2016) and (Lan, 

Fei, Geng & Hu, xx) LQR architectures are used for attitude and altitude control of 

quadrotors. Simulation results have shown that an LQR architecture has superior 

performance compared to a classical PD architecture in terms of transient response (Lan, 

Fei, Geng & Hu, xx). 

 

Backstepping Architecture 

Backstepping control is a popular nonlinear control architecture that has been 

integrated within many different control techniques to solve the attitude control of 

quadrotor vehicles. The backstepping technique is a recursive design methodology which 

uses Lyapunov stability theory to force certain nonlinear systems to follow a desired 

trajectory (Lan, Fei, Geng & Hu, xx), (Harkegard, 2011). However, these nonlinear 

 

 

Figure 1 Cascade control configuration (Alfaro, Vilanova, Arrieta, 2009). 
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systems require some properties in order to be better handled by this control technique. 

Feedback from nonlinear systems and systems with nonlinear inputs is desirable to derive 

results using backstepping. The backstepping idea relies on letting certain states of the 

system act as “virtual controls” of other states.  This idea is usually used in cascade 

control design and singular perturbation (Harkegard, 2011). In (Lan, Fei, Geng & Hu, 

xx), simulation results have shown that a backstepping law has better performance in 

terms of transient response and tracking response when applied to attitude control of a 

multirotor. Similarly, (Harkegard, 2011) evaluates a backstepping control architecture 

with respect to five major areas: stability, tuning, robustness, input saturation, and 

disturbance attenuation when used for a flight control of a UAV. Simulation results have 

shown that a backstepping technique improves the performance with respect to stability, 

tuning process, robustness and input saturation. However, the performance regarding 

disturbance attenuation has not been determined.  

 

Sliding Mode Architecture 

Sliding mode control is a variable structure control algorithm. It includes many 

different continuous functions that map the plant state to a control surface. The switching 

among these functions is determined by the plant state which is represented by a 

switching function (Zeghlache, xx). Sliding mode architecture has been used to design 

robust nonlinear controllers for attitude stabilization and trajectory control. Attitude and 

trajectory control using a sliding mode control approach are studied in (Zeghlache, xx) 

for a 6 DOF quadrotor. Both efforts have shown that such architecture is capable of 

successfully dealing with problems such as: under actuation, strong coupling and multi-
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input/ multi-output.    

1.1.2. Artificial Immune System  

AIS is a vigorous field of research which investigates how immuno-biology can 

assist in technology, and along the way is beginning to help biologists understand their 

unique problems (Nicosia, Cutello, Bentley & Timmis, 2004). Many computer science 

techniques have been inspired from the working principles of immune systems to solve 

engineering problems in different areas of research such as machine learning, computer 

security, data mining, pattern recognition and anomaly detection (Nicosia, Cutello, 

Bentley & Timmis, 2004). Before further analyzing the artificial version of an immune 

system, a basic knowledge of the working principles of a biological immune systems 

would help appreciate the intelligence embedded within this system and should clarify 

the benefits behind the AIS approach. The human immune system on its own is an 

extremely effective system that can identify abnormal activities, solve the problem using 

existing knowledge, and generate new solutions for unseen events (Ko, Lau, & Lau, 

2014). The human immune system consists of two subsystems: the innate immune system 

and the acquired or adaptive immune system. 

 

Innate Immune System: It is formed by all the elements that are always present within 

the immune system, ready to fight against foreign virus action. Some of these elements 

include: the mucous membranes, the cough reflex and skin. In the same way, internal 

processes such as fever, interferons, macrophages and substances released by leukocytes 

help to nullify the effect of foreign viruses (Playfair J.H.L., Chain B.M., 2011). 
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Acquired Immune System: It is an aid to the innate system and works in parallel with it. 

The main recognition and reaction functions of the immune response are performed by T- 

lymphocytes (T-cells) and B-lymphocytes (B-cells) which exhibit specialization towards 

any antigen or virus. A process called Humoral immunity consists of the synthesis and 

secretion of antibodies to the bloodstream and is performed by the B-cells. In contrast, 

the T-cells seek out invaders to destroy. In addition, T-cells help B-cells to make 

antibodies and activate macrophages to eat foreign matter. The process performed by T-

cells is called Cellular Immunity.  

Within the AIS paradigm, different principles have been modeled in order to be emulated 

and directed to different applications. Some of the main models that have been developed 

are: Discrimination, the negative selection algorithm, Clonal Selection principle, Immune 

network, and Immunological memory. (Nicosia, Cutello, Bentley & Timmis, 2004).  

 

Discrimination: One of the most important functions of the immune system is to 

discriminate Non-Self Cells from Self Cells. Non-self Cells are external elements that 

harm the system, often called antigens. On the other hand, Self cells are cells that work 

inside human bodies and do not have harmful effects against the body. The distinction 

process and antigen detection is performed by B-cells and T-cells which allow the 

immune system to fight against harmful viruses and keep the self cells.  

 

Negative Selection: The negative selection algorithm is based on the principles of self-

non-self discrimination in the immune system (Dasgupta, Krishna, Wong & Berry, 2004). 

During the maturation of T-cells, inside the thymus gland, if a T-cell in the thymus 
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recognizes any self cell, it is eliminated before deploying it for immune functionality. 

Only the T-cells that do not react with the self-patterns are free to proliferate and bind to 

any antigens (bacterial, virus, etc.) for destruction. The negative selection algorithm 

generates detectors set by eliminating any detector candidate that match elements from a 

group of self samples (Dasgupta, 2006). 

 

Clonal Selection Principle: This theory holds that each B-cell produces antibodies that 

fit only one specific type of antigen, called its “cognate” antigen. B-cells proliferate to 

clone many copies of itself only after the specific B-cell binds with its cognate. The 

recently cloned cells become plasma B-cells which continue to produce and export huge 

quantities of antibodies (Ko, Lau, & Lau, 2014). 

 

Immune Network: This theory was proposed by Jerne in the seventies and explains how 

B-cells survive even in the absence of antigenic stimulus. It suggested that B-cell 

memory was maintained via Idiotypic network (Bentley & Timmis, 2004). It is based on 

the assumption that B-cells can, in addition to being able to recognize antigens, recognize 

each other through interactions of idiotopes. This allows for the formation of a network 

structure of stimulating and suppressing signals which propagate through the network, 

boosting or decaying the concentration of a particular B-cell (Mohr, Ryan & Timmis, 

2014). 

 

Immunological memory: After B and T-cells have specialized and been able to 

proliferate to generate clones and destroy antigens, most of these cells eventually die. 
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However, some of them remain untouched to pass on their knowledge of the antigen. 

These cells are usually called Memory cells and they are much easier to activate than 

“naïve” cells (Ko, Lau, & Lau, 2014).  

1.1.3. AIS as a Solution of the Failure Detection Problem  

In recent years, the development of fault tolerant flight controls emerged as a new 

methodology to increase safety and enhance performance not only for large scale aircraft 

but also small scale UAVs. Safety has been considered one of the main concerns of the 

Federal Aviation Administration (FAA) towards allowing commercial operations of 

UAVs within US aerospace. In addition, UAVs will face difficult new situations such as 

flight in urban environments where reliability is particularly critical. The poor reliability 

of current unmanned vehicles represents a serious obstacle to their success in demanding 

new flight environments (Drozeski, Saha, Vachtsevanos, 2005).  The Office of the 

Secretary of Defense acknowledges this shortcoming in the UAV Roadmap 2002–2027. 

It determines that the development of self repairing, smart flight control systems is a 

crucial step in the overall advancement of UAV autonomy (Zhang, Chamseddine, 

Rabbath, Gordon, Su, Rakheja, Fulford, Apkarian & Gosselin, 2013). Many different 

approaches have been adopted towards increasing fault tolerant control of UAVs 

including: gain scheduling PID, fuzzy gain scheduling PID, adaptive controls (MRAC), 

sliding mode control, control allocation and relocation and AIS algorithms.  

 

As mentioned before, one of the most promising candidates that has offered a 

solution to the problem of fault detection and identification is the AIS paradigm. Failure 

detection and identification of aircraft over extended areas of the flight envelope presents 



26  

  

a multi-dimensional and highly complex challenge that needs to be addressed by an 

integrated solution (Moguel, 2014). The basic idea of AIS-based FDI is that an abnormal 

condition can be declared when a current configuration of features does not match with 

any set of known normal conditions previously generated through simulation (Perhinschi, 

Moncayo & Al Azzawi, 2013) (Perhinschi, Moncayo, Wilburn, Bartlett, Davis & Karas, 

2011). These features can include pilot inputs, estimated states, sensor readings, control 

law variables and system states. Projections of these features in multiple dimensions 

should be able to fully describe the dynamic behavior of the system within its flight 

envelope. In order to obtain a complete data base with information of the dynamic 

signature of the vehicle, large amounts of data need to be acquired and post processed. 

These data are then used to determine self and non-self hyperspaces depending on the 

dimensionality of the projection. Self and Non self hyperspaces determination are crucial 

for the generation of detector and identifiers. 

 

In general, an AIS-based FDI subsystem is divide into two main processes: post 

processing of flight test or simulated data and online detection and identification. The 

former includes but is not limited to data acquisition, data reduction, detector and 

identifier generation and optimization. This process can be reproduced in a simulation 

environment or through flight test using the actual test-bed. The online FDI process 

includes the development and application of FDI logic. During this process, detectors are 

compared against sets of current values of identifiers measured in flight at a certain 

sampling rate. At each sample, a binary output (i.e. 0 for normal or 1 for abnormal) 

determines if the current values are inside a detector (abnormal condition) or outside a 
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detector (normal condition). The FDIE scheme utilizes sets of output values over moving 

time windows, reducing the number of false alarms (Moguel, 2014). 

 

 In (Moguel, 2014), the author shows simulation and experimental results of an 

AIS-based FDIE using a hierarchical multi-self strategy that is capable of detecting and 

identifying four different categories of abnormal conditions over extended areas of the 

flight envelope on a fixed wing type UAV. One of the main novelties of this thesis is the 

implementation of an AIS-based fault detection scheme using a multi-self strategy for 

quadrotor type UAVs.  

1.1.4. Vision-based Approach as an Alternative Solution for 

Autonomous Navigation in GPS Denied Environments 

A combination of inertial measuring devices and GPS systems have been 

traditionally utilized in order to effectively estimate the vehicle’s velocity and its position 

in the world. Unfortunately, this sensing method is restricted to places where the 

positioning system signals are available. For this reason, different strategies have been 

proposed in order to successfully develop autonomous navigation algorithms using 

imaging sensors. However, achieving autonomous tasks becomes even more complicated 

if the vehicle operates in GPS denied environments (Garcia, Dzul, Lozano & Pegard, 

2013). According to the different kinds of mission and the environments where the UAVs 

must interact, solutions based on monocular vision, stereo vision and even multiple views 

have been researched in recent years. Some of the latest findings in this area of research 

are presented here. 
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A visual-based position control called Visual Servoing is studied in (Saripalli, 

Sukhatme, Mejias & Campoy Cervera, 2005) (Guenard, Hamel & Mahony, 2008). In 

(Saripalli, Sukhatme, Mejias & Campoy Cervera, 2005) the vision system is designed for 

target detection and a fusion between vision and GPS measurements allowed the 

autonomous navigation. A relationship between the image-based task and the actuators is 

needed in order to accomplish UAV navigation. In (Guenard, Hamel & Mahony, 2008) 

the desired position of a quadrotor is deduced by using a specific position configuration 

of an on-ground target formed by four black circles. In (Proctor, Johnson & Apker, 2006) 

the authors used monocular imaging sensors to develop a vision-based navigation control 

system for a glider. The main contribution of this work is that this algorithm does not 

depend on inertial sensors for state estimation. (Garcia, Dzul, Lozano & Pegard, 2013).  

A Kalman filter, which estimates attitude angles, is designed to use information of an 

artificial target located in the image plane. The implementation of this idea is successful 

due to the stable nature of a fixed wing type UAV. Similar results are not possible if 

applied to a quadrotor UAV. Similarly, a vision system which allows autonomous 

navigation and object tracking is presented in (Ludington, Johnson & Vachtsevanous, 

2007). This work presents implementation results of a Kalman filter, performing a fusion 

between inertial measurements and vision readings, programmed on a Pentium III PC 

that is installed in a helicopter vehicle.  

The algorithms previously mentioned have an ideal applicability for autonomous 

landing or constant hover missions where object tracking is enough to accomplish most 

of this objectives. However, SLAM algorithms and visual-based odometry (VO) 
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techniques have also been the focus of considerable research. The idea behind these 

techniques is to increase the autonomy level on UAVs by allowing the vehicle to locate 

itself within an unknown environment and navigate through using vision-aided systems. 

At the same time the vehicle should be able to generate a map of the environment in 

which it is interacting. SLAM and VO techniques have been developed using two 

different approaches: single-camera vision systems and stereo vision systems. Single–

camera vision systems require simplifications to the system by adopting different 

assumptions. On the other hand, stereo-vision approaches provide a more complete 

solution to the SLAM and VO problems by allowing a three dimensional analysis of the 

UAV motion at all times. This approach emulates the three-dimensional reconstruction 

process carried out by animals, birds and humans. Furthermore, the use of more views 

might be used in order to improve position estimation; however, weight constraints might 

be analyzed at the time of implementing such techniques. 

 

A SLAM algorithm for localization of a quadrotor type UAV using a monocular 

camera is presented in (Blosch, Weiss, Scaramuzza & Siegwart, 2010). The camera pose 

estimation is used to stabilize the vehicle at a desired set point. In this way, maneuvers of 

take-off, hovering and landing are performed while building a map of the region 

travelled. On the other hand, (Achtelik, Bachrach, He, Prentice & Roy, 2009) presents 

results of an OV and SLAM algorithm used to estimate the relative displacement of the 

vehicle. The relative displacement of the vehicle is estimated using a double integration 

of the pose of a stereo-rig. A SLAM technique is used in this research to compensate for 
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position drift.  

The main focus in this thesis is the study of optical flow techniques in the 

development of autonomous navigation systems for a quadrotor type UAV. Optical flow 

sensors have been successfully implemented to safely navigate UAVs through outdoor 

and indoor environments. However, many constraints have to be considered when 

implementing this technique: altitude, minimum lightning conditions and different type 

of terrains and features.  

Optical flow algorithms are generally used to represent the motion of the objects 

as they appear in a sequence of images. This motion field is described by assigning to 

every point in the visual field a two-dimensional instantaneous velocity vector (Quelin, 

2011). The movement of brightness patterns in a sequence of images can be used to 

estimate a velocity vector. Comparison of grey levels and intensities or features found in 

one image are usually used to match with a feature in the following image. Furthermore, 

many assumptions need to be considered in order to formulate optical flow principles. 

This algorithms assume that the appearance of a scene does not change considerably 

between frames; hence, smooth changes between scenes are ideal. Also, it is assumed that 

each scene contains mainly smooth surfaces which move rigidly or distort smoothly. In 

addition to that, movement between frames is assumed to be small compared to the size 

of the image which leads to small optic flow vectors for a pair of images (Chhaniyara, 

2008). In this research, an optical flow camera is arranged perpendicular to the direction 

of motion which is favorable for velocity estimation on low speeds applications; 

however, flying at higher altitudes allows the camera to capture higher speeds if needed.  



31  

  

This thesis document is organized as follows: Chapter 1 presents a literature review of 

the topics addressed on this thesis. A brief description of the hardware and software 

utilized for the implementation stages of this thesis is presented in Chapter 2.  Chapter 3 

describes the dynamic model of the quadrotor UAV derived using a classical Newtonian 

approach and the NLDI control architecture. Chapter 4 presents the AIS architecture used 

to enable actuator-fault detection and health monitoring capabilities. The vision–based 

approach and EKF design used for autonomous navigation under GPS denied 

environments are presented in Chapter 5. Conclusions and recommendations for future 

work are provided in Chapters 6 and 7.  

 

The research effort presented in this thesis has resulted in the publication and 

submission of: 

Garcia D. F., Moncayo H., Perez A., Jain C., (2016) “Low Cost Implementation of a 

Biomimetic Approach for UAV Health Management”. American Control 

Conference ACC 2016.  

 

Garcia D. F., Perez A. E., Moncayo H., Rivera K., DuPuis M, Robert, Mueller P., 

(2017). “Spacecraft Heath Monitoring Using a Biomimetic Fault Diagnosis 

Scheme”. AIAA Conference, Grapevine, Texas. 

 
Journal under Revision 

 

Garcia D. F., Perez A. E., Moncayo H., Rivera K., DuPuis M, Robert, Mueller P., 

(2017). “Spacecraft Heath Monitoring Using a Biomimetic Fault Diagnosis 

Scheme”. On progress to be submitted to the AIAA (Journal of Aerospace 

Information Systems (JAIS). 
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2. Quadcopter UAV Research Test-bed 

The testbed used for all implementation purposes of this thesis is a 3DR X8 frame 

quadcopter. This low-cost testbed meets minimum requirements needed to implement all 

the algorithms proposed in this thesis. This testbed has been used for multiple projects 

and the eight motors “X8” configuration is adopted in order to obtain extra lift 

capabilities. Figure 2 shows a close view of the testbed with the instrumentation onboard 

the vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main dimensions and mass properties of this vehicle used within the simulation 

environment, are presented in the following table:  

 

Table 1 Main properties of the testbed (3DR X8). 

Items Dimensions  

Total Weight  2310 gr 

Thrust Arm - Roll 23.5 cm 

Thrust Arm - Pitch 15.56 cm 

IXX 0.0179 kg*m2 

IYY 0.0184 kg*m2 

IZZ 0.0312 kg*m2 

Figure 2 3DR X8 Quadcopter Testbed with 

instrumentation 
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2.1 Hardware Description 

The 3DR X8 quadcopter testbed requires a microcontroller, known as an onboard 

computer, in order to stabilize the system and allow for stable hover flight. For the 

purposes of this research a “Pixhawk Autopilot” board is used to test all the algorithms 

that require autonomous and manual flight routines. This low cost board is compatible 

with a series of analog and digital sensors that provide essential states   utilized for 

feedback stabilization control loops as well as autonomous navigation control loops (GPS 

and optical flow sensor). Features and variables needed for generation of self clusters and 

non-self clusters for AIS detection scheme are also obtained through this autopilot.  

2.1.1 Pixhawk Autopilot 

This autopilot board is designed by an open hardware development team from 

The Computer Vision and Geometry Lab of ETH Zurich  in collaboration with 3D 

Robotics and ArduPilot Group. This autopilot module uses a 168 MHz Cortex M4F CPU 

(256 KB RAM, 2MB Flash) which runs a very efficient real-time operating system 

(RTOS), which provides for better performance of flight control and vehicle management 

applications. It has 14 PWM/servo outputs and abundant connectivity options for 

additional peripherals (UART, I2C, and CAN). 

 

 

 

 

 

 

 

 
Figure 3 Pixhawk Autopilot board. 

http://cvg.ethz.ch/
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2.1.2 InvenSense MPU 6000 6-axis Accelerometer+Gyroscope 

The MPU 6000 Inertial sensor is featured with a 3-axis gyroscope and a 3-axis 

accelerometer inside a housing of 4x4x0.0 mm. 

 

 

 

 

 

 

 

 

 

2.1.3 ST Micro LSM303D 14 bit Accelerometer / Magnetometer 

The LSM303D is a system-in-package featuring a 3D digital linear acceleration 

sensor and a 3D digital magnetic sensor. It includes an I2C serial bus interface that 

supports standard and fast mode (100Hz and 400 Hz) and SPI serial standard interface. 

2.1.4 ST Micro L3GD20H 16 bit Gyroscope 

The L3GD20H is a low-power three-axis angular rate sensor that includes a 

sensing element and an IC interface able to provide the measured angular rate to the 

external world through digital interface I2C/SPI). It also has a full scale of +/- 245, +/- 

500, +/- 2000 degrees per second and is capable of measuring rates at different 

bandwidths. 

2.1.5 UBLOX LEA-6H GPS Receiver Module with Antenna 

This GPS module incorporates the HMC5883L digital compass, providing a 

convenient method of mounting the compass away from sources of interference that may 

Figure 4 MPU 6000 
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be present in the confines of the vehicle especially at the brushless AC motors. It features 

a u-blox LEA-6H GPS module, with a 5 Hz update rate and a low noise 3.3V regulator. 

The full module dimensions are: 38 x 38 x 8.5 mm and weight 16.8 gr. 

 

 

 

 

 

 

 

 

 

2.1.6 LightWare SF11/C (120 meter) 

The SF11/C is a compact, lightweight laser altimeter for above-ground-level 

measurement from small fixed wing or multi-rotor craft.  The SF11/C laser altimeter 

makes accurate distance measurements to solid surfaces up to an altitude of 120 meters 

and water up to 40 meters. It includes digital (serial and I2C) and analog (12bit) outputs 

along with a micro USB configuration port. Its dimensions are 30 x 56.5 x 50 mm and 

weights 35 gr. 

 

 

 

 

 

 

2.1.7 Px4Flow Smart Camera 

The Px4Flow smart camera is essentially an optical flow sensor. It has a 

resolution of 752 x 480 pixels and calculates optical flow on a 4x binned and cropped 

area at 400 Hz. It is designed to work indoors as well as outdoors along low light 

Figure 5 3DR GPS with compass module 

Figure 6 SF11/C Laser Range Finder 
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condition environments without the need of an artificial source of light. It uses a 168 

MHz Cortex M4F CPU (128 + 64 KB RAM), a 752×480 MT9V034 image sensor, a 16 

mm M12 lens and is featured with a L3GD20 3D Gyroscope. Its overall dimensions are: 

45.5 mm x 35 mm. 

 

 

 

 

 

2.1.8 A 20 amp Electronic Speed Controller (ESC) with Simonk 

Firmware 

This ESC can be used with 2-4 cell LiPo batteries and it provides a continuous 

current of 20 Amp and a burst current of 25 amp for 10 seconds. It has a voltage regulator 

at 5V and 2amp. It is designed to support a motor speed of 210000 RPM (Max) with (2 

poles), 70000 RPM with (6 poles), and 35000 RPM with (12 poles). It weighs 21 gr. 

 

 

 

 

 

 

 

 

2.1.9 Motor 850 Kv AC 2830 – 358 

This electric AC brushless motor is designed to develop 850 RPM/V [Kv]. Its 

overall dimensions are 28 x 30 mm with a shaft of 3.17mm and total weight of 62 gr. Its 

Figure 8. 20 amp ESC 

Figure 7 Optical Flow sensor Px4Flow 
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best performance is featured for 10×47 propellers and it requires 2-4 cells LiPo batteries.  

 

 

 

 

 

 

 

 

2.1.10 APC 10x4.7 SF Plastic Propellers 

Its overall dimensions are: diameter 10 inches and geometric pitch 4.7 inches. 

 

 

 

 

 

 

 

 

 

2.1.11 4S Lipo Battery 

This power module is featured with 4 cells and a nominal voltage of 14.8 V. The 

discharge rate is rated at 5000 mAh and its overall dimensions are: 136 x 43 x 32 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Electric AC brushless motor 

Figure 10 APC plastic propeller 

Figure 11 4S Lipo battery 
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2.2 Software Description 

2.2.1 Matlab/Simulink Simulation Environment 

A 6-DOF dynamic model of a quadrotor is designed within Simulink in order to 

design and test the baseline NLDI controller. This simulation environment has an 

interface with Flight Gear software used to display attitude and position of the simulated 

vehicle at all times. These capabilities allow the user to have a better visualization of the 

controller performance and can be used as a tool for debugging purposes. In addition to 

the design of a baseline inner controller, this environment can be used to design the outer 

loop controller for autonomous navigation. An accurate simulation of the dynamic 

vehicle not only provides a tool for designing and simulating new control algorithms, it 

also provides a safe starting point for the tuning process during implementation stage. 

Implementation of all the algorithms discussed throughout this thesis is possible by 

deploying the Simulink codes into the Pixhawk Autopilot board. This process is 

performed through Simulink software and the Embedded Coder tool.  

2.2.2 Support Package for Pixhawk Autopilot 

The Pixhawk support package from Matlab/Simulink allows the user to read 

several sensors featured for Pixhawk Autopilot including those embedded inside this 

board. It includes some libraries that allow the user to interact with inertial 

measurements, GPS, vehicle estimation, light emitting diode (LED), PWM output and 

serial Rx/Tx for communication purposes. In addition, it provides capabilities to log and 

record flight data from sensors, actuators, or any control signal created within the 

Simulink environment. This capability is essential during the implementation stage since 
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it allows the user to save flight test data used for post-flight analysis and redesign 

purposes. A specific Simulink code must be developed for implementation purposes in 

order to allow for stable flight of the quadrotor. This Simulink code integrates parts from 

the NLDI baseline controller simulation, blocks for reading required sensors, blocks for 

reading pilot input commands and blocks for sending PWM signals to the electronic 

speed controllers that go into the electric motors. The embedder coder tool is designed to 

translate Simulink code into a readable, compact, and fast C and C++ code for use on 

embedded processors, on-target rapid prototyping boards, and microprocessors. This 

feature allows Simulink codes to be loaded into the autopilot board. Figure 12 shows 

some of the blocks from the Pixhawk Support package library used for implementation 

purposes (Pixhawk Support Package User Guide from Mathworks, 2017). 

Figure 12 Sample blocks from Pixhawk Support package library 
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2.3 Flight testing field (Daytona Beach Radio Control Association)          

The flight tests necessary to gather the data and results presented in this research 

effort were performed at the Daytona Beach Radio Control Association field (DBRCA). 

Figure 13 shows a top view of the actual field. The designated area for multirotor testing 

is identified with a red “X” in figure 13. The RC field elevation is about 46 feet above sea 

level and the overall area is around 1500 square feet. Its latitude and longitude 

coordinates are respectively: 29° 6' 34.2612" and 81° 5' 14.4846". The open field presents 

suitable conditions for flight tests designed for tuning inner and outer loop controllers. It 

allows enough space for sudden recoveries during emergency situations. Furthermore, 

this field meets the minimum safety requirements to perform the required autonomous 

missions using the GPS sensor module and the optical flow sensor. 

 

 

Figure 13 Daytona Beach RC Association Field 
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3. Non-linear Dynamic Inversion Control Architecture 

3.1 Vehicle Dynamic Modeling 

The full dynamic model of the quadrotor consists of three main parts: the 

propulsion system model, the 6-DOF model of the quadrotor and the sensors model. The 

propulsion system produces the required forces and moments that will drive the quadrotor 

to a desired attitude and position. These forces and moments depend on parameters, such 

as diameter of the propeller, propeller pitch, velocity of the propeller and atmosphere 

density. For simplicity, the forces and torques of the propellers are assumed to be 

proportional to the square of the angular velocity (Das, Subbarao & Lewis, 2008). 

𝐹 = 𝑘𝑓 𝑛
2                        (2.1) 

        𝜁 = 𝑘𝑀 𝑛2                                          (2.2) 

fk  and Mk  are force and moments coefficients, respectively; and 𝑛 is the angular 

velocity. The vehicle chosen for all implementation purposes in this thesis is an X8 

quadrotor with four arms and two actuators per arm. A cross configuration is chosen as a 

reference, but plus type configurations will work in a similar fashion. Since the 

revolutions per seconds (rps) on each motor can be controlled independently, the total 

sum of forces, moments, and torques can be expressed in the following matrix form: 

[

𝑇
𝑀𝑋

𝑀𝑌

𝑀𝑍

] =

[
 
 
 

𝑘𝑓 𝑘𝑓 𝑘𝑓 𝑘𝑓

𝑘𝑓 𝐿1 𝑘𝑓 𝐿1 −𝑘𝑓 𝐿1 −𝑘𝑓 𝐿1

𝑘𝑓 𝐿2 𝑘𝑓 𝐿2 𝑘𝑓 𝐿2 𝑘𝑓 𝐿2

−𝑘𝑀 𝑘𝑀 𝑘𝑀 −𝑘𝑀

   

𝑘𝑓 𝑘𝑓 𝑘𝑓 𝑘𝑓

−𝑘𝑓 𝐿1 −𝑘𝑓 𝐿1 𝑘𝑓 𝐿1 𝑘𝑓 𝐿1

−𝑘𝑓 𝐿2 −𝑘𝑓 𝐿2 −𝑘𝑓 𝐿2 −𝑘𝑓 𝐿2

−𝑘𝑀 𝑘𝑀 𝑘𝑀 −𝑘𝑀 ]
 
 
 

[
 
 
 
 
 
 
 
𝑛1

𝑛1∗

𝑛2
𝑛2∗

𝑛3
𝑛3∗
𝑛4

𝑛4∗]
 
 
 
 
 
 
 

                       

(2.3) 

𝑇 is the total thrust of the system, 𝑀𝑋 is the total rolling moment, 𝑀𝑌 is the total pitching 
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moment, and 𝑀𝑧 is the total yawing moment. 𝐿1 represents the perpendicular distance 

between body X-axis and the motors y-position. Similarly, 𝐿2 represents the perpendicular 

distance between body y-axis and the motors x-position. In order to obtain the required 

rps for each of the four motors, the previous matrix system needs to be inverted as 

follows: 

 𝑛1
2 =

𝑇

8 𝑘𝑓
+

𝑀𝑋

8 𝑘𝑓 𝐿1
+

𝑀𝑌

8 𝑘𝑓 𝐿2
−

𝑀𝑍

8 𝑘𝑀
                             (2.4) 

 𝑛1∗
2 =

𝑇

8 𝑘𝑓
+

𝑀𝑋

8 𝑘𝑓 𝐿1
+

𝑀𝑌

8 𝑘𝑓 𝐿2
+

𝑀𝑍

8 𝑘𝑀
                         (2.5) 

𝑛2
2 =

𝑇

8 𝑘𝑓
−

𝑀𝑋

8 𝑘𝑓 𝐿1
+

𝑀𝑌

8 𝑘𝑓 𝐿2
+

𝑀𝑍

8 𝑘𝑀
                            (2.6) 

𝑛2∗
2 =

𝑇

8 𝑘𝑓
−

𝑀𝑋

8 𝑘𝑓 𝐿1
+

𝑀𝑌

8 𝑘𝑓 𝐿2
−

𝑀𝑍

8 𝑘𝑀
                                  (2.7) 

 𝑛3
2 =

𝑇

8 𝑘𝑓
−

𝑀𝑋

8 𝑘𝑓 𝐿1
−

𝑀𝑌

8 𝑘𝑓 𝐿2
−

𝑀𝑍

8 𝑘𝑀
                             (2.8) 

 𝑛3∗
2 =

𝑇

8 𝑘𝑓
−

𝑀𝑋

8 𝑘𝑓 𝐿1
−

𝑀𝑌

8 𝑘𝑓 𝐿2
+

𝑀𝑍

8 𝑘𝑀
                          (2.9) 

𝑛4
2 =

𝑇

8 𝑘𝑓
+

𝑀𝑋

8 𝑘𝑓 𝐿1
−

𝑀𝑌

8 𝑘𝑓 𝐿2
+

𝑀𝑍

8 𝑘𝑀
                                (2.10) 

𝑛4∗
2 =

𝑇

8 𝑘𝑓
+

𝑀𝑋

8 𝑘𝑓 𝐿1
−

𝑀𝑌

8 𝑘𝑓 𝐿2
−

𝑀𝑍

8 𝑘𝑀
                                (2.11) 

  

Equations 2.4 through 2.11 will be required to derive the control laws using the dynamic 

inversion approach. 

 Experimental tests are performed to characterize the propulsion system of the 

vehicle. Data from the tests are used to find an accurate relation between motors rps, 

thrust, torque, and pulse width modulation signals (PWM). The propulsion system, direct 

current (DC) motor and propeller, is characterized using a counter-torque setup. As a 

result of this characterization, the mean values for thrust, torque and rps are determined 
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against PWM signals. Figure 14 and Figure 15 show an example of mean thrust and rps 

for different values of PWMs.  

 

The equations of motion that describe the dynamics of the vehicle are developed using 

a Newtonian approach. The general dynamics of a rigid body under external forces and 

moments with respect to its center of gravity in the body reference frame can be written 

as (Wang, He, Zhang & He, 2013): 

Force equations:    𝑚
𝑑𝑉𝑏

𝑑𝑡
+ 𝝎𝑏 × 𝑚 𝑉𝑏 = �⃑�                 (2.12) 

Moment equations:      𝐽
𝑑𝝎𝑏

𝑑𝑡
+ 𝝎𝑏 × 𝐽𝝎𝑏 = �⃑⃑⃑�            (2.13) 

where  𝑉𝑏 =  [ 𝑢 𝑣 𝑤]𝑇 is the relative linear velocity of the center of mass of the rigid 

body with respect to an inertial frame and 𝝎𝑏 = [ 𝑝 𝑞 𝑟]𝑇 represents angular velocity in 

the body frame with respect to the inertial reference frame. Consequently expanding Eq. 

(2.12) yields: 

[

∑𝐹𝑥

∑𝐹𝑦

∑𝐹𝑧

] = 𝑚 ([
�̇�
�̇�
�̇�

] + [
𝑝
𝑞
𝑟
] × [

𝑢
𝑣
𝑤

]) = 𝑚 [ 

�̇� + 𝑞𝑤 − 𝑟𝑣
�̇� + 𝑟𝑢 − 𝑝𝑤
�̇� + 𝑝𝑣 − 𝑞𝑢

]                (2.14) 

  

Figure 14  Mean Thrust vs PWM Figure 15  Mean rps vs PWM 
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Since 𝐹𝑋 = 0, 𝐹𝑌 = 0 and 𝐹𝑍 = −𝑇, we can rewrite Eq. (2.12) as (including the 

gravitational force), 

  [
�̇�
�̇�
�̇�

] = − [

𝑞𝑤 − 𝑟𝑣
𝑟𝑢 − 𝑝𝑤
𝑝𝑣 − 𝑞𝑢

] +
1

𝑚
[

0
0

−𝑇
] + [

−𝑔 𝑠𝑖𝑛Ѳ
𝑔 𝑐𝑜𝑠Ѳ 𝑠𝑖𝑛∅
𝑔 𝑐𝑜𝑠Ѳ 𝑐𝑜𝑠∅

]                          (2.15) 

In Eq. (2.15), [𝑢 𝑣 𝑤] and [𝑝 𝑞 𝑟] represent linear velocities and angular rates in body 

reference frames, respectively. 𝑚 is the mass of the quadrotor. ∅ and  Ѳ represent roll 

angle and pitch angle between body and earth reference frames.  

In the moment equation Eq. (2.13),  𝐽 represents the inertia tensor of the rigid body and 

�⃑⃑⃑� represents the external sum of all the moments in body reference frame. In general, 

quadrotors present the following inertia tensor due to symmetrical characteristics. 

𝐽 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑦𝑦

]                                                (2.16) 

 

𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 represent symmetrical moments of inertia of the quadrotor. Then Eq. (2.13) 

can be expanded as follows: 

[
�̇�
�̇�
�̇�

] = [
𝐼𝑋𝑋 0 0
0 𝐼𝑌𝑌 0
0 0 𝐼𝑍𝑍

]

−1

{− [
𝑝
𝑞
𝑟
] × [

𝐼𝑥𝑥 𝑝
𝐼𝑦𝑦 𝑞

𝐼𝑧𝑧 𝑟
] + [

𝑀𝑥

𝑀𝑦

𝑀𝑧

]}                        (2.17) 

[
�̇�
�̇�
�̇�

] = −

[
 
 
 
 
 
𝑞𝑟(𝐼𝑧𝑧 − 𝐼𝑦𝑦)

𝐼𝑥𝑥
⁄

𝑝𝑟(𝐼𝑥𝑥 − 𝐼𝑧𝑧)
𝐼𝑦𝑦

⁄

𝑝𝑞(𝐼𝑦𝑦 − 𝐼𝑥𝑥)
𝐼𝑧𝑧

⁄ ]
 
 
 
 
 

+

[
 
 
 
 
 
𝑀𝑥

𝐼𝑥𝑥
⁄

𝑀𝑦
𝐼𝑦𝑦

⁄

𝑀𝑧
𝐼𝑧𝑧

⁄ ]
 
 
 
 
 

                              (2.18) 

In order to develop expressions for rotational motion, transformations from body 

reference frame to Earth reference frame are used. To find a relationship between angular 
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rates vector 𝝎 in the body reference frame and the Euler angle rates the following 

rotations are required (Sidi, 1997): 

[
𝑝
𝑞
𝑟
] = 𝑅∅𝑅Ѳ𝑅𝜓 [

0
0
�̇�

] + 𝑅∅𝑅Ѳ [
0
Ѳ̇
0
] + 𝑅∅ [

∅̇
0
0

]                                   (2.19) 

where 𝑅∅𝑅Ѳ𝑅𝜓 are defined as follows: 

𝑅∅ = [
1 0 0
0 𝑐𝑜𝑠∅ 𝑠𝑖𝑛∅
0 −𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅

], 𝑅Ѳ = [
𝑐𝑜𝑠Ѳ 0 −𝑠𝑖𝑛Ѳ

0 1 0
𝑠𝑖𝑛Ѳ 0 𝑐𝑜𝑠Ѳ

], 𝑅𝜓 = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

] (2.20) 

These transformations are usually used to rotate a vector in the fixed Earth (E) 

reference frame to a vector in the body (B) reference frame or vehicle reference frame as 

follows: 

[
𝑖̂
𝑗̂

�̂�

]

𝐵

= 𝑅∅𝑅Ѳ𝑅𝜓 [
𝑖̂
𝑗̂

�̂�

]

𝐸

                                             (2.21) 

Similarly, a rotation from body reference frame to Earth reference frame can be 

obtained by using the transpose of the previous rotations as follows.  

[
𝑖̂
𝑗̂

�̂�

]

𝐸

= (𝑅𝜓)𝑇(𝑅Ѳ)𝑇(𝑅∅)
𝑇 [

𝑖̂
𝑗̂

�̂�

]

𝐵

                                     (2.22) 

This transformation is usually referred in the literature as the Direct Cosine Matrix 

(DCM). It can be expanded as follows: 

𝐷𝐶𝑀𝐵
𝐸 = [

𝑐Ѳ 𝑐𝜓 𝑠∅ 𝑠Ѳ 𝑐𝜓 − 𝑐∅ 𝑠𝜓 𝑐∅ 𝑠Ѳ 𝑐𝜓 + 𝑠∅ 𝑠𝜓
𝑐Ѳ 𝑠𝜓 𝑠∅ 𝑠Ѳ 𝑠𝜓 + 𝑐∅ 𝑐𝜓 𝑐∅ 𝑠Ѳ 𝑠𝜓 − 𝑠∅ 𝑐𝜓
−𝑠Ѳ 𝑠∅ 𝑐Ѳ 𝑐∅𝑐Ѳ

]                     (2.23) 

Eq. (2.13) is expanded as follows after all the matrix multiplications: 

[
𝑝
𝑞
𝑟
] = [

1 0 −𝑠𝑖𝑛Ѳ
0 𝑐𝑜𝑠∅ 𝑠𝑖𝑛∅ 𝑐𝑜𝑠Ѳ
0 −𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅ 𝑐𝑜𝑠Ѳ

] [
∅̇

Ѳ̇
�̇�

]                                     (2.24) 
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The previous equation can be solved for Euler angle rates  [ ∅̇ Ѳ̇ �̇�]𝑇  by calculating 

the inverse of the corresponding matrix which leads to: 

[
∅̇

Ѳ̇
�̇�

] = [

1 𝑠𝑖𝑛∅ 𝑡𝑎𝑛Ѳ 𝑐𝑜𝑠∅ 𝑡𝑎𝑛Ѳ
0 𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅

0 𝑠𝑖𝑛∅
𝑐𝑜𝑠Ѳ⁄ 𝑐𝑜𝑠∅

𝑐𝑜𝑠Ѳ⁄
] [

𝑝
𝑞
𝑟
]                                   (2.25) 

where 𝜓 represents yaw angle in earth reference frame. This set of three equations is 

known as the Kinematic Equations. 

Similarly, translational equations of motion or navigation equations can be 

derived by defining the following relationships between the velocities of the vehicle in 

the body reference frame  𝑉𝑏 and the velocities in the fixed Earth reference frame 

[ �̇� �̇� �̇�]. 

[
�̇�
�̇�
�̇�
] = 𝐷𝐶𝑀 [

𝑢
𝑣
𝑤

]             (2.26) 

Equations (2.15), (2.18), (2.25) and (2.26) form a set twelve non-linear equations that 

describe the quadrotor dynamics. These equations are used within this research as part of 

a simulation environment, to accurately model and simulate the quadrotor dynamics. 

3.2 Dynamic Inversion Control Laws  

The NLDI technique is used as a baseline controller for attitude stabilization of the 

UAV system. The NLDI performance is highly dependent on the accuracy of the 

modeling of the non-linear system. If the model is well characterized, then most of the 

non-linear parameters of the system will be cancelled out during a feedback linearization 

process. The main task of the feedback linearization is to change a non-linear system into 

a traditional linear system. Several classical control techniques can be then used within 
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the new linear system for stabilization purposes.   

  NLDI is applied to the vehicle by inverting the equations of motion that describe 

its dynamics. The general structure for the inner stability controller of the quadrotor is 

separated into two inversion phases: a slow mode and a fast mode. This distinction is 

made based on the response time of the vehicle dynamics. This inner controller requires 

state feedback from angular rates and attitude angles. Angular rates can be measured 

using MEMs gyroscopes while attitude angles are estimated using an EKF. The slow 

mode inversion takes attitude angles [∅ Ѳ 𝜓]𝑇and outputs the desired angular rates 

[𝑝 𝑞 𝑟]𝑇. The fast mode uses the desired angular rates and outputs the required moments 

to stabilize the system. Force required for each pair of motor-propellers can then be 

determined using the moments from the fast mode. As a result, this inner loop dynamic 

inversion controller takes care of the attitude stabilization of the quadrotor. Attitude 

control can be commanded from pilot inputs at this point. Regarding inner controller 

performance, simulation results as well as implementation results from a 3DR X8 

quadcopter are discussed in this section.  

  For autonomous flight, the inner stability controller is augmented with an outer 

controller that provides the desired attitude to the inner controller based on predetermined 

waypoints. The main goal of this outer loop is to allow the quadrotor to change position 

[𝑋 𝑌 𝑍] T autonomously within an earth reference frame. A NLDI architecture can be 

adopted to design this outer loop controller and translational equations of motion need to 

be used for this purpose. In order to accomplish this task, state feedback for positions and 

velocities are required and they can be used directly from a GPS sensor or they can be 

estimated by using vision-based EKF as it will be presented in Chapter 4. Regarding 
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outer controller performance, simulation results using a NLDI architecture are presented 

in this section. However, implementation results for X and Y position control are 

obtained using a cascade PID control architecture for simplicity. Regarding Z position 

control or altitude hold mode flight, implementation results are obtained using the NLDI 

architecture described in this section.    

3.2.1 Inner loop Dynamic Inversion 

A. Slow mode 

 The slow mode outputs angular rates that can be calculated by inverting Eq. 

(2.25). The Kinematic equations in state space form are defined below: 

𝒙�̇� = 𝑔(𝒙)𝟏𝑢𝟏                           (3.1) 

 where, 𝒙�̇� = [∅̇ Ѳ̇ �̇� ]
𝑇
is the state vector of Euler rates and 𝑢𝟏 = [𝑝 𝑞 𝑟]𝑇 can represent 

the desired states. A dynamic inversion control input to invert the slow mode dynamics 

can be expressed as follows:  

𝑢𝟏(𝒙) = [

𝑝𝑫

𝑞𝑫

𝑟𝑫
] = [

1 𝑠𝑖𝑛∅ 𝑡𝑎𝑛Ѳ 𝑐𝑜𝑠∅ 𝑡𝑎𝑛Ѳ
0 𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅

0 𝑠𝑖𝑛∅
𝑐𝑜𝑠Ѳ⁄ 𝑐𝑜𝑠∅

𝑐𝑜𝑠Ѳ⁄
]

−1

[

𝑈∅

𝑈Ѳ

𝑈𝜓

]                        (3.2) 

where, 𝑣(𝒙)𝟏 = [𝑈∅ 𝑈Ѳ 𝑈𝜓 ]
𝑇
 is the pseudo control vector that will stabilize the closed 

loop system. [𝑝𝑫 𝑞𝑫 𝑟𝑫 ]𝑇 is the vector of desired angular rates that will drive the linear 

behavior of the Kinematics. The pseudo control vector 𝑣(𝒙)𝟏 can be determined using a 

linear controller, as follows: 

𝑣(𝒙)𝟏 = [

𝑈∅

𝑈Ѳ

𝑈𝜓

] = [

𝑘∅(∅𝐷 −  ∅) 

𝑘Ѳ(Ѳ𝐷 − Ѳ)
𝑘𝜓(𝜓𝐷 − 𝜓)

]                                (3.3) 
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  The closed loop feedback linearized dynamics of the slow mode can be finally 

written as: 

𝒙�̇� ≅ 𝑣(𝒙)𝟏 → [
∅̇

Ѳ̇
�̇�

] ≅ [

𝑘∅(∅𝐷 −  ∅) 

𝑘Ѳ(Ѳ𝐷 − Ѳ)
𝑘𝜓(𝜓𝐷 − 𝜓)

]                          (3.4) 

B. Fast mode 

  The fast mode utilizes the desired angular rates and outputs the desired moments. Eq. 

(2.18) can be written in state space form as: 

𝒙�̇� = 𝑓(𝒙)𝟐 + 𝑔(𝒙)𝟐𝑢𝟐                                         (3.5) 

where, 𝒙�̇� = [�̇� �̇� �̇� ]𝑇is the state vector of angular accelerations and 𝑢𝟐 =

[𝑀𝑋𝐷 𝑀𝑌𝐷 𝑀𝑍𝐷]𝑇 are the required moments that can be treated as the inputs of the 

system. Functions 𝑓(𝒙)𝟐 and 𝑔(𝒙)𝟐 can be defined as: 

𝑓(𝒙)𝟐  = −

[
 
 
 
 
 
𝑞𝑟(𝐼𝑧𝑧 − 𝐼𝑦𝑦)

𝐼𝑥𝑥
⁄

𝑝𝑟(𝐼𝑥𝑥 − 𝐼𝑧𝑧)
𝐼𝑦𝑦

⁄

𝑝𝑞(𝐼𝑦𝑦 − 𝐼𝑥𝑥)
𝐼𝑧𝑧

⁄ ]
 
 
 
 
 

           (3.6) 

 𝑔(𝒙)𝟐  =

[
 
 
 
 
 
𝑀𝑥

𝐼𝑥𝑥
⁄ 0 0

0
𝑀𝑦

𝐼𝑦𝑦
⁄ 0

0 0
𝑀𝑧

𝐼𝑧𝑧
⁄ ]

 
 
 
 
 

                           (3.7) 

   Based on Eq. (3.2), a dynamic inversion control input that inverts fast mode 

dynamics can be expressed as follows: 

𝑢𝟐(𝒙) = [

𝑀𝑥𝐷

𝑀𝑦𝐷

𝑀𝑧𝐷

] = 𝑔−1(𝒙)2[𝑣(𝒙)2 − 𝑓(𝒙)2]                           (3.8) 

 where, 𝑣(𝒙)𝟐 = [𝑈𝑝 𝑈𝑞 𝑈𝑟 ]
𝑇
 is a fast mode pseudo controller. 
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                     𝑢𝟐(𝒙) = [

𝑀𝑥𝐷

𝑀𝑦𝐷

𝑀𝑧𝐷

] = [

𝑈𝑝 𝐼𝑥𝑥

𝑈𝑞 𝐼𝑦𝑦

𝑈𝑟 𝐼𝑧𝑧

] = [

𝑘𝑝𝜔𝑥
(pD −  p) Ixx 

𝑘𝑝𝜔𝑦
(qD − q) Iyy

𝑘𝑝𝜔𝑧
(rD − r) Izz

]                       (3.9) 

  Differential inertia terms have been left out to ensure zero dynamics while the 

angular velocity error is zero (Wang, He, Zhang & He, 2013). A proportional controller 

can be used as a pseudo controller for the system as follows: 

   x2̇ ≅ v(x)2 → [
ṗ
q̇
ṙ

] ≅ [

𝑘𝑝𝜔𝑥
(pD −  p)

𝑘𝑝𝜔𝑦
(qD − q)

𝑘𝑝𝜔𝑧
(rD − r)

]                  (3.10) 

 After performing the slow mode and fast mode dynamic inversions, the second order 

rotational dynamics of the closed loop system are described in the following system of 

differential equations (Wang, He, Zhang & He, 2013): 

∅̈ = 𝑘𝑝𝜔𝑥
𝑘∅(∅𝐷 −  ∅) − 𝑘𝑝𝜔𝑥

𝜔𝑥  ≅ −2ξ∅ω𝑛∅
∅̇ − ω𝑛∅

2 (∅ − ∅D) 

Ѳ̈ = 𝑘𝑝𝜔𝑦
𝑘Ѳ(Ѳ𝐷 −  Ѳ) − 𝑘𝑝𝜔𝑦

𝜔𝑦  ≅ −2ξѲω𝑛Ѳ
Ѳ̇ − ω𝑛Ѳ

2 (Ѳ − ѲD)          (3.11) 

�̈� = 𝑘𝑝𝜔𝑧
𝑘𝜓(𝜓𝐷 −  𝜓) − 𝑘𝑝𝜔𝑧

𝜔𝑧  ≅ −2ξ𝜓ω𝑛𝜓
�̇� − ω𝑛𝜓

2 (𝜓 − 𝜓D) 

  The proportional gains from Eqs. (3.4) and (3.10) can be calculated according to 

the desired natural frequency and damping of the dynamic system response: 

𝑘∅ =
𝜔𝑛∅

2 𝜉∅
, 𝑘𝑝𝜔𝑥

= 2 𝜉∅ 𝜔𝑛∅
 

𝑘Ѳ =
𝜔𝑛Ѳ

2 𝜉Ѳ
, 𝑘𝑝𝜔𝑦

= 2 𝜉Ѳ 𝜔𝑛Ѳ
                          (3.12) 

𝑘𝜓 =
𝜔𝑛𝜓

2 𝜉𝜓
, 𝑘𝑝𝜔𝑧

= 2ξ𝜓 ω𝑛𝜓
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3.2.2 Outer loop Dynamic Inversion 

The outer loop is designed to allow the vehicle navigate within a three 

dimensional space. For this reason the goal of the outer loop dynamic inversion controller 

is to cancel out the non-linearity in the translational equations that describe the 

translational dynamics of the quadrotor. To apply the feedback linearization we can recall 

equations (2.15) and (2.22). The force equations can be represented in the earth reference 

frame as follows: 

[
ẍ
ÿ
z̈
] = 𝐷𝐶𝑀 [

�̇�
�̇�
�̇�
]                                                (3.13) 

Equation 3.13 can be rewritten as follows: 

�̈� =
−𝐹𝑧

𝑚
(𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜓)                                (3.13) 

 

�̈� =
−𝐹𝑧

𝑚
(−𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓)                            (3.14) 

 

�̈� = 𝑔 −
𝐹𝑧

𝑚
 (𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃)                                          (3.15) 

The inversion of equations (3.13) and (3.14) would output the required attitude 

angles (roll and pitch commands) that are used within the inner loop in order to change 

the quadcopter position. In addition, inversion of equation (3.15) yields to the required 

total thrust that the quadcopter needs to hold for a commanded altitude. The inversion of 

these equations are derived as follows (Ireland, Vargas & Anderson, 2015): 

𝜙𝑑 = −𝑠𝑖𝑛−1 {
𝑚 [(𝑠𝑖𝑛𝜓)𝑢𝑥(𝑥)−(𝑐𝑜𝑠𝜓)𝑢𝑦(𝑥)]

𝐹𝑧𝑑
}                               (3.16) 

 

𝜃𝑑 = −𝑡𝑎𝑛−1 {
𝑚 [(𝑐𝑜𝑠𝜓)𝑢𝑥(𝑥)+(𝑠𝑖𝑛𝜓)𝑢𝑦(𝑥)]

𝐹𝑧𝑑
}                            (3.17) 

𝐹𝑧𝑑 =
𝑚 [𝑢𝑧(𝑥)−𝑔]

𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃
                                            (3.18) 
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where 𝑢𝑥(𝑥), 𝑢𝑦(𝑥) and 𝑢𝑧(𝑥) represent the virtual controllers that in this case are 

designed to produce specific second order closed loop dynamics which would govern 

translational motion in the three dimensional space. Once the feedback linearization is 

performed, the second order dynamics are defined as: 

�̈� = 𝑢𝑥(𝑥) =  −2ξ𝑥ω𝑛𝑥
�̇� − ω𝑛𝑥

2 (𝑥 − 𝑥𝑑) =  −𝐾𝑉𝑥�̇� + 𝐾𝑉𝑥𝐾𝑃𝑥(𝑥𝑑 − 𝑥)  

 
�̈� = 𝑢𝑦(𝑥) =  −2ξ𝑦ω𝑛𝑦

�̇� − ω𝑛𝑦
2 (𝑦 − 𝑦𝑑) =  −𝐾𝑉𝑦�̇� + 𝐾𝑉𝑦𝐾𝑃𝑦(𝑦𝑑 − 𝑦)    (3.19) 

 
�̈� = 𝑢𝑧(𝑥)  − 2ξ𝑧ω𝑛𝑧

�̇� − ω𝑛𝑧
2 (𝑧 − 𝑧𝑑) =  −𝐾𝑉𝑧�̇� + 𝐾𝑉𝑧𝐾𝑃𝑧(𝑧𝑑 − 𝑧) 

 
The outer loop controller gains can be calculated according to the desired natural 

frequency and damping of the dynamic system response: 

𝑘𝑃𝑥 =
ω𝑛𝑥

2 ξ𝑥
, 𝑘𝑝𝑉𝑥

= 2 ξ𝑥 ω𝑛𝑥
 

𝑘𝑃𝑦 =
ω𝑛𝑦

2 ξ𝑦
, 𝑘𝑝𝑉𝑦

= 2 ξ𝑦 ω𝑛𝑦
                          (3.20) 

𝑘𝑃𝑧 =
ω𝑛𝑧

2 ξ𝑧
, 𝑘𝑝𝑉𝑧

= 2 ξ𝑧 ω𝑛𝑧
 

A fully autonomous control architecture can be designed by using the results from 

control allocation equations (2.4) to (2.11), the desired moment equations derived from 

the inner loop dynamic inversion (3.9) and the desired thrust and attitude command 

derived from the outer loop (3.16) to (3.17).  

Figure 16 Control Architecture for fully autonomous flight 
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3.3 Simulation Results 

In this subsection, the simulation environment used to test the previously proposed 

control algorithms is described. This simulation environment is composed of four main 

blocks. The core of this simulation is represented by the dynamic model of a 6 DOF rigid 

body. The twelve non-linear equations of motion that describe a 6 DOF quadrotor 

dynamics system are being solved within this block. A sensor block is being used in this 

environment to model different types of sensors with different noise levels. The next 

block is where the control and state estimation algorithms are developed. Within this 

block, the estimated states are being used for designing the navigation and attitude 

control architectures. Finally, a Flight Gear Interface block is utilized for displaying 

purposes. This simulation environment allows the user to command the quadcopter using 

joystick inputs as well as autonomous navigation mission. 

 

Figure 17 3DR-X8 Quadcopter Simulation Environment developed using 

Matlab/Simulink Software 
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This simulation environment is used to test the inner loop and outer loop 

controllers. Table 2 presents the pseudo controller gains for the inner and outer loop. 

Gains for the inner pseudo controller are estimated using a natural frequency of 10 rad/s 

and a damping ratio of 0.7 (Wang, He, Zhang & He, 2014) for the roll and pitch axis. As 

expected, the yaw axis has a slower response because the pseudo controllers are designed 

for a natural frequency of 5 rad/s and a damping ratio of 0.7. In contrast the outer pseudo 

controller is designed with a natural frequency of 6.3 rad/s and a damping ratio of 0.7. 

Values for natural frequency and damping ratio are chosen based on simulation 

experience. By replacing these parameters in equations 3.12 and 3.20, pseudo controller 

gains can be calculated. 

Table 2 Calculated Baseline Control Gains 

Outer loop (Slow mode) Inner loop (Fast mode) 

Position Velocity Euler Angles Angular rates 

𝑘𝑃𝑥 4.487 𝑘𝑝𝑉𝑥
 8.796 𝑘∅ 7.14 𝑘𝑝𝜔𝑥

 14 

𝑘𝑃𝑦 4.487 𝑘𝑝𝑦 8.796 𝑘Ѳ 7.14 𝑘𝑝𝜔𝑥
 14 

𝑘𝑃𝑧 4.487 𝑘𝑝𝑉𝑧
 8.796 𝑘𝜓 3.57 𝑘𝑝𝜔𝑥

 7 

3.3.1 Autonomous Mission Results 

Figure 18 through Figure 20 present results for tracking response of the inner and 

outer loop controller while the vehicle is performing an autonomous mission of five 

consecutive waypoints. This simulation incorporates a waypoint logic in which the next 

waypoint is targeted only after the vehicle has reached a region inside a circle of 1ft of 

radius from the actual waypoint. In this way, if the vehicle does not reach as close as 1ft 

to the waypoint, it will generate control commands to meet this requirement before the 

logic commands the next waypoint. Figure 20 shows a three dimensional representation 

of the vehicle path. The vehicle is expected to take off, perform a roll maneuver in order 
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to move 15 ft in the Y-axis. Then, it is moves 30 ft in the X axis for which a pitch 

maneuver is required. Finally the quadcopter completes a square trajectory and lands.  

  

  

  

  

Figure 18 Inner loop-Fast mode tracking response for an autonomous mission with 5 

waypoints 
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Figure 19 Inner loop-Slow mode tracking response for an autonomous mission with 5 

waypoints 
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Figure 20 Outer loop tracking response for an autonomous mission with 5 waypoints 

Table 3 Tracking error Simulation results 

 [∅, 𝑝, 𝑉𝑥, 𝑃𝑥]   [Ѳ, 𝑞, 𝑉𝑦, 𝑃𝑦] [𝜓, 𝑟, 𝑉𝑧, 𝑃𝑧] 
Euler Angles 2.1178e-08 1.2137e-09 3.0007e-09 

Angular Rates 1.0264e-05 5.2143e-07 7.0049e-08 

Velocity 2.2834e-05 0.0120196 3.4534e-05 

Position 4.9454e-03 7.3458e-04 2.6285e-06 
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Table 3 shows the tracking error results for the inner and outer control loops obtained 

from the simulated waypoint mission. It can be noticed that the tracking performance for 

Euler angles and angular rates is similar. In addition, the outer loop tracking error results 

follow a similar pattern; therefore, all the specified waypoints are reached by the vehicle 

and the mission is successfully completed. 

3.4 Implementation Results 

The previous controller is implemented on a 3DR quadcopter UAV as discussed 

in Chapter 1. The proposed controller is developed and modified within Matlab/Simulink 

to make it deployable on the Pixhawk Autopilot board. This testbed is equipped with the 

necessary sensor suite in order to provide state feedback that is required for the inner and 

outer loop dynamic inversions. Figure 21 shows results for inner controller tracking 

response during an autonomous flight test with 5 waypoints similar to the one analyzed in 

the simulation section of this thesis. This autonomous flight is achieved by using a GPS 

sensor which is used to obtain the velocity and position of the vehicle at every sample 

time. 
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Figure 21 Inner loop tracking response for an autonomous mission with 5 

waypoints 

 

Table 4 Tracking error for the inner loop at implementation 

 [∅, 𝑝] [Ѳ, 𝑞] [𝜓, 𝑟] 
Euler Angles 0.1692 0.1324 --- 

Angular Rates 0.2539 0.2330 4.4198 

 

Table 4 shows the tracking error results for the inner control loop obtained from 

the implementation waypoint mission. It can be noticed that the tracking errors are higher 

than those obtained for Euler angles and angular rates in the simulation environment. 

This behavior is expected since the simulation only analyzed the ideal scenario without 
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external disturbances such as wind conditions or turbulence effects. As it can be seen, 

there is not a tracking error value for the yaw angle controller. This is a modification 

developed to the implementation code that allows the pilot to command an angular rate 

instead of an angle for the yaw axis. This was implemented for pilot convenience only in 

the yaw axis. 

3.4.1 Attitude Controller Tuning Process 

In order to obtain a desirable behavior of the quadcopter during the 

implementation process, the gains from the inner loop controllers have to undergo a 

tuning process. The gains obtained from simulation cannot be directly implemented into 

the actual quadcopter for two main reasons. Assumptions made in order to simplify the 

dynamic modeling of the vehicle as well as the actuator dynamics model can lead to 

different responses between the simulation environment and the actual quadcopter 

behavior. Simulation gains are adjusted to account for these “un-modeled” dynamics and 

tuned according to the quadcopter behavior and transient response. In addition to this, the 

controller is required to be modified in such a way that control calculations inside the 

onboard computer can be estimated using units of degrees instead of radians. As a result, 

the controllers’ gains are scaled down. This modification is necessary in order to maintain 

a reasonable accuracy level in the calculations inside the onboard computer. Also, the 

range of gains in which the system would perform in a stable condition is increased. In 

this way, the tuning process becomes less demanding. During the tuning process, an 

integral term is included in order to obtain a better quadcopter performance. Table 5 and 

Table 6 show the gains used for the inner and outer loop pseudo controller that run inside 

the on board computer.  
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Table 5 Proportional Gains 

Outer loop  Inner loop  

Position Velocity Euler Angles Angular rates 

𝑘𝑃𝑥 0.5 𝑘𝑝𝑉𝑥
 5.75 𝑘∅ 3.075 𝑘𝑝𝜔𝑥

 0.48 

𝑘𝑃𝑦 0.5 𝑘𝑝𝑦 5.75 𝑘Ѳ 3.075 𝑘𝑝𝜔𝑦
 0.48 

𝑘𝑃𝑧 0.22 𝑘𝑝𝑉𝑧
 0.28 𝑘𝜓 1.3998 𝑘𝑝𝜔𝑧

 0.48 

 

 

Table 6 Integral Gains 

Outer loop  Inner loop  

Position Velocity Euler Angles Angular rates 

𝑘𝑖𝑥 0 𝑘𝑖𝑉𝑥
 0.5 𝑘𝑖∅ 0 𝑘𝑖𝜔𝑥

 0.46 

𝑘𝑖𝑦 0 𝑘𝑖𝑉𝑦 0.5 𝑘𝑖Ѳ 0 𝑘𝑖𝜔𝑦
 0.46 

𝑘𝑖𝑧 0.06 𝑘𝑖𝑉𝑧
 0.28 𝑘𝑖𝜓 0 𝑘𝑖𝜔𝑧

 0.46 

 

In addition, Figure 22 shows results for outer controller tracking response during 

an autonomous flight test with 5 waypoints similar to the one analyzed in the simulation 

section of this thesis. The quadcopter would take-off following pilot commands and the 

autonomous waypoint mission would start after a manual switch enables the autonomous 

mode. At the end of the autonomous mission, the pilot would recover manual control by 

moving the switch back to manual position.  The autonomous mission is based on a 15 

feet side square trajectory which starts at coordinates (0, 0, altitude at which the switch is 

enabled) in the three dimensional axis.  
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Figure 22 Outer loop tracking response for an autonomous mission with 5 waypoints 

 

Table 7 Tracking error for the outer loop at implementation 

 [𝑉𝑥, 𝑃𝑥] [𝑉𝑦, 𝑃𝑦] [𝑉𝑧, 𝑃𝑧] 
Velocity 0.0748 0.0308 0.0133 

Position 0.8903 0.7412 0.0261 

 

Table 7 shows the tracking error results for the outer control loop obtained from 

the implementation waypoint mission. It can be noticed that the tracking errors are higher 

than the ones obtained for velocities and position in the simulation environment. This 

behavior is expected since the simulation only analyzed the ideal scenario, as it was 

suggested before.  

In addition to a waypoint type controller, results for a trajectory controller are 

presented in this section. The following results correspond to an autonomous flight that is 

following a desired trajectory. In contrast to the waypoint mission previously analyzed, 

this trajectory is constantly updating the commanded position with respect to time 
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without verification of the vehicle distance to the desired trajectory. However, this 

trajectory controller provides a smoother navigation response than the waypoint type 

mission and logic. Results for the inner and outer loop tracking response are presented in 

the following figures: 
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Figure 23 Inner loop tracking response for an autonomous trajectory 
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Figure 24 Outer loop tracking response for an autonomous trajectory 

 

Table 8 Tracking error for the outer loop at implementation (trajectory) 

 [𝑉𝑥, 𝑃𝑥] [𝑉𝑦, 𝑃𝑦] [𝑉𝑧, 𝑃𝑧] 
Velocity 0.2990 0.1857 0.0369 

Position 0.6130 1.0113 0.2733 

 

Table 8 shows the tracking error results for the outer control loop obtained from the 

implementation trajectory mission. It can be noticed that the tracking error results are 

higher than the ones obtained for velocities and position when using a waypoint 
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controller. However the tracking performance that has been reached allows the vehicle to 

successfully complete the mission. 

The results presented in this section show that the proposed NLDI control architecture 

can be implemented on a quadrotor type UAV in order to perform a fully autonomous 

flight. The advantages of a nonlinear controller regarding analysis of hard nonlinearities, 

management of model uncertainties and design simplicity will then increase autonomy of 

this type of UAVs.    
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4. AIS for Failure Detection & Identification Problem 

4.1 Generation of Detectors 

The most fundamental idea of the AIS used for failure detection is that the 

presence of an abnormal situation can be detected when a certain projection of “features” 

does not match with any projection of features at nominal conditions that are pre-

established through an off-line training process of the AIS system. This off-line training 

process is the key point in the design of the AIS detection scheme. The detection scheme 

developed in this thesis utilizes 47 two-dimensional projections. The nominal pre-

established projections can be represented as clusters that will constitute self cells which 

represent the dynamic signature of the vehicle for that specific set of features. In a similar 

way, detectors are originated through a clustering process of the empty space or non-self 

two-dimensional space of each projection. Detectors are analogous to the antibodies or 

specialized cells generated during the humoral immunity process performed by the B-

cells in the acquired immune system of living organisms. These antibodies known also as 

T cells are responsible for seeking intruders (viruses), binding them and marking them for 

destruction under the principle of positive selection. Using the same analogy, detectors 

are implemented within this detection scheme to detect an abnormal situation based on 

features projections that fall inside the two dimensional space represented by the 

detectors clusters. A detection logic is then implemented in order to declare an abnormal 

situation based on the detectors activation history.  

In order to successfully determine the best features projections for capturing the 

abnormal conditions, this AIS detection scheme must be designed considering 

information about the operational envelope of the vehicle, the targeted faulty systems and 
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type of abnormal conditions. Table 9 presents the features that are utilized in this AIS 

detection scheme. 

Table 9 Features used in AIS detection scheme 

 

 

 

 

 

In theory, these 15 features could be used to generate a 15-dimension hyperspace 

which will define self and non-self hyperspaces. However this higher dimensionality 

would consume a high processing power which is not practical for implementation 

purposes. This research is focused only on two-dimensional projections that can provide 

high detection activity and low processing power consumption. The maximum number of 

two-dimensional projections that can be obtained from combinations of 15 features are 

calculated as follows: 
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 Out of the 105 possible two-dimensional projections only 47 projections are 

analyzed in this effort in order to exclude repetitive projections and save processing time. 

Table 10 present the list of two dimensional projections that are analyzed in this thesis: 

 

 

 

 

φ Roll attitude φ_cmd Roll reference command 

θ Pitch attitude θ_cmd Pitch reference command 

Ψ Yaw attitude Ψ_cmd Yaw reference command 

p Roll rate p_cmd Roll rate reference command 

q Pitch rate q_cmd Pitch rate reference command 

r Yaw rate r_cmd Yaw rate reference command 

Ax x body acceleration   

Ay y body acceleration   

Az z body acceleration   
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Table 10. List of 2D-Projections for the AIS Detection Scheme 

Self # Features Self 

# 

Features Self 

# 

Features 

1 φ φ _cmd 17 θ Ay 33 q Az 

2 φ θ 18 θ Az 34 r Ax 

3 φ q_cmd 19 Ψ p 35 r Ay 

4 φ r_cmd 20 Ψ q 36 r Az 

5 φ p 21 Ψ r 37 Ax Ay 

6 φ q 22 Ψ Ax 38 Ax Az 

7 φ r 23 Ψ Ay 39 Ay Az 

8 φ Ax 24 Ψ Az 40 r_cmd p 

9 φ Ay 25 p q 41 r_cmd q 

10 φ Az 26 p r 42 r_cmd r 

11 θ θ_cmd 27 p Ax 43 r_cmd Ax 

12 θ Ψ 28 p Ay 44 r_cmd Ay 

13 θ p 29 p Az 45 r_cmd Az 

14 θ q 30 q r 46 r_cmd θ 

15 θ r 31 q Ax 47 r_cmd Ψ 

16 θ Ax 32 q Ay    

 

Prior to generating detectors, many flight tests need to be performed at nominal 

conditions in order to log all the features specified in Table 9. These features are saved to 

the micro SD card that is inside the onboard computer. In order to successfully determine 

the nominal two-dimensional space for each of the projections, several flight tests are 

required. This fact guarantees that the dynamic signature of the vehicle is fully covered 

within the nominal two-dimensional space. After each flight test, these sets of features 

are saved into a data bank that is required during the detectors generation process.  The 

process of detectors generation takes place during the off-line training process. This 

process is usually time consuming due to the data processing algorithms that multiple sets 

of data must undergo. These algorithms are based on the “Raw Data Set Union Method” 

(RDSUM). The RDSUM is implemented in order to represent the self and non self two-

dimensional spaces of each projection as a group of clusters. As mentioned before, the 

sets of clusters that cover the non-self two-dimensional space are known as the detectors. 
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The RDSUM is composed of 4 single phases: generation of a single data file, data 

preprocessing, set data clustering and generation of detectors (Perhinschi, Moncayo, Al 

Azzawi, Moguel, 2014). Figure 25 shows the schematic of the RDSUM algorithm phases.  

4.1.1 Generation of Single Data File:  

The data banks created from several flight tests are combined together in one 

single data file during this step. This file would contain 15 columns corresponding to the 

history of all features logged during all the flight tests performed. 

4.1.2 Data Preprocessing:  

This phase is composed of two algorithms: normalization and duplicates 

elimination. The single file of raw data is normalized between 0 and 1 based on the 

maximum and minimum values of each of the features analyzed plus a percentage 

Figure 25 Raw Data Set Union Method (RDSUM) Phases 
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margin. In addition, points that duplicate within any of the columns are eliminated 

through the duplicates elimination process. This allows to reduce the size of the data file 

which decreases the amount of storage and processing power needed for implementation 

purposes.  

4.1.3 Set Data Clustering:  

The data produced from the last phase is organized according to Table 10 in order 

to conform 47 unit planes which contain self points of nominal conditions within them. 

These self points need to be represented by a definite number of geometric hyper-bodies, 

referred to as clusters (Perhinschi, Moncayo, Al Azzawi, Moguel, 2014). Since this AIS 

detection scheme is analyzing two-dimensional projections, clusters in this case are 

defined as circles. This process is based on a modified version of a “k_means” clustering 

algorithm used to represent clusters as hyper-spheres. 

4.1.4 Generation of Antibodies:  

An Enhanced Negative Selection Algorithm for real-valued (ENSA-RV) 

representation with variable non-self radius is utilized to generate the 47 sets of detectors. 

This algorithm is responsible for eliminating the cluster overlap between the self and 

non-self clusters sets. It requires some parameters that must be selected by the operator 

such as: number of initial set of detectors, the minimum radius permitted for a detector, 

number of detectors inserted at every iteration to explore new non-self space not covered 

and the number of rejected detectors selected to be moved at every iteration. The 

detectors or antibodies generation process can be stopped if one of these requirements is 

accomplished; a predetermined number of iterations and a preset maximum number of 
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detectors is reached or when a desired coverage of the non-self space is reached. 

Moreover, this algorithm is designed to optimize the following criteria: 

 No overlapping between non-self and self detectors. 

 Minimum empty space in the self clusters 

 Minimum un-covered areas in the non self 

 Minimum overlapping among self clusters  

 Minimum overlapping among non-self detectors  

 Minimum number of detectors  

 

 

Figure 26 presents a sample two-dimensional projection with self and non-self 

clusters generated using ENSA-RV algorithm. This particular two-dimensional projection 

analyzes two attitude angles as features: pitch angle and yaw angle. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Self Cluster and Antibodies generated using ENSA-RV algorithm 
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4.1.5 Detection Analysis: 

Detection rate and false alarms are two quantitative values used to evaluate the 

detection performance of this health monitoring scheme. These values can be calculated 

as follows: 

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

𝐹𝐴 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
× 100 

where, TP, TN, FP and FN represent different conditions of the detection logic: 

True Positive (TP): A failure is detected and declared as failure 

True Negative (TN): Nominal conditions are declared as nominal 

False Positive (FP): Nominal conditions are declared as failures 

False Negative (FN): Failure condition is not detected  

Detection rates and false alarms are calculated by dividing TP and FP by the total amount 

of data points considered to be of that particular condition respectively.  

4.2 Implementation Process  

This thesis focuses on an AIS fault detection scheme at a hardware level. Efficiency 

reduction on different actuators is analyzed within this research. For these purposes, this 

AIS approach utilizes two dimensional projections in order to determine “self” and “non-

self” regions. By using two-dimensional projections the number of data that needs to be 

processed decreases considerably. Two-dimensional projections are used not only for 

simplicity but they also decrease the computational power required. Savings on 

computational power can guarantee the effective operation of this AIS algorithm on real 

time applications. A total of 47 two-dimensional projections are generated in order to 
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define different sets of detectors. The process of generating detectors consists of a 

clustering algorithm and a process called Raw Data Set Union Method (RDSUM) 

(Perhinschi, Moncayo, Al Azzawi & Moguel, 2014). As a result of the RDSUM process a 

geometrical and numerical representation of every set of detectors is obtained. The group 

of all detectors contain information about the dynamic signature of the vehicle when it is 

outside the nominal condition. The performance of this algorithm can be measured based 

on the history of activated detectors. Validation flight tests are required in order to verify 

the robustness of this AIS scheme against false alarms.  This AIS scheme is meant to 

increase safety of any autonomous mission programmed in this vehicle. 

4.2.1 Design Constraints 

Prior to generating detectors, extensive data acquisition is required through 

several flight tests. Flight tests must be designed in such a way that the dynamic signature 

of the quadcopter can be captured inside the two dimensional projections presented in 

Table 10. In general, quadcopters spend most of their flight time in a hovering flight 

regime; therefore, this AIS detection scheme is intended to sense system failures within 

this regime. In this way, take-off and landing flight attitudes are not analyzed within this 

AIS detection scheme. In order to capture most of the quadcopter dynamics, a flight 

trajectory with multiple roll and pitch maneuvers is designed. Figure 27 depicts the flight 

trajectory designed in order to capture most of the vehicle dynamics at nominal 

conditions.  
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Figure 27. Trajectory Implementation for the AIS Detection Scheme Design for 

hovering flight 

 

All flight tests are performed using a trajectory controller which will provide a 

smoother navigation response. This maneuver has an eight shaped trajectory and it starts 

once the autonomous switch is enabled from the pilot command. At the same time, the 

initial position is set to the current position. After this, the trajectory is commanded and 

the quadcopter performs a negative pitch maneuver and a negative roll maneuver to reach 

position [-13.1 ft, 6.56 ft] as depicted in Figure 27. Once position [-13.1 ft, 6.56 ft] is 

reached, a semicircle shaped trajectory is commanded in order to send the quadcopter to 

the next position [13.1 ft, 6.56 ft]. Just after this part of the trajectory, the quadcopter 

performs a positive pitch maneuver and a negative roll maneuver to come back to the 

initial point [0, 0]. At this point, half of the trajectory has been completed. The rest of the 

trajectory follows a similar pattern and the eight shaped trajectory is completed. It is 

important to notice that this controller is performing in a body reference frame. 
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This quadcopter vehicle is composed of two main systems: airframe system and 

propulsion system. Within the airframe system, there are three main subsystems: main 

structure, electrical and electronic subsystems. In the same way, the propulsion system is 

composed of every motor and propeller combination within the vehicle. Every subsystem 

that conforms the quadcopter has a certain probability of failing under certain conditions. 

However, this research effort is focused on failures within the propulsion system. 

Because this a critical area which sustains the quadcopter flight, an AIS detection scheme 

is studied in this thesis to determine its feasibility to detect performance faults within the 

propulsion system. The feasibility study is based on the detection activity and the fault 

detection time obtained. At this point is important to notice that this AIS detection 

scheme is not considering the risk of failure of the AIS scheme itself. This study is only 

focused on faults regarding the propulsion system and a complete risk management of the 

vehicle is outside the scope of this thesis. This study analyzes loss of effectiveness on a 

single motor/propeller combination at two levels of severity: 

 44 % loss of effectiveness on single motor/propeller combination  

 19 % loss of effectiveness on single motor/propeller combination 

4.3 Analysis of Detection Results  

The detection rates and false alarms are calculated for the 47 different selves under 

these two levels of failure severity. Table 11 presents results for 6 out of the 47 selves 

that are selected for showing acceptable detection performance. As it can be noticed, 

results from Table 11 show that the detection performance of these selves is acceptable 

especially for the case in which the failure is more severe.  
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Table 11 Detection Performance 

Self # 
M1 19 % loss of 

effectiveness 

M1 44 % loss of 

effectiveness 

M3* 19 % loss of 

effectiveness 

DR FA DR FA DR FA 

40 62.8 8.6 83.3 16.7 55.9 11.3 

41 66.2 1.8 85.2 11.8 52.6 5.2 

42 77.3 1.9 87.7 0.6 55.6 2.8 

43 71.4 0.7 84.6 34.9 48.6 4.4 

44 72.2 1.4 91.2 51.5 45.2 0.8 

45 71.8 15.4 78.8 12.0 40.8 13.2 

46 71.5 2.1 86.7 11.1 58.1 7.5 

 

Also, it can be determined that the amount of false alarms varies considerably 

between different flight test for some selves. This is expected since the nominal portion 

of the flight is not always the same for all the flight test. Flight time and wind condition 

can affect false alarms considerably. Therefore, an optimum AIS detection scheme is 

designed based on the self or selves which provide the highest detection rate and the 

lowest false alarms at the same time. Figure 28 and Figure 29 present comparative plots 

that show the correlation between detection rate, false alarms, and failure severity.  

Figure 28 Detection Rate and False Alarms for a 19 % Loss of Effectiveness in M1 
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From figures 28 and 29, it is appreciated that Self # 42 provides the highest DR and 

the lowest FA. Self # 42 is originated from the two dimensional projection of the control 

signal r_cmd (desired roll rate) and the gyroscope signal r (actual roll rate). This result 

suggests that a loss of effectiveness in one motor/propeller combination can be best 

detected by analyzing states which relate to the attitude response of the quadrotor in the z 

or yaw axis.  

 

 

Figure 30 Detection of Self # 42 during flight test with loss of effectiveness of 44% in M1. 

Figure 29 Detection Rate and False Alarms for a 44 % Loss of Effectiveness in M1 
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Figure 30 presents the self clusters, non self clusters (antibodies) and flight data 

points obtained during a flight test with an injected failure. As it can be seen, most of the 

data points fall outside the region occupied by self clusters (nominal). This allows the 

flight test data points to match with some of the antibodies of Self #22 which will be then 

activated. This idea is used within this AIS detection system to design a health 

monitoring system able to alert the pilot or autopilot about the presence of a fault. Figure 

31 shows the history of activated detectors that is being used to declare a failure in the 

system. This type of plots is generated by considering all the 530 antibodies that compose 

Self # 42. Every sample time, a window of 30 flight test data points is analyzed against 

the 530 antibodies. Activated detectors are assigned to have a value of 1 while inactivated 

detectors are assigned a value of 0. Activated detectors are added together and plotted 

against the flight time to create a time history of activated detectors which is used to 

declare a failure. Failure is declared if the number of activated detectors are greater than a 

certain threshold value.  

 

 

Figure 31 History of activated detectors for two flight test with loss of effectiveness of 

44% and 19% in M1 
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Faults are incrementally injected into the vehicle after 10 seconds of starting the 

autonomous mission. These failures are injected incrementally during 10 seconds in order 

to avoid abrupt attitude changes. The entire failure is fully injected after 20 seconds of 

starting the autonomous mission. The plot from the left in Figure 31 shows the response 

of activated detectors for a flight test with a loss of effectiveness of 44% in M1. From this 

plot, the fault detection time can be estimated based on a predefined threshold value at 

which the failure is declared. The threshold value is assigned to be 25 in order to stay on 

the conservative side and avoid false alarms. Considering this threshold, a failure 

detection time of 7 seconds can be estimated based on the history of activated detectors 

from the left plot. In the same way, the plot from the right in Figure 31 shows the 

response of activated detectors for a flight test with a loss of effectiveness of 19% in M1. 

Considering the same threshold as before, a failure detection time of 7 seconds can be 

estimated based on the history of activated detectors from this plot. From these results, it 

can be determined that failure detection time remains constant within this range of 

failure. It is important to consider that most of the actuators failures can be treated as 

non-linear disturbances; consequently, the NLDI controller in this case will minimize the 

effect of these disturbances to maintain system stability, minimizing the failure effect and 

driving the system towards a pseudo nominal behavior. This explains why the activation 

activity of the antibodies within the health monitoring system does not remain constant 

all the time while facing an upset condition. However, this phenomenon enhances the 

performance of the on-line health monitoring system that is able to detect the presence of 

a failure even if the robustness of the NLDI controller allows its partial rejection. 
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Validation flights are also conducted in order to evaluate the performance under 

nominal conditions for which low or no activation of detectors is expected. Nominal 

flight tests are performed based on the same autonomous mission for this purpose. Figure 

32 shows the activation activity for that specific flight test. The low activation activity 

presented is evidence of the acceptable performance of the biomimetic system with a 

maximum number of activated detectors of no more than 25. This, of course, can be 

translated to very low false alarms.  

 

 

 

 

 

 

 

 

Based on the overall results, an acceptable performance of the AIS detection 

scheme has been demonstrated while implemented off-line on a quadrotor type UAV. 

Such a health monitoring system can be implemented for real time applications if a 

powerful enough onboard computer is programmed with the proposed architecture and 

algorithms. In this way, reliability of the vehicle and safety of the missions would be 

increased, and this would contribute to the overall autonomy enhancement for this type of 

UAVs.    

 

Figure 32 Nominal validation flight 
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4.4 Fault Identification Capabilities 

Fault identification is not the main focus of this AIS detection scheme, however, 

based upon the obtained results, high possibilities of an identification phase 

implementation have been determined. 

  

 

From Figure 33, it can be noticed that opposite sets of antibodies are being activated 

depending on the position of the actual failed actuator. This characteristic can be used in 

order to identify the faulty actuator. However, the use of a unique Self is not enough for 

identifying precisely the faulty actuator. By using only Self# 42, the probability of 

identifying a faulty actuator is increased in a 50%, nonetheless, a multi-self approach 

needs to be implemented to successfully identify the faulty actuator accurately. Further 

research and analysis is required to determine a group of selves capable of identifying a 

specific faulty motor for this type of UAV.  

 

Figure 33 Comparison between activated detectors of Self # 42 between failure at M1 

and failure at M7. 
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5. Vision-based Alternative Solution for Autonomous Navigation in 

GPS Denied Environments 

5.1 Optical Flow Theory 

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a 

visual scene caused by the relative motion between an observer (the image sensor), and 

the scene (Garcia, Dzul, Lozano, Pegard, 2013). In general, the optical flow techniques 

can be classified into four main groups according to the assumptions they contain: 

differential of gradient methods, correlation and block matching schemes, energy and 

phase based methods and sensor-based approaches (Kendoul, Fantoni, Nonami, 2009). 

Even though these approaches are driven by different assumptions, they are conceptually 

organized in three stages of processing: 

 Pre-filtering or smoothing with low-pass/band-pass filters. This enhances the 

signal to noise ratio and extracts the structure of interest. 

 The extraction of basic measurements such as spatiotemporal derivatives or local 

correlation surfaces 

 The integration of measurements to produce a two dimensional flow field which 

often involves assumptions about the smoothness of the underlying flow field 

(Barron, Fleet, Beauchemin, 1994). 

This thesis focuses on the study of the correlation and matching block methods. This 

method is one of the less complex and most used techniques in today’s applications. In 

addition, this approach provides good accuracy level and good performance against the 

aperture problem and large displacements. Unfortunately, some drawbacks related to this 

approach require special consideration. Some of these drawbacks include: lack of sub-

pixel precision, quadratic computational complexity and inaccuracy in presence of image 
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deformation due to rotation. In general, some of these drawbacks are compensated by 

using coarse-to-fine frameworks and refinement algorithms (Kendoul, Fantoni, Nonami, 

2009). 

5.2 Motion Field Equations 

This section is intended to develop a relation between the pixel-based motion field 

and the metric velocity of the camera fixed to the UAV frame. The motion field can be 

derived by projecting the 3D velocity field (translational and rotational) on the image 

plane. Let P=[X Y Z]T be a point in the three dimensional camera frame and the projected 

pixel coordinates of P on the image plane can be defined by the following relation: 

𝑝 =
𝑓 𝑃

𝑍
                                                               (4.1) 

where f represents the distance between the image plane and the origin otherwise known 

as the focal length. In this way, p can be expressed as [x y f ]T. Figure 34 shows a 

perspective-central projection of the camera plane  

 

 

Figure 34 Imaging model: perspective-central projection (Kendoul, Fantoni, Nonami, 

2009) 
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In general, the relative motion between the camera and P is described by the 

following expression: 

𝑉 = −𝑇 − 𝜔 ×  𝑷                                                    (4.2) 

where, 𝜔 is the angular velocity and T is the translational component of the motion. A 

relation between the velocity of P in the camera reference frame and the velocity or flow 

of p in the image plane must be developed in order to calculate optical flow. Taking the 

derivative with respect to time of (4.1) yields: 

 
𝑓𝑙𝑜𝑤

∆𝑡
≅ 𝑣 = 𝑓

𝑍𝑉−𝑉𝑧𝑃

𝑍2                                              (4.3) 

The motion field in the x axis can be derived by substituting (4.2) into (4.3) as follows. 

 𝑣𝑥 = 𝑓 [
𝑍(−𝑇𝑋−(𝑍𝜔𝑌−𝑌𝜔𝑍))−(−𝑇𝑍−(𝑌𝜔𝑋−𝑋𝜔𝑌))𝑋

𝑍2 ]        (4.4)                                             

From (4.1), P can be extended as: 

𝑋 =
𝑥 𝑍

𝑓
                                           (4.5) 

𝑌 =
𝑦 𝑍

𝑓
                                           (4.6) 

Substituting (4.5) and (4.6) into (4.4) yields to: 

 

𝑣𝑥 = 𝑓 [
𝑍(−𝑇𝑋−(𝑍𝜔𝑌−

𝑦 𝑍

𝑓
𝜔𝑍))−(−𝑇𝑍−(

𝑦 𝑍

𝑓
𝜔𝑋−

𝑥 𝑍

𝑓
𝜔𝑌))

𝑥 𝑍

𝑓

𝑍2 ]        (4.8)        

                                      

𝑣𝑥 = 𝑓 [−
𝑇𝑋

𝑍
− 𝜔𝑌 +

𝑦 

𝑓
𝜔𝑍 + 𝑇𝑍

𝑥 

𝑍 𝑓
+

𝑥𝑦

𝑓2
𝜔𝑋 −

𝑥2 

𝑓2
𝜔𝑌]             (4.9)     
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Reorganizing the terms yields to: 

𝑣𝑥 =
𝑇𝑍 𝑥− 𝑇𝑋 𝑓 

𝑍 
− 𝜔𝑌𝑓 + 𝜔𝑍𝑦 +

𝜔𝑋 𝑥𝑦−𝜔𝑌 𝑥2

𝑓
                (4.10)                                             

Similarly the motion field in the y axis can be expressed as  

𝑣𝑦 =
𝑇𝑍 𝑦− 𝑇𝑌 𝑓 

𝑍 
+ 𝜔𝑋𝑓 − 𝜔𝑍𝑥 +

𝜔𝑋 𝑦2−𝜔𝑌 𝑥𝑦

𝑓
                (4.11)                                             

In general, the optical flow can be expressed in terms of image coordinates [x y f], the 

UAV body-axis velocities and angular rates [𝑇𝑋  𝑇𝑌  𝑇𝑍],  [𝜔𝑋  𝜔𝑌  𝜔
𝑍
] as follows:  

[
𝑣𝑥

𝑣𝑦
] = [

−1 

1+ 𝜏𝑍 
0

𝜏 𝑥 

1+ 𝜏𝑍 

0
−1 

1+ 𝜏𝑍 

𝜏 𝑦

1+ 𝜏𝑍 

] [
𝑇𝑋

𝑇𝑌

𝑇𝑍

] + [
𝜏 𝑥 𝑦 − (

1

𝜏
+ 𝜏𝑥2) 𝑦

(
1

𝜏
+ 𝜏𝑦2) −𝜏 𝑥 𝑦 −𝑥

] [

𝜔𝑋

𝜔𝑌

𝜔𝑍

]   (4.12)     

where  𝜏 represents the inverse of the focal length 
1

𝑓
. 

The translational velocity part and plus the rotational part are easily identified in 

Equation (4.12). For autonomous navigation purposes, only the translational velocity is 

required. In order to calculate the translational velocity only, the rotational velocity can 

be measured using gyroscopes and compensated inside the motion field.  

5.2.1 Angular Rate Compensation 

If a constant distance to the scene is maintained during a hover flight, equations of 

the motion field can be written as: 

𝑣𝑥 =
−𝑇𝑋 𝑓 

𝑍 
− 𝜔𝑌𝑓 + 𝜔𝑍𝑦                                (4.13)                                             

Similarly, the motion field in the y axis can be expressed as  

𝑣𝑦 =
− 𝑇𝑌 𝑓 

𝑍 
+ 𝜔𝑋𝑓 − 𝜔𝑍𝑥                                 (4.14)                                             
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The terms divided by the focal length are neglected since they are more than one 

order of magnitude smaller compared to the other summands (Honegger, Meier, 

Tanskanen, Pollefeys, 2013). Satisfying these conditions, the effects of the angular rates 

on the motion field can be subtracted from the motion field. After compensation, the 

translational velocity in metric scale can be calculated as follows: 

𝑇𝑦 = −
 𝑣𝑦 𝑍 

𝑓 
                                                    (4.15)                                             

𝑇𝑥 = −
 𝑣𝑥 𝑍 

𝑓 
                                                    (4.16)                                             

5.3 Implementation Process & Position Kalman Filtering Design using 

Optical Flow  

5.3.1 Description of the Optical Flow Estimation Module and its 

Tasks. 

The sensor system performs optical flow calculations from images received from 

the Complementary metal-oxide semiconductor (CMOS) machine vision sensor. This 

vision sensor is directly connected to the ARM Cortex M4 microcontroller. The Cortex 

M4F microcontroller has a fully parametrizable camera interface which allows the use of 

an 8 bit resolution per pixel in order to process 4 pixels at a time with special 32 bit 

instructions. The first stage during the flow computation is image frames storage. Pixel 

data is streamed into the microcontroller and a frame grabber module samples pixel 

values at the corresponding pixel clock of the CMOS sensor. The incoming pixel data 

from the camera is saved in the embedded main system memory using Direct Memory 

Access. (DMA).  
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Optical flow is calculated between the current and the preceding frame by using 

the sum of absolute differences (SAD) block matching algorithm. This algorithm 

compares SAD values of blocks of pixels of the current and previous frame within a 

certain area. Depending on the best match within the search area, the resulting flow is 

selected. This SAD value of a 8x8 pixel block is calculated inside a search area of +/-4 

pixels in both directions (Honegger, Meier, Tanskanen, Pollefeys, 2013). In order to 

account for the lack of sub-pixel precision of this method, a refinement step is necessary. 

This refinement process estimates optical flow with half pixel step size in all directions 

from the pixel with the best matching properties. As a result, the final refined optical flow 

is selected based on the best match of the directions around the best match including the 

previous result. After the flow is estimated, the angular rate compensation can be 

incorporated using equations (4.13) and (4.14). With this compensation taken into 

consideration, the translational velocity of the vehicle can be calculated from equations 

(4.15) and (4.16), where Z is the altitude of the vehicle being measured by the laser 

sensor and f represents the focal length. 

The maximum measurable velocity is influenced by the focal length and the 

ground distance of the vehicle. This parameter can be calculated using relations derived 

for equations 4.15 and 4.16 as follows: 

𝑇𝑚𝑎𝑥 =
 𝑣𝑚𝑎𝑥 𝑍 

𝑓 
                                          (4.17) 

where  𝑣𝑚𝑎𝑥 is obtained from the maximum internal update rate or the maximum number 

of frames per second analyzed. 

 𝑣𝑚𝑎𝑥 =
 𝑠𝑒𝑎𝑟𝑐ℎ 𝑟𝑎𝑛𝑔𝑒 [𝑝𝑖𝑥𝑒𝑙𝑠]

(1/max 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 [𝐻𝑧]) 
                                  (4.18) 
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In a similar way, equation 4.17 can be rewritten as follows: 

𝑇𝑚𝑎𝑥 =
 𝑠𝑒𝑎𝑟𝑐ℎ 𝑟𝑎𝑛𝑔𝑒 [𝑝𝑖𝑥𝑒𝑙𝑠]

(1/max 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 [𝐻𝑧]) 

 𝑍[𝑚] 

𝑓[𝑝𝑖𝑥𝑒𝑙𝑠] 
                      (4.19) 

The maximum update rate search range and pixel size can be obtained from the sensor 

specifications: 

Maximum internal update rate: 400 Hz 

Search range: +/- 4 pixels 

Pixel size: 24 micro meters 

Focal length: 0.016 meters 

According to the specifications maximum measurable velocity can be calculated at 

different altitudes. 

Table 12 Maximum measurable velocities per specifications 

Ground distance 1 [m] 3 [m] 10 [m] 

16mm lens 2.4 [m/s] 7.2 [m/s] 24 m/s] 

 

5.3.2 Position Kalman Filtering Design using Optical Flow: 

The design of a complete autonomous navigation control architecture requires not 

only velocity terms to be fedback into the control system; an accurate position estimation 

is desirable to guarantee accurate navigation of the vehicle at all times. A 6 states 

extended Kalman filter is designed to accurately estimate position based on velocity 

measurements sensed by the optical flow sensor. The model equations for the Kalman 

filter algorithm are expressed below: 
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                                              (4.17) 

where [X Y Z]T represent the position of the vehicle, and [vx vy vz]T represent the linear 

velocities on earth reference frame. Equations in (4.17) are based on a discrete version of 

Euler integration method, where velocity measurements are integrated to calculate 

positions and acceleration measurements are integrated to calculate velocities. 

Acceleration measurements are rotated from body reference frame into earth reference 

frame can be using the expression below: 

 

(4.18) 

 

From equation (4.18), it can be seen that attitude angles are being considered 

within this KF algorithm. This is suggesting that by having an accurate attitude 

estimation is going to indirectly improve the velocity and position estimation. This KF 

algorithm estimates values for X, Y positions and the vz component of the translational 

velocity in Z axis. Measurements for Z position, vx and vy velocities are introduced into 

the KF algorithm as correction terms. The Z position measurement is taken from an 

[

𝑎𝑥
𝑎𝑦

𝑎𝑧 + 𝑔
]

𝐸

= [

𝑐Ѳ 𝑐𝜓 𝑠∅ 𝑠Ѳ 𝑐𝜓 − 𝑐∅ 𝑠𝜓 𝑐∅ 𝑠Ѳ 𝑐𝜓 + 𝑠∅ 𝑠𝜓

𝑐Ѳ 𝑠𝜓 𝑠∅ 𝑠Ѳ 𝑠𝜓 + 𝑐∅ 𝑐𝜓 𝑐∅ 𝑠Ѳ 𝑠𝜓 − 𝑠∅ 𝑐𝜓

−𝑠Ѳ 𝑠∅ 𝑐Ѳ 𝑐∅𝑐Ѳ

] [
𝑎𝑥
𝑎𝑦
𝑎𝑧

]

𝐵
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infrared laser sensor while the vx and vy velocities are obtained from the optical flow 

sensor. Besides estimating unknown states as X and Y positions, the second main function 

of this KF is to filter out the measurement noise especially for the optical flow sensor and 

the accelerometers. An accurate estimation for the vertical component of the translational 

velocity vz is crucial for the autonomous take off, landing and altitude hold modes. These 

last three modes of flight are essential stages on a fully autonomous mission. Moreover, a 

robust altitude hold flight mode will contribute to better optical flow sensor performance. 

It is important to notice that this solution does not incorporate any pressure sensor 

measurements nor GPS measurements for vz estimation. Figure 35 shows a general 

overview of this autonomous navigation alternative for GPS denied environments. 

 

 

 

 

 

 

 

 

 

An autonomous drilling and sampling mission is designed to test the accuracy and 

performance of the optical-flow autonomous navigation system. The intent of this 

mission is to test the autonomous capabilities of the quadcopter while performing an 

exploration mission in GPS denied environments. The quadcopter is expected to take off 

Figure 35 Optical-flow-based Autonomous Navigation 

Architecture 
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and fly to a desirable waypoint where a sample needs to be obtained from the ground and 

returned to the initial waypoint. This sampling mission includes six different autonomous 

stages in one mission. First, an autonomous take-off routine is implemented followed by 

a short position-hold flight mode. Then, autonomous navigation to a pre-set waypoint is 

commanded while flying in an altitude-hold mode. After the target waypoint is reached, 

an autonomous landing routine is performed.  Once landed, the quadcopter can command 

a sampling and drilling action in order to collect the desired sample. It is important to 

note that, at this point the sampling and drilling action is only simulated by switch 

activation. At this point the integration of the drilling and sampling system is still under 

development. After the sampling action is completed, the quadcopter repeats the 

autonomous take off routine and returns back to the initial point or home.  Figure 36 

depicts the trajectory followed by the quadcopter using the optical flow autonomous 

navigation system with the autonomous drilling and sampling system. 

 

 

 

 

 

 

 

 

 

 

Figure 36 Optical-flow based autonomous navigation for a drilling and sampling mission 
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5.4 Implementation Results 

The performance of this optical-flow vision based algorithms is analyzed using 

comparison plots between GPS Kalman filter data and the optical-flow Kalman filter 

data. 

 

 

 

 

From Figure 37, it can be seen that the estimation of velocity performed by the 

optical flow KF is similar to the velocity estimated using the GPS sensor KF. This result 

is achieved due to the accuracy of the optical flow sensor and the noise reduction 

provided by the Kalman Filter. 
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Figure 37 Comparison of Velocity Estimation in x and y axis 
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Results shown in Figure 38 depict noise cancellation characteristics of the optical 

flow KF. As it can be seen, the noise present in the optical flow sensor is considerably 

decreased by the KF action. Noise filtering improves the outer loop performance by 

allowing a smoother navigation. In addition, noise reduction decreases the integration 

error induced during the position estimation. 

 

 

  
 
 
 
 
 
 
 

 

 

Figure 39 depicts the performance of the estimated Vz velocity. The GPS KF often has 

some error induced by the low accuracy of the GPS sensor in the z axis. In this case, the 

Figure 38 KF noise reduction properties 

Figure 39 Comparison of Velocity Estimation in z axis 
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velocity Vz estimation of the optical flow KF provides a more accurate estimation than 

the GPS KF. Accurate Vz estimation contributes for a robust altitude hold flight mode 

which ensures an accurate navigation. 

  

 

 

Figure 40 shows the performance of the position estimation in the x and y axes. A 

small position estimation error is induced within the optical flow KF. Possible sources of 

error include and are not limited to the following: the on-board computer is not able to 

maintain a fixed sample time for real time integration due to the amount of applications it 

runs at the same time. Also, the error in velocity calculation is induced when the 

assumption of constant distance to ground is not satisfied. Even though a robust altitude 

hold flight mode is implemented, small changes in altitude can induce a small velocity 

component in the z axis which will nullify the assumption of constant distance to ground. 
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5.4.1 Approach Limitations: 

Distance from vehicle to ground is a constraint that has been determined during 

the flight testing process. It has been found that the optical flow sensor produces more 

accurate measurements when the distance to ground is between 1 to 2 meters. It is worth 

mentioning that all tests have been performed over a grass surface.  In addition to this, 

accurate results from the optical flow sensor are only obtained when noticeable contrast 

or distinguishable features form part of the surface at which the optical flow camera is 

pointing. The optical flow sensor requires to have minimum conditions of light in order 

to measure optical flow accurately. 
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6. Conclusions 

A NLDI control architecture has been successfully implemented on a quadcopter type 

UAV to increase its stability by minimizing nonlinear effects and improve robustness 

against model uncertainties. Simulation and implementation results have been used to 

demonstrate that a NLDI controller is robust enough to stabilize a quadrotor with a 

certain transient response. In addition, a health monitoring system inspired by an AIS 

paradigm has been successfully designed and tested through flight testing on a 

quadcopter type UAV. Its promising performance has been evaluated and analyzed based 

on antibodies activation activity present in flight tests with an efficiency loss in different 

actuators. Several nominal flight tests and flight test with failures have been analyzed in 

order to characterize the dynamic signature of the vehicle.  

An optical-flow-based vision system has been successfully implemented on a 

quadcopter type UAV to allow for autonomous navigation in GPS denied environments. 

The optical-flow-based vision system performance has been analyzed by comparing 

optical flow EKF data against GPS EKF data. The proposed methodologies and their 

results have demonstrated the capabilities to increase autonomy on quadrotor type UAVs 

within three areas: attitude and position control stability, heath management, and 

versatility of navigation environments.    

These intelligent algorithms have been successfully integrated and implemented into a 

low cost testbed which provides minimum capabilities to perform autonomous missions.  
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7. Future Work & Recommendations 

A NLDI control architecture can be implemented within the autonomous navigation 

control loop. Migrating from a PID controller into a NLDI control architecture is a 

critical process and has to be performed systematically to avoid accidents. This process 

would require several flight tests and tuning routines. Once the NLDI architecture is fully 

implemented on the outer loop, comparison between PID results and NLDI results can be 

determined in terms of tracking error and robustness to nonlinearities.  

Fault identification capabilities of the proposed health monitoring scheme can be the 

subject of further research which will require extensive flight testing and a Multi-Self 

Strategy analysis. Furthermore, a real time health monitoring system can be implemented 

in order to determine system health while the vehicle is performing any mission. 

Computer science techniques and efficient data processing algorithms can be the subject 

of research in order to make the real time application demand less processing power from 

the onboard computer.  

The optical-flow-based vision system can be characterized and tested at higher altitudes 

in order to increase range for different applications. Different altitudes would translate 

into different allowable speed ranges and maximum navigation speeds can be determined 

for different scenarios. In addition, multiple optical flow sensors can be implemented in 

order to analyze advantages and disadvantages.  
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