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Object detection through computer vision has traditionally been difficult to 

reliably implement due to various lighting conditions caused by weather and time of day. 

Any changes in conditions can be detrimental to the detector’s ability to accurately 

identify objects. A modern approach implements deep learning techniques to classify and 

train a neural network. While highly effective, this approach can be cumbersome and 

computationally intensive. This project will investigate the feasibility of using deep 

learning to detect, classify, and track objects in near real-time while being processed on a 

mobile platform. I will investigate the feasibility of these processes on a small embedded 

system, such as the NVIDIA Jetson TX1. I will investigate several promising algorithms 

such as Faster R-CNN, TensorBox, DetectNet, and YOLO. This research is beneficial 

because it will transition deep learning techniques developed primarily for research in a 

lab environment to a real-world situation in which high accuracy and fast processing are 

vital. The work solved through this research will greatly benefit platforms that require 

object detection capabilities, but do not have the space, budget, or power capabilities for 

large GPUs or GPU clusters.   
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1. Introduction 

1.1. Background 

Due to the harshness of the marine environment, there is a heavy cost, as well as 

danger, associated with conducting manned surface and subsurface missions. To help 

combat these issues, unmanned vehicles have been used to remove the human element 

from the situation. Unmanned marine vehicles have been used by the U.S. Navy since 

1932 [1]. The effectiveness of these vehicles, however, is limited by their need to be 

operated and controlled by humans. Modern researchers are designing new ships that can 

be operated autonomously.  

There are countless naval applications for Autonomous Surface Vehicles (ASVs), 

and Autonomous Underwater Vehicles (AUVs), which can cover a wide range of tasks. 

These autonomous vehicles can be used for mine countermeasures, harbor monitoring, 

inspection, and Intelligence, Surveillance and Reconnaissance (ISR) [2]. While there is 

extensive research for the controls aspects of these vehicles, their autonomy is still 

limited by their ability to sense and detect objects within their surroundings. Using radar, 

LIDAR, or sonar, it is possible to detect an object’s presence. Classification of these 

objects is a more complicated process.  

Classification is the process of algorithmically determining which class an object 

may be. For naval vehicles, many objects that would be encountered in their use cases 

will have a pre-defined appearance, such as navigational markers and buoys, but there is 

a nearly unlimited range of objects that could be placed within the path of these vehicles. 
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This makes the task of classifying surrounding objects incredibly difficult. For this thesis, 

it will be assumed that any object that will be classified is pre-defined. 

Often during non-autonomous classification, data is required to be transmitted 

back to the operator at the ground station, who must analyze the data, and decide what the 

object is. This process, however, would induce human error into the equation. This would 

be much more optimized if the vehicle could make these decisions autonomously. As 

classification allows for autonomous navigation, the human resources needed for 

operation of the vehicle could be significantly reduced by onboard classification. This 

would decrease the response time of the vehicle, as well as lower the communication 

required of the vehicle. In the case of ROVs, high speed underwater communication is 

extremely complex and expensive. If an AUV could sense and act on its own, a data 

tether would not be necessary. To increase the autonomy of ASVs or AUVs, they should 

be able to detect and classify objects within their surroundings through the use of 

cameras, sonar, or LIDAR systems. Sonar, and LIDAR solutions however are often much 

more expensive than a camera, and are not well suited to classifying colors or shapes on a 

flat surface. One limitation of using cameras for detection and classification is that most 

algorithms are often not robust enough to handle varying lighting conditions.  

This thesis will investigate the use of deep learning techniques to create an image 

classifier for an ASV or an AUV. The classifier should run on the vehicle, and not rely on 

transmitting data to a ground station for processing. This classifier will autonomously 

classify course elements in near real time through the use of a camera system. The 

developed methods were tested on two autonomous vehicles. A prototype of this software 
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suite was tested on the ASV, Minion at the 2016 RobotX Challenge. Figure 1 shows 

Minion during a test on the Halifax River in Daytona Beach. 

 
Figure 1 - Minion ASV During a test on the Halifax River in Daytona Beach, FL 

This software has also been tested on the AUV Blackfinn for the Association for 

Unmanned Vehicle Systems International’s (AUVSI’s) RoboSub competition. The 

Embry-Riddle RoboSub team plans to use the results of this project for their entry in the 

2017 AUVSI RoboSub Competition. A rendering of Blackfinn is shown in Figure 2.  

 
Figure 2 - 3D rendering of Blackfinn 

Both the RobotX and RoboSub competitions are held on a closed course. This 

means that every element within the course is well documented and known ahead of time. 

This allows for the classifier to be pre-trained on any elements that require classification. 
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1.2. Motivation 

Machine learning is a field of computer science that studies how to analyze data 

and build models, without needing to explicitly program the system how to complete the 

task [3]. This field of computer science is rapidly growing with the onset of new 

hardware and software discoveries. Machine learning is a major subset of artificial 

intelligence. Recently, one subset of machine learning that has rapidly developed is deep 

learning. This rapid development is largely due to the advances in graphics processing 

units, GPUs [4]. Deep learning uses of many layers to compute an output. 

Some models consist of 1000+ hidden layers [5]. These layers require many 

gigabytes of RAM to store, as well as millions of operations to compute. Due to their 

architecture, GPUs are perfectly suited to handle these large numbers of layers. The 

architecture of these layers is shown in Figure 3. Each network has an input layer, and an 

output layer. These layers are connected by a series of hidden layers [6].  Popular layer 

types for deep learning are convolution layer, pooling layer, dropout layer, relu, tanh, and 

sigmoid layer [7]. These layers are composed of nodes, which contain values based on 

the outputs from convolutions certain weights and parameters. 

 
Figure 3 - Architecture of a Deep Neural Network with visualizations of each layer [7] 
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Deep learning can be used to complete a multitude of complicated tasks such as 

optical character recognition (OCR), voice recognition, medical diagnosis, and financial 

trends [3] [8]. Another application that can greatly benefit from deep learning techniques 

is computer vision. Deep learning when applied to computer vision can perform 

extremely powerful image classification and detection algorithms. An example of the 

results from these algorithms is shown in Figure 4.  

 
Figure 4 - Examples of object classification and Detection [7] 

Classification is the process in which an image is analyzed and a determination is 

made of what object, or objects, are in the picture. Such applications include Google’s 

Reverse Image Search, Facebook’s facial recognition, and Pinterest’s similar object 

recognition [9] [10] [11]. While these uses are significant, another field that can greatly 

benefit from deep learning is robotics. Detection is an important part of these algorithms. 

Without detection capabilities, for example, Facebook’s facial recognition could not work 

on an image containing more than just a person’s face. Detection allows for the classifier 

to localize objects throughout the image frame. This is often done through a process 

called Selective Search [12].  

For a large majority of systems, computer vision is an important part of the 

perception suite on any autonomous or robotic system. When relying on this system, it is 

imperative that it is as robust and accurate as possible. One method to increase the 
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robustness and accuracy of computer vision is to use deep learning. Deep learning 

however, is an extremely computationally intensive technique. While this processing can 

be handled by a central processing unit (CPU) massive performance increases are 

achieved by processing on a GPU. This allows for parallel processing. GPUs are twenty 

to fifty times more efficient than CPUs when performing deep-learning computations [4]. 

To handle the processing required for deep learning, it is standard to perform processing 

on large servers with multiple workstation grade GPUs. This processing requirement 

provides a practical limitation of the applications in which deep learning can be used. 

Using current practices, it is highly impractical to perform deep learning on a mobile 

platform. 

Though deep learning appears to solve all the processing issues for mobile robotic 

systems, there are still several issues that must be circumvented before implementation is 

feasible. Some issues with deep learning computations occurring on a mobile system is 

the strict size and power requirements. These deep learning processes are often run on 

large workstation grade GPUs, such as the NVIDIA M6000 or NVIDIA Plex 7000 [13]. 

These GPUs can draw up to 600 watts of power as well as require proper ventilation to 

cool. These requirements make integration a difficult process. 

The purpose for this research is to demonstrate the feasibility of using deep 

learning techniques to perform object detection and classification while on a mobile 

platform. For this to be feasible, implementation should be performed on a graphics card 

with a low power consumption. This would increase the runtime of the vehicle, as well as 

reduce the amount of heat the vehicle must dissipate. This is crucial in the maritime field 

as an ASV may be exposed in the hot sun, and an AUV may have limited internal 
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airflow, due to a sealed hull. This research investigates ways to accurately and efficiently 

run object recognition processes on mobile platforms. 

 

1.3. Research Objectives 

This report will focus on object detection and classification, with an emphasis on 

naval applications. When developing classification techniques, they are often tested on a 

select few popular databases. Popular databases are ImageNet, MNIST, CIFAR 10, 

VOC2012, and STL-10 [14]. These databases often contain millions of images, with 

thousands of images of each class. A class is an object that has been manually classified 

to be recognized. For example, the ImageNet database contains over 14 million images 

and nearly twenty-two thousand individual classes [15].  

To give this research a practical application, testing will not be completed on one 

of these previously mentioned publicly available datasets; testing will be performed on 

self-obtained datasets. These datasets used for this research will be images taken from the 

AUVSI’s Maritime RobotX Competition, as well as the AUVSI’s RoboSub competition. 

The RobotX dataset that was used was collected at the 2016 RobotX competition, which 

was held in Honolulu, HI. The RoboSub dataset is composed of images from the 2014 

and 2015 RoboSub competitions, which were held at the TRANSDEC facility in San 

Diego, CA. I was present at these competitions, as a member of the Robotics Association 

at Embry-Riddle, to obtain these images.  

Deep learning vision processing techniques have widely been used for object 

detection and classification on high powered computers. This research employs many 

new computational techniques, which were adapted for use with image processing. A key 
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objective of this research is to prove that object detection through deep learning is 

feasible while running on a mobile platform. The primary technical objectives of this 

research are as follows: 

1. The detector and classifier should be trainable on a custom dataset. 

2. The software should be able to run on a consumer grade computer with 

consumer grade GPU. 

3. The software should be able to run at least at a moderate frame rate. 

Some methods of detection or classification are not capable of being trained on a 

custom dataset, meaning that if a desired object is not in that trained database, it cannot 

be detected. Therefore, when determining a method to use for a detector, it is a 

requirement that it is capable of being trained on a custom dataset. This method of 

training is called supervised learning. While it helpful for some research to run a 

detection algorithm on a pre-trained dataset, and find pre-classified objects, it is often 

necessary to detect objects not available in a dataset. Datasets such as the VOC2012 have 

only 20 trained classes [16]. If a desired object is not trained in a dataset, it is necessary 

to train another classifier to include it. Figure 5 demonstrates image detection of the 

twenty classes within the VOC2012 data set.  

 
Figure 5 - VOC2012 Classes [16] 

For this project to be considered feasible for a robotic system, it should be able to 

run on a consumer grade GPU. The definition of this is a card that is less than that of a 

“Workstation” GPU. Work station GPUs are commonplace in the deep learning 
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community. This project should be able to run on a card that is of low thermal 

dissipation. Ideally, this system would utilize the NVIDIA Jetson TX1. The Jetson TX1 

uses NVIDIA’s Maxwell architecture. This board has 256 CUDA cores, and can provide 

over 1 TeraFLOP of performance on a 64-bit CPU while only dissipating 15 watts while 

under full load [17]. The specifications of the TX1 are shown in Table 1.  

Table 1 - NVIDIA Jetson TX1 Specifications [17] 

Part Specification 

GPU NVIDIA Maxwell ™, 256 CUDA cores 

CPU Quad ARM® A57/2 MB L2 

Video 4K x 2K 30 Hz Encode (HEVC) 

4K x 2K 60 Hz Decode (10-Bit Support)  

Memory 4 GB 64 bit LPDDR4  

25.6 GB/s 

Display 2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI 

CSI Up to 6 Cameras (2 Lane)  

CSI2 D-PHY 1.1 (1.5 Gbps/Lane)  

PCIE Gen 2 | 1x4 + 1x1 

Data Storage 16 GB eMMC, SDIO, SATA 

Other UART, SPI, I2C, I2S, GPIOs 

USB USB 3.0 + USB 2.0 

Connectivity 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth 

Mechanical 50 mm x 87 mm (400-Pin Compatible Board-to-Board Connector) 

The final requirement for this project is frame rate. When selecting a method to be 

used, it should be able to run at a moderate framerate A moderate frame rate in this 

context is defined as at least five frames per second (FPS). While this framerate is slower 

than that of the camera that is used, it is still sufficient. Five FPS is sufficient because 

neither Minion or Blackfinn travel at high speeds. When in motion, it is likely there will 

be many frames taken of each object before the object is out of frame. Minion travels at a 

maximum of 7 knots, which can be converted to 3.5 meters per second. Therefore, 

Minion would never travel more than 0.7 meters between frames. Blackfinn travels at a 

maximum of 0.5 meters per second. This allows for Blackfinn to travel 0.1 meters 
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between frames. As all the task objects are stationary, this allows for sufficient visual 

coverage. Due to the anticipated reliability of image detection, it is only necessary to 

have an object visible for one frame to correctly detect it. While traditional computer 

vision methods would be expected to process at a faster rate, it is reasonable to accept a 

slower frame rate for this project due to the boost of accuracy and precision. 

 

1.4. RobotX Dataset  

The Maritime RobotX Competition is an international competition sponsored by 

the AUVSI Foundation. The goal of this competition is to design an autonomy and 

propulsion package for an ASV that can complete a variety of navigational, detection, 

and classification based tasks. Each team is given a WAM-V, which is a 16-foot-long 

inflatable pontoon boat as a platform, which is used to complete six tasks [18].  These 

tasks require the capability to autonomously detect objects to complete each task’s 

objective. This data for this competition was collected in December 2016, on Sand Island 

in Honolulu, Hawaii. This dataset contains 24 unique classes, which are found in the 

following tasks. These classes are listed in Table 2. The person class was added as a side 

experiment and was not intended or used for this research. 

Table 2 - Table of Objects for the RobotX dataset 

RobotX Class Names 

black_ball 

black_buoy 

black_tower 

blue_buoy 

blue_circle 

blue_cruciform 

blue_tower 

blue_triangle 
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green_buoy 

green_circle 

green_cruciform 

green_tower 

green_triangle 

orange_ball 

person 

red_buoy 

red_circle 

red_cruciform 

red_tower 

red_triangle 

white_buoy 

yellow_buoy 

yellow_tower 

 

 Navigation 

The first task in the RobotX Competition is navigating the qualifying gates. This 

task requires the ASV to travel between two navigational buoys, travel a variable 

distance, and then exit through two more identical buoys. These buoys are placed in the 

configuration shown in Figure 6.  

 
Figure 6 - RobotX Qualifying Gate Task [19] 
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These buoys are Taylor Made Products Sur-Mark Can Buoys, which have a 

distinct shape and color [19]. The two shapes of buoys used are shown in Figure 7. For 

this task, each pair consists of a red and a green buoy, which the ASV is required to 

detect; without detection, it would not be possible to navigate between them. As this is a 

qualifying task, it is required to be completed before any other task can be attempted. As 

these are similar shape, and only differ by color, it is imperative that the classifier 

algorithm is color independent. Other tasks require the capability to detect blue, yellow, 

and white buoys.  

 

Figure 7 - Green and Red Taylor Made Navigational Buoy, Daytona Beach, FL 

 Scan the Code 

The Scan the Code task is comprised of a light tower on a floating buoy, with 

three outward facing LED panels. The three LED panels are arranged in a triangle, and 

are between 1 and 3 meters above the water. Each panel is 15.2” by 7.6” and can display 

red, green, yellow, blue, or black [19]. The tower has a randomly generated sequence of 

four colors that is repeated every 5 seconds. The first color in every sequence must be 

black and the following three colors are randomly selected. Each color is only displayed 

for 1 second before switching to the next. In between sequences the panels display black 
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for two seconds. The goal of this task is to correctly identify the color sequence of the 

panels.  A rendering of this task is shown below in Figure 8.   

 
Figure 8 - Scan the Code, Rendering 

This task requires detection for two components. The primary component requires 

the light tower to be detected. This would allow for the ASV to approach the obstacle and 

begin the task. The second component of this task is identifying the color sequence. This 

requires the classifier to be able to recognize the color of each LED panel. This is a 

particularly challenging task since the panel quickly changes color and the colors can 

appear to drastically change due to weather conditions.  

 Identify Symbols and Dock 

The Identify Symbols and Dock requires the ASV to locate the correct docking 

bay, navigate into it, stop, and then back out. Each docking bay has a randomly selected 

sign associated with it. These signs have large geometric shapes which can have different 

orientations and colors. The possible shapes are either a cruciform, circle, or triangle, and 

the colors can be red, blue, or green. The judges, before the start of the run, determine 

which symbol is associated with the correct bay. Because of the combination of shapes 
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and colors, this task requires the detector to detect and classify nine permutations. These 

signs should be detected and classified in a single image frame. A rendering of this task is 

shown in Figure 9. 

 

Figure 9 - RobotX Docking task, rendering [19] 

 

 Detect and Deliver 

As with the docking tasks, Detect and Deliver requires the ability to detect and 

classify signs with varying shapes and colors, and the sign will be determined by the 

judges prior to the start of the run. The vessel must circumnavigate a floating tower to 

find the correct. This adds complexity to the detector since there is a greater chance the 

camera will be off axis from the sign. Being off axis makes the shapes appear to be 

skewed, which increases the difficulty of classification. Figure 10 shows a rendering of 

this task.  
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Figure 10 - Detect and Deliver, rendering [19] 

1.5. RoboSub Dataset 

The RoboSub Competition is an international competition sponsored by the 

AUVSI Foundation. This competition is composed of approximately forty teams from the 

United States, and around the world and takes place in San Diego [20].  Each team is 

tasked to develop an AUV, which is fully autonomous and has no outside communication 

during a mission. This competition is composed of navigational and manipulation tasks. 

These tasks are shown in the course diagram, Figure 11. This competition utilizes the 

TRANSDEC Anechoic Pool which is divided into two identical complete courses. These 

courses are composed of various tasks, six of which require visual detection. This dataset 

contains 11 unique classes, which are found in the following tasks. These classes are 

listed in Table 3.  
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Figure 11 - RoboSub Course Layout [21] 

 
Table 3 - Table of Objects for the RoboSub dataset 

RoboSub Object Name 

bin_ banana 

bin_can 

bin_lightning 

bin_orange 

gate 

gate_inv 

green_buoy 

path 

red_buoy 

torpedo_board 

yellow_buoy 

 

 Validation Gate 

The Validation Gate is the first task that is encountered, and the only required 

task. This Validation Gate is a five-foot-tall, ten-foot-wide arch built from 3-inch 

diameter orange PVC pipe [21]. The goal of this task is to maneuver the AUV through 

the center of the gate. To complete this task, it is important to have a classifier that can 
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detect the gate. This gate is a difficult object to detect due to its width. Due to the water 

quality, it is difficult to detect the gate from far away, but when close, it is difficult to fit 

the entire object into a frame. The diagram of this task is shown in Figure 12.  

 
Figure 12 - RoboSub Validation Gate [21] 

 Buoys 

The buoy task is the second course element to be encountered. This task is 

composed of three 9-inch diameter buoys, suspended from the pool bottom [21]. For this 

task, there will be three separate colors: red, yellow, and green. These buoys will be 

within a three-foot-tall vertical box, and have four feet of separation between them. This 

task requires a classifier to correctly identify the color of each buoy simultaneously. 

Points for this task are awarded for bumping one specified color buoy, backing up, and 

then bumping another color. This requires for the classifier to be able to detect the buoys 

from a far distance, as well as close. This task is challenging due to the similarity of 

colors. Due to sediment in the water, as well as color absorption, the red and yellow 

buoys appear similar in color. Additionally, the green buoy can blend in with the 

murkiness of the water. A diagram of this task is shown in Figure 13.   
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Figure 13 – Diagram of RoboSub Buoy Task [21] 

 Inverted Gate 

The inverted gate differs from the validation gate as it is smaller and inverted. 

This gate is only four feet tall and eight feet wide [21]. This task is constructed from two-

inch diameter PVC pipe, and is yellow in color. The goal of this task is to travel through 

the center of the posts. Bonus points are awarded if the vehicle is beneath the top of 

vertical posts. To complete this task, it is important that the classifier can detect both this 

obstacle’s width, but also its height. For the Validation Gate only the object’s width was 

required to be detected. A diagram of this task is shown in Figure 14.  

 
Figure 14 - Diagram of the Inverted Gate Task [21] 
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 Dropper Bins 

The dropper bins are perhaps the most advanced detection task in the competition. 

This task requires the capability to not only detect where the dropper bins are, but to 

individually classify which one is which. Unlike the other tasks, which are in front of the 

vehicle, this one is beneath. To observe this task, a downwards viewing camera is 

required. This adds complexity to the detector as the pool’s bottom is coated in sediment 

and debris. All four bins are surround by a white rectangle, which makes it possible to 

observe due to the contrast from the pool floor. However, in each bin is a different 

symbol. These symbols change every year to meet the theme of the competition. In the 

2015 competition, which is shown in Figure 15, the shapes were a banana, soda can, 

lightning bolt, and a flux capacitor. These shapes are yellow on a black background. This 

requires an advanced classifier to be capable of correctly identifying these abstract 

shapes.  

 
Figure 15 - Dropper Bin symbols and dimensions [21] 
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 Torpedoes 

The requirement for the torpedo task is that the AUV is required to launch a 

torpedo through one of the four holes on the board. There are two sets of square holes. 

Each set has a 12-inch-wide hole and a 7-inch-wide hole. A one inch red border is placed 

around each hole [21]. Each set is identified by a number above both holes. At the time of 

the run, one of these sets is designated the primary target. Extra points will be awarded 

for getting a torpedo through this set. Additional points will be awarded by getting the 

torpedo through the smaller of the holes. This task not only requires for the yellow board 

to be detected in the pool, but also the holes and the identifying numbers. A diagram of 

this task is shown in Figure 16.  

 
Figure 16 - Torpedo Board Diagram [21] 

 Path Markers 

The Follow the Path task consists of several blaze orange Path Markers 

throughout the course. These Path Markers are four feet long, half a foot wide and are 

suspended one to two feet from the pool floor [21]. These Path Markers are used to guide 

the AUV from one course element to the next. These markers point in the direction of the 
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next task. Therefore, not only is it required to detect these elements, but their orientation 

must also be calculated. This research will focus on just detection of the paths. However, 

since the detector will give a bounding box around the object, in the future it would be 

simple to calculate the angle of the path. A diagram of this task is shown in Figure 17. 

 
Figure 17 - Path Marker diagram [21] 
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2. Literature Review 

Computer vision is a field that has been used since the early 1970s for object 

recognition, detection, and tracking [22]. While early researchers thought it would be 

simple to write an algorithm to take a camera stream and “describe what it saw”, this was 

not the case [22]. At the time, there was not enough research in artificial intelligence or 

the hardware to support such processing. Since then, significant research has been 

performed on creating detectors that are capable of this high level of detection. This 

section will discuss published research projects which are relevant to this research. 

Students at the International Research Institute MICA investigated the use of 

background subtraction techniques to detect boats [23]. The methods used where Mixture 

of Gaussians (MOG) and Visual Background Extractor (VIBE). Results show that 

background subtraction is not sufficient on its own for reliable maritime detection. Both 

methods had difficulty detecting stationary vessels. If the vessel was not moving, it 

would be classified as background and subtracted. While VIBE was more efficient, both 

methods had a low detection rate due to background clutter and movement. 

To perform maritime monitoring, a hybrid foreground detection algorithm was 

tested [24]. This method combined an existing foreground object detection method with 

image color segmentation techniques to boost accuracy. This method attempted to 

perform foreground detection, then filter the results with color segmentation and 

thresholding. This method requires a background reference image. While this works for 

stationary detection, it is not possible to implement with a moving camera.  It is hard to 

evaluate the success of this method as no formal results are given. The only results given 

are several images demonstrating the effectiveness of the method. This method is capable 
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of detecting that an object is moving in the frame, though there is no capability to 

detecting what the object is. Additionally, the accuracy is extremely poor and detects 

other background noise such trees and waves, and is extremely susceptible to the moving 

object’s wake. While this research offered a good attempt at maritime object detection, 

other reviewed literature showed more promising results.  

Research at the University of Reading performed maritime object detection with 

visual saliency [25]. Once a saliency map is created, it is filtered through adaptive 

hysteresis thresholding. After thresholding, a binary image of regions of interests 

remains. This method could provide reliable object detection and tracking with few false 

positives. Unlike the background subtraction attempts, this method is capable of filtering 

anomalies such as waves and boat wakes. However, it had no ability to classify the 

detected objects. 

Joint research between the Naval Research Lab, University of Nevada, and 

Knexus Research Corporation investigated the usage of machine learning to detect and 

classify several types of boats. Investigated techniques included Histogram of Oriented 

Gradients (HOG), Exemplar-SVM (ESVM), and Latent-SVM with Deformable Part 

Models (LSVM) [26]. These classifiers were trained to detect the following classes: 

cabin_cruiser, canoe, kayak, motorboat, paddleboard, raft, rowboat, sailboat, and 

water_taxi. This research showed L-SVM was the highest performing method, though 

still lacked the ability to classify vessels with less identifying features, such as canoes and 

kayaks. Under the best circumstances, L-SVM had a MAP of 0.453. 

Research was conducted to evaluate the feasibility of Fast R-CNN for sign 

classification and detection [27]. A set of six SLR cameras were attached to a car to 
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create panoramic images along roads. One hundred thousand images were collected from 

five different cities in China. Several thousand annotations were used for each class. This 

method could successfully detect and classify signs with an accuracy of 0.88 and a 

processing time of 0.3 seconds per image. While slow, this method provided promising 

results. 

In conclusion, there has been a lot of research conducted on maritime detection 

with the use of visual imagery. However, most of this research is only concerned with 

detecting the presence of another vessel, and not classifying the type of vessel. No 

research could be found on the autonomous detection of maritime navigational markers, 

though road signs are common. Techniques used were background subtraction, 

foreground object detection, salient detection, L-SVM, and Fast R-CNN. While a few 

sources can classify the detected object, either no performance metrics were given, or the 

method was not capable of performing at speeds sufficient for implementation. Little to 

none research could be found of autonomously classifying objects in near-real-time while 

on a mobile vessel.  
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3. Classification and Detection Algorithms Methodology 

While image detection and classification sound similar, they are two separate 

processes. Image classification is the process of algorithmically determining which 

object, or objects, appear within an image frame. Classification cannot determine where 

in the fame the object is. In Figure 18 the left image is an example image classification, 

while the right image shows detection as well as classification. Depending on the method, 

it is possible to classify more than one object per frame, though most classification 

methods only allow for one object to be classified per frame.  

 
Figure 18 - Image Classification vs Detection and classification [28] 

Most methods that are capable of image detection, also include classification. 

Detection allows for the ability to locate where in the image certain objects may be. This 

can be paired with a classifier to determine what the object is. Most methods display the 

location by providing a bounding box around the detected object. In Figure 18, the 

picture on the right is an example of detection and classification. Depending on the 

method used, it can either be a single object detector, or a multiple object detector. For 

this thesis, it would be advantageous to have a method that can detect and classify 

multiple objects in each frame. 
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3.1. Methods under Consideration 

The four algorithms under consideration in this thesis are Faster R-CNN, 

TensorBox, DetectNet, and YOLO. Each of these methods are formally published and 

documented [29] [30] [31] [32]. This was a requirement for a method to be considered. 

Without documentation, it would be much harder to work with, and implement these 

algorithms in the time frame of this project. It is a requirement of the selected method 

that it is both Linux and Windows compatible. Linux is required as the NVIDIA Jetsons 

have an ARM processor that only supports Linux. Windows is a requirement of the 

selected method as Minion operates on Windows 7. Currently Blackfinn operates on 

Windows, though is being switched to Linux. When selecting a method, it is required that 

it can perform multiple object detection. Multiple object detection is the ability for the 

detector to detect the location of multiple objects in each frame. Multiple object detection 

is much more practical in a real word situation because it cannot always be guaranteed 

that there will not be more than one known object visible in an image frame. 

Additionally, certain cases may require for there to be multiple objects detected at once. 

In addition to detection, it is a requirement that these methods can also perform 

classification on each of the detected regions. For instance, in the RoboSub competition, 

it is required to identify the red, yellow, and green buoys. This task would not be feasible 

if the detector could only determine if one of the buoys was in frame. Figure 19 shows an 

image captured of this task from the 2015 competition, in the TRANSDEC facility. This 

image shows the Path, Inverted Gate, and Red, Green, and Yellow Buoys. 
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Figure 19 - Path, Inverted Gate, and Red, Green, and Yellow Buoys in the TRANSDEC  

 

3.2. Faster R-CNN 

Faster R-CNN is a project that was created by Shaoqing Ren, Kaiming He, Ross 

Girshick and Jian Sun [33]. It was initially published in their NIPS 2015 paper. 

Originally, this project was written and published in MATLAB. After publication, a 

Python reimplementation of their method was released. This reimplementation, py-faster-

rcnn, can achieve a similar mean average precision (MAP) as the MATLAB version. This 

method can achieve a 66.9 percent MAP using VGG16 model on the VOC 2007 dataset 

[34]. Additionally, the Python reimplementation on average is ten percent slower [29]. 

This speed decrease is due to the inability for Python to use GPU acceleration on all 

layers. Faster R-CNN can be run either with or without a GPU. The Python 

reimplementation is the version that will be considered. This is due to the ease of 

implementation as well as integration with other software systems. Additionally, it would 

be less complicated to run the Python version on a Linux system, compared to the 

MATLAB version. While MATLAB has Ubuntu support, it is known to have support 
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issues. Faster R-CNN allows for the training of a custom dataset, which meets the 

qualifications. Figure 20 shows an example of Faster R-CNN’s capability of detecting 

and classifying multiple objects in an image. 

 
Figure 20 - Faster R-CNN Example [35] 

Faster R-CNN is built upon the Caffe framework. Caffe is a deep learning 

framework that was created by a team at the Berkeley Vision and Learning Center 

(BVLC), as well as by community contributors [36]. Caffe is open sourced under the 

MIT License project and is a popular framework for many deep learning projects. As 

Caffe is written in C, using it, or any projects based off it, would be easy to implement 

for any project requiring cross platform compatibility. The Caffe framework allows for 

CUDA acceleration when an NVIDIA GPU is accessible.  

Faster R-CNN is an improvement over its predecessor algorithm, Fast R-CNN. 

Fast R-CNN is another project by Ross Girshick. Faster R-CNN is on average one 

hundred and forty-seven times faster than Fast R-CNN [34]. This speed increase was 

achieved through the usage of region proposal networks. Additionally, Fast R-CNN is 

also an improvement over Girshick’s R-CNN algorithm. Fast R-CNN is two hundred and 
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thirteen times faster at runtime than R-CNN [33]. R-CNN was initially published in 2013, 

while Fast R-CNN was published in 2015.  

 

3.3. TensorBox 

TensorBox is an open sourced project that uses the TensorFlow framework to 

implement Google’s GoogLeNet-OverFeat algorithm [37]. TensorBox was initially 

uploaded to GitHub on January 23, 2016 by user kupel. TensorBox is an image detector 

that is written in Python and implements Tensorboard. Tensorboard is TensorFlow’s, 

graphical user interface (GUI) which is used to visualize the learning process of the 

network. TensorBox is capable of being trained on a custom dataset with multiple 

classes. TensorBox uses the JSON file format. These files contain the filename, and the 

bounding boxes for each class within each image. Figure 21 shows an exaple of 

TensorBox detecting multiple objects in a image. 

 

Figure 21 - TensorBox head detector example [37] 

TensorFlow is an open sourced software library originally created by engineers at 

Google and was released in November 2015 [38] [39]. TensorFlow can run on one or 

more GPUs for CUDA acceleration [40]. When an NVIDIA GPU is not available, 
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TensorFlow may also be run on one or more CPUs; however, it will be significantly 

slower. TensorFlow is compatible with Windows, Mac OS X, and Linux [41].  

 

3.4. DetectNet  

DetectNet is an image detection algorithm created by developers at NVIDIA. 

DetectNet is capable of image object detection as well as image segmentation. This 

method however does not support classification. DetectNet is implemented by using a 

network that is derived from the GoogLeNet model. This network was modified for 

improved object detection [42]. Figure 22 shows an example of DetectNet being used to 

detect construction vehicles on a work site.  

 
Figure 22 - DetectNet Example, Vehicle Detection [31]  

DetectNet is based upon the DIGITS framework. DIGITS is an open sourced 

project that is supported and maintained by NVIDIA. NVIDIA DIGITS version 1 was 

initially released on June 26th 2015, though it is currently on version 5 [43]. At the time 

of selecting a method, the most recent version was version 4. DetectNet was initially 

released with DIGITS version 4RC, on June 21st, 2016 [44]. The DIGITS library supports 

CUDA acceleration, as well as CPU processing. 
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Through the DIGITS platform, it is possible to train a network on a dataset. The 

DIGITS framework provides support on inputting annotation files, training datasets, as 

well as validation datasets [31]. Additionally, there is graphical support for editing 

training parameters. Editable training parameters include batch size, learning rate, and 

snapshot intervals. The DIGITS frame work is only supported for Ubuntu 14.06 and 

Ubuntu 16.04 [44]. 

 

3.5. YOLO Version 1 

The final method that was investigated was the use of YOLO. YOLO, You Only 

Look Once, is based on the Darknet framework [45]. Darknet is an open sourced 

framework for neural networks that is written in C and CUDA [32]. YOLO claims to be 

one hundred times faster than Faster R-CNN. YOLO makes claims to perform detection 

at 45 FPS, while the Tiny YOLO model can perform at 155 FPS [45]. This Tiny YOLO 

model only requires 516MB of GPU memory. These framerates were achieved while 

running on a NVIDIA Titan X. The specifications of the Titan X are shown in Table 4 

[46]. 

Table 4 - NVIDIA Titan X Specifications 

Component Specification 

GPU Architecture Pascal 

Frame Buffer 12 GB G5X 

Memory Speed  10 Gbps 

Boost Clock 1531 MHz 

Graphics Card Power  250 Watts 

YOLO when trained on the VGG-16 network could achieve a 66.4 percent MAP, at 21 

FPS. While this is much faster than Faster R-CNN, it is considerably less accurate. Figure 

23 demonstrates how YOLO performs analysis on the entire image at once (top image). 
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Once weights for the entire image is obtained, the highest weight for each region is saved 

(bottom image). The final detection step (right image) uses these classified regions and 

places a bounding box around each separate region.   

 

Figure 23 - YOLO Image Detection Example 

 

3.6. Selection Process 

When considering which algorithm to select, there were many factors to consider. 

The three main criteria for evaluation was the operating system it can run on, speed in 

which it can process an image, and precision of its detection. The selected method would 

have greater practicality, and usage, if it can run on multiple operating systems. All four 

of these selected methods are compatible with Linux, though they are not all officially 

supported on Windows. This section will investigate if there are any unofficial ports that 

enable windows support. Speed is an important metric to evaluate. A higher frame rate 

would increase the feasibility of this project. Unfortunately, it proved difficult to find 

performance metrics for these methods. Therefore, to get a speed metric it would be 

required to download and install every method, and then train a network on the RobotX 

or RoboSub dataset. As this is an extremely time consuming and tedious process, it was 
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not done for every method. Faster R-CNN and YOLO were the only methods that 

provided speed information. The third requirement is precision. All the methods that were 

investigated have similar precision and detection capabilities.  

For this research, it was decided to implement the Faster R-CNN library for 

Python. DetectNet was eliminated as a possibility as it does not perform classification, as 

well as its lack of support for Windows compatibility. This was because classification 

and Windows capability were a requirement of the selected detector. TensorBox was not 

further considered as there was no published frame rate. This lack of performance metrics 

makes comparison a difficult process. Additionally, TensorBox appeared to be difficult to 

integrate. As per the previous research, it was found that Faster R-CNN had a lower 

frame rate than YOLO, but a considerably higher MAP. Through experimentation it was 

found that Faster R-CNN had a more straightforward training process, as well as clearer 

defined models, and more online support. These reasons made Faster R-CNN the top 

choice for this project. 

  This is a suitable method as it was determined that it would be the easiest to 

implement, had a high ratio of performance to accuracy ratio, and is capable of being 

added upon. Faster R-CNN was originally written for Linux capability only, but there 

have been successful ports to Windows. This has been run and tested on both Windows 7 

and Windows 10. 

 

3.7. Faster R-CNN Operation 

Faster R-CNN is a regional convolutional neural network used for object 

detection and classification. This object detector is composed of two modules that 
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interact together [33]. The first module is a fully convolutional neural network that 

creates region proposals. This module is the basis of the detection capability. The second 

module is the Fast R-CNN detector, which is created by the same author. This detector is 

executed on each of the proposed regions. The interaction of these two modules is shown 

in Figure 24.  

 
Figure 24 - Faster R-CNN modules 

This figure shows a bottom up approach of classification. The bottom-most layer 

is the input image. This image is sent through a series of convolutional layers. These 

layers are like those shown in Figure 3. The output layer of this network is displayed as 

the feature maps layer. This allows for the Fast R-CNN detector module to locate regions 

of interest in which it should perform on. This allows for greater accuracy and 

performance increases since the classifier does not need to perform over the entire image. 

This classifier can take a rectangular input region of any size. For this research the 

VGG16 model was used, which has 13 shareable convolutional layers. These layers are 

segmented by a sliding window that has 512 dimensions. A diagram depicting these 
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sliding windows is shown in Figure 25. In this figure the intermediate layer is represented 

as 256 dimensions from the ZF model, but is easily exchanged for the VGG16 model.  

 
Figure 25 - Faster R-CNN Region Proposal Network (RPN) 

For each of these regions cls scores and coordinates are generated. By default, 9 anchor 

boxes are used for each position of the sliding window. These anchor boxes use 3 scales 

and 3 aspect ratios. The resulting values from these anchors are used to classify each 

region. 
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4. Methodology 

To implement an image detector on Minion or Blackfinn, the only sensor required 

is a digital camera. Visual imagery was provided by using two PointGrey Blackfly 

cameras. Two cameras were used on each of these vehicles to increase the field of view. 

These cameras are power over Ethernet (PoE) powered, and GigE compatible. This 

allows for them to easily be powered and connected on any system. When working in the 

marine environment, waterproofing these cameras is drastically easier since there is only 

one cable required for the camera’s connection. These 2.3Mp cameras provide 

1900x1200 pixel images at an average of 27 FPS [47]. Due to bandwith and processing 

limitations, these cameras were only sampled at 10 FPS. These Blackfly cameras, paired 

with Fujinon CS-Mount 2.2-6mm Varifocal Lens, were measured to have a field of view 

of nearly 100 degrees. On Minion, the cameras are focused outwards at 86-degree angle 

to achieve a field of view of approximately 200-degrees. A rendering showing this 

orientation is shown in Figure 26.  The cameras are encased inside the tubes and face ± 

43 degrees from forward. Blackfinn uses a forward-facing camera and one downward 

facing camera. This is due to the need to detect objects both in front of, and below the 

vehicle. While the same cameras were used for obtaining both the RoboSub and RobotX 

datasets, any digital camera can be used with this project, if the focal length is known.  
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Figure 26 - Minion's Camera orientation 

4.1. Installing Faster R-CNN Algorithm 

The first step of implementing Faster R-CNN is to set up the programing 

environment. As previously stated, the goal of this project is a system capable of running 

on the Linux and Windows operating systems. Linux will be used on Blackfinn, while 

Minon runs Windows. For the ease of research, most programing will be completed in 

Linux. This section will be describing the implementation for a Linux system. The usage 

and compatibility of Windows will be discussed later in this section. Linux was the 

primary operating system for this project. The Linux operating system used for testing 

was Ubuntu 16.04 LTS. This was selected because Ubuntu is free and well supported. 

Additionally, Ubuntu met all the dependency requirements of Faster R-CNN.  

The most important dependency for this project were the CUDA drivers. Another 

reason for Ubuntu section is that NVIDIA makes a version of CUDA 8.0 for Ubuntu. 

Compatible CUDA drivers are a requirement for this project as they are needed for the 

CUDA code to be compiled and run on the GPU. Without CUDA drivers, CUDA 

accelerated code could not be run on the GPU, and therefore could only run on the CPU. 

This would render the project unfeasible, as CPU operations are 20x slower. In testing it 
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was determined that processing an image on the GPU takes 0.174 seconds while the same 

method takes 3.242 seconds when processed on the CPU. 

CUDA 8 was selected as the version of CUDA to be used. This was done because 

it is the latest version, and offers support for the Pascal GPU Architecture [48]. This is 

required to run on NVIDIA’s Pascal GTX 10-Series GPUs. As Minion uses a GTX 1080 

for vision processing, this was a must. The NVIDIA Jetson TX1 also requires CUDA 8. 

Therefore, this project needs to be built on CUDA 8 so that it is compatible on a TXI. 

Additionally, CUDA 8 has other benefits including NVCC compiling that is twice as fast 

and expanded developer platform which allows for Visual Studio 2015 on Windows and 

GCC 5.4 on Ubuntu 16.04 [48]. 

In addition to the many required dependencies, such as the CUDA drivers, Faster 

R-CNN has many other dependencies. Faster R-CNN requires Caffe as well as the 

Python libraries such as cython, python-opencv, and easydict [29]. In Ubuntu, these 

dependences are all available through the APT package handling utility. 

As previously mentioned, Faster R-CNN is built on top of the Caffe framework. 

This requires that Caffe is installed to be able to run Faster R-CNN. Since Caffe is a 

framework, most projects will implement it, and then build upon it, while making 

changes to its structure. This process is also followed when using Faster R-CNN. Faster 

R-CNN adds several layers to the Caffe layers. This requires for Faster R-CNN to only be 

compatible with a modified version of Caffe. This modified version is available from the 

same location as Faster R-CNN on rbgirshick’s GitHub repository [29]. 

To install Caffe, rbgirshick’s Caffe repository needs to be cloned, and then Make 

can be used to build the project. The project’s build properties can be configured using 
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the Makefile.config parameter file. This configuration file has parameters for the 

compiler to include other dependencies and corresponding data layers. Important 

parameters in this file are WITH_PYTHON_LAYER, USE_CUDNN, USE_OPENCV, 

USE_LEVELDB, USE_LMDB, and CUDA_ARCH. This file should be used to include 

paths of external dependencies that are also required, such as hdf5. 

It is important to enable the Python layer when building Caffe. The Python layer 

is required because Faster R-CNN is a Python implementation and requires Python 

layers. If this parameter is not set to true, Faster R-CNN would not be able to be run and 

an exception will be thrown. Caffe would have to be re-compiled with Python layers 

enabled.  

CUDA Deep Neural Network library (cuDNN), is a GPU-accelerated library 

created by NVIDIA to improve deep neural network performance. cuDNN provides 

optimized implementations for common routines such as forward and backward 

convolution, pooling, normalization, and activation layers [49]. The latest version is 

cuDNN version 5.1, which was released January 20, 2017 [50]. Version 5.0 and greater 

supports the Pascal architecture, which is a requirement for this project. cuDNN versions 

4 and earlier do not support the Pascal architecture [50]. cuDNN is supported on both 

Linux and Windows. As Faster R-CNN was released before cuDNN V5, Faster R-CNN 

does not officially support cuDNN V5. However, there are community created forks of 

the Faster R-CNN project that support cuDNN V5. For this project, a fork created by 

GitHub user, TheTesla was used [51]. It is recommended to compile Caffe with cuDNN 

as it offers many optimizations and speed increases. With the use of cuDNN, training a 

network that uses 3x3 convolutions is 2.7 times faster. These speed benefits are shown in 
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Figure 27. This is useful since the VGG network would benefit from this increase. 

Additionally, cuDNN claims to increase the training speed up to 44 percent faster on a 

Pascal GPU [52].  

 
Figure 27 - Speed benefits of cuDNN V4 vs V5.1 on a M40  [49] 

 

Perhaps the most important benefit of cuDNN is reduced memory usage. When 

training or implementing a VGG16 network, it was found that 5 GB of VRAM is 

required. Using cuDNN though, this is reduced to only 3 GB. This is massive 

improvement, and greatly increases the usability of this project. Many popular GPUs, 

such as the GTX 970, 980, and 1050, only have 4 GB of VRAM. Also, the NVIDIA 

Jetson TX1 has 4GB of shared RAM. Using cuDNN, these platforms can run this project 

because they meet the minimum RAM/VRAM requirement.  

It is required to enable OpenCV in the makefile.config file. OpenCV is needed for 

Caffe, because Faster R-CNN uses OpenCV for all image inputs and outputs. OpenCV 

also allows for efficient and streamlined methods to manipulate images. For this project, 

OpenCV is used to read and save images, as well as video files. OpenCV also is used to 

modify loaded images. OpenCV can read and write any standard image (.jpg, .bmp, 
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.png), as well as read or write any standard video formats (.avi, .mp4). OpenCV was 

chosen to manipulate images loaded into memory. Manipulation includes adding text and 

shapes to the image frame. Faster R-CNN was written with support to use the Matplotlib 

library for these manipulations, as well as displaying images. This library however is 

limited with its ability to refresh plot windows, to give a smooth viewing experience for a 

video steam. Due to this, OpenCV was used to rewrite all image manipulation functions. 

Using OpenCV, the image detector was written so that it can operate on a single image, a 

folder of multiple images, a video file, or a video stream. Configuration parameters are 

set to easily allow for the program to be switched between input methods. A camera can 

be added by either OpenCV’s VideoCapture function, or a GigE Camera that can be 

added by an open-sourced wrapper for FLIR’s FlyCapture API (formerly PointGrey). The 

FlyCapture SDK can be acquired on FLIR’s website [53]. The FlyCapture SDK is 

Ubuntu and Windows compatible, which makes it a good choice for this project.    

 Both LevelDB and LMDB are database files. These should be enabled to increase 

the efficiency of the code. These formats are used to store the layer data, and are required 

by Faster R-CNN. 

CUDA_ARCH is an important parameter to verify in the makefile.config. This 

parameter lets the NVCC compiler know what Compute Capability the code should be 

compiled for. Compute Capability is a metric that is used to identify the capabilities of 

NVIDIA GPUs. Table 5 shows the Compute Capability of several popular GPUs, as well 

the NVIDIA Jetsons. Since this project was compiled for a GTX 1080, Compute 

Capability 6.1 was used. In the configuration file this is dictated as compute_61. 
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Table 5 - Compute Capabilities of Popular GPUs [54] 

GeForce Desktop Products 

GPU Compute Capability 

NVIDIA TITAN X  6.1 

GeForce GTX 1080 Ti  6.1 

GeForce GTX 1080  6.1 

GeForce GTX 1070  6.1 

GeForce GTX 1060  6.1 

GeForce GTX 1050  6.1 

GeForce GTX TITAN X  5.2 

GeForce GTX TITAN Z  3.5 

GeForce GTX TITAN Black  3.5 

GeForce GTX TITAN  3.5 

GeForce GTX 980 Ti  5.2 

GeForce GTX 980  5.2 

GeForce GTX 970  5.2 

GeForce GTX 960  5.2 

GeForce GTX 950  5.2 

CUDA-Enabled TEGRA /Jetson Products 

GPU Compute Capability 

Jetson TX1 5.3 

Jetson TK1 3.2 

Tegra X1 5.3 

Tegra K1 3.2 

 

It is important to verify that the selected Compute Capability is correct. If a lesser 

capability is selected than the card that will be used, performance losses will be severe. If 

the project was compiled for a lower Compute Capability, then it would have a similar 

performance to a card of that Compute Capability, despite possibly being a card of higher 

capability. Figure 28 shows the features of each Compute Capability.  

http://www.geforce.com/hardware/10series/titan-x-pascal
http://www.geforce.com/hardware/10series/geforce-gtx-1080-ti
http://www.geforce.com/hardware/10series/geforce-gtx-1080
http://www.geforce.com/hardware/10series/geforce-gtx-1070
http://www.geforce.com/hardware/10series/geforce-gtx-1060
http://www.geforce.com/hardware/10series/geforce-gtx-1050
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-z
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-960
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-950
https://developer.nvidia.com/jetson-tx1
https://developer.nvidia.com/jetson-tk1
http://www.nvidia.com/object/tegra-x1-processor.html
http://www.nvidia.com/object/tegra-k1-processor.html


 
 

 
 

43 

 
Figure 28 - Compute Capability Features [55] 

 

After the parameters for the Caffe Make configuration file is set, the project can 

be built. Depending on the processor speed and number of processor threads available, 

this can take up to a few minutes to build. To verify this is built correctly, open a Python 

terminal and execute “import caffe.” If this is successful, Caffe was properly built and 

installed. It is likely that the Caffe Python folder’s destination needs to be added to the 

PYTHONPATH.  After Caffe is built, Faster R-CNN can be built. This is done by 

running Make in the /lib/ source file. Once this builds, Faster R-CNN should be properly 

installed. This can be verified by running a demo script on a pre-trained network. How to 

run a network will be discussed in the next section. 

When installing on Windows, there are a few differences that make the process 

feasible, but much more complex. The first issue is Faster R-CNN, or its Caffe 

dependency, cannot be natively compiled in Windows. Since Caffe is written mainly in 

C, the code can be ported to work on Windows. When testing on Windows the repository 

Caffe, by ShaoqingRen was used [56]. This repository is a fork of the original 

BLVC/Caffe repository. This project was forked on October 1st, 2014 [56]. This project 
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was then modified to be Windows compatible. In addition to code modifications, Visual 

Studios projects were added. This allowed for Visual Studios 2013 to compile the project.  

The “SPP_net” branch of this repository was modified to include the Faster R-

CNN layer types. Once this repository is cloned, Visual Studios can be used to build the 

project. Once the build file for the Python folder is added to Windows PYTHONPATH, 

the project should be ready to be imported. As with Linux, this can be tested by opening a 

Python terminal and executing “import caffe.” To install Faster R-CNN, the Linux 

repository can be used, with some modification. On GitHub, MrGF uploaded a repository 

called py-faster-rcnn-windows [57]. This repository contains a modified version of the lib 

directory. This modified directory contains an altered setup.py file that allows for the C 

and CUDA code to be compiled. This altered setup.py file should overwrite the original. 

Another issue with Windows support is the lack of cuDNN V5 support. There is 

not a Faster R-CNN fork that was modified for Windows, as well as modified for cuDNN 

V5 support. As the official version of Faster R-CNN has not been officially updated to 

allow for cuDNN V5, it is necessary for a community member to make this modification. 

This issue was solved for the Linux version, but not for Windows yet. As of the time of 

publication, a solution was not available. Without cuDNN V5 support for Windows, this 

project is still feasible if a GPU with more than 6 GB VRAM is available. cuDNN V4 is 

compatible with this version, though is not CUDA 8 compatible. 

To run Faster R-CNN, there are no official documented minimum system 

requirements. However, due to the intensive nature of the process, it is obvious that there 

is a minimum system requirement to handle the computation. Through testing, it was 

determined that the system must have at least 4GB of RAM. This because the trained 
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Caffemodel using VGG16 requires 3.5GB of RAM to load. If the system does not have a 

GPU, computation can all be handled on the CPU, though performance would be greatly 

reduced. Detailed performance results will be covered in the results section, as previously 

mentioned. Through testing it has been found that CPU only processing is approximately 

20x slower than on a GPU. Therefore, it is highly recommended to have a GPU to boost 

performance with parallel processing. The smallest popular model for Faster R-CNN is 

the VGG16 model. This model requires 6GB of VRAM. However, with the inclusion of 

cuDNN, optimizations can be made which reduce the requirement to approximately 

3.5GB of RAM. It is also recommended to have an equal amount of RAM as VRAM. 

Therefore, the minimum requirement is 4GB RAM and 4GB VRAM. An exception for 

this is made for the NVIDIA Jetson TX1. The TX1 uses shared memory, so 4GB of RAM 

is sufficient. 

 

4.2. Running Faster R-CNN 

To run Faster R-CNN, a prototxt file, and caffemodel file are needed. These two 

files are the core of the Caffe framework, and allow Caffe to have such flexibility. The 

prototxt file is a Caffe file structure used to construct the different layers of the network. 

The caffemodel file is used to store the trained model data. For this project to run on a 

custom dataset, the network must have been trained. This is a rigorous and time 

consuming process. How to train a model will be discussed later in section 4.3 Training. 

Before implementing the Faster R-CNN algorithm into another project, or training 

a network for it, it is recommended to test its performance on a pre-trained network. This 

would allow for verification if everything was configured properly. This additionally 



 
 

 
 

46 

gives a subjective performance metric of how a system compares to another, based on 

online metrics. When tested, if the speeds are much different than somebody else’s 

speeds, it could be assumed that something was not configured properly. If there was an 

issue with the CUDA drivers, and this were to be run on the CPU, processing times 

would be much longer. Faster R-CNN comes with a demo script, which runs detection on 

five images. After running the demo.py script on the pre-trained Faster R-CNN demo 

models, the results of the five classified images are shown. Figure 29 shows an example 

image of this process. Each image took 0.194s, 0.153s, 0.167s, 0.161s, 0.182s, 

respectfully, to detect. When running this test on CPU an average 3.242 seconds per 

frame was calculated. 

 

Figure 29 - Results of Demo.py 

 

4.3. Training 

Training a network is the process in which the classifier and detector learn to 

recognize different objects. To train a model on an object, a data set containing many 
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images of that object must be acquired. In this dataset, it is recommended that the images 

are against various backgrounds, and of multiple orientations of the object. This will 

ensure that the training is correctly tuned to the object, and not also the background. To 

train a model for Faster R-CNN, there are a few requirements. The first requirement is 

that the dataset must be annotated.  

Annotation is the process of manually segmenting the objects in each image. 

Annotations can only be performed on an image, and not to a video file. This was an 

issue because Minion’s camera system stores logged frames as an .avi file. This requires 

for the frames to be extracted from the .avi for annotation and training. To do this, a 

Python script was written. This script uses OpenCV to scan a folder, and extract frames 

from every contained video file. The frames from each video are organized in folders 

with corresponding names. 

Faster R-CNN supports several formats of annotation files.  The annotation 

process requires a separate annotation file for each image. To create these annotations 

files, the program LabelImg was used. LabelImg can be downloaded on GitHub from 

Tzutalin’s repository [58]. This repository is active, and is continually being updated with 

new features. This program was modified to include additional shortcuts and hotkeys to 

speed up the annotation process. LabelImg was selected because it saved the annotation 

files to the PASCAL VOC format. This format is the same format used by ImageNet, and 

is compatible with Faster R-CNN. An example of LabelImg annotating an image from 

the RobotX dataset is shown below in Figure 30. This image shows the blue_circle, 

red_triangle, and red_cruciform classes being annotated. This image was taken at the 

2016 RobotX Competition. 
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Figure 30 - Using LabelImg to annotate an image from the RobotX dataset. 

The annotation files created by LabelImg use the .XML file format. This file has 

data fields for the source image width, height, and depth. More importantly, for each 

annotated object, there is an object field. This field contains the name of the object as 

well as coordinates for the bounding box. The bounding box is listed as xmin, ymin, 

xmax, ymax. By recording two coordinate pairs, a rectangle around the object can be 

drawn.  This format allows for multiple objects to be included in one .XML file. An 

example of an annotation file is shown in Figure 31. 

 
Figure 31 - Example Annotation File created using LabelImg 
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The RoboSub model consists of 11 individual classes. To train this model, 833 

images were annotated for a total of 1,355 annotations. These annotations were from a 

dataset of 92,447 images. All these images were manually analyzed to see if they would 

be beneficial in the training set. Most these images were not usable as there were no 

course elements in them. When analyzing these images, a set was pulled aside for 

accuracy verification and testing. A set from both the forward, and downward facing 

camera was set aside for this. This set was composed of 4,188 images. While this is large 

set, most of the frames do not contain any course elements. The breakdown of these 

annotations is shown in Table 6. These annotations are plotted in Figure 32. 

Table 6 - Annotation Summary for RoboSub 

Object Name Number of Annotations 

gate 290 

gate_inv 138 

red_buoy 190 

green_buoy 186 

yellow_buoy 168 

path 287 

torpedo_board 15 

bin_bannana 24 

bin_lightning 27 

bin_can 21 

bin_orange 9 

As the images for this dataset were taken during a competition, it was not possible 

to obtain equal data for every task. There are the most images available for annotation of 

the gate, as every run begins with it. This is what allows the detection of the gate to be 

incredibly accurate. Unfortunately, classes such as the bins, were only trained on logs 

from one run. Despite a much lower number of annotations, the bins can still be classified 

with a high MAP. The bins were only trained from one run, as there were only two runs 
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of data for these obstacles. Therefore, one was reserved for training as the other was 

reserved for testing.  

 
Figure 32 - Plot of Number of Annotations Per Class 

Additional experimentation on detecting the torpedo board symbols was 

performed. Since this was an isolated test, the annotations from this experiment were not 

included in the final trained model. The summary of annotations for this test is shown 

below in Table 7. The performance of this test will be evaluated later in 4.5.2 RoboSub 

Accuracy.  

Table 7 - Annotation Summary for Torpedo Board Test 

Object Name Number of Annotations 

torpedoboard2016 36 

W 21 

S 20 

N 7 

E 7 

torpedoboard2016cover 7 

 

While the RobotX dataset has twice the number of classes, it is much smaller than 

the RoboSub dataset. This dataset is comprised of 23 unique classes. These classes were 

annotated with 2,365 annotation files. There is a total of 3,207 annotations in this dataset. 
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This annotated dataset was composed of 50,887 images. This was a tedious process to 

sort through and annotate. Unfortunately, there is a large discrepancy between the 

number of annotations taken for each class. As with the RoboSub dataset, this is the 

result of logging competition data. Included in this dataset is data from tests in Daytona 

Beach, in addition to the data from Hawaii. As this project was planned to be used for the 

Light Tower portion of the competition, there is a large focus of Light Tower data. One 

of the Daytona testing datasets was focused on the blue_circle, making it by far the most 

popular class. The distribution of annotations can be found in Table 8 as well as plotted 

in Figure 33. When sorting images for annotation, a set was reserved for verification and 

testing. This set was composed of 4,105 images. These images were selected from image 

sets that were not in the training set. These images were selected as they contained all 

course elements. 

Table 8 - Annotation Summary for RobotX Dataset 

Object Name Number of Annotations 

blue_circle 382 

black_tower 320 

blue_tower 239 

red_buoy 209 

green_tower 202 

red_tower 201 

green_buoy 196 

red_triangle 189 

yellow_tower 176 

black_ball 163 

person 132 

red_cruciform 110 

white_buoy 101 

blue_cruciform 98 

blue_triangle 83 

black_buoy 82 

green_triangle 74 

blue_buoy 71 

green_circle 50 
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yellow_buoy 50 

green_cruciform 41 

orange_ball 22 

red_circle 16 

 

 
Figure 33 - Plot of Number of Annotations Per RobotX Class 

Once each image has an associated annotation file, the training process can begin. 

As Faster R-CNN is based on the Caffe framework, the training process is like that of 

training a Caffe network. To train a network, both Caffe and Faster R-CNN must be 

installed on the computer. While not necessary, it is highly recommended that training be 

performed on a computer with one or more GPU. It is not required for the network to be 

trained on the same device that it will be run on. This is especially useful for a system 

that uses a Jetson TX1, because the TX1 would train a network at a much slower rate 
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than on a computer with a GPU that has a higher clock rate. Additionally, as the TX1 has 

only has 4GB RAM, training would be a slow process. To limit the RAM used, smaller 

batch sizes would be needed. By reducing the number of images trained simultaneously 

in a batch, the training process will take longer. The training process is a long and 

cumbersome one, that can take several hours to several days depending on the GPU(s) 

used, and the size of the dataset. 

When training a network, it is recommended to use another trained model as a 

weights model. Due to the relatively small size of the datasets used for this project, less 

than 100,000 images, training would benefit from using a pre-trained weights file. The 

weights parameters for each layer are learned through the back-propagation phase. To 

eliminate the need for this propagation to start from scratch, a pre-trained weight file can 

be used. Through initial testing it was determined that this was necessary. Due to the 

limited size of the training and validation sets, the weights would not properly initialize. 

To resolve this issue, the pre-trained weights file VGG16.V2.caffemodel was used. This 

file can be obtained from the Faster R-CNN repository. To use the pre-trained weights 

file the name of the last layer must be changed [59]. When changing this name, it should 

be done in the .prototxt file. However, for Faster R-CNN to recognize this new layer 

name as the final layer, it must also be changed in the code for loading the Faster R-CNN 

model. To change, this the variable “box_deltas” should be changed. This variable is 

found in ./libfaster/rcnn/test.py. This variable should be changed to the same as the new 

layer name. The layer name should be changed in the test.prototxt file and the 

train.prototxt file. The parameter that needs to be changed in both files is the argument 

“bottom,” for the layer cls_prob. This name can be changed to anything that is not a 
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current layer name. For this project, the last layer’s name was changed from cls_score to 

cls_score2. 

When training a model, it is crucial to ensure the train.prototxt file is properly 

configured. When training a model on a custom dataset, it is likely the training prototxt 

file would need to be changed from the default. The required changes are as follows: 

• In ‘VGG_ILSVRC_16_layer’ the python_param param_str ‘num_classes’ should 

be changed to the number of unique classes + 1. For the RobotX Dataset there is 

23 unique classes, plus the background class. Therefore, this parameter is 24.  

• In ‘roi-data’ the python_param param_str ‘num_classes’ should be changed to 

the number of unique classes +1. Therefore, this parameter is 24. 

• IN ‘bbox_pred’ the inner_product_param num_output should be changed to the 

(number of unique classes + 1) * 4. Therefore, this parameter is 96. 

The test prototxt file also needs to be altered before runtime. The test prototxt file 

requires the number of classes to be changed as well as the number of parameters for the 

final layer. 

When choosing the parameters, it is required to add one to the number of classes. 

This is done to account for the background class. This class, which is named 

‘__background__’, is used as a negative image for the classifier. This class is 

automatically set up and is used to reduce proposals in the background region. 

Training a network is started by calling the script, faster_rcnn_end2end.sh. This 

script takes three input arguments. The first argument is the identification number of the 

GPU(s) to train with. If only one GPU is installed, this argument would be index 0. The 

second argument is the network type. For this training, the VGG16 network was used. 
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The third and final argument is the annotation format. For this training the pascal_voc 

format was used.  

 
Figure 34 - Terminal window showing output during training 

Figure 34 shows the output of the terminal screen while training a network. This 

screen shows the current iteration that is being trained on. In this screenshot, iteration 200 

is being finished. This model is being trained on a computer with the specs shown in 

Table 9. 

Table 9 - Desktop System Specifications 

Part Specification 

CPU i7 4790K – 4.3Ghz 

RAM 16GB 1600Mhz 

GPU NVIDIA GTX 1080 - 2560 CUDA

 cores – 8GB RAM 

OS Ubuntu 16.04 LTS 

 

In the screenshot of the training, Figure 34, it is shown that it takes 0.583 seconds 

per iteration. As shown in the data from Table 9, this was trained on a NVIDIA GTX 

1080. While training, the process took 6671 MB of VRAM, which is shown in Figure 35. 

Additionally, this screen shows other pertinent information such as GPU usage, GPU 

temperature, and power consumption. This data is accessible by running ‘nvidia-smi’ 

from the terminal window. 
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Figure 35 - Results of NVIDIA-SMI while training 

When training, it is recommended to do several thousand iterations. This is 

necessary for the network to converge. For the RobotX dataset, there were 24 unique 

classes. To train this model, 100,000 iterations were performed. This training took over 

16 hours to complete. Faster R-CNN creates a log file during the training process. This 

log file can be used to plot the loss curve for the training process. The curve for the 

training of this network is shown in Figure 36. This plot shows that for this training, the 

loss quickly settles around 10,000 iterations, though continues to drop until around 

65,000 iterations. After this, the lost begins to gradually increase. Additionally, while 

training snapshot files are created. These files are used to resume training if an 

interruption occurs. The interval for which these files is saved can be set in a 

configuration script. When using the model trained from this training, it was decided to 

use snapshot from iteration 65,000.  
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Figure 36 - Loss curve for RobotX training 

4.4. Tracking and Localization 

In addition to providing classification, this project additionally tracks each 

detected object. This is done to increase rate of true positives as well as reduce the 

probability of false negatives. This tracking increases the rate of true positives, because 

the confidence threshold can be lowered. This allows for the detector to be more 

sensitive, and classify objects that have lower confidence. While this should raise the 

false positive rate, this is not an issue. This tracking reduces the probability of false 

positives as its persistently keeps track of each objects from frame-to-frame. Faster R-

CNN’s algorithm is set up to be able to sufficiently detect an object with a single frame, 

but there is no verification process done to ensure that there is no abnormal change from 

one frame to another. This is useful because for example, imagine a red buoy in a 

location. This buoy has been detected for fifty frames consistently and correctly, however 

the next frame has a sun flare, or another anomaly that causes for the detector to 

incorrectly classify the buoy as a yellow buoy. By having a persistent tracker, the 

algorithm would know it is not possible to instantaneously switch to another object. This 
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feature however is disabled for the light panels on the Light Tower. This is because these 

panels are constantly changing color every second.  

To track each found object, a Python class is made for each potential object. This 

class allows for a memory location to store pertinent information about each found 

object. Each classified object in each frame, is searched through the database of 

previously detected objects. If it is determined that the object was not previously found, a 

new class object is initialized. If the object was previously found, its parameters are 

updated. To determine which objects in the current frame that has already been found, an 

exhaustive search is conducted for each object in the database. During the search, the 

position of each object in the current frame is compared against the position of each 

stored object. A vector is created between the new pixel coordinate and each old pixel 

coordinate. As the frames are recorded at 10 FPS, and all course elements are static, 

meaning they do not move around, there will not be much change in the pixel location of 

each object between frames. If the magnitude of the vector is less than 10 pixels, it is 

assumed to be the same object. This value was tested, and determined to be accurate, 

though can be changed at any point. For each frame an object is determined to be in 

frame, its life parameter is increased by one. The life parameter counts the number of 

frames an object has been detected for. This parameter is useful when eliminating false 

positives. If an object is only detected for one frame, then disappears, it was likely a false 

positive. This parameter is also used to clear old objects from the database. If an object is 

not seen for 300 frames, or 30 seconds, it is removed from the database. This is done to 

purge past objects from the database, reducing computational load and memory usage. 
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The object class stores many parameters about each detected object. To detect if 

the object has already been found, the objects pixel coordinates are recorded. Other 

parameters for each object include, width, height, and area in pixels of the surrounding 

bounding box. These values are used to calculate a distance from the vehicle to the 

object. As all the course elements are documented in the task descriptions, the 

dimensions of all objects are known. Additionally, the object’s average width, height, and 

coordinates are stored in the class. These averages are calculated by a moving average of 

a first in, first out queue. 

To calculate the distance to an object, it is required to know the actual width of 

the object, the perceived width in pixels, and the focal length of the camera [60]. As the 

lens used for recording this imagery is a variable focus lens, it is possible for it to have a 

range of focal lengths. The Fujinon lens that was used has a focal length of 2.2-6 mm 

[61]. This poses an issue, because at the time of recording, the current focal length was 

never measured. Through checking different values in the range, it appears the focal 

length was close to 4.0 mm. While this might not be exact, for this research it 

demonstrates that the distance scales correctly as the object is approached. Equation 1 is 

used to make this calculation. In this equation, 𝑊𝐾 is the known width, 𝐿𝑓 is the focal 

length of the lens, and 𝑊𝑃 is the perceived width of the targeted object. 

Equation 1 - Distance Formula 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑊𝐾 ∗  𝐿𝑓

𝑊𝑃
 

In this equation 𝑊𝐾 is the width for each object in millimeters. These widths are 

found in the task descriptions for each course. The value of 𝐿𝑓 used was 4.0 mm. 𝑊𝑃 is 
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the width in pixels of the object that is being calculated. This value is stored in the 

object’s class.  

Through calculating the distance to the object, an estimation of the object’s 

position can be derived. This calculation is performed by correlating the size of the 

object, to the observed size of the object. This will give a result that has units of meters 

per pixel. Next, the pixel difference between the center of the frame and the center of the 

object is calculated. This allows for the X and Y position to be determined. The Z 

position is already known, which is distance. 

While this calculation is close, there will be error induced due to the rotation of 

the object. This is because the object’s width is pre-programed, and does not account for 

off-axis. This could be fixed by adding a LIDAR or imaging sonar to the vehicle. By 

knowing the actual width of the object, position could more accurate be measured. 

However, if that were the case, position would already be known, rendering this 

calculation unnecessary. Figure 37 shows the inverted gate from the 2015 RoboSub 

competition. These calculated values about the gate are displayed above the object. Due 

to the rotation of the object, it will appear to be smaller, and therefore calculated to be 

further. 
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Figure 37 - Detected Inverted Gate 

 

These displayed values are as follows: 
• Distance – Distance in meters to the object 

• Area – Area of the surrounding bounding box in pixels 

• Width – Width of the surrounding bounding box in pixels 

• Avg Width – Moving average of width 

• ObjectID – Class name 

• Life – Number of frames in which the object was detected 

• Location – (x, y, z) position of the object.  

 

The location of each object is given as Cartesian coordinates. These are in the 

format of (X, Y, Z). The axis convention used is shown in Figure 38. This system was 

decided upon, over traditional right handed coordinates, as it is more intuitive when 

viewing it as a forward-looking image.  
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Figure 38 - Coordinate Frame Conventions used for position [62]  

 

The display includes addition information about the detected objects. The red box 

around the detected object is the detected bounding box. This box is the result of Faster 

R-CNN’s object detection layer. This bounding box, moves around constantly, and is not 

consistently the same size. To smooth this out, a moving average of both the bounding 

box’s position, and the bounding box’s size is calculated. This moving average uses a bin 

size of 5. This value can easily be adjusted to suite the vehicles movements. This 

averaging makes the object’s position much more consistent, which is useful when 

creating a map from the data. This calculated average bounding box is shown as the light 

blue box surrounding the detected object. Shown above the bounding box, contrasted 

against a grey background, is the detected objects class name, as well as the confidence 

for the class. The top left corner of the image is used to list all the previously and 

currently detected objects. Next to each object name is two fields, ‘L’ and ‘D’. ‘L’ is the 

number of frames in which that object was detected. ‘D’ is the number of frames since 

the object has last been detected. This is a useful metric to have, to clear out old object’s 

that have past. The red dot in the image is the center of the image, while the purple dots 

are the center of the detected object’s bounding box. 
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4.5. Results 

The results of this project are very promising. This detector has proven to be 

capable of successfully detecting and classifying all the course elements for both the 

RobotX and RoboSub competition. In addition to detection, the objects are successfully 

tracked and stored in the class list. This results section will discuss the success of both 

competitions, as well as performance metrics. 

 

 Accuracy 

For both data sets the detector algorithm proved to have an extremely high mean 

average precision (MAP). This precision is defined as the ratio of true positives to the 

sum of false positives and false negatives. A true positive is defined as classifying an 

object by the correct name. A false positive is defined as detecting an object that is not 

present. A false negative is defined as not detecting an object that is present. To obtain a 

MAP the detector was run on a testing set for each dataset. After the detector was run, the 

number of frames that each course element was correctly detected and the number of 

frames the element was either falsely classified or failed to be detected, after the object 

was in range, were counted. The detectors range was defined to be the distance in which 

the object is first detected. The accuracy was defined as the sum of false negatives and 

false positives divided by the number of true positives less than one. This equation is 

shown as Equation 2. Additionally, while the detector is capable of partial frame 

detection, it is not expected for the object to be detected if more than half of the object is 

out of frame. These images will be disregarded when calculating accuracy. 
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Equation 2 - Equation to Calculate Accuracy (MAP) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −  
𝐹𝑁 + 𝐹𝑃

𝑇𝑃
 

Through testing and experimentation, it was found that a confidence threshold of 

0.80 should be used for both datasets. This threshold value can be demonstrated with a 

frame consisting of 3 buoys and a path. Figure 39 shows the region proposals that were 

calculated for this image. This image was created by setting the confidence threshold to 

.0001. This effectively allowed for all the proposal regions to be shown. This image 

illustrates how the proposals are focused on objects, and disregard the background class.   

 

 
Figure 39 - Region Proposals 

While this image shows that many overlapping proposals are calculated, it is 

difficult to see what the actual detected results are, as all the bounding boxes overlap. To 

make these results more apparent, the confidences for each object were logged, and then 
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plotted. This plot is shown in Figure 40. In this example, 47 proposals were generated, 

these proposals are shown along the X-axis, while their confidence is on the Y-axis. 

 

 

Figure 40 - Region Proposal Confidences 

 

As seen in Figure 40, there are four objects with high confidences, and one object 

with a mid-range confidence, while the rest are negligible. The confidence threshold for 

this project was set to be 0.80. This value was determined to be most accurate when 

detecting all objects, and eliminating false positives. As there are only four objects in the 

frame, there is another object that could be a false positive with a confidence of 0.48. 

This object is a double detection of the red buoy. This however is not an issue as 0.48 is 

below the threshold of 0.80. This is due to the NMS threshold being too low for this case. 

NMS stands for Non-Max Suppression. NMS controls the possibility of an object being 

classified more than once. This parameter however is a tradeoff. If the value is too high, 

then it is a risk of losing precision of the bounding box. If the value is too low, then 

multiple true positives would occur [63]. Due to the confidence threshold, low confidence 
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detection is not an issue. To see the results of the negligible proposals, another chart must 

be used with a different Y-axis range. This new plot is shown in Figure 41.  

 
Figure 41 - Plot of confidences with reduced Y-Axis 

This graph has a range of 0 to 0.005. This was done so that the values of the other 

proposals could be seen. These were not viewable on the initial graph due to their near 

zero values. This graph shows the other proposals, outside the correct ones, they have a 

minuscule confidence. The classified image from this experiment is shown as Figure 42. 

This experiment demonstrates the classifiers accuracy. The classifier has a low chance of 

classifying regions with the wrong class name. 
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Figure 42 - Image demonstrating detection of the red buoy, green buoy, yellow buoy, and path 

 

 RoboSub Accuracy 

From the RoboSub datasets 13 vision logs were deemed sufficient to be used as 

results. As these datasets were taken at competitions, the logs cannot be perfect. The 

quality of the logs depends on the ability for the vehicle to function, and correctly 

navigate the course. The logs deemed not sufficient, were ones in which the vehicle never 

left the starting dock. From these 13 logs, 26,879 images were processed through the 

detector. Processing at an average rate of 5.83 FPS, this detection took seventy-two 

minutes to perform. This processing was performed on a GTX 1080. More details on this 

timing performance will be discussed in section 4.5.4 Processing time. While the results 

of all these images were viewed, and deemed successful in classifying, they were not all 

used for the accuracy calculation. To fairly test the accuracy of the detector, two image 

sets were omitted from the training set. These two sets were selected as between both 

they contained all the classes. One of these sets was of a forward view, while the other 

was a downwards view. 
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Through analysis of this data, the detector proved to be successful and feasible for 

the RoboSub competition. Through extensive testing, it was proven that this detector can 

identify all 11 classes. Other classes were experimented and with and proved to be 

successful, but this will be discussed later in this section. As previously mentioned, the 

accuracy was calculated as the number of true positives divided by the sum of false 

negatives and false positives. This was shown in Equation 2. The results of this testing 

are shown in Table 10. 

Table 10 - RoboSub Dataset accuracy 

Class True 

Positives 

False 

Negatives 

False 

Positives 

Accuracy 

gate_inv 300 0 0 100% 

torpedo_board 231 0 0 100% 

bin_orange 283 0 0 100% 

gate 369 5 0 99% 

bin_banana 468 7 0 99% 

bin_lightning 628 12 0 98% 

bin_can 469 13 0 97% 

path 1193 65 1 95% 

red_buoy 160 10 2 94% 

yellow_buoy 193 24 1 88% 

green_buoy 201 65 0 68% 

 

As the data shows, the detector performs with a high accuracy. The average 

accuracy of all classes was calculated to be 94 percent. This accuracy is average of all 

classes. This is significantly higher than Faster R-CNN’s documented performance of 

66.9 percent MAP using the VGG16 model on the VOC2007 dataset [34]. The trained 

detector had a very low rate of false positives. Of the 4,342 images between both image 

sets, there was only four false positives. This is a 0.0009 percent chance of a false 
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positive occurring. One source of false positives was the detector incorrectly classifying 

air bubbles as red buoys. An image of one of these false detections is shown in Figure 43. 

 
Figure 43 - False positive of air bubble as being classified as a red buoy 

Figure 44 demonstrates the ability to train a detector on the various elements on 

the 2016 torpedo board. This experimented was omitted from the evaluation of the 

RoboSub training process. This shows that it is feasible to train a network on small 

intricate details with few images in the training set. 

 
Figure 44 - 2016 Torpedo Board Detection 

In addition to success with the detector correctly classifying each object, the 

detector was extremely accurate with detecting the object’s size and location. Each object 

had a tight bounding box correctly placed around it. Figure 45 shows an example of all 

classes being detected. The path is shown being detected in both the forwards and 
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downwards camera images. While the path can be, and often is, detected in the forward 

camera, the forward-facing path was not counted towards accuracy. This because the 

model was never trained on the path in the forward camera because it is not necessary, or 

even useful, to the competition. The imagery from the bottom facing camera was used for 

the path, and bin objects. 
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Figure 45 - Detection of All RoboSub Course Elements. Top Left: Gate, Path. Top Right: Red Buoy, Yellow Buoy, 

Green Buoy, Inverted Gate. Bottom Left: Torpedo Board. Bottom Right: Bin Banana, Bin Lightning, Bin Can, Bin 

Orange, Path. 

Overall, this detector was extremely accurate when detecting these objects. 

Accuracy for some objects, such as the torpedo board identifiers, was high despite the 
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lower number of annotations. Overall, there is no correlation between accuracy and 

number of annotations. This is possibly due to the relatively low sample set when testing. 

If more validation sets were performed with a wider range of lighting variation, this result 

may have been different. Unfortunately, there is no collected data to support this. Figure 

46 shows a scatter plot that plots number of annotations for each class verses the percent 

accuracy for that class. There appears to be no trends demonstrated by this figure. It is 

hypothesized that this is because of the limited training set for this project. As the bins 

and torpedo boards had few annotations, they were over trained to be accurate to the only 

test case, which also had a similar appearance to the training set. This differs from the 

buoys, which had more annotations from different orientations and conditions. This 

figure was created by combining data from Table 6 and Table 10.  

 
Figure 46 - Plot of Annotations vs Accuracy for the RoboSub Dataset 
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 RobotX Accuracy 

For RobotX Dataset, there is sixty-nine image sets that where processed through 

the detector algorithm. Within these image sets there are a total of 33,653 images. 

Processing of these images took ninety-seven minutes. Though the algorithm was tested 

on all these images, most them were in the training set. Despite training images being 

tested on, they were not used for any formal results. This was done to give subjective 

reasoning that the detector could work on more than just the one case that is the testing 

set. No recorded data was used from this testing. As validation on a training set does not 

give a fair evaluation, several images sets were reserved for testing purposes. These 

image sets were selected as they contain all the classified classes. 4,105 images were 

reserved from the testing set, and were only used for calculating the accuracy of the 

detector. These images were selected as they contained all the course elements. These 

images were all selected from separate runs than the training set. This was done to ensure 

there is enough difference in each image.  

Through analysis of these validation sets, this detector proved to be extremely 

successful at detecting the various course elements. As with the RoboSub dataset, the 

number of true positives, false positives, and false negatives were counted. False 

negatives were counted after initial detection of the object. This is because the cameras 

have an incredibly long line of sight in open water. With more training data, the range 

could reliably increase, but this was not feasible due to the limited dataset. The results of 

these tests are shown in Table 11. Note, while the accuracy for some classes is 100%, it is 

not guaranteed there will be 100% accuracy for all test cases, this is simply for these test 

cases. 



 
 

 
 

74 

 

Table 11 - RobotX Dataset Accuracy 

Class True 

Positives 

False 

Negatives 

Accuracy 

red_circle 142 0 100% 

orange_ball 91 0 100% 

green_cruciform 130 0 100% 

blue_triangle 216 0 100% 

red_triangle 410 0 100% 

red_tower 40 0 100% 

blue_circle 143 0 100% 

white_buoy 816 8 99% 

red_cruciform 404 4 99% 

green_buoy 348 4 99% 

green_triangle 259 3 99% 

person 3217 60 98% 

black_tower 491 10 98% 

blue_cruciform 306 10 97% 

black_buoy 143 4 97% 

red_buoy 25 1 96% 

yellow_tower 131 6 95% 

green_tower 105 5 95% 

green_circle 208 11 95% 

blue_tower 63 7 89% 

yellow_buoy 23 4 83% 

black_ball 430 84 80% 

blue_buoy 73 32 56% 

 Through validation of the detector it proved the detectors high accuracy. On 

average the detector had a 94% accuracy. This accuracy is coincidentally the same as the 

RoboSub accuracy. There however were no false positives, or incorrectly classified 

objects. Due to this, it is possible the confidence threshold could have been reduced 

slightly, which could have increased the range of the detector.  For these test cases, there 

is a significantly lower accuracy for all the buoys. This is believed to be due to the image 

sets used, and not the training process. Initial tests before competition showed the 
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detector having a significantly higher accuracy. For these tests, however, the buoys were 

much closer. During the RobotX competition the boat was rarely logging camera data on 

a course that implemented buoys. This resulted in most buoy images being at a long 

distance, and often from another course. While the detector had difficulties detecting the 

buoys at a long range, the shape signs excelled at long range. Figure 47 demonstrates the 

detectors ability to correctly detect the blue triangle from another course. Using Equation 

1, this object was estimated to be 14 meters away. This is only an estimate though, as this 

equation relies on the camera’s focal length, which estimated. 

 
Figure 47 - Blue Triangle Detection 

To demonstrate the detection of the Light Tower, images of the tower under 

various conditions were selected. The circle at the panel’s centroid was not drawn so the 

panel could be seen. While testing did not show the panels to have perfect accuracy, there 

was no errors if the object was within 3 meters. Within 3 meters the classifier correctly 

detected the panel in every frame. The classifier did an exceptional job at detecting and 

classifying the Light Tower’s panels for each color. The results in Figure 48 show the 

blue panel was the hardest to detect. The reasoning for is assumed to be because the only 
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test set containing the blue panel was a difficult scenario. This validation set had the 

Light Tower positioned in front of the sun, as well as being from a further average 

distance than the other Light Tower test sets. These panels are a difficult object to detect, 

as they can appear to be completely different colors depending on the circumstances. If 

the object is in front of the Sun, the camera’s exposure will wash out the image. This 

differs greatly from if the camera is looking away from the sun. Images of various Light 

Tower conditions are shown in Figure 48. There is an added difficulty to this 

classification due to the nature of LED panels. The bottom right image in Figure 43 

shows the panel displaying green, which appears to be a striping of blue and yellow. 

 
Figure 48 - Light Tower Detection for Yellow, Red, Green, Black, and Blue Panels 

In addition to a high accuracy when detecting the light tower, this detector was 

also very accurate with identifying the dock symbols. Figure 49 and Figure 50 show the 

dock symbols being detected. The detector works both up near and at far distances. 



 
 

 
 

77 

Between these two images it can be shown how the detector can detect the triangle signs 

when they are rotated.  

 
Figure 49 - Detected Dock Symbols. Red Cruciform, Green Triangle, and Red Circle 

 

Figure 50 - Detected Dock Symbols. Blue Circle, Red Triangle, and Red Cruciform 

 

For this detector to correctly identify the buoys, it was required that they be close 

to the vehicle. The detector appeared to have an effective range of 10 meters. 

Unfortunately, much of the images were further than this range. Figure 51 shows the 

detector attempting to detect black buoys and black balls.  
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Figure 51 - Detection of Black Buoy and Black Balls 

Over all, this detector performed very well for the RobotX dataset. This detector 

was successful in detecting the objects in varying weather and lighting conditions. 

Additionally, the detector averaged a 94% accuracy. This detector is even more accurate 

when it can be guaranteed the object will be within several meters of the boat.  

 

 Processing time 

As with accuracy, processing time is also an important measure when evaluating 

the feasibility of using deep learning methods for object detection. When processing 

these images, the average time per frame was 0.174 seconds. This achieves a frame rate 

of 5.83 FPS. The processing time however depends on the system in which it is running 

on. To achieve an average processing time of 0.174 seconds, processing was performed 

on a NVIDIA GTX 1080. This is the same GPU as Minon has onboard. Minion proved 

that this is feasible to process neural networks while on a mobile platform. Initial testing 

was performed on a NVIDIA GTX 970. This card could process a frame in 0.28 seconds. 

This gives an average rate of 3.57 FPS. Depending on the application this is more than 

sufficient.  
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Additional testing was performed to evaluate the feasibility of running this 

process on a NVIDIA Jetson TX1. It was determined that it is possible to run this on a 

Jetson TX1, though it is not practical. The TX1 has 4GB shared RAM, which is 

sufficient, as Faster R-CNN only needs 3.5GB of ram to operate. However, due to 

memory leaks, and other inefficiencies the program can only run once, and then the 

Jetson must be restarted to completely purge the RAM. Processing took on average 1.8 

seconds per frame. This is too slow to use for near real-time processing. Testing was also 

attempted on a Jetson TK1, though due to a limitation of 2GB RAM, it was highly 

unsuccessful. Due to its small form factor, and power requirements, the TX1 can be a 

powerful processing platform. A processing time of 1.8 seconds per frame is slow 

compared to the performance of a GTX 1080. However, processing on the TX1 is still 

much more efficient than processing on the CPU. The TX1 could achieve twice the frame 

rate, while maintaining a significantly lower thermal dissipation. CPU testing was 

performed on an Intel Core i7-4790K Processor, which has a thermal dissipation of 88 

watts [64]. As previously mentioned, when processing only on a CPU, this method has an 

average time per frame of 3.242 seconds. Therefore, a TX1 is twice as fast, as well as 

having five times less thermal dissipation, than operating on a CPU. In this scenario, a 

TX1 is a sensible substitution. 
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5. Conclusions and Future Recommendations 

ASVs and AUVs can be used to perform an important role in the maritime 

environment. One important capability of these vessels, is the ability to perform 

autonomous object detection and classification. There has been considerable research in 

performing detection using LIDAR, Radar, and imaging sonar. However, these methods 

perform poorly when attempting to detect color, or shapes on flat surfaces. In order to 

detect objects in these circumstances a camera is desirable. Unfortunately, there has not 

been much successful research conducted in maritime object detection or classification. 

To create a detector for maritime usage, it was decided to pursue a method 

implementing a neural network. Through research it was decided to implement Faster R-

CNN as the framework for this research. This open sourced project was built upon to add 

in persistent object tracking as well as position estimates. Faster R-CNN was capable of 

successfully training a model to detect and classify all the course elements in both the 

RoboSub and RobotX competitions.  

This project resulted in the creation of a highly effective object detector and 

tracker. Using Faster R-CNN a detector could be trained on both the RoboSub and 

RobotX datasets. For both datasets, a mean average precision of 94% was achieved. This 

provides a strong backing for an object tracker. To track objects, it is often necessary to 

detect and classify them first. This project demonstrated it is feasible to use deep learning 

to both detect maritime objects, and run on mobile maritime platforms.  

If this project were to be conducted again, there will be several factors that are 

recommended to change. If I were to do this project again, I would reconsider the use of 

YOLO Version 2. During the phase of researching plausible methods, YOLO was still 
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released as version 1. At that time YOLO did not appear to be as credible, or as 

promising of a method. However, in November 2016, after much research and work was 

already conducted on this project, YOLO Version 2 was released. This update offered 

significant performance and accuracy increases. This new version advertises 40-90 FPS 

and a 78.6% MAP on VOC 2007 [32]. When testing YOLO V2 using the Tiny YOLO 

model, 13 FPS could be achieved on a Jetson TX1, while 250 FPS could be achieved on a 

GTX 1080. With the release of version 2, YOLO is both faster and more accurate than 

Faster R-CNN. Obtaining 13 FPS would be more than feasible for implementing a system 

using a Jetson TX1. Unfortunately, YOLO V2 was released too late into the research 

process to be feasible of switching methods. 

Another recommendation to future projects would be to use updated hardware. 

During the length of this project NVIDIA announced both a new Jetson model, as well as 

releasing the GTX 1080 Ti. These two upgrades are a significant improvement over their 

predecessor models. The GTX 1080 Ti has approximately 40% more memory, and 30% 

faster performance [66]. With these increases, it could be presumed that Faster R-CNN 

would operate at over 8 FPS. Additionally, other models that require 12 GB VRAM 

could be used. NVIDIA claims that the Jetson TX2 is twice as fast as the TX1. With this 

performance increase it can be presumed that YOLO could operate at 25 FPS. This would 

make this a perfect solution, that would be feasible for object detection [67]. 

Additionally, the TX2 will have 8 GB of RAM, instead of 4 GB. This would allow for the 

capability to load most networks, with no issues.  

Future work on this project could investigate methods of reducing the processing 

time per image. This processing time could be reduced by altering the layers of the model 
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used. The VGG-16 layer used has 41 layers, 16 of which have learnable weights, 14 are 

convolutional and 3 are fully connected layers [65]. As most the computational time for 

each frame is spent processing each of these layers, the model could be speed up if some 

layers were removed or altered. This however could have an impact on the accuracy, 

though it presumed that not all layers are necessary for a model this small.  

To build upon this project, the code has been made open sourced, and can be 

found online. The code for this project has been made publicly available at 

https://github.com/rtgoring/py-faster-rcnn-thesis. This repository is public, and can be 

accessed by anybody. This project will remain as it for archival purposes, though a fork 

will be created in this repository for all future work. The models trained for this research 

have also been made available. Note, due to GitHub’s 100 MB file size limit, these 

models have been uploaded to Google Drive. A document containing a link to these files 

was created in the ‘Output’ folder. 
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