
Doctoral Dissertations and Master's Theses

Spring 4-2017

Feasibility of Neural Networks for Maritime Visual Detection on a Feasibility of Neural Networks for Maritime Visual Detection on a

Mobile Platform Mobile Platform

Robert Goring
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Other Electrical and Computer Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Goring, Robert, "Feasibility of Neural Networks for Maritime Visual Detection on a Mobile Platform"
(2017). Doctoral Dissertations and Master's Theses. 331.
https://commons.erau.edu/edt/331

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=commons.erau.edu%2Fedt%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/331?utm_source=commons.erau.edu%2Fedt%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

i

Feasibility of Neural Networks for Maritime

Visual Detection on a Mobile Platform

by

Robert Goring

A Thesis Submitted to the College of Engineering, Department of Electrical, Computer,

Software, & Systems Engineering for the partial fulfillment of the requirements of the

degree of

Master of Science in Electrical and Computer Engineering

Embry-Riddle Aeronautical University

Daytona Beach, Florida

April 2017

iii

Acknowledgments

I would like to begin by expressing my sincerest gratitude to everyone who

assisted me in the completion of this thesis. First and foremost, my advisor Dr. Butka

who ignited my interest in computer vision, and who pushed me to succeed. I would also

like to thank my committee members, Dr. Coyle and Dr. Liu for serving on my thesis

committee and providing invaluable feedback and inspiration.

Thanks goes to the Robotics Association at Embry-Riddle as well as the faculty

advisors for providing the hardware and opportunities required for the completion of this

thesis. This project would not have been possible without their support and resources.

Special acknowledgment goes to ONR grant #N000141512746 for partial support.

Lastly, I need to convey my thanks to my family and friends. Without their

support, I would not have made it wo where I am today. To my parents, for their years of

support and love throughout my educational career. Thanks goes to my brother Andrew

for assistance in editing, whose editing skills have been invaluable. Also, I must thank all

my friends for caring and always being there for me. Finally, I want to thank to my

beautiful girlfriend Tara. I could not have completed this thesis without all her support

and encouragement.

iv

Abstract

Researcher: Robert Goring

Title: Feasibility of Neural Networks for Maritime Visual Detection on a Mobile

Platform

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Computer and Electrical Engineering

Year: 2017

Object detection through computer vision has traditionally been difficult to

reliably implement due to various lighting conditions caused by weather and time of day.

Any changes in conditions can be detrimental to the detector’s ability to accurately

identify objects. A modern approach implements deep learning techniques to classify and

train a neural network. While highly effective, this approach can be cumbersome and

computationally intensive. This project will investigate the feasibility of using deep

learning to detect, classify, and track objects in near real-time while being processed on a

mobile platform. I will investigate the feasibility of these processes on a small embedded

system, such as the NVIDIA Jetson TX1. I will investigate several promising algorithms

such as Faster R-CNN, TensorBox, DetectNet, and YOLO. This research is beneficial

because it will transition deep learning techniques developed primarily for research in a

lab environment to a real-world situation in which high accuracy and fast processing are

vital. The work solved through this research will greatly benefit platforms that require

object detection capabilities, but do not have the space, budget, or power capabilities for

large GPUs or GPU clusters.

v

Table of Contents

Acknowledgments .. iii

Abstract .. iv

Table of Contents .. v

List of Tables ..vii

List of Equations ...vii

List of Figures ... viii

1. Introduction .. 1

1.1. Background ... 1

1.2. Motivation .. 4

1.3. Research Objectives.. 7

1.4. RobotX Dataset ... 10

 Navigation .. 11

 Scan the Code ... 12

 Identify Symbols and Dock .. 13

 Detect and Deliver .. 14

1.5. RoboSub Dataset .. 15

 Validation Gate ... 16

 Buoys .. 17

 Inverted Gate .. 18

 Dropper Bins ... 19

 Torpedoes ... 20

 Path Markers ... 20

2. Literature Review ... 22

3. Classification and Detection Algorithms Methodology ... 25

3.1. Methods under Consideration ... 26

3.2. Faster R-CNN ... 27

3.3. TensorBox .. 29

3.4. DetectNet .. 30

3.5. YOLO Version 1 .. 31

3.6. Selection Process .. 32

3.7. Faster R-CNN Operation .. 33

4. Methodology ... 36

vi

4.1. Installing Faster R-CNN Algorithm ... 37

4.2. Running Faster R-CNN .. 45

4.3. Training .. 46

4.4. Tracking and Localization .. 57

4.5. Results .. 63

 Accuracy ... 63

 RoboSub Accuracy ... 67

 RobotX Accuracy ... 73

 Processing time ... 78

5. Conclusions and Future Recommendations.. 80

Works Cited .. 83

vii

List of Tables

Table 1 - NVIDIA Jetson TX1 Specifications [17] .. 9

Table 2 - Table of Objects for the RobotX dataset ... 10

Table 3 - Table of Objects for the RoboSub dataset ... 16

Table 4 - NVIDIA Titan X Specifications .. 31

Table 5 - Compute Capabilities of Popular GPUs [54] .. 42

Table 6 - Annotation Summary for RoboSub ... 49

Table 7 - Annotation Summary for Torpedo Board Test ... 50

Table 8 - Annotation Summary for RobotX Dataset .. 51

Table 9 - Desktop System Specifications ... 55

Table 10 - RoboSub Dataset accuracy .. 68

Table 11 - RobotX Dataset Accuracy ... 74

List of Equations

Equation 1 - Distance Formula ... 59

Equation 2 - Equation to Calculate Accuracy (MAP) .. 64

viii

List of Figures

Figure 1 - Minion ASV During a test on the Halifax River in Daytona Beach, FL 3

Figure 2 - 3D rendering of Blackfinn ... 3

Figure 3 - Architecture of a Deep Neural Network with visualizations of each layer [7] 4

Figure 4 - Examples of object classification and Detection [7].. 5

Figure 5 - VOC2012 Classes [16] .. 8

Figure 6 - RobotX Qualifying Gate Task [19].. 11

Figure 7 - Green and Red Taylor Made Navigational Buoy, Daytona Beach, FL 12

Figure 8 - Scan the Code, Rendering .. 13

Figure 9 - RobotX Docking task, rendering [19] .. 14

Figure 10 - Detect and Deliver, rendering [19] .. 15

Figure 11 - RoboSub Course Layout [21] .. 16

Figure 12 - RoboSub Validation Gate [21]... 17

Figure 13 – Diagram of RoboSub Buoy Task [21]... 18

Figure 14 - Diagram of the Inverted Gate Task [21] .. 18

Figure 15 - Dropper Bin symbols and dimensions [21] ... 19

Figure 16 - Torpedo Board Diagram [21]... 20

Figure 17 - Path Marker diagram [21] .. 21

Figure 18 - Image Classification vs Detection and classification [28] ... 25

Figure 19 - Path, Inverted Gate, and Red, Green, and Yellow Buoys in the TRANSDEC 27

Figure 20 - Faster R-CNN Example [35] ... 28

Figure 21 - TensorBox head detector example [37] ... 29

Figure 22 - DetectNet Example, Vehicle Detection [31] ... 30

ix

Figure 23 - YOLO Image Detection Example .. 32

Figure 24 - Faster R-CNN modules .. 34

Figure 25 - Faster R-CNN Region Proposal Network (RPN) .. 35

Figure 26 - Minion's Camera orientation .. 37

Figure 27 - Speed benefits of cuDNN V4 vs V5.1 on a M40 [49] .. 40

Figure 28 - Compute Capability Features [55] ... 43

Figure 29 - Results of Demo.py .. 46

Figure 30 - Using LabelImg to annotate an image from the RobotX dataset. 48

Figure 31 - Example Annotation File created using LabelImg .. 48

Figure 32 - Plot of Number of Annotations Per Class .. 50

Figure 33 - Plot of Number of Annotations Per RobotX Class .. 52

Figure 34 - Terminal window showing output during training .. 55

Figure 35 - Results of NVIDIA-SMI while training .. 56

Figure 36 - Loss curve for RobotX training ... 57

Figure 37 - Detected Inverted Gate .. 61

Figure 38 - Coordinate Frame Conventions used for position [62] .. 62

Figure 39 - Region Proposals ... 64

Figure 40 - Region Proposal Confidences .. 65

Figure 41 - Plot of confidences with reduced Y-Axis .. 66

Figure 42 - Image demonstrating detection of the red buoy, green buoy, yellow buoy, and path . 67

Figure 43 - False positive of air bubble as being classified as a red buoy 69

Figure 44 - 2016 Torpedo Board Detection .. 69

x

Figure 45 - Detection of All RoboSub Course Elements. Top Left: Gate, Path. Top Right: Red

Buoy, Yellow Buoy, Green Buoy, Inverted Gate. Bottom Left: Torpedo Board. Bottom Right:

Bin Banana, Bin Lightning, Bin Can, Bin Orange, Path. ... 71

Figure 46 - Plot of Annotations vs Accuracy for the RoboSub Dataset ... 72

Figure 47 - Blue Triangle Detection ... 75

Figure 48 - Light Tower Detection for Yellow, Red, Green, Black, and Blue Panels 76

Figure 49 - Detected Dock Symbols. Red Cruciform, Green Triangle, and Red Circle 77

Figure 50 - Detected Dock Symbols. Blue Circle, Red Triangle, and Red Cruciform 77

Figure 51 - Detection of Black Buoy and Black Balls ... 78

 1

1. Introduction

1.1. Background

Due to the harshness of the marine environment, there is a heavy cost, as well as

danger, associated with conducting manned surface and subsurface missions. To help

combat these issues, unmanned vehicles have been used to remove the human element

from the situation. Unmanned marine vehicles have been used by the U.S. Navy since

1932 [1]. The effectiveness of these vehicles, however, is limited by their need to be

operated and controlled by humans. Modern researchers are designing new ships that can

be operated autonomously.

There are countless naval applications for Autonomous Surface Vehicles (ASVs),

and Autonomous Underwater Vehicles (AUVs), which can cover a wide range of tasks.

These autonomous vehicles can be used for mine countermeasures, harbor monitoring,

inspection, and Intelligence, Surveillance and Reconnaissance (ISR) [2]. While there is

extensive research for the controls aspects of these vehicles, their autonomy is still

limited by their ability to sense and detect objects within their surroundings. Using radar,

LIDAR, or sonar, it is possible to detect an object’s presence. Classification of these

objects is a more complicated process.

Classification is the process of algorithmically determining which class an object

may be. For naval vehicles, many objects that would be encountered in their use cases

will have a pre-defined appearance, such as navigational markers and buoys, but there is

a nearly unlimited range of objects that could be placed within the path of these vehicles.

2

This makes the task of classifying surrounding objects incredibly difficult. For this thesis,

it will be assumed that any object that will be classified is pre-defined.

Often during non-autonomous classification, data is required to be transmitted

back to the operator at the ground station, who must analyze the data, and decide what the

object is. This process, however, would induce human error into the equation. This would

be much more optimized if the vehicle could make these decisions autonomously. As

classification allows for autonomous navigation, the human resources needed for

operation of the vehicle could be significantly reduced by onboard classification. This

would decrease the response time of the vehicle, as well as lower the communication

required of the vehicle. In the case of ROVs, high speed underwater communication is

extremely complex and expensive. If an AUV could sense and act on its own, a data

tether would not be necessary. To increase the autonomy of ASVs or AUVs, they should

be able to detect and classify objects within their surroundings through the use of

cameras, sonar, or LIDAR systems. Sonar, and LIDAR solutions however are often much

more expensive than a camera, and are not well suited to classifying colors or shapes on a

flat surface. One limitation of using cameras for detection and classification is that most

algorithms are often not robust enough to handle varying lighting conditions.

This thesis will investigate the use of deep learning techniques to create an image

classifier for an ASV or an AUV. The classifier should run on the vehicle, and not rely on

transmitting data to a ground station for processing. This classifier will autonomously

classify course elements in near real time through the use of a camera system. The

developed methods were tested on two autonomous vehicles. A prototype of this software

3

suite was tested on the ASV, Minion at the 2016 RobotX Challenge. Figure 1 shows

Minion during a test on the Halifax River in Daytona Beach.

Figure 1 - Minion ASV During a test on the Halifax River in Daytona Beach, FL

This software has also been tested on the AUV Blackfinn for the Association for

Unmanned Vehicle Systems International’s (AUVSI’s) RoboSub competition. The

Embry-Riddle RoboSub team plans to use the results of this project for their entry in the

2017 AUVSI RoboSub Competition. A rendering of Blackfinn is shown in Figure 2.

Figure 2 - 3D rendering of Blackfinn

Both the RobotX and RoboSub competitions are held on a closed course. This

means that every element within the course is well documented and known ahead of time.

This allows for the classifier to be pre-trained on any elements that require classification.

4

1.2. Motivation

Machine learning is a field of computer science that studies how to analyze data

and build models, without needing to explicitly program the system how to complete the

task [3]. This field of computer science is rapidly growing with the onset of new

hardware and software discoveries. Machine learning is a major subset of artificial

intelligence. Recently, one subset of machine learning that has rapidly developed is deep

learning. This rapid development is largely due to the advances in graphics processing

units, GPUs [4]. Deep learning uses of many layers to compute an output.

Some models consist of 1000+ hidden layers [5]. These layers require many

gigabytes of RAM to store, as well as millions of operations to compute. Due to their

architecture, GPUs are perfectly suited to handle these large numbers of layers. The

architecture of these layers is shown in Figure 3. Each network has an input layer, and an

output layer. These layers are connected by a series of hidden layers [6]. Popular layer

types for deep learning are convolution layer, pooling layer, dropout layer, relu, tanh, and

sigmoid layer [7]. These layers are composed of nodes, which contain values based on

the outputs from convolutions certain weights and parameters.

Figure 3 - Architecture of a Deep Neural Network with visualizations of each layer [7]

5

Deep learning can be used to complete a multitude of complicated tasks such as

optical character recognition (OCR), voice recognition, medical diagnosis, and financial

trends [3] [8]. Another application that can greatly benefit from deep learning techniques

is computer vision. Deep learning when applied to computer vision can perform

extremely powerful image classification and detection algorithms. An example of the

results from these algorithms is shown in Figure 4.

Figure 4 - Examples of object classification and Detection [7]

Classification is the process in which an image is analyzed and a determination is

made of what object, or objects, are in the picture. Such applications include Google’s

Reverse Image Search, Facebook’s facial recognition, and Pinterest’s similar object

recognition [9] [10] [11]. While these uses are significant, another field that can greatly

benefit from deep learning is robotics. Detection is an important part of these algorithms.

Without detection capabilities, for example, Facebook’s facial recognition could not work

on an image containing more than just a person’s face. Detection allows for the classifier

to localize objects throughout the image frame. This is often done through a process

called Selective Search [12].

For a large majority of systems, computer vision is an important part of the

perception suite on any autonomous or robotic system. When relying on this system, it is

imperative that it is as robust and accurate as possible. One method to increase the

6

robustness and accuracy of computer vision is to use deep learning. Deep learning

however, is an extremely computationally intensive technique. While this processing can

be handled by a central processing unit (CPU) massive performance increases are

achieved by processing on a GPU. This allows for parallel processing. GPUs are twenty

to fifty times more efficient than CPUs when performing deep-learning computations [4].

To handle the processing required for deep learning, it is standard to perform processing

on large servers with multiple workstation grade GPUs. This processing requirement

provides a practical limitation of the applications in which deep learning can be used.

Using current practices, it is highly impractical to perform deep learning on a mobile

platform.

Though deep learning appears to solve all the processing issues for mobile robotic

systems, there are still several issues that must be circumvented before implementation is

feasible. Some issues with deep learning computations occurring on a mobile system is

the strict size and power requirements. These deep learning processes are often run on

large workstation grade GPUs, such as the NVIDIA M6000 or NVIDIA Plex 7000 [13].

These GPUs can draw up to 600 watts of power as well as require proper ventilation to

cool. These requirements make integration a difficult process.

The purpose for this research is to demonstrate the feasibility of using deep

learning techniques to perform object detection and classification while on a mobile

platform. For this to be feasible, implementation should be performed on a graphics card

with a low power consumption. This would increase the runtime of the vehicle, as well as

reduce the amount of heat the vehicle must dissipate. This is crucial in the maritime field

as an ASV may be exposed in the hot sun, and an AUV may have limited internal

7

airflow, due to a sealed hull. This research investigates ways to accurately and efficiently

run object recognition processes on mobile platforms.

1.3. Research Objectives

This report will focus on object detection and classification, with an emphasis on

naval applications. When developing classification techniques, they are often tested on a

select few popular databases. Popular databases are ImageNet, MNIST, CIFAR 10,

VOC2012, and STL-10 [14]. These databases often contain millions of images, with

thousands of images of each class. A class is an object that has been manually classified

to be recognized. For example, the ImageNet database contains over 14 million images

and nearly twenty-two thousand individual classes [15].

To give this research a practical application, testing will not be completed on one

of these previously mentioned publicly available datasets; testing will be performed on

self-obtained datasets. These datasets used for this research will be images taken from the

AUVSI’s Maritime RobotX Competition, as well as the AUVSI’s RoboSub competition.

The RobotX dataset that was used was collected at the 2016 RobotX competition, which

was held in Honolulu, HI. The RoboSub dataset is composed of images from the 2014

and 2015 RoboSub competitions, which were held at the TRANSDEC facility in San

Diego, CA. I was present at these competitions, as a member of the Robotics Association

at Embry-Riddle, to obtain these images.

Deep learning vision processing techniques have widely been used for object

detection and classification on high powered computers. This research employs many

new computational techniques, which were adapted for use with image processing. A key

8

objective of this research is to prove that object detection through deep learning is

feasible while running on a mobile platform. The primary technical objectives of this

research are as follows:

1. The detector and classifier should be trainable on a custom dataset.

2. The software should be able to run on a consumer grade computer with

consumer grade GPU.

3. The software should be able to run at least at a moderate frame rate.

Some methods of detection or classification are not capable of being trained on a

custom dataset, meaning that if a desired object is not in that trained database, it cannot

be detected. Therefore, when determining a method to use for a detector, it is a

requirement that it is capable of being trained on a custom dataset. This method of

training is called supervised learning. While it helpful for some research to run a

detection algorithm on a pre-trained dataset, and find pre-classified objects, it is often

necessary to detect objects not available in a dataset. Datasets such as the VOC2012 have

only 20 trained classes [16]. If a desired object is not trained in a dataset, it is necessary

to train another classifier to include it. Figure 5 demonstrates image detection of the

twenty classes within the VOC2012 data set.

Figure 5 - VOC2012 Classes [16]

For this project to be considered feasible for a robotic system, it should be able to

run on a consumer grade GPU. The definition of this is a card that is less than that of a

“Workstation” GPU. Work station GPUs are commonplace in the deep learning

9

community. This project should be able to run on a card that is of low thermal

dissipation. Ideally, this system would utilize the NVIDIA Jetson TX1. The Jetson TX1

uses NVIDIA’s Maxwell architecture. This board has 256 CUDA cores, and can provide

over 1 TeraFLOP of performance on a 64-bit CPU while only dissipating 15 watts while

under full load [17]. The specifications of the TX1 are shown in Table 1.

Table 1 - NVIDIA Jetson TX1 Specifications [17]

Part Specification

GPU NVIDIA Maxwell ™, 256 CUDA cores

CPU Quad ARM® A57/2 MB L2

Video 4K x 2K 30 Hz Encode (HEVC)

4K x 2K 60 Hz Decode (10-Bit Support)

Memory 4 GB 64 bit LPDDR4

25.6 GB/s

Display 2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI

CSI Up to 6 Cameras (2 Lane)

CSI2 D-PHY 1.1 (1.5 Gbps/Lane)

PCIE Gen 2 | 1x4 + 1x1

Data Storage 16 GB eMMC, SDIO, SATA

Other UART, SPI, I2C, I2S, GPIOs

USB USB 3.0 + USB 2.0

Connectivity 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth

Mechanical 50 mm x 87 mm (400-Pin Compatible Board-to-Board Connector)

The final requirement for this project is frame rate. When selecting a method to be

used, it should be able to run at a moderate framerate A moderate frame rate in this

context is defined as at least five frames per second (FPS). While this framerate is slower

than that of the camera that is used, it is still sufficient. Five FPS is sufficient because

neither Minion or Blackfinn travel at high speeds. When in motion, it is likely there will

be many frames taken of each object before the object is out of frame. Minion travels at a

maximum of 7 knots, which can be converted to 3.5 meters per second. Therefore,

Minion would never travel more than 0.7 meters between frames. Blackfinn travels at a

maximum of 0.5 meters per second. This allows for Blackfinn to travel 0.1 meters

10

between frames. As all the task objects are stationary, this allows for sufficient visual

coverage. Due to the anticipated reliability of image detection, it is only necessary to

have an object visible for one frame to correctly detect it. While traditional computer

vision methods would be expected to process at a faster rate, it is reasonable to accept a

slower frame rate for this project due to the boost of accuracy and precision.

1.4. RobotX Dataset

The Maritime RobotX Competition is an international competition sponsored by

the AUVSI Foundation. The goal of this competition is to design an autonomy and

propulsion package for an ASV that can complete a variety of navigational, detection,

and classification based tasks. Each team is given a WAM-V, which is a 16-foot-long

inflatable pontoon boat as a platform, which is used to complete six tasks [18]. These

tasks require the capability to autonomously detect objects to complete each task’s

objective. This data for this competition was collected in December 2016, on Sand Island

in Honolulu, Hawaii. This dataset contains 24 unique classes, which are found in the

following tasks. These classes are listed in Table 2. The person class was added as a side

experiment and was not intended or used for this research.

Table 2 - Table of Objects for the RobotX dataset

RobotX Class Names

black_ball

black_buoy

black_tower

blue_buoy

blue_circle

blue_cruciform

blue_tower

blue_triangle

11

green_buoy

green_circle

green_cruciform

green_tower

green_triangle

orange_ball

person

red_buoy

red_circle

red_cruciform

red_tower

red_triangle

white_buoy

yellow_buoy

yellow_tower

 Navigation

The first task in the RobotX Competition is navigating the qualifying gates. This

task requires the ASV to travel between two navigational buoys, travel a variable

distance, and then exit through two more identical buoys. These buoys are placed in the

configuration shown in Figure 6.

Figure 6 - RobotX Qualifying Gate Task [19]

12

These buoys are Taylor Made Products Sur-Mark Can Buoys, which have a

distinct shape and color [19]. The two shapes of buoys used are shown in Figure 7. For

this task, each pair consists of a red and a green buoy, which the ASV is required to

detect; without detection, it would not be possible to navigate between them. As this is a

qualifying task, it is required to be completed before any other task can be attempted. As

these are similar shape, and only differ by color, it is imperative that the classifier

algorithm is color independent. Other tasks require the capability to detect blue, yellow,

and white buoys.

Figure 7 - Green and Red Taylor Made Navigational Buoy, Daytona Beach, FL

 Scan the Code

The Scan the Code task is comprised of a light tower on a floating buoy, with

three outward facing LED panels. The three LED panels are arranged in a triangle, and

are between 1 and 3 meters above the water. Each panel is 15.2” by 7.6” and can display

red, green, yellow, blue, or black [19]. The tower has a randomly generated sequence of

four colors that is repeated every 5 seconds. The first color in every sequence must be

black and the following three colors are randomly selected. Each color is only displayed

for 1 second before switching to the next. In between sequences the panels display black

13

for two seconds. The goal of this task is to correctly identify the color sequence of the

panels. A rendering of this task is shown below in Figure 8.

Figure 8 - Scan the Code, Rendering

This task requires detection for two components. The primary component requires

the light tower to be detected. This would allow for the ASV to approach the obstacle and

begin the task. The second component of this task is identifying the color sequence. This

requires the classifier to be able to recognize the color of each LED panel. This is a

particularly challenging task since the panel quickly changes color and the colors can

appear to drastically change due to weather conditions.

 Identify Symbols and Dock

The Identify Symbols and Dock requires the ASV to locate the correct docking

bay, navigate into it, stop, and then back out. Each docking bay has a randomly selected

sign associated with it. These signs have large geometric shapes which can have different

orientations and colors. The possible shapes are either a cruciform, circle, or triangle, and

the colors can be red, blue, or green. The judges, before the start of the run, determine

which symbol is associated with the correct bay. Because of the combination of shapes

14

and colors, this task requires the detector to detect and classify nine permutations. These

signs should be detected and classified in a single image frame. A rendering of this task is

shown in Figure 9.

Figure 9 - RobotX Docking task, rendering [19]

 Detect and Deliver

As with the docking tasks, Detect and Deliver requires the ability to detect and

classify signs with varying shapes and colors, and the sign will be determined by the

judges prior to the start of the run. The vessel must circumnavigate a floating tower to

find the correct. This adds complexity to the detector since there is a greater chance the

camera will be off axis from the sign. Being off axis makes the shapes appear to be

skewed, which increases the difficulty of classification. Figure 10 shows a rendering of

this task.

15

Figure 10 - Detect and Deliver, rendering [19]

1.5. RoboSub Dataset

The RoboSub Competition is an international competition sponsored by the

AUVSI Foundation. This competition is composed of approximately forty teams from the

United States, and around the world and takes place in San Diego [20]. Each team is

tasked to develop an AUV, which is fully autonomous and has no outside communication

during a mission. This competition is composed of navigational and manipulation tasks.

These tasks are shown in the course diagram, Figure 11. This competition utilizes the

TRANSDEC Anechoic Pool which is divided into two identical complete courses. These

courses are composed of various tasks, six of which require visual detection. This dataset

contains 11 unique classes, which are found in the following tasks. These classes are

listed in Table 3.

16

Figure 11 - RoboSub Course Layout [21]

Table 3 - Table of Objects for the RoboSub dataset

RoboSub Object Name

bin_ banana

bin_can

bin_lightning

bin_orange

gate

gate_inv

green_buoy

path

red_buoy

torpedo_board

yellow_buoy

 Validation Gate

The Validation Gate is the first task that is encountered, and the only required

task. This Validation Gate is a five-foot-tall, ten-foot-wide arch built from 3-inch

diameter orange PVC pipe [21]. The goal of this task is to maneuver the AUV through

the center of the gate. To complete this task, it is important to have a classifier that can

17

detect the gate. This gate is a difficult object to detect due to its width. Due to the water

quality, it is difficult to detect the gate from far away, but when close, it is difficult to fit

the entire object into a frame. The diagram of this task is shown in Figure 12.

Figure 12 - RoboSub Validation Gate [21]

 Buoys

The buoy task is the second course element to be encountered. This task is

composed of three 9-inch diameter buoys, suspended from the pool bottom [21]. For this

task, there will be three separate colors: red, yellow, and green. These buoys will be

within a three-foot-tall vertical box, and have four feet of separation between them. This

task requires a classifier to correctly identify the color of each buoy simultaneously.

Points for this task are awarded for bumping one specified color buoy, backing up, and

then bumping another color. This requires for the classifier to be able to detect the buoys

from a far distance, as well as close. This task is challenging due to the similarity of

colors. Due to sediment in the water, as well as color absorption, the red and yellow

buoys appear similar in color. Additionally, the green buoy can blend in with the

murkiness of the water. A diagram of this task is shown in Figure 13.

18

Figure 13 – Diagram of RoboSub Buoy Task [21]

 Inverted Gate

The inverted gate differs from the validation gate as it is smaller and inverted.

This gate is only four feet tall and eight feet wide [21]. This task is constructed from two-

inch diameter PVC pipe, and is yellow in color. The goal of this task is to travel through

the center of the posts. Bonus points are awarded if the vehicle is beneath the top of

vertical posts. To complete this task, it is important that the classifier can detect both this

obstacle’s width, but also its height. For the Validation Gate only the object’s width was

required to be detected. A diagram of this task is shown in Figure 14.

Figure 14 - Diagram of the Inverted Gate Task [21]

19

 Dropper Bins

The dropper bins are perhaps the most advanced detection task in the competition.

This task requires the capability to not only detect where the dropper bins are, but to

individually classify which one is which. Unlike the other tasks, which are in front of the

vehicle, this one is beneath. To observe this task, a downwards viewing camera is

required. This adds complexity to the detector as the pool’s bottom is coated in sediment

and debris. All four bins are surround by a white rectangle, which makes it possible to

observe due to the contrast from the pool floor. However, in each bin is a different

symbol. These symbols change every year to meet the theme of the competition. In the

2015 competition, which is shown in Figure 15, the shapes were a banana, soda can,

lightning bolt, and a flux capacitor. These shapes are yellow on a black background. This

requires an advanced classifier to be capable of correctly identifying these abstract

shapes.

Figure 15 - Dropper Bin symbols and dimensions [21]

20

 Torpedoes

The requirement for the torpedo task is that the AUV is required to launch a

torpedo through one of the four holes on the board. There are two sets of square holes.

Each set has a 12-inch-wide hole and a 7-inch-wide hole. A one inch red border is placed

around each hole [21]. Each set is identified by a number above both holes. At the time of

the run, one of these sets is designated the primary target. Extra points will be awarded

for getting a torpedo through this set. Additional points will be awarded by getting the

torpedo through the smaller of the holes. This task not only requires for the yellow board

to be detected in the pool, but also the holes and the identifying numbers. A diagram of

this task is shown in Figure 16.

Figure 16 - Torpedo Board Diagram [21]

 Path Markers

The Follow the Path task consists of several blaze orange Path Markers

throughout the course. These Path Markers are four feet long, half a foot wide and are

suspended one to two feet from the pool floor [21]. These Path Markers are used to guide

the AUV from one course element to the next. These markers point in the direction of the

21

next task. Therefore, not only is it required to detect these elements, but their orientation

must also be calculated. This research will focus on just detection of the paths. However,

since the detector will give a bounding box around the object, in the future it would be

simple to calculate the angle of the path. A diagram of this task is shown in Figure 17.

Figure 17 - Path Marker diagram [21]

22

2. Literature Review

Computer vision is a field that has been used since the early 1970s for object

recognition, detection, and tracking [22]. While early researchers thought it would be

simple to write an algorithm to take a camera stream and “describe what it saw”, this was

not the case [22]. At the time, there was not enough research in artificial intelligence or

the hardware to support such processing. Since then, significant research has been

performed on creating detectors that are capable of this high level of detection. This

section will discuss published research projects which are relevant to this research.

Students at the International Research Institute MICA investigated the use of

background subtraction techniques to detect boats [23]. The methods used where Mixture

of Gaussians (MOG) and Visual Background Extractor (VIBE). Results show that

background subtraction is not sufficient on its own for reliable maritime detection. Both

methods had difficulty detecting stationary vessels. If the vessel was not moving, it

would be classified as background and subtracted. While VIBE was more efficient, both

methods had a low detection rate due to background clutter and movement.

To perform maritime monitoring, a hybrid foreground detection algorithm was

tested [24]. This method combined an existing foreground object detection method with

image color segmentation techniques to boost accuracy. This method attempted to

perform foreground detection, then filter the results with color segmentation and

thresholding. This method requires a background reference image. While this works for

stationary detection, it is not possible to implement with a moving camera. It is hard to

evaluate the success of this method as no formal results are given. The only results given

are several images demonstrating the effectiveness of the method. This method is capable

23

of detecting that an object is moving in the frame, though there is no capability to

detecting what the object is. Additionally, the accuracy is extremely poor and detects

other background noise such trees and waves, and is extremely susceptible to the moving

object’s wake. While this research offered a good attempt at maritime object detection,

other reviewed literature showed more promising results.

Research at the University of Reading performed maritime object detection with

visual saliency [25]. Once a saliency map is created, it is filtered through adaptive

hysteresis thresholding. After thresholding, a binary image of regions of interests

remains. This method could provide reliable object detection and tracking with few false

positives. Unlike the background subtraction attempts, this method is capable of filtering

anomalies such as waves and boat wakes. However, it had no ability to classify the

detected objects.

Joint research between the Naval Research Lab, University of Nevada, and

Knexus Research Corporation investigated the usage of machine learning to detect and

classify several types of boats. Investigated techniques included Histogram of Oriented

Gradients (HOG), Exemplar-SVM (ESVM), and Latent-SVM with Deformable Part

Models (LSVM) [26]. These classifiers were trained to detect the following classes:

cabin_cruiser, canoe, kayak, motorboat, paddleboard, raft, rowboat, sailboat, and

water_taxi. This research showed L-SVM was the highest performing method, though

still lacked the ability to classify vessels with less identifying features, such as canoes and

kayaks. Under the best circumstances, L-SVM had a MAP of 0.453.

Research was conducted to evaluate the feasibility of Fast R-CNN for sign

classification and detection [27]. A set of six SLR cameras were attached to a car to

24

create panoramic images along roads. One hundred thousand images were collected from

five different cities in China. Several thousand annotations were used for each class. This

method could successfully detect and classify signs with an accuracy of 0.88 and a

processing time of 0.3 seconds per image. While slow, this method provided promising

results.

In conclusion, there has been a lot of research conducted on maritime detection

with the use of visual imagery. However, most of this research is only concerned with

detecting the presence of another vessel, and not classifying the type of vessel. No

research could be found on the autonomous detection of maritime navigational markers,

though road signs are common. Techniques used were background subtraction,

foreground object detection, salient detection, L-SVM, and Fast R-CNN. While a few

sources can classify the detected object, either no performance metrics were given, or the

method was not capable of performing at speeds sufficient for implementation. Little to

none research could be found of autonomously classifying objects in near-real-time while

on a mobile vessel.

25

3. Classification and Detection Algorithms Methodology

While image detection and classification sound similar, they are two separate

processes. Image classification is the process of algorithmically determining which

object, or objects, appear within an image frame. Classification cannot determine where

in the fame the object is. In Figure 18 the left image is an example image classification,

while the right image shows detection as well as classification. Depending on the method,

it is possible to classify more than one object per frame, though most classification

methods only allow for one object to be classified per frame.

Figure 18 - Image Classification vs Detection and classification [28]

Most methods that are capable of image detection, also include classification.

Detection allows for the ability to locate where in the image certain objects may be. This

can be paired with a classifier to determine what the object is. Most methods display the

location by providing a bounding box around the detected object. In Figure 18, the

picture on the right is an example of detection and classification. Depending on the

method used, it can either be a single object detector, or a multiple object detector. For

this thesis, it would be advantageous to have a method that can detect and classify

multiple objects in each frame.

26

3.1. Methods under Consideration

The four algorithms under consideration in this thesis are Faster R-CNN,

TensorBox, DetectNet, and YOLO. Each of these methods are formally published and

documented [29] [30] [31] [32]. This was a requirement for a method to be considered.

Without documentation, it would be much harder to work with, and implement these

algorithms in the time frame of this project. It is a requirement of the selected method

that it is both Linux and Windows compatible. Linux is required as the NVIDIA Jetsons

have an ARM processor that only supports Linux. Windows is a requirement of the

selected method as Minion operates on Windows 7. Currently Blackfinn operates on

Windows, though is being switched to Linux. When selecting a method, it is required that

it can perform multiple object detection. Multiple object detection is the ability for the

detector to detect the location of multiple objects in each frame. Multiple object detection

is much more practical in a real word situation because it cannot always be guaranteed

that there will not be more than one known object visible in an image frame.

Additionally, certain cases may require for there to be multiple objects detected at once.

In addition to detection, it is a requirement that these methods can also perform

classification on each of the detected regions. For instance, in the RoboSub competition,

it is required to identify the red, yellow, and green buoys. This task would not be feasible

if the detector could only determine if one of the buoys was in frame. Figure 19 shows an

image captured of this task from the 2015 competition, in the TRANSDEC facility. This

image shows the Path, Inverted Gate, and Red, Green, and Yellow Buoys.

27

Figure 19 - Path, Inverted Gate, and Red, Green, and Yellow Buoys in the TRANSDEC

3.2. Faster R-CNN

Faster R-CNN is a project that was created by Shaoqing Ren, Kaiming He, Ross

Girshick and Jian Sun [33]. It was initially published in their NIPS 2015 paper.

Originally, this project was written and published in MATLAB. After publication, a

Python reimplementation of their method was released. This reimplementation, py-faster-

rcnn, can achieve a similar mean average precision (MAP) as the MATLAB version. This

method can achieve a 66.9 percent MAP using VGG16 model on the VOC 2007 dataset

[34]. Additionally, the Python reimplementation on average is ten percent slower [29].

This speed decrease is due to the inability for Python to use GPU acceleration on all

layers. Faster R-CNN can be run either with or without a GPU. The Python

reimplementation is the version that will be considered. This is due to the ease of

implementation as well as integration with other software systems. Additionally, it would

be less complicated to run the Python version on a Linux system, compared to the

MATLAB version. While MATLAB has Ubuntu support, it is known to have support

28

issues. Faster R-CNN allows for the training of a custom dataset, which meets the

qualifications. Figure 20 shows an example of Faster R-CNN’s capability of detecting

and classifying multiple objects in an image.

Figure 20 - Faster R-CNN Example [35]

Faster R-CNN is built upon the Caffe framework. Caffe is a deep learning

framework that was created by a team at the Berkeley Vision and Learning Center

(BVLC), as well as by community contributors [36]. Caffe is open sourced under the

MIT License project and is a popular framework for many deep learning projects. As

Caffe is written in C, using it, or any projects based off it, would be easy to implement

for any project requiring cross platform compatibility. The Caffe framework allows for

CUDA acceleration when an NVIDIA GPU is accessible.

Faster R-CNN is an improvement over its predecessor algorithm, Fast R-CNN.

Fast R-CNN is another project by Ross Girshick. Faster R-CNN is on average one

hundred and forty-seven times faster than Fast R-CNN [34]. This speed increase was

achieved through the usage of region proposal networks. Additionally, Fast R-CNN is

also an improvement over Girshick’s R-CNN algorithm. Fast R-CNN is two hundred and

29

thirteen times faster at runtime than R-CNN [33]. R-CNN was initially published in 2013,

while Fast R-CNN was published in 2015.

3.3. TensorBox

TensorBox is an open sourced project that uses the TensorFlow framework to

implement Google’s GoogLeNet-OverFeat algorithm [37]. TensorBox was initially

uploaded to GitHub on January 23, 2016 by user kupel. TensorBox is an image detector

that is written in Python and implements Tensorboard. Tensorboard is TensorFlow’s,

graphical user interface (GUI) which is used to visualize the learning process of the

network. TensorBox is capable of being trained on a custom dataset with multiple

classes. TensorBox uses the JSON file format. These files contain the filename, and the

bounding boxes for each class within each image. Figure 21 shows an exaple of

TensorBox detecting multiple objects in a image.

Figure 21 - TensorBox head detector example [37]

TensorFlow is an open sourced software library originally created by engineers at

Google and was released in November 2015 [38] [39]. TensorFlow can run on one or

more GPUs for CUDA acceleration [40]. When an NVIDIA GPU is not available,

30

TensorFlow may also be run on one or more CPUs; however, it will be significantly

slower. TensorFlow is compatible with Windows, Mac OS X, and Linux [41].

3.4. DetectNet

DetectNet is an image detection algorithm created by developers at NVIDIA.

DetectNet is capable of image object detection as well as image segmentation. This

method however does not support classification. DetectNet is implemented by using a

network that is derived from the GoogLeNet model. This network was modified for

improved object detection [42]. Figure 22 shows an example of DetectNet being used to

detect construction vehicles on a work site.

Figure 22 - DetectNet Example, Vehicle Detection [31]

DetectNet is based upon the DIGITS framework. DIGITS is an open sourced

project that is supported and maintained by NVIDIA. NVIDIA DIGITS version 1 was

initially released on June 26th 2015, though it is currently on version 5 [43]. At the time

of selecting a method, the most recent version was version 4. DetectNet was initially

released with DIGITS version 4RC, on June 21st, 2016 [44]. The DIGITS library supports

CUDA acceleration, as well as CPU processing.

31

Through the DIGITS platform, it is possible to train a network on a dataset. The

DIGITS framework provides support on inputting annotation files, training datasets, as

well as validation datasets [31]. Additionally, there is graphical support for editing

training parameters. Editable training parameters include batch size, learning rate, and

snapshot intervals. The DIGITS frame work is only supported for Ubuntu 14.06 and

Ubuntu 16.04 [44].

3.5. YOLO Version 1

The final method that was investigated was the use of YOLO. YOLO, You Only

Look Once, is based on the Darknet framework [45]. Darknet is an open sourced

framework for neural networks that is written in C and CUDA [32]. YOLO claims to be

one hundred times faster than Faster R-CNN. YOLO makes claims to perform detection

at 45 FPS, while the Tiny YOLO model can perform at 155 FPS [45]. This Tiny YOLO

model only requires 516MB of GPU memory. These framerates were achieved while

running on a NVIDIA Titan X. The specifications of the Titan X are shown in Table 4

[46].

Table 4 - NVIDIA Titan X Specifications

Component Specification

GPU Architecture Pascal

Frame Buffer 12 GB G5X

Memory Speed 10 Gbps

Boost Clock 1531 MHz

Graphics Card Power 250 Watts

YOLO when trained on the VGG-16 network could achieve a 66.4 percent MAP, at 21

FPS. While this is much faster than Faster R-CNN, it is considerably less accurate. Figure

23 demonstrates how YOLO performs analysis on the entire image at once (top image).

32

Once weights for the entire image is obtained, the highest weight for each region is saved

(bottom image). The final detection step (right image) uses these classified regions and

places a bounding box around each separate region.

Figure 23 - YOLO Image Detection Example

3.6. Selection Process

When considering which algorithm to select, there were many factors to consider.

The three main criteria for evaluation was the operating system it can run on, speed in

which it can process an image, and precision of its detection. The selected method would

have greater practicality, and usage, if it can run on multiple operating systems. All four

of these selected methods are compatible with Linux, though they are not all officially

supported on Windows. This section will investigate if there are any unofficial ports that

enable windows support. Speed is an important metric to evaluate. A higher frame rate

would increase the feasibility of this project. Unfortunately, it proved difficult to find

performance metrics for these methods. Therefore, to get a speed metric it would be

required to download and install every method, and then train a network on the RobotX

or RoboSub dataset. As this is an extremely time consuming and tedious process, it was

33

not done for every method. Faster R-CNN and YOLO were the only methods that

provided speed information. The third requirement is precision. All the methods that were

investigated have similar precision and detection capabilities.

For this research, it was decided to implement the Faster R-CNN library for

Python. DetectNet was eliminated as a possibility as it does not perform classification, as

well as its lack of support for Windows compatibility. This was because classification

and Windows capability were a requirement of the selected detector. TensorBox was not

further considered as there was no published frame rate. This lack of performance metrics

makes comparison a difficult process. Additionally, TensorBox appeared to be difficult to

integrate. As per the previous research, it was found that Faster R-CNN had a lower

frame rate than YOLO, but a considerably higher MAP. Through experimentation it was

found that Faster R-CNN had a more straightforward training process, as well as clearer

defined models, and more online support. These reasons made Faster R-CNN the top

choice for this project.

 This is a suitable method as it was determined that it would be the easiest to

implement, had a high ratio of performance to accuracy ratio, and is capable of being

added upon. Faster R-CNN was originally written for Linux capability only, but there

have been successful ports to Windows. This has been run and tested on both Windows 7

and Windows 10.

3.7. Faster R-CNN Operation

Faster R-CNN is a regional convolutional neural network used for object

detection and classification. This object detector is composed of two modules that

34

interact together [33]. The first module is a fully convolutional neural network that

creates region proposals. This module is the basis of the detection capability. The second

module is the Fast R-CNN detector, which is created by the same author. This detector is

executed on each of the proposed regions. The interaction of these two modules is shown

in Figure 24.

Figure 24 - Faster R-CNN modules

This figure shows a bottom up approach of classification. The bottom-most layer

is the input image. This image is sent through a series of convolutional layers. These

layers are like those shown in Figure 3. The output layer of this network is displayed as

the feature maps layer. This allows for the Fast R-CNN detector module to locate regions

of interest in which it should perform on. This allows for greater accuracy and

performance increases since the classifier does not need to perform over the entire image.

This classifier can take a rectangular input region of any size. For this research the

VGG16 model was used, which has 13 shareable convolutional layers. These layers are

segmented by a sliding window that has 512 dimensions. A diagram depicting these

35

sliding windows is shown in Figure 25. In this figure the intermediate layer is represented

as 256 dimensions from the ZF model, but is easily exchanged for the VGG16 model.

Figure 25 - Faster R-CNN Region Proposal Network (RPN)

For each of these regions cls scores and coordinates are generated. By default, 9 anchor

boxes are used for each position of the sliding window. These anchor boxes use 3 scales

and 3 aspect ratios. The resulting values from these anchors are used to classify each

region.

36

4. Methodology

To implement an image detector on Minion or Blackfinn, the only sensor required

is a digital camera. Visual imagery was provided by using two PointGrey Blackfly

cameras. Two cameras were used on each of these vehicles to increase the field of view.

These cameras are power over Ethernet (PoE) powered, and GigE compatible. This

allows for them to easily be powered and connected on any system. When working in the

marine environment, waterproofing these cameras is drastically easier since there is only

one cable required for the camera’s connection. These 2.3Mp cameras provide

1900x1200 pixel images at an average of 27 FPS [47]. Due to bandwith and processing

limitations, these cameras were only sampled at 10 FPS. These Blackfly cameras, paired

with Fujinon CS-Mount 2.2-6mm Varifocal Lens, were measured to have a field of view

of nearly 100 degrees. On Minion, the cameras are focused outwards at 86-degree angle

to achieve a field of view of approximately 200-degrees. A rendering showing this

orientation is shown in Figure 26. The cameras are encased inside the tubes and face ±

43 degrees from forward. Blackfinn uses a forward-facing camera and one downward

facing camera. This is due to the need to detect objects both in front of, and below the

vehicle. While the same cameras were used for obtaining both the RoboSub and RobotX

datasets, any digital camera can be used with this project, if the focal length is known.

37

Figure 26 - Minion's Camera orientation

4.1. Installing Faster R-CNN Algorithm

The first step of implementing Faster R-CNN is to set up the programing

environment. As previously stated, the goal of this project is a system capable of running

on the Linux and Windows operating systems. Linux will be used on Blackfinn, while

Minon runs Windows. For the ease of research, most programing will be completed in

Linux. This section will be describing the implementation for a Linux system. The usage

and compatibility of Windows will be discussed later in this section. Linux was the

primary operating system for this project. The Linux operating system used for testing

was Ubuntu 16.04 LTS. This was selected because Ubuntu is free and well supported.

Additionally, Ubuntu met all the dependency requirements of Faster R-CNN.

The most important dependency for this project were the CUDA drivers. Another

reason for Ubuntu section is that NVIDIA makes a version of CUDA 8.0 for Ubuntu.

Compatible CUDA drivers are a requirement for this project as they are needed for the

CUDA code to be compiled and run on the GPU. Without CUDA drivers, CUDA

accelerated code could not be run on the GPU, and therefore could only run on the CPU.

This would render the project unfeasible, as CPU operations are 20x slower. In testing it

38

was determined that processing an image on the GPU takes 0.174 seconds while the same

method takes 3.242 seconds when processed on the CPU.

CUDA 8 was selected as the version of CUDA to be used. This was done because

it is the latest version, and offers support for the Pascal GPU Architecture [48]. This is

required to run on NVIDIA’s Pascal GTX 10-Series GPUs. As Minion uses a GTX 1080

for vision processing, this was a must. The NVIDIA Jetson TX1 also requires CUDA 8.

Therefore, this project needs to be built on CUDA 8 so that it is compatible on a TXI.

Additionally, CUDA 8 has other benefits including NVCC compiling that is twice as fast

and expanded developer platform which allows for Visual Studio 2015 on Windows and

GCC 5.4 on Ubuntu 16.04 [48].

In addition to the many required dependencies, such as the CUDA drivers, Faster

R-CNN has many other dependencies. Faster R-CNN requires Caffe as well as the

Python libraries such as cython, python-opencv, and easydict [29]. In Ubuntu, these

dependences are all available through the APT package handling utility.

As previously mentioned, Faster R-CNN is built on top of the Caffe framework.

This requires that Caffe is installed to be able to run Faster R-CNN. Since Caffe is a

framework, most projects will implement it, and then build upon it, while making

changes to its structure. This process is also followed when using Faster R-CNN. Faster

R-CNN adds several layers to the Caffe layers. This requires for Faster R-CNN to only be

compatible with a modified version of Caffe. This modified version is available from the

same location as Faster R-CNN on rbgirshick’s GitHub repository [29].

To install Caffe, rbgirshick’s Caffe repository needs to be cloned, and then Make

can be used to build the project. The project’s build properties can be configured using

39

the Makefile.config parameter file. This configuration file has parameters for the

compiler to include other dependencies and corresponding data layers. Important

parameters in this file are WITH_PYTHON_LAYER, USE_CUDNN, USE_OPENCV,

USE_LEVELDB, USE_LMDB, and CUDA_ARCH. This file should be used to include

paths of external dependencies that are also required, such as hdf5.

It is important to enable the Python layer when building Caffe. The Python layer

is required because Faster R-CNN is a Python implementation and requires Python

layers. If this parameter is not set to true, Faster R-CNN would not be able to be run and

an exception will be thrown. Caffe would have to be re-compiled with Python layers

enabled.

CUDA Deep Neural Network library (cuDNN), is a GPU-accelerated library

created by NVIDIA to improve deep neural network performance. cuDNN provides

optimized implementations for common routines such as forward and backward

convolution, pooling, normalization, and activation layers [49]. The latest version is

cuDNN version 5.1, which was released January 20, 2017 [50]. Version 5.0 and greater

supports the Pascal architecture, which is a requirement for this project. cuDNN versions

4 and earlier do not support the Pascal architecture [50]. cuDNN is supported on both

Linux and Windows. As Faster R-CNN was released before cuDNN V5, Faster R-CNN

does not officially support cuDNN V5. However, there are community created forks of

the Faster R-CNN project that support cuDNN V5. For this project, a fork created by

GitHub user, TheTesla was used [51]. It is recommended to compile Caffe with cuDNN

as it offers many optimizations and speed increases. With the use of cuDNN, training a

network that uses 3x3 convolutions is 2.7 times faster. These speed benefits are shown in

40

Figure 27. This is useful since the VGG network would benefit from this increase.

Additionally, cuDNN claims to increase the training speed up to 44 percent faster on a

Pascal GPU [52].

Figure 27 - Speed benefits of cuDNN V4 vs V5.1 on a M40 [49]

Perhaps the most important benefit of cuDNN is reduced memory usage. When

training or implementing a VGG16 network, it was found that 5 GB of VRAM is

required. Using cuDNN though, this is reduced to only 3 GB. This is massive

improvement, and greatly increases the usability of this project. Many popular GPUs,

such as the GTX 970, 980, and 1050, only have 4 GB of VRAM. Also, the NVIDIA

Jetson TX1 has 4GB of shared RAM. Using cuDNN, these platforms can run this project

because they meet the minimum RAM/VRAM requirement.

It is required to enable OpenCV in the makefile.config file. OpenCV is needed for

Caffe, because Faster R-CNN uses OpenCV for all image inputs and outputs. OpenCV

also allows for efficient and streamlined methods to manipulate images. For this project,

OpenCV is used to read and save images, as well as video files. OpenCV also is used to

modify loaded images. OpenCV can read and write any standard image (.jpg, .bmp,

41

.png), as well as read or write any standard video formats (.avi, .mp4). OpenCV was

chosen to manipulate images loaded into memory. Manipulation includes adding text and

shapes to the image frame. Faster R-CNN was written with support to use the Matplotlib

library for these manipulations, as well as displaying images. This library however is

limited with its ability to refresh plot windows, to give a smooth viewing experience for a

video steam. Due to this, OpenCV was used to rewrite all image manipulation functions.

Using OpenCV, the image detector was written so that it can operate on a single image, a

folder of multiple images, a video file, or a video stream. Configuration parameters are

set to easily allow for the program to be switched between input methods. A camera can

be added by either OpenCV’s VideoCapture function, or a GigE Camera that can be

added by an open-sourced wrapper for FLIR’s FlyCapture API (formerly PointGrey). The

FlyCapture SDK can be acquired on FLIR’s website [53]. The FlyCapture SDK is

Ubuntu and Windows compatible, which makes it a good choice for this project.

 Both LevelDB and LMDB are database files. These should be enabled to increase

the efficiency of the code. These formats are used to store the layer data, and are required

by Faster R-CNN.

CUDA_ARCH is an important parameter to verify in the makefile.config. This

parameter lets the NVCC compiler know what Compute Capability the code should be

compiled for. Compute Capability is a metric that is used to identify the capabilities of

NVIDIA GPUs. Table 5 shows the Compute Capability of several popular GPUs, as well

the NVIDIA Jetsons. Since this project was compiled for a GTX 1080, Compute

Capability 6.1 was used. In the configuration file this is dictated as compute_61.

42

Table 5 - Compute Capabilities of Popular GPUs [54]

GeForce Desktop Products

GPU Compute Capability

NVIDIA TITAN X 6.1

GeForce GTX 1080 Ti 6.1

GeForce GTX 1080 6.1

GeForce GTX 1070 6.1

GeForce GTX 1060 6.1

GeForce GTX 1050 6.1

GeForce GTX TITAN X 5.2

GeForce GTX TITAN Z 3.5

GeForce GTX TITAN Black 3.5

GeForce GTX TITAN 3.5

GeForce GTX 980 Ti 5.2

GeForce GTX 980 5.2

GeForce GTX 970 5.2

GeForce GTX 960 5.2

GeForce GTX 950 5.2

CUDA-Enabled TEGRA /Jetson Products

GPU Compute Capability

Jetson TX1 5.3

Jetson TK1 3.2

Tegra X1 5.3

Tegra K1 3.2

It is important to verify that the selected Compute Capability is correct. If a lesser

capability is selected than the card that will be used, performance losses will be severe. If

the project was compiled for a lower Compute Capability, then it would have a similar

performance to a card of that Compute Capability, despite possibly being a card of higher

capability. Figure 28 shows the features of each Compute Capability.

http://www.geforce.com/hardware/10series/titan-x-pascal
http://www.geforce.com/hardware/10series/geforce-gtx-1080-ti
http://www.geforce.com/hardware/10series/geforce-gtx-1080
http://www.geforce.com/hardware/10series/geforce-gtx-1070
http://www.geforce.com/hardware/10series/geforce-gtx-1060
http://www.geforce.com/hardware/10series/geforce-gtx-1050
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-z
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-960
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-950
https://developer.nvidia.com/jetson-tx1
https://developer.nvidia.com/jetson-tk1
http://www.nvidia.com/object/tegra-x1-processor.html
http://www.nvidia.com/object/tegra-k1-processor.html

43

Figure 28 - Compute Capability Features [55]

After the parameters for the Caffe Make configuration file is set, the project can

be built. Depending on the processor speed and number of processor threads available,

this can take up to a few minutes to build. To verify this is built correctly, open a Python

terminal and execute “import caffe.” If this is successful, Caffe was properly built and

installed. It is likely that the Caffe Python folder’s destination needs to be added to the

PYTHONPATH. After Caffe is built, Faster R-CNN can be built. This is done by

running Make in the /lib/ source file. Once this builds, Faster R-CNN should be properly

installed. This can be verified by running a demo script on a pre-trained network. How to

run a network will be discussed in the next section.

When installing on Windows, there are a few differences that make the process

feasible, but much more complex. The first issue is Faster R-CNN, or its Caffe

dependency, cannot be natively compiled in Windows. Since Caffe is written mainly in

C, the code can be ported to work on Windows. When testing on Windows the repository

Caffe, by ShaoqingRen was used [56]. This repository is a fork of the original

BLVC/Caffe repository. This project was forked on October 1st, 2014 [56]. This project

44

was then modified to be Windows compatible. In addition to code modifications, Visual

Studios projects were added. This allowed for Visual Studios 2013 to compile the project.

The “SPP_net” branch of this repository was modified to include the Faster R-

CNN layer types. Once this repository is cloned, Visual Studios can be used to build the

project. Once the build file for the Python folder is added to Windows PYTHONPATH,

the project should be ready to be imported. As with Linux, this can be tested by opening a

Python terminal and executing “import caffe.” To install Faster R-CNN, the Linux

repository can be used, with some modification. On GitHub, MrGF uploaded a repository

called py-faster-rcnn-windows [57]. This repository contains a modified version of the lib

directory. This modified directory contains an altered setup.py file that allows for the C

and CUDA code to be compiled. This altered setup.py file should overwrite the original.

Another issue with Windows support is the lack of cuDNN V5 support. There is

not a Faster R-CNN fork that was modified for Windows, as well as modified for cuDNN

V5 support. As the official version of Faster R-CNN has not been officially updated to

allow for cuDNN V5, it is necessary for a community member to make this modification.

This issue was solved for the Linux version, but not for Windows yet. As of the time of

publication, a solution was not available. Without cuDNN V5 support for Windows, this

project is still feasible if a GPU with more than 6 GB VRAM is available. cuDNN V4 is

compatible with this version, though is not CUDA 8 compatible.

To run Faster R-CNN, there are no official documented minimum system

requirements. However, due to the intensive nature of the process, it is obvious that there

is a minimum system requirement to handle the computation. Through testing, it was

determined that the system must have at least 4GB of RAM. This because the trained

45

Caffemodel using VGG16 requires 3.5GB of RAM to load. If the system does not have a

GPU, computation can all be handled on the CPU, though performance would be greatly

reduced. Detailed performance results will be covered in the results section, as previously

mentioned. Through testing it has been found that CPU only processing is approximately

20x slower than on a GPU. Therefore, it is highly recommended to have a GPU to boost

performance with parallel processing. The smallest popular model for Faster R-CNN is

the VGG16 model. This model requires 6GB of VRAM. However, with the inclusion of

cuDNN, optimizations can be made which reduce the requirement to approximately

3.5GB of RAM. It is also recommended to have an equal amount of RAM as VRAM.

Therefore, the minimum requirement is 4GB RAM and 4GB VRAM. An exception for

this is made for the NVIDIA Jetson TX1. The TX1 uses shared memory, so 4GB of RAM

is sufficient.

4.2. Running Faster R-CNN

To run Faster R-CNN, a prototxt file, and caffemodel file are needed. These two

files are the core of the Caffe framework, and allow Caffe to have such flexibility. The

prototxt file is a Caffe file structure used to construct the different layers of the network.

The caffemodel file is used to store the trained model data. For this project to run on a

custom dataset, the network must have been trained. This is a rigorous and time

consuming process. How to train a model will be discussed later in section 4.3 Training.

Before implementing the Faster R-CNN algorithm into another project, or training

a network for it, it is recommended to test its performance on a pre-trained network. This

would allow for verification if everything was configured properly. This additionally

46

gives a subjective performance metric of how a system compares to another, based on

online metrics. When tested, if the speeds are much different than somebody else’s

speeds, it could be assumed that something was not configured properly. If there was an

issue with the CUDA drivers, and this were to be run on the CPU, processing times

would be much longer. Faster R-CNN comes with a demo script, which runs detection on

five images. After running the demo.py script on the pre-trained Faster R-CNN demo

models, the results of the five classified images are shown. Figure 29 shows an example

image of this process. Each image took 0.194s, 0.153s, 0.167s, 0.161s, 0.182s,

respectfully, to detect. When running this test on CPU an average 3.242 seconds per

frame was calculated.

Figure 29 - Results of Demo.py

4.3. Training

Training a network is the process in which the classifier and detector learn to

recognize different objects. To train a model on an object, a data set containing many

47

images of that object must be acquired. In this dataset, it is recommended that the images

are against various backgrounds, and of multiple orientations of the object. This will

ensure that the training is correctly tuned to the object, and not also the background. To

train a model for Faster R-CNN, there are a few requirements. The first requirement is

that the dataset must be annotated.

Annotation is the process of manually segmenting the objects in each image.

Annotations can only be performed on an image, and not to a video file. This was an

issue because Minion’s camera system stores logged frames as an .avi file. This requires

for the frames to be extracted from the .avi for annotation and training. To do this, a

Python script was written. This script uses OpenCV to scan a folder, and extract frames

from every contained video file. The frames from each video are organized in folders

with corresponding names.

Faster R-CNN supports several formats of annotation files. The annotation

process requires a separate annotation file for each image. To create these annotations

files, the program LabelImg was used. LabelImg can be downloaded on GitHub from

Tzutalin’s repository [58]. This repository is active, and is continually being updated with

new features. This program was modified to include additional shortcuts and hotkeys to

speed up the annotation process. LabelImg was selected because it saved the annotation

files to the PASCAL VOC format. This format is the same format used by ImageNet, and

is compatible with Faster R-CNN. An example of LabelImg annotating an image from

the RobotX dataset is shown below in Figure 30. This image shows the blue_circle,

red_triangle, and red_cruciform classes being annotated. This image was taken at the

2016 RobotX Competition.

48

Figure 30 - Using LabelImg to annotate an image from the RobotX dataset.

The annotation files created by LabelImg use the .XML file format. This file has

data fields for the source image width, height, and depth. More importantly, for each

annotated object, there is an object field. This field contains the name of the object as

well as coordinates for the bounding box. The bounding box is listed as xmin, ymin,

xmax, ymax. By recording two coordinate pairs, a rectangle around the object can be

drawn. This format allows for multiple objects to be included in one .XML file. An

example of an annotation file is shown in Figure 31.

Figure 31 - Example Annotation File created using LabelImg

49

The RoboSub model consists of 11 individual classes. To train this model, 833

images were annotated for a total of 1,355 annotations. These annotations were from a

dataset of 92,447 images. All these images were manually analyzed to see if they would

be beneficial in the training set. Most these images were not usable as there were no

course elements in them. When analyzing these images, a set was pulled aside for

accuracy verification and testing. A set from both the forward, and downward facing

camera was set aside for this. This set was composed of 4,188 images. While this is large

set, most of the frames do not contain any course elements. The breakdown of these

annotations is shown in Table 6. These annotations are plotted in Figure 32.

Table 6 - Annotation Summary for RoboSub

Object Name Number of Annotations

gate 290

gate_inv 138

red_buoy 190

green_buoy 186

yellow_buoy 168

path 287

torpedo_board 15

bin_bannana 24

bin_lightning 27

bin_can 21

bin_orange 9

As the images for this dataset were taken during a competition, it was not possible

to obtain equal data for every task. There are the most images available for annotation of

the gate, as every run begins with it. This is what allows the detection of the gate to be

incredibly accurate. Unfortunately, classes such as the bins, were only trained on logs

from one run. Despite a much lower number of annotations, the bins can still be classified

with a high MAP. The bins were only trained from one run, as there were only two runs

50

of data for these obstacles. Therefore, one was reserved for training as the other was

reserved for testing.

Figure 32 - Plot of Number of Annotations Per Class

Additional experimentation on detecting the torpedo board symbols was

performed. Since this was an isolated test, the annotations from this experiment were not

included in the final trained model. The summary of annotations for this test is shown

below in Table 7. The performance of this test will be evaluated later in 4.5.2 RoboSub

Accuracy.

Table 7 - Annotation Summary for Torpedo Board Test

Object Name Number of Annotations

torpedoboard2016 36

W 21

S 20

N 7

E 7

torpedoboard2016cover 7

While the RobotX dataset has twice the number of classes, it is much smaller than

the RoboSub dataset. This dataset is comprised of 23 unique classes. These classes were

annotated with 2,365 annotation files. There is a total of 3,207 annotations in this dataset.

0 50 100 150 200 250 300 350

binOrange

torpedoBoard

binCan

binBannana

binLightning

GateInv

yellowbuoy

greenbuoy

redbuoy

path

Gate

Number of Annotations

C
la

ss
 N

am
e

Annotations per Class

51

This annotated dataset was composed of 50,887 images. This was a tedious process to

sort through and annotate. Unfortunately, there is a large discrepancy between the

number of annotations taken for each class. As with the RoboSub dataset, this is the

result of logging competition data. Included in this dataset is data from tests in Daytona

Beach, in addition to the data from Hawaii. As this project was planned to be used for the

Light Tower portion of the competition, there is a large focus of Light Tower data. One

of the Daytona testing datasets was focused on the blue_circle, making it by far the most

popular class. The distribution of annotations can be found in Table 8 as well as plotted

in Figure 33. When sorting images for annotation, a set was reserved for verification and

testing. This set was composed of 4,105 images. These images were selected from image

sets that were not in the training set. These images were selected as they contained all

course elements.

Table 8 - Annotation Summary for RobotX Dataset

Object Name Number of Annotations

blue_circle 382

black_tower 320

blue_tower 239

red_buoy 209

green_tower 202

red_tower 201

green_buoy 196

red_triangle 189

yellow_tower 176

black_ball 163

person 132

red_cruciform 110

white_buoy 101

blue_cruciform 98

blue_triangle 83

black_buoy 82

green_triangle 74

blue_buoy 71

green_circle 50

52

yellow_buoy 50

green_cruciform 41

orange_ball 22

red_circle 16

Figure 33 - Plot of Number of Annotations Per RobotX Class

Once each image has an associated annotation file, the training process can begin.

As Faster R-CNN is based on the Caffe framework, the training process is like that of

training a Caffe network. To train a network, both Caffe and Faster R-CNN must be

installed on the computer. While not necessary, it is highly recommended that training be

performed on a computer with one or more GPU. It is not required for the network to be

trained on the same device that it will be run on. This is especially useful for a system

that uses a Jetson TX1, because the TX1 would train a network at a much slower rate

0 50 100 150 200 250 300 350 400 450

redcircle

orangeball

greencruciform

greencircle

yellowbuoy

bluebuoy

greentriangle

blackbuoy

bluetriangle

bluecruciform

whitebuoy

redcruciform

person

blackball

yellowtower

redtriangle

greenbuoy

redtower

greentower

redbuoy

bluetower

blacktower

bluecircle

Number of Annotations

C
la

ss
 N

am
e

Annotations per Class

53

than on a computer with a GPU that has a higher clock rate. Additionally, as the TX1 has

only has 4GB RAM, training would be a slow process. To limit the RAM used, smaller

batch sizes would be needed. By reducing the number of images trained simultaneously

in a batch, the training process will take longer. The training process is a long and

cumbersome one, that can take several hours to several days depending on the GPU(s)

used, and the size of the dataset.

When training a network, it is recommended to use another trained model as a

weights model. Due to the relatively small size of the datasets used for this project, less

than 100,000 images, training would benefit from using a pre-trained weights file. The

weights parameters for each layer are learned through the back-propagation phase. To

eliminate the need for this propagation to start from scratch, a pre-trained weight file can

be used. Through initial testing it was determined that this was necessary. Due to the

limited size of the training and validation sets, the weights would not properly initialize.

To resolve this issue, the pre-trained weights file VGG16.V2.caffemodel was used. This

file can be obtained from the Faster R-CNN repository. To use the pre-trained weights

file the name of the last layer must be changed [59]. When changing this name, it should

be done in the .prototxt file. However, for Faster R-CNN to recognize this new layer

name as the final layer, it must also be changed in the code for loading the Faster R-CNN

model. To change, this the variable “box_deltas” should be changed. This variable is

found in ./libfaster/rcnn/test.py. This variable should be changed to the same as the new

layer name. The layer name should be changed in the test.prototxt file and the

train.prototxt file. The parameter that needs to be changed in both files is the argument

“bottom,” for the layer cls_prob. This name can be changed to anything that is not a

54

current layer name. For this project, the last layer’s name was changed from cls_score to

cls_score2.

When training a model, it is crucial to ensure the train.prototxt file is properly

configured. When training a model on a custom dataset, it is likely the training prototxt

file would need to be changed from the default. The required changes are as follows:

• In ‘VGG_ILSVRC_16_layer’ the python_param param_str ‘num_classes’ should

be changed to the number of unique classes + 1. For the RobotX Dataset there is

23 unique classes, plus the background class. Therefore, this parameter is 24.

• In ‘roi-data’ the python_param param_str ‘num_classes’ should be changed to

the number of unique classes +1. Therefore, this parameter is 24.

• IN ‘bbox_pred’ the inner_product_param num_output should be changed to the

(number of unique classes + 1) * 4. Therefore, this parameter is 96.

The test prototxt file also needs to be altered before runtime. The test prototxt file

requires the number of classes to be changed as well as the number of parameters for the

final layer.

When choosing the parameters, it is required to add one to the number of classes.

This is done to account for the background class. This class, which is named

‘__background__’, is used as a negative image for the classifier. This class is

automatically set up and is used to reduce proposals in the background region.

Training a network is started by calling the script, faster_rcnn_end2end.sh. This

script takes three input arguments. The first argument is the identification number of the

GPU(s) to train with. If only one GPU is installed, this argument would be index 0. The

second argument is the network type. For this training, the VGG16 network was used.

55

The third and final argument is the annotation format. For this training the pascal_voc

format was used.

Figure 34 - Terminal window showing output during training

Figure 34 shows the output of the terminal screen while training a network. This

screen shows the current iteration that is being trained on. In this screenshot, iteration 200

is being finished. This model is being trained on a computer with the specs shown in

Table 9.

Table 9 - Desktop System Specifications

Part Specification

CPU i7 4790K – 4.3Ghz

RAM 16GB 1600Mhz

GPU NVIDIA GTX 1080 - 2560 CUDA

 cores – 8GB RAM

OS Ubuntu 16.04 LTS

In the screenshot of the training, Figure 34, it is shown that it takes 0.583 seconds

per iteration. As shown in the data from Table 9, this was trained on a NVIDIA GTX

1080. While training, the process took 6671 MB of VRAM, which is shown in Figure 35.

Additionally, this screen shows other pertinent information such as GPU usage, GPU

temperature, and power consumption. This data is accessible by running ‘nvidia-smi’

from the terminal window.

56

Figure 35 - Results of NVIDIA-SMI while training

When training, it is recommended to do several thousand iterations. This is

necessary for the network to converge. For the RobotX dataset, there were 24 unique

classes. To train this model, 100,000 iterations were performed. This training took over

16 hours to complete. Faster R-CNN creates a log file during the training process. This

log file can be used to plot the loss curve for the training process. The curve for the

training of this network is shown in Figure 36. This plot shows that for this training, the

loss quickly settles around 10,000 iterations, though continues to drop until around

65,000 iterations. After this, the lost begins to gradually increase. Additionally, while

training snapshot files are created. These files are used to resume training if an

interruption occurs. The interval for which these files is saved can be set in a

configuration script. When using the model trained from this training, it was decided to

use snapshot from iteration 65,000.

57

Figure 36 - Loss curve for RobotX training

4.4. Tracking and Localization

In addition to providing classification, this project additionally tracks each

detected object. This is done to increase rate of true positives as well as reduce the

probability of false negatives. This tracking increases the rate of true positives, because

the confidence threshold can be lowered. This allows for the detector to be more

sensitive, and classify objects that have lower confidence. While this should raise the

false positive rate, this is not an issue. This tracking reduces the probability of false

positives as its persistently keeps track of each objects from frame-to-frame. Faster R-

CNN’s algorithm is set up to be able to sufficiently detect an object with a single frame,

but there is no verification process done to ensure that there is no abnormal change from

one frame to another. This is useful because for example, imagine a red buoy in a

location. This buoy has been detected for fifty frames consistently and correctly, however

the next frame has a sun flare, or another anomaly that causes for the detector to

incorrectly classify the buoy as a yellow buoy. By having a persistent tracker, the

algorithm would know it is not possible to instantaneously switch to another object. This

58

feature however is disabled for the light panels on the Light Tower. This is because these

panels are constantly changing color every second.

To track each found object, a Python class is made for each potential object. This

class allows for a memory location to store pertinent information about each found

object. Each classified object in each frame, is searched through the database of

previously detected objects. If it is determined that the object was not previously found, a

new class object is initialized. If the object was previously found, its parameters are

updated. To determine which objects in the current frame that has already been found, an

exhaustive search is conducted for each object in the database. During the search, the

position of each object in the current frame is compared against the position of each

stored object. A vector is created between the new pixel coordinate and each old pixel

coordinate. As the frames are recorded at 10 FPS, and all course elements are static,

meaning they do not move around, there will not be much change in the pixel location of

each object between frames. If the magnitude of the vector is less than 10 pixels, it is

assumed to be the same object. This value was tested, and determined to be accurate,

though can be changed at any point. For each frame an object is determined to be in

frame, its life parameter is increased by one. The life parameter counts the number of

frames an object has been detected for. This parameter is useful when eliminating false

positives. If an object is only detected for one frame, then disappears, it was likely a false

positive. This parameter is also used to clear old objects from the database. If an object is

not seen for 300 frames, or 30 seconds, it is removed from the database. This is done to

purge past objects from the database, reducing computational load and memory usage.

59

The object class stores many parameters about each detected object. To detect if

the object has already been found, the objects pixel coordinates are recorded. Other

parameters for each object include, width, height, and area in pixels of the surrounding

bounding box. These values are used to calculate a distance from the vehicle to the

object. As all the course elements are documented in the task descriptions, the

dimensions of all objects are known. Additionally, the object’s average width, height, and

coordinates are stored in the class. These averages are calculated by a moving average of

a first in, first out queue.

To calculate the distance to an object, it is required to know the actual width of

the object, the perceived width in pixels, and the focal length of the camera [60]. As the

lens used for recording this imagery is a variable focus lens, it is possible for it to have a

range of focal lengths. The Fujinon lens that was used has a focal length of 2.2-6 mm

[61]. This poses an issue, because at the time of recording, the current focal length was

never measured. Through checking different values in the range, it appears the focal

length was close to 4.0 mm. While this might not be exact, for this research it

demonstrates that the distance scales correctly as the object is approached. Equation 1 is

used to make this calculation. In this equation, 𝑊𝐾 is the known width, 𝐿𝑓 is the focal

length of the lens, and 𝑊𝑃 is the perceived width of the targeted object.

Equation 1 - Distance Formula

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑊𝐾 ∗ 𝐿𝑓

𝑊𝑃

In this equation 𝑊𝐾 is the width for each object in millimeters. These widths are

found in the task descriptions for each course. The value of 𝐿𝑓 used was 4.0 mm. 𝑊𝑃 is

60

the width in pixels of the object that is being calculated. This value is stored in the

object’s class.

Through calculating the distance to the object, an estimation of the object’s

position can be derived. This calculation is performed by correlating the size of the

object, to the observed size of the object. This will give a result that has units of meters

per pixel. Next, the pixel difference between the center of the frame and the center of the

object is calculated. This allows for the X and Y position to be determined. The Z

position is already known, which is distance.

While this calculation is close, there will be error induced due to the rotation of

the object. This is because the object’s width is pre-programed, and does not account for

off-axis. This could be fixed by adding a LIDAR or imaging sonar to the vehicle. By

knowing the actual width of the object, position could more accurate be measured.

However, if that were the case, position would already be known, rendering this

calculation unnecessary. Figure 37 shows the inverted gate from the 2015 RoboSub

competition. These calculated values about the gate are displayed above the object. Due

to the rotation of the object, it will appear to be smaller, and therefore calculated to be

further.

61

Figure 37 - Detected Inverted Gate

These displayed values are as follows:
• Distance – Distance in meters to the object

• Area – Area of the surrounding bounding box in pixels

• Width – Width of the surrounding bounding box in pixels

• Avg Width – Moving average of width

• ObjectID – Class name

• Life – Number of frames in which the object was detected

• Location – (x, y, z) position of the object.

The location of each object is given as Cartesian coordinates. These are in the

format of (X, Y, Z). The axis convention used is shown in Figure 38. This system was

decided upon, over traditional right handed coordinates, as it is more intuitive when

viewing it as a forward-looking image.

62

Figure 38 - Coordinate Frame Conventions used for position [62]

The display includes addition information about the detected objects. The red box

around the detected object is the detected bounding box. This box is the result of Faster

R-CNN’s object detection layer. This bounding box, moves around constantly, and is not

consistently the same size. To smooth this out, a moving average of both the bounding

box’s position, and the bounding box’s size is calculated. This moving average uses a bin

size of 5. This value can easily be adjusted to suite the vehicles movements. This

averaging makes the object’s position much more consistent, which is useful when

creating a map from the data. This calculated average bounding box is shown as the light

blue box surrounding the detected object. Shown above the bounding box, contrasted

against a grey background, is the detected objects class name, as well as the confidence

for the class. The top left corner of the image is used to list all the previously and

currently detected objects. Next to each object name is two fields, ‘L’ and ‘D’. ‘L’ is the

number of frames in which that object was detected. ‘D’ is the number of frames since

the object has last been detected. This is a useful metric to have, to clear out old object’s

that have past. The red dot in the image is the center of the image, while the purple dots

are the center of the detected object’s bounding box.

63

4.5. Results

The results of this project are very promising. This detector has proven to be

capable of successfully detecting and classifying all the course elements for both the

RobotX and RoboSub competition. In addition to detection, the objects are successfully

tracked and stored in the class list. This results section will discuss the success of both

competitions, as well as performance metrics.

 Accuracy

For both data sets the detector algorithm proved to have an extremely high mean

average precision (MAP). This precision is defined as the ratio of true positives to the

sum of false positives and false negatives. A true positive is defined as classifying an

object by the correct name. A false positive is defined as detecting an object that is not

present. A false negative is defined as not detecting an object that is present. To obtain a

MAP the detector was run on a testing set for each dataset. After the detector was run, the

number of frames that each course element was correctly detected and the number of

frames the element was either falsely classified or failed to be detected, after the object

was in range, were counted. The detectors range was defined to be the distance in which

the object is first detected. The accuracy was defined as the sum of false negatives and

false positives divided by the number of true positives less than one. This equation is

shown as Equation 2. Additionally, while the detector is capable of partial frame

detection, it is not expected for the object to be detected if more than half of the object is

out of frame. These images will be disregarded when calculating accuracy.

64

Equation 2 - Equation to Calculate Accuracy (MAP)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
𝐹𝑁 + 𝐹𝑃

𝑇𝑃

Through testing and experimentation, it was found that a confidence threshold of

0.80 should be used for both datasets. This threshold value can be demonstrated with a

frame consisting of 3 buoys and a path. Figure 39 shows the region proposals that were

calculated for this image. This image was created by setting the confidence threshold to

.0001. This effectively allowed for all the proposal regions to be shown. This image

illustrates how the proposals are focused on objects, and disregard the background class.

Figure 39 - Region Proposals

While this image shows that many overlapping proposals are calculated, it is

difficult to see what the actual detected results are, as all the bounding boxes overlap. To

make these results more apparent, the confidences for each object were logged, and then

65

plotted. This plot is shown in Figure 40. In this example, 47 proposals were generated,

these proposals are shown along the X-axis, while their confidence is on the Y-axis.

Figure 40 - Region Proposal Confidences

As seen in Figure 40, there are four objects with high confidences, and one object

with a mid-range confidence, while the rest are negligible. The confidence threshold for

this project was set to be 0.80. This value was determined to be most accurate when

detecting all objects, and eliminating false positives. As there are only four objects in the

frame, there is another object that could be a false positive with a confidence of 0.48.

This object is a double detection of the red buoy. This however is not an issue as 0.48 is

below the threshold of 0.80. This is due to the NMS threshold being too low for this case.

NMS stands for Non-Max Suppression. NMS controls the possibility of an object being

classified more than once. This parameter however is a tradeoff. If the value is too high,

then it is a risk of losing precision of the bounding box. If the value is too low, then

multiple true positives would occur [63]. Due to the confidence threshold, low confidence

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
o

n
fi

d
en

ce

Region Proposal Class Name

Confidence of Each Proposal

66

detection is not an issue. To see the results of the negligible proposals, another chart must

be used with a different Y-axis range. This new plot is shown in Figure 41.

Figure 41 - Plot of confidences with reduced Y-Axis

This graph has a range of 0 to 0.005. This was done so that the values of the other

proposals could be seen. These were not viewable on the initial graph due to their near

zero values. This graph shows the other proposals, outside the correct ones, they have a

minuscule confidence. The classified image from this experiment is shown as Figure 42.

This experiment demonstrates the classifiers accuracy. The classifier has a low chance of

classifying regions with the wrong class name.

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005

C
o

n
fi

d
en

ce

Region Proposal Class Name

Confidence of Each Proposal

67

Figure 42 - Image demonstrating detection of the red buoy, green buoy, yellow buoy, and path

 RoboSub Accuracy

From the RoboSub datasets 13 vision logs were deemed sufficient to be used as

results. As these datasets were taken at competitions, the logs cannot be perfect. The

quality of the logs depends on the ability for the vehicle to function, and correctly

navigate the course. The logs deemed not sufficient, were ones in which the vehicle never

left the starting dock. From these 13 logs, 26,879 images were processed through the

detector. Processing at an average rate of 5.83 FPS, this detection took seventy-two

minutes to perform. This processing was performed on a GTX 1080. More details on this

timing performance will be discussed in section 4.5.4 Processing time. While the results

of all these images were viewed, and deemed successful in classifying, they were not all

used for the accuracy calculation. To fairly test the accuracy of the detector, two image

sets were omitted from the training set. These two sets were selected as between both

they contained all the classes. One of these sets was of a forward view, while the other

was a downwards view.

68

Through analysis of this data, the detector proved to be successful and feasible for

the RoboSub competition. Through extensive testing, it was proven that this detector can

identify all 11 classes. Other classes were experimented and with and proved to be

successful, but this will be discussed later in this section. As previously mentioned, the

accuracy was calculated as the number of true positives divided by the sum of false

negatives and false positives. This was shown in Equation 2. The results of this testing

are shown in Table 10.

Table 10 - RoboSub Dataset accuracy

Class True

Positives

False

Negatives

False

Positives

Accuracy

gate_inv 300 0 0 100%

torpedo_board 231 0 0 100%

bin_orange 283 0 0 100%

gate 369 5 0 99%

bin_banana 468 7 0 99%

bin_lightning 628 12 0 98%

bin_can 469 13 0 97%

path 1193 65 1 95%

red_buoy 160 10 2 94%

yellow_buoy 193 24 1 88%

green_buoy 201 65 0 68%

As the data shows, the detector performs with a high accuracy. The average

accuracy of all classes was calculated to be 94 percent. This accuracy is average of all

classes. This is significantly higher than Faster R-CNN’s documented performance of

66.9 percent MAP using the VGG16 model on the VOC2007 dataset [34]. The trained

detector had a very low rate of false positives. Of the 4,342 images between both image

sets, there was only four false positives. This is a 0.0009 percent chance of a false

69

positive occurring. One source of false positives was the detector incorrectly classifying

air bubbles as red buoys. An image of one of these false detections is shown in Figure 43.

Figure 43 - False positive of air bubble as being classified as a red buoy

Figure 44 demonstrates the ability to train a detector on the various elements on

the 2016 torpedo board. This experimented was omitted from the evaluation of the

RoboSub training process. This shows that it is feasible to train a network on small

intricate details with few images in the training set.

Figure 44 - 2016 Torpedo Board Detection

In addition to success with the detector correctly classifying each object, the

detector was extremely accurate with detecting the object’s size and location. Each object

had a tight bounding box correctly placed around it. Figure 45 shows an example of all

classes being detected. The path is shown being detected in both the forwards and

70

downwards camera images. While the path can be, and often is, detected in the forward

camera, the forward-facing path was not counted towards accuracy. This because the

model was never trained on the path in the forward camera because it is not necessary, or

even useful, to the competition. The imagery from the bottom facing camera was used for

the path, and bin objects.

71

Figure 45 - Detection of All RoboSub Course Elements. Top Left: Gate, Path. Top Right: Red Buoy, Yellow Buoy,

Green Buoy, Inverted Gate. Bottom Left: Torpedo Board. Bottom Right: Bin Banana, Bin Lightning, Bin Can, Bin

Orange, Path.

Overall, this detector was extremely accurate when detecting these objects.

Accuracy for some objects, such as the torpedo board identifiers, was high despite the

72

lower number of annotations. Overall, there is no correlation between accuracy and

number of annotations. This is possibly due to the relatively low sample set when testing.

If more validation sets were performed with a wider range of lighting variation, this result

may have been different. Unfortunately, there is no collected data to support this. Figure

46 shows a scatter plot that plots number of annotations for each class verses the percent

accuracy for that class. There appears to be no trends demonstrated by this figure. It is

hypothesized that this is because of the limited training set for this project. As the bins

and torpedo boards had few annotations, they were over trained to be accurate to the only

test case, which also had a similar appearance to the training set. This differs from the

buoys, which had more annotations from different orientations and conditions. This

figure was created by combining data from Table 6 and Table 10.

Figure 46 - Plot of Annotations vs Accuracy for the RoboSub Dataset

0

20

40

60

80

100

120

0

50

100

150

200

250

300

350

P
er

ce
n

t
A

cc
u

ra
cy

N
u

m
b

er
 o

f
A

n
n

o
ta

ti
o

n
s

RoboSub Classes

Annotations vs Accuracy

Annotations Percent Accuracy

73

 RobotX Accuracy

For RobotX Dataset, there is sixty-nine image sets that where processed through

the detector algorithm. Within these image sets there are a total of 33,653 images.

Processing of these images took ninety-seven minutes. Though the algorithm was tested

on all these images, most them were in the training set. Despite training images being

tested on, they were not used for any formal results. This was done to give subjective

reasoning that the detector could work on more than just the one case that is the testing

set. No recorded data was used from this testing. As validation on a training set does not

give a fair evaluation, several images sets were reserved for testing purposes. These

image sets were selected as they contain all the classified classes. 4,105 images were

reserved from the testing set, and were only used for calculating the accuracy of the

detector. These images were selected as they contained all the course elements. These

images were all selected from separate runs than the training set. This was done to ensure

there is enough difference in each image.

Through analysis of these validation sets, this detector proved to be extremely

successful at detecting the various course elements. As with the RoboSub dataset, the

number of true positives, false positives, and false negatives were counted. False

negatives were counted after initial detection of the object. This is because the cameras

have an incredibly long line of sight in open water. With more training data, the range

could reliably increase, but this was not feasible due to the limited dataset. The results of

these tests are shown in Table 11. Note, while the accuracy for some classes is 100%, it is

not guaranteed there will be 100% accuracy for all test cases, this is simply for these test

cases.

74

Table 11 - RobotX Dataset Accuracy

Class True

Positives

False

Negatives

Accuracy

red_circle 142 0 100%

orange_ball 91 0 100%

green_cruciform 130 0 100%

blue_triangle 216 0 100%

red_triangle 410 0 100%

red_tower 40 0 100%

blue_circle 143 0 100%

white_buoy 816 8 99%

red_cruciform 404 4 99%

green_buoy 348 4 99%

green_triangle 259 3 99%

person 3217 60 98%

black_tower 491 10 98%

blue_cruciform 306 10 97%

black_buoy 143 4 97%

red_buoy 25 1 96%

yellow_tower 131 6 95%

green_tower 105 5 95%

green_circle 208 11 95%

blue_tower 63 7 89%

yellow_buoy 23 4 83%

black_ball 430 84 80%

blue_buoy 73 32 56%

 Through validation of the detector it proved the detectors high accuracy. On

average the detector had a 94% accuracy. This accuracy is coincidentally the same as the

RoboSub accuracy. There however were no false positives, or incorrectly classified

objects. Due to this, it is possible the confidence threshold could have been reduced

slightly, which could have increased the range of the detector. For these test cases, there

is a significantly lower accuracy for all the buoys. This is believed to be due to the image

sets used, and not the training process. Initial tests before competition showed the

75

detector having a significantly higher accuracy. For these tests, however, the buoys were

much closer. During the RobotX competition the boat was rarely logging camera data on

a course that implemented buoys. This resulted in most buoy images being at a long

distance, and often from another course. While the detector had difficulties detecting the

buoys at a long range, the shape signs excelled at long range. Figure 47 demonstrates the

detectors ability to correctly detect the blue triangle from another course. Using Equation

1, this object was estimated to be 14 meters away. This is only an estimate though, as this

equation relies on the camera’s focal length, which estimated.

Figure 47 - Blue Triangle Detection

To demonstrate the detection of the Light Tower, images of the tower under

various conditions were selected. The circle at the panel’s centroid was not drawn so the

panel could be seen. While testing did not show the panels to have perfect accuracy, there

was no errors if the object was within 3 meters. Within 3 meters the classifier correctly

detected the panel in every frame. The classifier did an exceptional job at detecting and

classifying the Light Tower’s panels for each color. The results in Figure 48 show the

blue panel was the hardest to detect. The reasoning for is assumed to be because the only

76

test set containing the blue panel was a difficult scenario. This validation set had the

Light Tower positioned in front of the sun, as well as being from a further average

distance than the other Light Tower test sets. These panels are a difficult object to detect,

as they can appear to be completely different colors depending on the circumstances. If

the object is in front of the Sun, the camera’s exposure will wash out the image. This

differs greatly from if the camera is looking away from the sun. Images of various Light

Tower conditions are shown in Figure 48. There is an added difficulty to this

classification due to the nature of LED panels. The bottom right image in Figure 43

shows the panel displaying green, which appears to be a striping of blue and yellow.

Figure 48 - Light Tower Detection for Yellow, Red, Green, Black, and Blue Panels

In addition to a high accuracy when detecting the light tower, this detector was

also very accurate with identifying the dock symbols. Figure 49 and Figure 50 show the

dock symbols being detected. The detector works both up near and at far distances.

77

Between these two images it can be shown how the detector can detect the triangle signs

when they are rotated.

Figure 49 - Detected Dock Symbols. Red Cruciform, Green Triangle, and Red Circle

Figure 50 - Detected Dock Symbols. Blue Circle, Red Triangle, and Red Cruciform

For this detector to correctly identify the buoys, it was required that they be close

to the vehicle. The detector appeared to have an effective range of 10 meters.

Unfortunately, much of the images were further than this range. Figure 51 shows the

detector attempting to detect black buoys and black balls.

78

Figure 51 - Detection of Black Buoy and Black Balls

Over all, this detector performed very well for the RobotX dataset. This detector

was successful in detecting the objects in varying weather and lighting conditions.

Additionally, the detector averaged a 94% accuracy. This detector is even more accurate

when it can be guaranteed the object will be within several meters of the boat.

 Processing time

As with accuracy, processing time is also an important measure when evaluating

the feasibility of using deep learning methods for object detection. When processing

these images, the average time per frame was 0.174 seconds. This achieves a frame rate

of 5.83 FPS. The processing time however depends on the system in which it is running

on. To achieve an average processing time of 0.174 seconds, processing was performed

on a NVIDIA GTX 1080. This is the same GPU as Minon has onboard. Minion proved

that this is feasible to process neural networks while on a mobile platform. Initial testing

was performed on a NVIDIA GTX 970. This card could process a frame in 0.28 seconds.

This gives an average rate of 3.57 FPS. Depending on the application this is more than

sufficient.

79

Additional testing was performed to evaluate the feasibility of running this

process on a NVIDIA Jetson TX1. It was determined that it is possible to run this on a

Jetson TX1, though it is not practical. The TX1 has 4GB shared RAM, which is

sufficient, as Faster R-CNN only needs 3.5GB of ram to operate. However, due to

memory leaks, and other inefficiencies the program can only run once, and then the

Jetson must be restarted to completely purge the RAM. Processing took on average 1.8

seconds per frame. This is too slow to use for near real-time processing. Testing was also

attempted on a Jetson TK1, though due to a limitation of 2GB RAM, it was highly

unsuccessful. Due to its small form factor, and power requirements, the TX1 can be a

powerful processing platform. A processing time of 1.8 seconds per frame is slow

compared to the performance of a GTX 1080. However, processing on the TX1 is still

much more efficient than processing on the CPU. The TX1 could achieve twice the frame

rate, while maintaining a significantly lower thermal dissipation. CPU testing was

performed on an Intel Core i7-4790K Processor, which has a thermal dissipation of 88

watts [64]. As previously mentioned, when processing only on a CPU, this method has an

average time per frame of 3.242 seconds. Therefore, a TX1 is twice as fast, as well as

having five times less thermal dissipation, than operating on a CPU. In this scenario, a

TX1 is a sensible substitution.

80

5. Conclusions and Future Recommendations

ASVs and AUVs can be used to perform an important role in the maritime

environment. One important capability of these vessels, is the ability to perform

autonomous object detection and classification. There has been considerable research in

performing detection using LIDAR, Radar, and imaging sonar. However, these methods

perform poorly when attempting to detect color, or shapes on flat surfaces. In order to

detect objects in these circumstances a camera is desirable. Unfortunately, there has not

been much successful research conducted in maritime object detection or classification.

To create a detector for maritime usage, it was decided to pursue a method

implementing a neural network. Through research it was decided to implement Faster R-

CNN as the framework for this research. This open sourced project was built upon to add

in persistent object tracking as well as position estimates. Faster R-CNN was capable of

successfully training a model to detect and classify all the course elements in both the

RoboSub and RobotX competitions.

This project resulted in the creation of a highly effective object detector and

tracker. Using Faster R-CNN a detector could be trained on both the RoboSub and

RobotX datasets. For both datasets, a mean average precision of 94% was achieved. This

provides a strong backing for an object tracker. To track objects, it is often necessary to

detect and classify them first. This project demonstrated it is feasible to use deep learning

to both detect maritime objects, and run on mobile maritime platforms.

If this project were to be conducted again, there will be several factors that are

recommended to change. If I were to do this project again, I would reconsider the use of

YOLO Version 2. During the phase of researching plausible methods, YOLO was still

81

released as version 1. At that time YOLO did not appear to be as credible, or as

promising of a method. However, in November 2016, after much research and work was

already conducted on this project, YOLO Version 2 was released. This update offered

significant performance and accuracy increases. This new version advertises 40-90 FPS

and a 78.6% MAP on VOC 2007 [32]. When testing YOLO V2 using the Tiny YOLO

model, 13 FPS could be achieved on a Jetson TX1, while 250 FPS could be achieved on a

GTX 1080. With the release of version 2, YOLO is both faster and more accurate than

Faster R-CNN. Obtaining 13 FPS would be more than feasible for implementing a system

using a Jetson TX1. Unfortunately, YOLO V2 was released too late into the research

process to be feasible of switching methods.

Another recommendation to future projects would be to use updated hardware.

During the length of this project NVIDIA announced both a new Jetson model, as well as

releasing the GTX 1080 Ti. These two upgrades are a significant improvement over their

predecessor models. The GTX 1080 Ti has approximately 40% more memory, and 30%

faster performance [66]. With these increases, it could be presumed that Faster R-CNN

would operate at over 8 FPS. Additionally, other models that require 12 GB VRAM

could be used. NVIDIA claims that the Jetson TX2 is twice as fast as the TX1. With this

performance increase it can be presumed that YOLO could operate at 25 FPS. This would

make this a perfect solution, that would be feasible for object detection [67].

Additionally, the TX2 will have 8 GB of RAM, instead of 4 GB. This would allow for the

capability to load most networks, with no issues.

Future work on this project could investigate methods of reducing the processing

time per image. This processing time could be reduced by altering the layers of the model

82

used. The VGG-16 layer used has 41 layers, 16 of which have learnable weights, 14 are

convolutional and 3 are fully connected layers [65]. As most the computational time for

each frame is spent processing each of these layers, the model could be speed up if some

layers were removed or altered. This however could have an impact on the accuracy,

though it presumed that not all layers are necessary for a model this small.

To build upon this project, the code has been made open sourced, and can be

found online. The code for this project has been made publicly available at

https://github.com/rtgoring/py-faster-rcnn-thesis. This repository is public, and can be

accessed by anybody. This project will remain as it for archival purposes, though a fork

will be created in this repository for all future work. The models trained for this research

have also been made available. Note, due to GitHub’s 100 MB file size limit, these

models have been uploaded to Google Drive. A document containing a link to these files

was created in the ‘Output’ folder.

83

Works Cited

[1] "Utah I (Battleship No. 31)," 18 Febuary 2016. [Online]. Available:

https://www.history.navy.mil/research/histories/ship-histories/danfs/u/utah.html.

[2] AUTONOMOUS SURFACE VEHICLES LTD, "Unmanned Marine Systems," [Online]. Available:

http://www.unmannedsystemstechnology.com/company/autonomous-surface-vehicles-ltd/.

[3] SAS, "Machine Learning What it is and why it matters," [Online]. Available:

https://www.sas.com/en_us/insights/analytics/machine-learning.html#machine-learning-today-

world.

[4] R. Parloff, "fortune," 28 September 2016. [Online]. Available: http://fortune.com/ai-artificial-

intelligence-deep-machine-learning/.

[5] K. He , Z. Xiangyu , S. Ren and J. Sun, "Deep Residual Learning for Image Recognition".

[6] ufldl Stanford, "Multi-Layer Neural Network," [Online]. Available:

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/.

[7] L. A. d. Santos, "Introduction," [Online]. Available: https://leonardoaraujosantos.gitbooks.io/artificial-

inteligence/content/neural_networks.html.

[8] "Deep Learning Use Cases," [Online]. Available: https://deeplearning4j.org/use_cases.

[9] S. Kiran, "What is the algorithm used by Google's reverse image search (i.e. search by image)?," 9

August 2014. [Online]. Available: https://www.quora.com/Algorithms/What-is-the-algorithm-used-by-

Googles-reverse-image-search-i-e-search-by-image.

[10] A. Abdulkader, A. Lakshmiratan and J. Zhang, "Facebook," 1 June 2016. [Online]. Available:

https://code.facebook.com/posts/181565595577955/introducing-deeptext-facebook-s-text-

understanding-engine/.

[11] D. Kislyuk, "medium," 27 June 2016. [Online]. Available:

https://medium.com/@Pinterest_Engineering/introducing-automatic-object-detection-to-visual-

search-e57c29191c30#.mt7b1seyj.

[12] Uijlings, "Selective Search for Object Recognition," [Online]. Available:

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/ssearch_schuyler.pdf.

[13] techpowerup, "NVIDIA Quadro Plex 7000," 2011. [Online]. Available:

https://www.techpowerup.com/gpudb/902/quadro-plex-7000.

[14] "Datasets," 14 June 2014. [Online]. Available: http://deeplearning.net/datasets/.

84

[15] Stanford Vision Lab, Stanford University, Princeton University , 2016. [Online]. Available:

http://www.image-net.org/.

[16] "The PASCAL Visual Object Classes Challenge 2012," [Online]. Available:

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/.

[17] "NVIDIA Jetson," March 2017. [Online]. Available: http://www.nvidia.com/object/jetson-tx1-

module.html.

[18] WAM-V Marine Advanced Research, "WAM-V," [Online]. Available: http://www.wam-v.com/16-wam-

v-usv/.

[19] Association for Unmanned Vehicle Systems International Foundation, "2016 Maritime RobotX

Challenge Task Descriptions," 18 November 2016. [Online]. Available:

http://robotx.org/images/files/2016-MRC-Tasks-2016-11-28.pdf.

[20] AUVSI Foundation, "Robosub," 2017. [Online]. Available:

http://www.robonation.org/competition/robosub.

[21] Association for Unmanned Vehicle Systems International Foundation, "RoboSub," 2015. [Online].

Available: http://higherlogicdownload.s3.amazonaws.com/AUVSI/fb9a8da0-2ac8-42d1-a11e-

d58c1e158347/UploadedFiles/RoboSub%20Competition%20Official%20Rules%20and%20Mission%20-

%202015.pdf.

[22] R. Szeliski, Computer Vision: Algorithms and Applications, Springer London, 2010.

[23] T.-H. Tran and T.-L. Le , "Vision based boat detection for maritime surveillance," IEEE, Hanoi, 2016.

[24] D. Socek, D. Culibrk, O. Marques, H. Kalva and B. Furht, "A Hybrid Color-Based Foreground Object

Detection Method for Automated Marine Surveillance," Florida Atlantic University, Boca Raton.

[25] T. Cane and J. Ferryman, "Saliency-based Detection for Maritime Object Tracking," 2016.

[26] M. Chua, D. W. Aha, B. Auslander, K. Gupta and B. Morris, "Comparison of Object Detection

Algorithms on Maritime Vessels," 2013.

[27] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li and S. Hu, "Traffic-Sign Detection and Classification in the

Wild," CVPR, Beijing, China; Bethlehem, USA, 2016.

[28] R. Girshick, "Fast R-CNN Object detection with Caffe," [Online]. Available:

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf.

[29] rbgirshick, "py-faster-rcnn," 8 March 2016. [Online]. Available: https://github.com/rbgirshick/py-

faster-rcnn.

[30] R. Stewart and M. Andriluka, "End-to-end people detection in crowded scenes," 2015.

85

[31] A. Tao, J. Barker and S. Sarathy, "DetectNet: Deep Neural Network for Object Detection in DIGITS," 11

August 2016. [Online]. Available: https://devblogs.nvidia.com/parallelforall/detectnet-deep-neural-

network-object-detection-digits/.

[32] J. Redmon, "Darknet: Open Source Neural Networks in C," http://pjreddie.com/darknet/, 2013-2016.

[33] R. Girshick, "Fast R-CNN," girshickICCV15fastrcnn, 2015.

[34] R. Shikler and G. Elbaz, "webcourse," 26 May 2016. [Online]. Available:

https://webcourse.cs.technion.ac.il/236815/Spring2016/ho/WCFiles/RCNN_X3_6pp.pdf.

[35] D. Wilding-McBride, "the cleverness of deep learning," 12 6 2016. [Online]. Available:

http://dius.com.au/2016/12/06/the-cleverness-of-deep-learning/.

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick , S. Guadarrama and T. Darrell, "Caffe:

Convolutional Architecture for Fast Feature Embedding," arXiv preprint arXiv:1408.5093, 2014.

[37] Russell91, "TensorBox," 15 March 2017. [Online]. Available:

https://github.com/TensorBox/TensorBox.

[38] Tensor Flow, "Image Recognition," 8 March 2017. [Online]. Available:

https://www.tensorflow.org/tutorials/image_recognition.

[39] TensorFlow, "TensorFlow White Papers," 8 March 2017. [Online]. Available:

https://www.tensorflow.org/about/bib.

[40] TensorFlow, "Using GPUs," 8 March 2017. [Online]. Available:

https://www.tensorflow.org/tutorials/using_gpu.

[41] TensorFlow, "Installing TensorFlow," 9 March 2017. [Online]. Available:

https://www.tensorflow.org/install/.

[42] g. j. lukeyeager, "Using DIGITS to train an Object Detection network," 17 January 2017. [Online].

Available: https://github.com/NVIDIA/DIGITS/tree/master/examples/object-detection .

[43] NVIDIA, "NVIDIA® DIGITS™ Downloads," 1 Febuary 2017. [Online]. Available:

https://developer.nvidia.com/rdp/digits-download.

[44] lukeyeager, "GitHub," 29 November 2016. [Online]. Available:

https://github.com/NVIDIA/DIGITS/releases.

[45] J. Redmon, "YOLO: Real-Time Object Detection," November 2016. [Online]. Available:

https://pjreddie.com/darknet/yolov1/.

[46] nvidia, "NVIDIA TITAN X," 2016. [Online]. Available: https://www.nvidia.com/en-

us/geforce/products/10series/titan-x-pascal/.

86

[47] PointGrey, "Blackfly 2.3 MP Color GigE PoE (Sony IMX136)," 2016. [Online]. Available:

https://www.ptgrey.com/blackfly-23-mp-color-gige-vision-poe-sony-imx136-camera .

[48] M. Harris, "CUDA 8 Features Revealed," 5 April 2015. [Online]. Available:

https://devblogs.nvidia.com/parallelforall/cuda-8-features-revealed/.

[49] NVIDA, "NVIDIA cuDNN," 20 January 2017. [Online]. Available: https://developer.nvidia.com/cudnn.

[50] NVIDIA, "cuDNN Download," 20 January 2017. [Online]. Available:

https://developer.nvidia.com/rdp/cudnn-download.

[51] TheTesla, "GitHub," 15 December 2016. [Online]. Available: https://github.com/TheTesla/caffe-fast-

rcnn.

[52] NVIDIA, "Overview | What's New," 2017. [Online]. Available: https://developer.nvidia.com/cudnn-

whatsnew.

[53] FLIR, "FlyCapture SDK," [Online]. Available: https://www.ptgrey.com/flycapture-sdk.

[54] NVIDIA, "CUDA GPUs," March 2017. [Online]. Available: https://developer.nvidia.com/cuda-gpus.

[55] NVIDIA, "CUDA C Programming Guide," 12 January 2017. [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-5-x.

[56] ShaoqingRen, "GitHub," 26 June 2015. [Online]. Available:

https://github.com/ShaoqingRen/caffe/tree/SPP_net.

[57] MrGF, "GitHub," 11 July 2016. [Online].

[58] tzutalin, "GitHub," 9 March 2017. [Online]. Available: https://github.com/tzutalin/labelImg/.

[59] D. Curro, "Borrowing Weights from a Pretrained Network," 23 Febuary 2016. [Online]. Available:

https://github.com/BVLC/caffe/wiki/Borrowing-Weights-from-a-Pretrained-Network.

[60] A. Rosebrock, "Find distance from camera to object/marker using Python and OpenCV," 15 January

2015. [Online]. Available: http://www.pyimagesearch.com/2015/01/19/find-distance-camera-

objectmarker-using-python-opencv/.

[61] bhphoto, "inon CS-Mount 2.2-6mm Varifocal Lens," [Online]. Available:

https://www.bhphotovideo.com/c/product/970556-

REG/fujinon_yv2_7x2_2sr4a_sa2_cs_mount_2_2_to.html.

[62] F. K. C., "flylib," [Online]. Available: http://flylib.com/books/en/2.416.1.16/1/.

[63] J. Hosang, R. Benenson and B. Schiele, "A Convnet for Non-Maximum Suppression," 2016.

[64] Intel, "Intel® Core™ i7-4790K Processor," Intel, 2014. [Online]. Available:

http://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz.

87

[65] MATLAB, "vgg16," 2017. [Online]. Available: https://www.mathworks.com/help/nnet/ref/vgg16.html.

[66] GPU Boss, "GPU Boss," March 2017. [Online]. Available: http://gpuboss.com/gpus/GeForce-GTX-1080-

Ti-vs-GeForce-GTX-1080.

[67] NVIDIA, "NVIDIA Jetson TX2 Module," March 2017. [Online]. Available:

https://developer.nvidia.com/embedded/buy/jetson-tx2.

[68] AUVSI Association, "MEET THE 2016 TEAMS," 2016. [Online]. Available:

http://robotx.org/index.php/teams/2016-teams.

	Feasibility of Neural Networks for Maritime Visual Detection on a Mobile Platform
	Scholarly Commons Citation

	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Equations
	List of Figures
	1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Research Objectives
	1.4. RobotX Dataset
	1.4.1. Navigation
	1.4.2. Scan the Code
	1.4.3. Identify Symbols and Dock
	1.4.4. Detect and Deliver

	1.5. RoboSub Dataset
	1.5.1. Validation Gate
	1.5.2. Buoys
	1.5.3. Inverted Gate
	1.5.4. Dropper Bins
	1.5.5. Torpedoes
	1.5.6. Path Markers

	2. Literature Review
	3. Classification and Detection Algorithms Methodology
	3.1. Methods under Consideration
	3.2. Faster R-CNN
	3.3. TensorBox
	3.4. DetectNet
	3.5. YOLO Version 1
	3.6. Selection Process
	3.7. Faster R-CNN Operation

	4. Methodology
	4.1. Installing Faster R-CNN Algorithm
	4.2. Running Faster R-CNN
	4.3. Training
	4.4. Tracking and Localization
	4.5. Results
	4.5.1. Accuracy
	4.5.2. RoboSub Accuracy
	4.5.3. RobotX Accuracy
	4.5.4. Processing time

	5. Conclusions and Future Recommendations
	Works Cited

