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ABSTRACT  

Phishing websites, phish, attempt to deceive users into exposing their passwords, user IDs, and other 
sensitive information by imitating legitimate websites, such as banks, product vendors, and service 
providers. Phishing investigators need fast automated tools to analyze the volume of phishing attacks seen 
today. In this paper, we present the Simple Set Comparison tool. The Simple Set Comparison tool is a fast 
automated tool that groups phish by imitated brand allowing phishing investigators to quickly identify 
and focus on phish targeting a particular brand. The Simple Set Comparison tool is evaluated against a 
traditional clustering algorithm over a month's worth of phishing data, 19,825 confirmed phish. The 
results show clusters of comparable quality, but created more than 37 times faster than the traditional 
clustering algorithm. 

Keywords: phishing, phish kits, phishing investigation, data mining, parallel processing 

 
1. INTRODUCTION 

Phishing websites, phish, attempt to deceive users into exposing their passwords, user IDs, and other 
sensitive information by imitating legitimate websites, such as banks, product vendors, and service 
providers. Phish widely range in quality from simple html files to complex replicas indistinguishable from 
the actual website.  
 
Phishing has been a problem for years and organizations such as the Anti-phishing Working Group 
(APWG) founded in 2003 and PhishTank founded in 2005 have been fighting phishing for years [1, 2]. 
Today, phishing is still a problem. A 2013 Kaspersky lab report places phishing attacks as one of the 
three most prevalent external threats facing corporations [3]. Between April and June of 2014, APWG 
reported observing 128,378 new phishing attacks [4]. This is the second highest phishing attack volume 
observed in a three month period by APWG [4]. Phishing attack volumes are large and have increased 
over the years. 
 
Quickly identifying similar phish imitating a particular brand can be useful for corporate and law 
enforcement phishing investigators. An entity that can quickly identify itself as the target of a phishing 
attack can take timely and appropriate responses. It can also tailor its response to the phishing attack that 
is targeting it. During an investigation, law enforcement gains the ability to focus on phishing attacks 
against a particular brand. Law enforcement is also able to quickly identify and aggregate all of the 
phishing attacks against a particular brand. 
 
The currently observed phishing attack volumes make manual phish analysis uneconomical. Fast and 
scalable automated methods need to be used to assist corporate and law enforcement phishing 
investigators. Clustering algorithms, which are algorithms used to sort items into groups of similar items, 
can be used to generate groups or clusters of similar phishing websites. Clustering unbranded phish with 
branded phish can be used to apply a brand label to the unbranded phish. If a phish cluster contains a 
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branded phish the same brand can be applied to the unbranded phish in the cluster with some amount of 
confidence. Traditional clustering algorithms such as k-means, SLINK, and DBSCAN can be used but are 
relatively slow when operating on large data sets [5].  
 
This paper presents the Simple Set Comparison Tool to cluster large phishing data sets faster than 
traditional clustering algorithms. The Simple Set Comparison Tool quickly sorts phishing sites into 
groups of similar phish by brand. The Simple Set Comparison Tool uses a divide and conquer approach to 
quickly cluster large chronological data sets. The large chronological data set is subdivided or partitioned 
into many smaller datasets by date and time. Because the dataset is partitioned the most computationally 
expensive clustering work can be performed on these partitions in parallel by multiple machines. After the 
computationally expensive work has been performed the smaller partitions are rejoined to form a 
clustering of the original large dataset, but taking less runtime than traditional methods. Another key 
feature of the Simple Set Comparison Tool is its adaptability. It can make use of most methods to 
compare phishing websites and adapt to use most clustering algorithms with very few restrictions.  
 
The tool is evaluated using manually reviewed real world phishing data consisting of 19,825 phish 
covering 245 brands collected from September 1st 2014 to September 30th 2014. The real world phish 
have been reviewed by a security company and assigned a brand label representing the brand the phish is 
imitating.  
 
The tool is evaluated using the brand labels as a ground truth and using several common clustering 
evaluation metrics. The Simple Set Comparison Tool’s clustering quality and runtime are compared to a 
traditional clustering algorithm’s runtime and clustering quality over the same dataset. The results show 
the Simple Set Comparison Tool produces a similar high quality clustering when compared to the 
traditional clustering algorithm, but the Simple Set Comparison Tool ran more than 37 times faster.  
 
The Simple Set Comparison Tool makes the following contributions:  
 

1. Aggregates phishing attacks against brands. 
2. Parallelizes most clustering tasks resulting in a dramatic runtime improvement over traditional 

clustering algorithms. 
3. Has the adaptability to use a wide variety of phish similarity distance metrics and a wide variety 

of clustering algorithms.  
 

The rest of the paper is laid out as follows, section 2 discusses related work, section 3 describes the data 
set used for evaluation, section 4 covers the algorithms used in the Simple Set Comparison Tool, section 5 
presents and discusses the comparative results between the Simple Set Comparison Tool and a traditional 
clustering algorithm, section 6 presents the conclusions drawn, and section 7 covers future work. 

2. RELATED WORK 

Phishing researchers have been mainly focused on identifying phish versus non-phish websites, also 
known as binary classification. There is some research attempting to classify phish into more than two 
categories such as by brand or phish author. However, to the authors’ knowledge there is no research 
attempting to classify phish into brand categories using a parallelizable approach with the adaptability to 
use most distance metrics and clustering algorithms.  
 
Phishing researchers have presented a number of classification methods for binary classification. These 
methods can be categorized into three general groups: email advertising phish, URL, and content-based 
approaches. Some email based approaches classify the words in a spam email’s body to determine the 
legitimacy of the email [6]. Other email-based approaches use features derived from the email message 
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such as the sender email, sender IP address, and non-matching URLs between the hyperlink and anchor 
tag [7]. These features are used to classify the email through machine learning algorithms [7, 8]. URL-
based approaches have been explored. Gyawali et al.. [9]and Ma et al. [10] proposed solutions to phishing 
identification by using features that can be derived from a URL. These researchers demonstrated that 
URL-based methodologies can identify phishing URLs with high accuracy; however, such techniques can 
be avoided causing lower detection rates by shortening the phishing URLs or other methods to randomize 
the URL. Content-based approaches use the content of the phishing website for detection. Dunlop et al. 
[11] presents a method for determining the visual similarity between screenshots of phishing websites. 
Other researchers have used components within the source code [12] [13]. There have also been a number 
of researchers that use combinations of all three categories for detection [14] [15] [16].  
 
All of the binary classification techniques lack the ability to identify the brand targeted by the phish and 
they are not scalable as the techniques and algorithms used are not parallelizable. Also, most of the 
techniques lack adaptability and can be avoided by the attacker adapting the phish as seen with the URL 
based approaches. 
 
There are several different techniques presented in research to classify phish into more than binary 
categories or cluster phish. Phish clustering has been an area of interest for researchers that are 
proactively trying to determine the criminals behind the phishing attacks [12, 17, 18]. Criminals use to 
create domains on the same IP blocks, which Weaver and Collins leverage in a clustering algorithm using 
the IP address or hosting network to cluster phish [13]. Similar attack patterns against domains have been 
used to attribute phishing attacks to particular criminals [19]. IP and hosting network based solutions have 
been avoided by criminals adapting to use botnets or compromised webservers spread over different IPs 
and hosting networks.  
 
The Deep MD5 technique has been used to cluster phish into groups of related phish using local domain 
files [20, 21]. The Deep MD5 technique can be avoided by slightly changing phish files from phish to 
phish, although this behavior has not yet been seen in the wild [20, 21, 22]. The most recent method 
called Syntactical fingerprinting uses structural components to cluster phishing websites by brand and by 
criminal [22]. Email addresses receiving phished credentials found in the kits used to create the phish 
have also been used to cluster phishing websites [23]. The non-binary classification techniques take 
unique approaches to classifying phish, but none can be performed in parallel. Also, all of the 
classification techniques lack adaptability as they rely on a particular phish comparison metric or 
clustering algorithm. All of the non-binary classification techniques presented lack scalability and 
adaptability.  
 
Existing research is mainly focused on binary classification. However, there is some research focused on 
non-binary phish classification such as classifying phish by brand or criminal. There is a lack of 
techniques that can perform phish classification using scalable methods such as parallelization. Also, 
there is no adaptable and scalable phish classification technique that can liberally use different phish 
comparison methods and different classification algorithms should criminals adapt their phishing attacks. 

3. DATA SET 

The phishing URLs are gathered from a large spam-based URL provider, a large anti-phishing company, 
and a number of other feeds including private companies, security companies, and financial institutions. 
The source of the URLs is either URLs contained in spam advertising phish or URLs reported by the 
public to fraud alert email addresses. The data set favors financial institutions and under represents 
gaming and social media phish when compared to other phishing collections.  
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A number of methods are used in the industry to count phish. Some methods count distinct URLs. If there 
is any randomization in the host name, directory path, or arguments it leads to ‘over-counting’. Cases 
where this occurs include wild-card DNS entries, per user customized URLs, or virtual hosts allowing the 
same directory path for multiple domains to resolve to a single IP address. A conservative counting 
approach that attempts to de-duplicate URLs leading to the same phishing content is used.  
 
The phishing data consists of all files referenced in the potential phish. The website files are fetched using 
an automated web crawler that makes use of a Firefox mechanization tool [24]. After the files are 
downloaded, a hash value is generated for each file using the MD5 hashing algorithm. While the MD5 
hashing algorithm is not a cryptographically secure algorithm it is not being used for a cryptographic 
purpose, but rather to identify individual files. MD5 hash values can be changed by slightly altering a 
file’s content each time it is deployed in a phish. However, phish authors would have to create a phish kit 
to automate the file changes needed to perform this for every file every time a phish is deployed. So far 
this behavior has not been observed in the wild. For this reason the authors feel the MD5 hashing 
algorithm is acceptable to use for file identification in this instance. Screenshots and the domain 
information are manually reviewed to determine whether the potential phish is a phish. 
 

Brand Count 
Tech Company 1 3,815 
Telecom Company 1 1,720 
Tech Company 2 1,484 
Financial Institution 2 1,435 
Financial Institution 3 829 
Tech Company 3 786 
Tech Company 4 709 
Financial Institution 4 657 
Tech Company 5 589 
Financial Institution 5 529 

Figure 1 Ten Most Numerous Brands Phished 

The data set consists of 19,825 confirmed phishing sites collected between September 1st 2014 and 
September 30th 2014. There are a total of 245 different brands. Figure 1 shows an anonymized by sector 
listing of the 10 most phished brands in the data set.  

4. ALGORITHMS 

The Simple Set Comparison Tool consists of four broadly defined steps.  

1. Creating Time Windows 
2. Clustering Time Windows 
3. Comparing Time Windows 
4. Merging Time Windows 

In the first step, user specified single time windows are created. A cross time window is created for every 
combination of user specified single time windows. In the second step, the single and cross time windows 
are clustered independently of one another. All single and cross time window clustering processes can be 
run in parallel. In the third step, single time windows are compared to overlapping cross time windows 
based upon shared cluster members resulting in a cluster similarity graph. The time window comparisons 
can be run in parallel. In the fourth step, a clustering algorithm is then run over the cluster similarity 
graph to merge similar clusters. The result is a clustering of the entire data set.  
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The Simple Set Comparison Tool takes advantage of parallel processing in the second and third steps. To 
be able to process a large data set in parallel the data set must first be subdivided or partitioned. The phish 
data is tagged with a received time which allows partitioning on a chronological basis. The parallel 
processing in steps two and three are the key to reducing the runtime compared to traditional clustering 
algorithms.  

4.1 Creating Time Windows 

The data set is subdivided into four different time windows of approximately seven days each consisting 
of the following date ranges 09/01/2014 to 09/08/2014, 09/09/2014 to 09/15/2014, 09/16/2014 to 
09/22/2014, and 09/23/2014 to 09/30/2014. Throughout the rest of the paper these date ranges will be 
referred to by their date range window number as presented in figure 2.  

Begin Date End Date Window Number 

9/1/2014 9/8/2014 1 
9/9/2014 9/15/2014 2 

9/16/2014 9/22/2014 3 
9/23/2014 9/30/2014 4 

Figure 2 Date Ranges and Their Date Range Number 

As well as single time date ranges, single time windows, multi-date ranges are created, cross time 
windows. Cross time windows are created by merging data from two single time windows together. This 
is performed for every combination of single time windows.  In this case, creating combinations of the 
four single time windows results in the following six cross time window combinations; 1:2, 1:3, 1:4, 2:3, 
2:4, and 3:4. Throughout the rest of the paper cross time windows will be referred to by their cross time 
window number. For example, the cross time window that crosses time windows one and two is 1:2. 

 

 

0 2,000 4,000 6,000 8,000 10,000 12,000

Cross Window 3 : 4

Cross Window 2 : 4

Cross Window 2 : 3
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Figure 3 Single and Cross Time Windows and Number of Phish in Each 

The number of phish in each window is depicted in figure 3. The four single time windows consist of 
approximately 4,000 to 5,000 phish each. The six cross time windows contain between 9,000 to almost 
11,000 phish. The cross time window data sets are about twice as large as the single time window data 
sets.  

4.2 Clustering Time Windows 

The phish time windows and cross time windows are clustered by comparing phishing websites using the 
Deep MD5 method as a similarity score and a SLINK clustering algorithm to sort the phish into groups 
based upon their similarity scores [25]. Deep MD5 generates a score based upon file set similarity. Deep 
MD5 generates a score using the count of candidate one’s files (count1), the count of candidate two’s files 
(count2), and the number of matching file MD5 values between candidate one and candidate two 
(overlap). 
 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 2 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.5 �
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

� + 0.5 �
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

� 
 
A Kulczynski 2 coefficient, equation 1, is then applied to count1, count2, and overlap to generate the 
Deep MD5 score with a value between 0.0 and 1.0. For example two websites, website X and website Y, 
could be compared using Deep MD5. If website X consists of files {a,b,c,d,e} and website Y consists of 
files {a,b,f,g} then the overlap count between the two websites’ file sets is two (overlap). Website X’s file 
count is five (count1) and website Y’s file count is four (count2). Then the Deep MD5 score is 0.5(2/5) + 
0.5(2/4) or 0.45.  
 
After the Deep MD5 similarity scores are generated the results are feed to a SLINK clustering algorithm. 
The SLINK clustering algorithm is a graph theoretic clustering algorithm. The graph has vertices of 
phishing websites and for each pair of vertices there exists a deep MD5 similarity score. Edges where the 
similarity score meets or exceeds a threshold are kept and edges not meeting the minimum threshold are 
discarded.  An analysis of Deep MD5 scores between phish showed good matching results between phish 
with the same brand for threshold values ranging from 0.5 to 0.75 with very little change [26]. A 0.6 
value is chosen as a middle ground between the high and low end threshold values. After all edges have 
been pruned, the SLINK clustering algorithm turns connected components into clusters.  
 

 
Figure 4 Similarity Score Generation for Single Time Windows A and B 
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Each single time window is clustered by generating similarity scores for all phish from a single window 
and then applying a SLINK clustering algorithm. Figure 4 shows similarity scores being generated for 
two single time windows before the clustering algorithm is applied.  
 

 
Figure 5 Similarity Score Generation for Cross Time Window A:B  

The six cross time windows are clustered by generating a similarity score for all phish from one window 
compared to another window and applying a SLINK clustering algorithm. Phish from the same time 
window are not compared, only phish from different windows are compared. Figure 5 shows similarity 
scores being generated for a single cross time window before the clustering algorithm is applied. 
Clustering the four single time windows and six cross time windows can be performed independently of 
one another, allowing all clustering processes to be run in parallel instead of in sequence. 

4.3 Comparing Time Windows 

The cross time window clusters are used to merge the individual clusters from different time windows. 
Clusters from single time windows are compared to clusters from overlapping cross time windows. The 
clusters are compared by counting the number of phish shared between the two clusters (overlap) divided 
by the total number of phish in the single time window cluster (count1) resulting in a score between 0.0 
and 1.0.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

 

The cross time window’s size is not included as it will dilute the similarity score.  Because the cross time 
window clusters can incorporate phish from two time windows they are generally much larger. Each 
single time window to cross time window comparison can be run independently of one another. 
Comparing time window clusters can be performed in parallel. Comparing time windows based upon 
shared cluster members results in a cluster similarity graph for all clusters from all time windows.  

4.4 Merging Clusters 

A clustering algorithm is then run over the cluster similarity graph to merge similar clusters from different 
time windows. A SLINK clustering algorithm is used to determine the cluster meges. The SLINK 
clustering algorithm is chosen because of its simplicity as this is an initial investigation into the 
effectiveness of the Simple Set Comparison tool. The clustering algorithm used in this step of the Simple 
Set Comparison Tool is interchangeable. The only requirement is the clustering algorithm takes an edge 
based representation of a graph and produce non-overlapping clusters. 
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5. RESULTS 

The Simple Comparison Set Tool is compared to a traditional clustering algorithm, a SLINK clustering 
algorithm, run over the same data. The SLINK clustering algorithm uses a Deep MD5 similarity score 
with a threshold of 0.6. The Simple Set Comparison Tool uses a SLINK clustering algorithm with a 
DeepMD5 threshold of 0.6 for its first step. A SLINK clustering algorithm with a Deep MD5 threshold of 
0.6 is chosen to provide an apple to apples comparison to the Simple Set Comparison tools results.  

The Simple Set Comparison Tool and the traditional clustering both ran on the same hardware, a 64 bit 
Windows 7 Enterprise desktop with an Intel Core2 Quad CPU running at 2.83GHz and 8.00 Gigabytes of 
RAM.  Both methods use the same java implementation of the SLINK clustering algorithm. All results 
are stored to the same Postgresql data base on the local machine.  

The first subsection compares the clustering quality produced by different runs of the Simple Set 
Comparison Tool with varying cluster merging thresholds, used in step four. A single merging threshold 
value is chosen after analysis of the clustering quality and is used to compare against the traditional 
clustering algorithm. The second subsection compares the quality of the clustering produced by the 
Simple Set Comparison Tool and the traditional SLINK clustering using three different cluster quality 
measures. The third subsection shows an anecdotal comparison of the largest ten clusters generated by the 
Simple Set Comparison Tool and the traditional clustering algorithm. The fourth subsection computes the 
runtime of the Simple Set Comparison Tool and compares it to that of the traditional clustering algorithm. 
The fifth subsection discusses the algorithms used in the Simple Set Comparison Tool. The sixth 
subsection discusses issues that may cause runtime performance to decrease. 

5.1 Comparing Cluster Merging Thresholds 

The clustering quality is measured using three different entropy based metrics; homogeneity, 
completeness, and V-measure [28]. All three measures are based upon evaluating the clustering results 
compared to a ground truth label assigned to all data points. The ground truth label assigned to the data 
points represents a perfect clustering of the dataset. The three different measures evaluate how close to a 
perfect clustering is created. The ground truth label used is the phish brand.  

Homogeneity evaluates how well the clustering is at placing members that should be in the same cluster 
in the same cluster. A perfect homogeneity score is achieved when all clusters only contain members with 
the same label. Completeness evaluates how well the clustering came to determining the correct number 
of clusters. A perfect completeness score is achieved when there is only one cluster for each label. V-
measure is the harmonic mean of the homogeneity and completeness scores, a blend of homogeneity and 
completeness scores. Also included is the number of clusters created. 

The Simple Set Comparison Tool is evaluated over eleven different thresholds ranging from 0.001 to 1.0. 
These ranges are chosen as the smallest and largest thresholds to evaluate because the smallest cluster 
similarity score found above 0.0 is approximately 0.0094 and the largest cluster similarity score is 1.0. 
The other thresholds used range from 0.1 to 0.9 with 0.1 increments between to get the best coverage 
without an exhaustive search of all threshold values.  
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Threshold Number Clusters Homogeneity Completeness V-Measure 

0.001 1,248 0.9871 0.6778 0.8037 
0.1 1,281 0.9872 0.6761 0.8025 
0.2 1,321 0.9872 0.6739 0.8010 
0.3 1,324 0.9872 0.6729 0.8003 
0.4 1,332 0.9872 0.6716 0.7994 
0.5 1,332 0.9872 0.6716 0.7994 
0.6 1,335 0.9873 0.6702 0.7984 
0.7 1,368 0.9866 0.6683 0.7969 
0.8 1,377 0.9851 0.6641 0.7934 
0.9 1,386 0.9845 0.6606 0.7907 

1 1,416 0.9850 0.6352 0.7723 
Figure 6 Simple Set Comparison Tool Clustering Quality Measures 

The cluster quality measures stay very consistent across the thresholds. As the threshold increases the 
homogeneity scores only changes in the third and fourth decimal places. Oddly though the homogeneity 
scores rise slightly until the 0.6 threshold and then fall slightly until the 1.0 threshold. This may be due to 
an unusual breakdown of good similarity clusters at very high thresholds. The completeness score 
decreases slightly but consistently from the 0.001 threshold to the 1.0 threshold. The v-measure score that 
measures the tradeoff between homogeneity and completeness slightly decreases from the 0.001 to the 1.0 
threshold. The degradation of completeness without a corresponding improvement in homogeneity begins 
at 0.3. The relative degradation of the clustering is also reflected in the declining v-measure score from 
the 0.3 to 0.4 thresholds. The clustering result produced by the 0.3 merging threshold is chosen as a best 
representative to compare to the traditional clustering algorithm on clustering quality.  

5.2 Comparing Clustering Quality Results 

The 0.6 threshold value used for traditional clustering is the same value used in the Simple Set 
Comparison Tool during the initial clustering of the time windows. The 0.6 threshold should serve as a 
good benchmark. As it is noted in a Deep MD5 evaluation paper [26] there is little difference between the 
0.5 and 0.75 DeepMD5 threshold values. 
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Figure 7 Traditional Clustering and Simple Set Comparison Quality Measures 

 
Comparing the clustering quality measures shows almost no differences as the homogeneity, 
completeness, and v-measure scores are all relatively similar. Traditional clustering produces a slightly 
better completeness score. There are negligible differences between the quality of clusterings produced.   

5.3 Anecdotal Comparison 

An anecdotal comparison between the ten largest clusters generated by traditional clustering and the 
Simple Set Comparison Tool is presented below.  

Cluster Brand Traditional Clustering 
Cluster Size 

Simple Set Comparison Tool 
Cluster Size 

Telecom Company 1 1,291 1,291 
Tech Company 1 915 915 
Financial Institution 3 794 794 
Financial Institution 2 770 770 
Tech Company 3 637 637 
Tech Company 2 567 567 
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Tech Company 1 365 365 
Financial Institution 6 303 303 
Telecom Company 1 303 303 
Financial Institution 4 302 302 

 
Figure 8 Ten Largest Clusters Produced By Traditional and Simple Set Comparison Tool Clustering 

 
Traditional clustering and the Simple Set Comparison Tool both produced the same ten largest clusters. 
Meaning, both sets of ten are perfectly homogeneous, have the exact same cluster sizes, and have the 
same brand label. The individual phish that make up both of the sets of ten were not compared to 
determine if they have exactly the same phish contained in each corresponding cluster.  

5.4 Runtime Comparison 

The total runtime for the Simple Set Comparison Tool is computed by adding the runtime for each step 
together. There is no runtime spent for the first step as the chronological dividing points for each time 
window are chosen before the tool is run. The second step is run in parallel, ideally each clustering 
process is run on a separate machine; the runtime for step two will be the longest runtime out of the 
group. The third step’s runtime is the longest comparison runtime out of all single to cross time window 
comparisons. Since the third step is run in parallel, ideally each comparison process is run on a separate 
machine; the runtime for step three will be the longest runtime out of the group. The fourth step is not 
parallelized. The fourth step’s runtime will be the runtime it takes to assemble a global clustering out of 
the cluster similarity graph generated in step three. The parallel clustering processes run in step two have 
the largest runtimes out of all of the steps and their runtimes are presented in Figure 9.  

 

Figure 9 Clustering Runtimes for Single and Cross Time Windows. 

Clustering the single time windows takes between three minutes for the fastest and twelve minutes for the 
slowest. Clustering the cross time windows takes between almost seven minutes and almost fourteen 
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minutes. The longest runtime out of the group is cross window 1:2 at almost 14 minutes, 836,108 
milliseconds. Step two, comparing single to cross time window clusters, took very little time. All twelve 
of the comparisons took only 640 milliseconds combined. The longest comparison took 93 milliseconds 
and the shortest took 31 milliseconds. The longest runtime out of the twelve comparisons is 93 
milliseconds. Step four, merging time windows, is not parallelized and has a single runtime of 1,324 
milliseconds. Adding the longest runtime for step two (836,108 milliseconds), the longest runtime for step 
three (93 milliseconds), and step four’s runtime (1,324 milliseconds) results in a total runtime of almost 
fourteen minutes (837,525 milliseconds). The biggest contributor of total runtime comes from step two, 
clustering single and cross time windows. In particular it comes from clustering the cross time window 
1:2. The traditional clustering algorithm took over eight and a half hours, 31,044,322 milliseconds, to 
complete.  The Simple Set Comparison Tool’s runtime is more than 32 times faster than the traditional 
clustering algorithm’s runtime.  

There is almost no difference between the quality of clusterings produced by the Simple Set Comparison 
Tool and traditional clustering. The runtime is the biggest difference between the two. The Simple Set 
Comparison Tool is more than 37 times faster at producing results for the monthly dataset.  

5.5 Interchangeable Algorithms 

The Simple Set Comparison Tool has three interchangeable pieces. The distance metric used for 
comparing phish in the first step, the clustering algorithm used to cluster phish in the first step, and the 
clustering algorithm used when merging similar clusters in the third step.  

The Simple Set Comparison Tool can make use of a variety of phish similarity metrics. The tool only 
requires the similarity measure be numeric and have an upper and lower bound. The Simple Set 
Comparison Tool can make use of a variety of clustering algorithms. The Simple Set Comparison Tool 
requires a clustering algorithm to take an edge representation of a graph as input and produce non-
overlapping clusters. These requirements allow the Simple Set Comparison Tool to use a variety of 
existing clustering algorithms. 
 
The Deep MD5 metric is being used as a similarity measure in the first step as it has been shown to be 
useful for clustering phishing websites [26] [21] [20]. The Deep MD5 metric is not fool proof as it relies 
on file reuse by phish. Small changes to a file will change the MD5 value for that file. If a phishing author 
was so inclined all content files referenced by a phish could be slightly changed each time a particular 
phish was created. The result would be a Deep MD5 score of 0.0 between two phish created by the same 
author that targeted the same brand with the same functionality and appearance. However, this has not 
been noticed to be prevalent in the wild at this time. If this does occur at some future date, the similarity 
metric used by the Simple Set Comparison Tool is interchangeable and another more sufficient phish 
similarity metric can be used in place of Deep MD5. The only requirement the Simple Set Comparison 
Tool has for a comparison metric is that the metric produces a single numerical value within a defined 
upper and lower bound. The Deep MD5 similarity metric is being used as an example similarity metric 
that is currently effective in this particular use case.  
 
The SLINK clustering algorithm is used in step one for clustering time windows and in step three when 
merging clusters. The same clustering algorithm does not have to be used in both step one and step three. 
Indeed there may be circumstances where using a different clustering algorithm in step one and step three 
may produce better results. However, in this particular case using the SLINK clustering algorithm to 
cluster the time windows in step one and merge clusters in step three is effective as it produces a 
clustering of similar high quality to traditional clustering.  The SLINK clustering algorithm is not the best 
or newest clustering algorithm. It is a simple clustering algorithm and has been shown to produce good 
results when applied to clustering phish [26] [21] [23] [27]. Like the similarity metric, the clustering 
algorithm used by the Simple Set Comparison Tool is interchangeable. The Simple Set Comparison Tool 
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only requires a clustering algorithm take an edge based representation of a graph as input and produce 
non-overlapping clusters within a single data set.  

5.6 Performance Discussion 

The Simple Set Comparison Tool results show a drastic runtime gain when compared to the traditional 
clustering algorithm’s runtime. However, issues can arise that would increase runtime. Steps two and 
three are performed in parallel and are scalable. Step four is not run in parallel and the runtime could 
become a problem under certain circumstances. The key driving factor for step four’s runtime is the size 
of the similarity graph, or number of clusters, produced by step three.  
 
There are two ways the number of clusters created would increase. The first is by increasing the number 
of time windows. For example if an existing time window is subdivided into two time windows the 
number of clusters produced would be approximately double assuming each of the clusters generated 
from the original time window would effectively be split in half. The second way the number of clusters 
created would increase is if the clustering algorithm used in step two has a low completeness score, thus 
producing many more clusters than needed. The Simple Set Comparison tool’s runtime improvement 
versus the traditional clustering algorithm is achieved over the month long data set by using appropriately 
sized time windows containing many phish and using a clustering algorithm in step two that has a 
sufficient completeness score. While the window sizes used in this evaluation have not been optimized 
through an exhaustive search the selected window sizes achieve a large performance gain and generate a 
clustering of equivalent quality to the traditional clustering algorithm.  

6. CONCLUSIONS 

The clustering quality metrics show the Simple Set Comparison tool’s results are essentially equivalent to 
the traditional clustering output, which are good at a cluster homogeneity score above 0.98. The Simple 
Set Comparison tool’s runtime is drastically better than the traditional clustering runtime. The runtime 
improvement is due to the Simple Set Comparison Tool partitioning the dataset and performing a majority 
of its clustering in parallel.  

The Simple Set Comparison Tool works well with the Deep MD5 comparison metric and SLINK 
clustering algorithm when clustering phish data. However, the Simple Set Comparison Tool is adaptable 
enough to make use of many different comparison metrics and clustering algorithms. It can quickly create 
quality phish clusters that can be used for phish identification or aggregation by phishing investigators. 

7. FUTURE WORK 

Further evaluations need to be performed on different data sets to determine the general applicability of 
the Simple Set Comparison tool. A future goal is to evaluate the Simple Set Comparison tool’s ability to 
deal with heterogeneous data. One example would be creating clusters consisting of phish, spam 
advertising phish, and kits used to create phish. Incorporating two more sources of data, especially spam, 
would significantly increase the amount of data to cluster. It will also require the use of multiple 
similarity metrics. Deep MD5 can only be used to compare two phish and cannot be used to relate URLs 
found in spam to phishing websites. Other similarity metrics will have to be developed.  

The inclusion of multiple similarity metrics used over heterogeneous data may necessitate the use of more 
sophisticated clustering algorithms. Each similarity metric would represent a different type of relationship 
between data points such as phish and spam email versus phish and phish kits. The different types of 
relationships may have different value ranges and distributions over their respective value ranges. A more 
locally adaptable clustering algorithm may be required to generate adequate clusters over such 
heterogeneous data.  
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