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ABSTRACT 

 

Thomas, Fanny MSAE, Embry-Riddle Aeronautical University, Aug 2016. Ab Initio 

Computation of Radiative Properties of Monatomic Hydrogen. 

With renewed interest in planetary atmospheric entry, descent, and landing, 

NASA has noted a need for improved physics modeling in computational fluid dynamics. 

Uncertainty in experimental data used in radiation heat transfer computations leads to 

“over-engineering” of entry body heat shields, at large weight and cost penalties. There is 

interest in developing hypersonic thermophysics models from the known “first 

principles” of physics.  

A method for computing high temperature gas emissivity and absorptivity from 

quantum mechanics principles is developed. The Schroedinger wave equation is cast as a 

discretized matrix eigenvalue problem which is solved using the ERAU parallel 

supercomputer. The numerical solutions for the wave functions are then integrated to 

determine the Einstein coefficients for emission and absorption, and hence the gas 

properties are tabulated as functions of temperature and pressure. 

All of the published works found thus far assume Dirichlet or von Neumann 

boundary conditions for the eigenvalue problem. At best this presumes a priori 

knowledge of the solution. In general it is incorrect. The novel boundary condition 

treatment used here admits simultaneous solution for several wave functions, unlike the 

“shooting methods” in most textbooks. Therefore the novel boundary condition treatment 

is used in this thesis.  

The hydrogen atom is studied, as analytical solutions for verification exist. 

Numerical solutions have been completed and compare very well with analytical 
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solutions, and with experimental data maintained by National Institutes of Standards 

(NIST).  
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1. Introduction 

1.1.  Background 

Hypersonic flow simulation is largely a matter of accounting for the kinetic, 

thermal, and chemical energies of the gas, and their exchange at extremely high rates. At 

entry speeds, temperatures are high enough that heat transfer by radiation becomes 

important in the overall energy balance. Absorptivity and emissivity depend upon the gas 

composition, temperature, and degree of departure from equilibrium conditions. These 

characteristics typically vary substantially throughout the flowfield, so radiative 

properties cannot be represented accurately with simple models, but rather call for 

modeling at the molecular or atomic level (Jaffe et al., 2014). Johnston, et al (2013) note 

the dearth of molecular data for doing so, and uncertainties as high as 100% in many 

cases. Brandis, et al (2013) report better agreement (within 46%) between computation 

and experimental data from shock tube tests, but point out the uncertainty associated with 

nonequilibrium in interpreting the data. 

Currently, there are three leading computational tools capable of modeling at the 

molecular level to appropriately predict radiative transport in the shock and boundary 

layer during re-entry: NEQAIR, HARA, and HyperRad (Jaffe et al. 2014). The oldest of 

the three, developed in the mid-90s, Nonequilibrium Air Radiation (NEQAIR) (Whiting 

et al. 1996) is a line by line radiation code used to compute spontaneous emission, 

stimulated emission, and absorption due to transitions between different energy states 

(Brandis et al. 2013). Similarly, Hypersonic Air Radiation Algorithm (HARA) is a 

radiation code that applies up-to-date spectral and excitation rate data to an efficient 

algorithm (Johnston et al. 2013). It Its purpose is the simulation of high-energy 
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hypersonic flow (Wood, 2012).  A most recent code, HyperRad, is currently being 

developed at NASA Ames Research Center. It is meant for incorporation into hypersonic 

flow codes and includes line spectra based on ab initio calculation from quantum physics 

(Howell et al. 2010). 

These computation efforts have been undertaken in an effort to expand and update 

the spectral databases available from NIST (Ralchenko, 2006), primarily, via ab initio 

computation of atomic or molecular energy or “Einstein Coefficients”. NEQAIR and 

HARA codes have been compared and they do produce very similar spectra. However, 

HyperRad is not compared against NEQAIR and HARA because it uses its own database 

(Brandis et al. 2013).  

From a recent National Aeronautics and Space Administration (NASA) Early 

Career Faculty (ECF) solicitation (NNH15ZOA001N-15ECF-B1), “The current state of 

the art for predicting aerothermal environments for planetary entry are dependent on 

physical models and underlying numerical methods that are, in many cases, two to five 

decades old.” The solicitation sought, “innovative physical models for high-speed non-

equilibrium flows (such as state-specific models to reduce predictive uncertainty for non-

equilibrium radiation),” and, “novel approaches to obtain validation data for these models 

(such as calibrated spectroscopic experiments in a shock tube or plasma facility or rapid 

ab initio calculations)”. Due to this solicitation, this work is done in order to update the 

numerical methods that are old by using the rapid ab initio calculations.  

“State-specific” here refers to release or absorption of a photon of radiation at a 

particular frequency via a molecular energy transition. The first principles of the known 

physics relevant to this problem are embodied in the “quantum mechanical” description 
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of molecular energies. The first step of such an ab initio implementation is integration of 

the time independent Schrödinger’s equation for the lower and upper molecular energy 

levels of a transition. Schrödinger’s wave equation is a Sturm-Liouville eigenvalue 

differential equation. Analytical solutions exist for only a few simple cases. In general, 

numerical methods must be used.  

Some popular computational methods employing the three-dimensional 

Schrödinger’s equation used to date are shooting methods (Numerov’s method), matrix 

methods, finite element method (FEM), and variational Rayleigh - Ritz - Galerkin 

methods.  

The shooting method (Numerov’s method) is a finite difference method used to 

solve a boundary value problem (BVP) by reducing it to an initial value problem. The 

method considers the boundary conditions as a multivariate function of initial condition 

at some point and reduces it to obtain the initial condition which provides a root. 

Advantages of this method are speed and adaptability, however it lacks robustness. The 

matrix method involves expressing the equation in the form of a matrix using finite 

differences. The finite element method finds an approximate solution to a boundary value 

problem by subdividing a large problem into smaller, simpler parts, called finite 

elements. The simple equations that model the finite elements are then assembled into a 

larger equation that model the entire problem. Lastly, the variational Rayleigh-Ritz-

Galerkin method is a direct method to solve a boundary value problem by finding its 

approximate solution. It is a special case of FEM as the process is to convert a continuous 

operator problem to a discrete problem.   

Any of these four computational methods can provide accurate solutions to the 
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three-dimensional Schrödinger’s equation, however the shooting, FEM, and variational 

Rayleigh - Ritz - Galerkin method need to have a good initial guess to the eigenfunctions 

as well as eigenvalues, while the matrix method is a more global approach. In addition, 

no iterations, matching and relaxation are needed (Salejda et al. 2000). Although the 

matrix method is the most global approach to computing the three-dimensional 

Schrödinger’s equation, the most popular method to integrate Schrödinger’s equation to 

date is the shooting method (Numerov’s method) due to the simplistic final form of 

equation. However, this equation may only be used to calculate the wave function of the 

hydrogen atom or hydrogen-like atom. Slight variations of the equation will be needed to 

calculate the other atoms.   

Even though the matrix method is a more global approach, only a few researchers 

have made the attempts to use this approach (Salejda et al and Van der Maelen Uria et 

al). Salejda et al (2000) have successfully built a program that is able to compute 

eigenvalues and eigenfunctions using the matrix method, but used Dirichlet boundary 

conditions, which are not correct for all cases. Van der Maelen Uria et al (1995) uses the 

QR algorithm to solve the matrix equation and also uses Dirichlet boundary conditions. 

The QR algorithm in numerical linear algebra is an eigenvalue algorithm, which is a 

procedure that used to calculate the eigenvalues and eigenvectors of a matrix. The idea is 

to write a matrix as a product of an orthogonal matrix and an upper triangular matrix, 

which then used to multiply the factor in the reverse order and iterate. However, this 

method may only compute both eigenvalue and eigenvector if the original matrix is 

symmetric. If the original matrix is not symmetric, only eigenvalues will be computed. 

These attempts were used to solve a one-dimensional Schrödinger’s equation. We have 
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not yet found an attempt to solve a two-dimensional or three-dimensional Schrödinger’s 

equation by the matrix method.  

For a three-dimensional case, Khelashvili et al. (n.d.) suggested the radial 

equation obeys the Dirichlet boundary condition and Brazier-Smith (1983) suggested that 

the spherical harmonics, which are discussed in section 4.2, obey the Dirichlet and Von 

Neumann boundary conditions. Both authors used Numerov’s method to numerically 

compute the three-dimensional Schrödinger’s equation. However, these boundary 

conditions do not yield the correct results when the matrix method is used, but only for 

some particular results known analytically. 

1.2. Problem Statement 

The objective is to develop the matrix method in such a way as to be extendable 

to general molecular species. The approach is to cast the Schrödinger wave equation as a 

matrix eigenvalue problem, using finite differences for the derivatives. The equation can 

be solved using the ERAU parallel supercomputer, on which resides the LAPACK 

numerical library for linear systems. The proposed work will focus on the hydrogen atom 

because analytical solutions are available with which to verify the numerical results. 

Perhaps the largest challenge is to develop general boundary conditions sans a 

priori knowledge of the solution. One does not wish to restrict the “solution space.” Even 

given analytical solutions for the hydrogen atom, certain known boundary conditions, e.g. 

zero Dirichlet, do not apply for all cases. The matrix method will yield all solutions that 

can be “captured” by the chosen grid refinement, and consistent with the boundary 

formulation.  
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The resulting eigenvalues are the allowable energy levels, and the eigenvectors a 

discrete “data table” representation of the wave functions versus spatial coordinates of the 

molecular particles. Numerically integrating wave functions for two energy levels with 

the dipole moment of the transition between them, yields the Einstein coefficients – 

molecular properties that give rates of transition, hence rates of absorption or emission of 

photons of radiation. It should be noted that a large molecule may contain thousands of 

energy states, hence tens of thousands of Einstein coefficients. 

Computing emissivities and absorptivities for particular transitions – that is, state- 

or wavelength-specific – is then straightforward. The complete procedure is potentially 

much more efficient and comprehensive than experimental studies. 
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2. Theory and Governing Equations  

2.1. Classical Macroscopic Description 

In order to fully understand heat transfer due to radiation, Beer’s law is 

considered. Beer’s law states that the decrease in the intensity of the radiation 𝐼, which 

has units of erg s-1 cm-2 sr-1, passing through a layer of thickness 𝑑𝑥, is proportional to the 

intensity of the radiation and its thickness.  

 
𝑑𝐼(𝑥) = −𝜅𝑅𝐼(𝑥)𝑑𝑥 

(

(2.1) 

Here 𝜅𝑅  is the absorption (or extinction) coefficient which is a measure of the rate 

of decrease in the intensity of electromagnetic radiation. Integrating equation 2.1 with 

constant absorption coefficient gives the exponential decal law form for the decrease in 

intensity. 

The Fourier form, a conduction heat transfer analog, is sometimes simpler to 

implement. Let the differential fluid element have area 𝑑𝐴. The incoming heat flux is 

defined as 𝑞 (erg s-1 cm-2) and the outgoing heat flux as 𝑞 − 𝑑𝑞. The difference yields the 

rate of energy increase within the fluid element as  

 
𝑑𝑞𝑑𝐴 = 𝜌𝐶𝑣

𝑑𝑇

𝑑𝑡
𝑑𝐴𝑑𝑥 

(2.2) 

where   
𝑑𝑇

𝑑𝑡
=

𝑑𝑇

𝑑𝑥
𝑐0. Therefore equation 2.2 can be re-written as  

 
𝑑𝑞

𝑑𝑥
= 𝜌𝐶𝑣𝑐0

𝑑𝑇

𝑑𝑥
 (2.3)  
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As the radiation heat flux is the same quantity as intensity 𝐼, equation 2.1 and 2.3 

can be rewritten as 

 𝜌𝐶𝑣𝑐0

𝑑𝑇

𝑑𝑥
=

𝑑𝐼

𝑑𝑥
= −𝜅𝑅𝐼 = −𝜅𝑅𝑞 (2.4)  

By using equation 2.4, radiative heat flux can be determined.  

 𝑞 = −
𝜌𝐶𝑣𝑐0

𝜅𝑅

𝑑𝑇

𝑑𝑥
 (2.5)  

From Fourier’s law, 

 𝑞 = −𝛽𝑅

𝑑𝑇

𝑑𝑥
 (2.6)  

where 𝛽𝑅 is the “radiative thermal conductivity.” Comparing equation 2.6 to equation 2.5, 

 𝛽𝑅 =
𝜌𝐶𝑣𝑐0

𝜅𝑅
 (2.7)  

 

2.2. Quantum Mechanical Description 

Absorption coefficients have typically been measured experimentally in the past. 

Experimentation is difficult for gases at re-entry temperatures. Absorption coefficients 

can be computed via quantum mechanics however. Their frequency dependencies can be 

computed as well.1 

Thermal radiation results from a change in atomic and molecular energy levels 

resulting from spontaneous and stimulated transitions. These transitions, in a bounded 

quantum mechanical system, can take on only certain discrete values of energy. In other 

words, energy levels of electrons in atoms, ions, or molecules are quantized. Lower, more 

                                                      
 
1 We have not addressed this in the previous section, but will in what follows. 
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populous energy levels are said to be in the ground state, while higher energy levels are 

referred to as excited states.  

A photon of radiation energy is emitted or absorbed when the electronic level falls 

from an upper to lower level, or is raised from a lower to an upper level, respectively. As 

depicted in Figure 1, there exist three processes by which electron transitions occur: 

spontaneous emission, absorption, and stimulated emission.  

 

Figure 2.1. (A) Spontaneous emission, (B) Stimulated emission, and (C) Absorption 

 

 

Figure 2.1 (A) illustrates spontaneous emission, when an atom falls to a lower 
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energy level and emits of a photon in the absence of external radiation. These upper to 

lower level transitions occur at rates specific to each atomic species and its electronic 

energy levels. The rates are called “Einstein A coefficients” and are usually given the 

symbol 𝐴𝑈𝐿 (𝑠−1). The A coefficient is the rate per atom at which energy level U falls to 

level L, emitting a photon.  

Stimulated emission, Figure 2.1 (B), occurs when a photon passes an atom and 

temporarily raises its energy from a lower to an upper level, which then returns to the 

lower level. This rate is also called the “Einstein B coefficient for stimulated emission,” 

and is usually given by the symbol 𝐵𝑈𝐿. Units of  BUL are discussed below.  

Absorption, as shown in Figure 2.1 (C), occurs when a photon strikes an atom and 

raises its energy from a lower to an upper level. This rate is called the “Einstein B 

coefficient for absorption” and is usually given the symbol 𝐵𝐿𝑈 with the same units as 

𝐵𝑈𝐿.  

It is important to note that the A and B coefficients are constant physical 

properties of a substance, as postulated by Einstein (Einstein, A., 1917). They have no 

dependency on temperature or other variables. 

The energy of an emitted or absorbed photon of radiation can be calculated by 

taking the difference between the energy levels as 

 
𝐸𝑈 − 𝐸𝐿 = ℎ𝑣 

(2.8) 

where 
2710625.6 h  erg s is Planck’s constant, and  is the frequency in s-1. 
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Now the rate of depopulation of an upper level 𝑈 to a lower level 𝐿 by 

spontaneous emission is  

 
𝑑𝑛𝑢

𝑑𝑡
|
𝑈𝐿

= −𝑛𝑈𝐴𝑈𝐿 (2.10) 

where 𝑛𝑈 is the number density of atoms at the upper level.  

The rate of population increase of the upper energy level from the lower due to 

absorption is shown in equation 2.11.  

 
𝑑𝑛𝑢

𝑑𝑡
|
𝐿𝑈

= 𝑛𝐿𝐵𝐿𝑈 ∫ 𝐼𝜈(𝛺)𝑑𝛺
4𝜋

0

 (2.11) 

𝐼𝜈 is the derivative of the intensity with respect to the frequency and is called the spectral 

intensity (erg s-1 cm-2 sr-1 Hz-1). We use Hz to denote the units of the spectral variable, 

frequency. The directional dependency of the intensity, indicated by the  functionality, 

and by sr-1, is integrated over 4 steradians. BLU has units of frequency times area per erg 

(Hz cm2 erg-1). 

Lastly, the rate of change of an electron from upper energy level to a lower energy 

level by stimulated emission is shown in equation 2.12. Upper to lower level transitions 

result from the presence of photons of the same frequency as the transition. 

 
𝑑𝑛𝑢

𝑑𝑡
|
𝑈𝐿

= 𝑛𝐿𝐵𝑈𝐿 ∫𝐼𝑉𝑑𝛺 (2.12) 
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From Planck’s law, the Einstein A Coefficient and Einstein B Coefficients are 

related by equation 2.13 (Vincenti and Kruger, 1965).  

 𝐴𝑈𝐿 =
8𝜋ℎ𝑣3

𝑐2
𝐵𝑈𝐿 

 

(2.13) 

 𝑔𝑈𝐵𝑈𝐿 = 𝑔𝐿𝐵𝐿𝑈 (2.14) 

𝑔𝑈 and 𝑔𝐿 shown in equation 2.14 are the molecular degeneracies of the upper energy 

level and lower energy level, respectively. The molecular degeneracy is the number of 

ways in which electrons are able to exist at a discrete energy level. From equation 2.14, 

the absorption and stimulated emission can then be considered by following the rate of 

change of the population that can be defined as 

 

𝑑𝑛𝑢

𝑑𝑡
= (𝑛𝐿𝐵𝐿𝑈 − 𝑛𝑈𝐵𝑈𝐿)∫ 𝐼𝜈 𝑑𝛺

4𝜋

0

 (2.15) 

Through restricting the intensity into a single direction, equation 2.15 can be 

rewritten as 

 
𝑑

𝑑Ω

𝑑𝑛𝑈

𝑑𝑡
= (𝑛𝐿𝐵𝐿𝑈 − 𝑛𝑈𝐵𝑈𝐿)𝐼𝜈  (2.16) 

The left hand side of equation 2.16 is the rate at which the transitions occur from 

the lower to upper energy level per volume in a particular direction, with units of 

s−1cm−3sr−1. As the transition that occur from the lower to upper energy levels removes 

a photon ℎ𝜈, equation 2.16 can be rewritten into equation 2.17 which has units of 

erg s−1cm−3sr−1. 

 ℎ𝜈
𝑑

𝑑Ω

𝑑𝑛𝑈

𝑑𝑡
= ℎ𝜈 (𝑛𝐿𝐵𝐿𝑈 − 𝑛𝑈𝐵𝑈𝐿)𝐼𝜈0

 (2.17) 
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Equation 2.17 is the rate of absorption of incident intensity at frequency 𝜈 per unit 

depth in the Ω direction.  

A subtle point that must be made here is that I as we have defined it is a 

probability distribution of intensity over frequency, due to various “line broadening” 

effects which we will not discuss here. In the above equation we have identified a single 

frequency associated with a particular UL transition, so that we have effectively 

integrated Idover the “line width” as I0, where I0 is some suitable average value. 

Clearly the left hand side then is just dx

dI
0

, so that finally  

 
 

0

0




IBnBnh

dx

dI
ULULUL 

 (2.18) 

Comparing with equation (2.1), we can define a spectral absorption coefficient as  

 𝐾𝑅𝜈 = ℎ(𝑛𝐿𝐵𝐿𝑈 − 𝑛𝑈𝐵𝑈𝐿) (2.19) 

Now the Einstein B coefficient can be computed as (Atkins et al, 2011),  

 𝐵𝐿𝑈 =
|𝜇𝑈𝐿|

2

6𝜀0ℏ2
 (2.20) 

where 𝜇𝑈𝐿 denotes the transition dipole moment. The transition dipole moment is a 

measure of energy an electron can deliver to the electromagnetic field during the 

transition. It depends upon the probabilities of its existence at level U, and at level L.  

In 1926, an American physicist Erwin Schrödinger formulated an equation based 

on the conservation of energy using “quantum operators” and the de Broglie relations 

which describe the wave properties of microscopic particles (Schrödinger, 1926). 

Schrödinger’s equation is a Sturm-Liouville eigenvalue partial different equation whose 

solutions exist for only discrete values of the particle energy. The energies are the 
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eigenvalues, and the “wave functions” that solve the equation are the eigenfunctions. In 

Born’s statistical interpretation, the squared modulus of the wave function is a real 

number and can be interpreted as the probability density of a particle being detected at a 

given place or time. For present purposes we can restrict our attention to the time-

independent form of Schrödinger’s equation. 

 

       xExxVx
m


 2

2

2  (2.21) 

Here   (h bar) is Planck’s constant divided by 2, m is the particle mass (an 

electron in our problem),   is the wave function, V a potential energy, E the energy 

eigenvalue, and  zyxx ,,


 the spatial domain. 

 From the solutions for the wave functions of energy levels U and L we can 

compute the transition dipole moment from 

 𝜇𝑈𝐿 = ∫𝜓𝑈
∗ 𝜇𝜓𝐿𝑑𝜏 (2.22) 

Here, 𝜓𝑈
∗  is the wave function on the upper level, 𝜓𝐿 is the wave function on the lower 

level, the electric dipole operator 𝜇 is the charge on the electron times its distance from 

the nucleus, and it has units of Coulomb times length (C cm). 
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3. Application to the Hydrogen Atom 

3.1. Schrödinger’s Equation in 3D Spherical Coordinate System 

In order to model the hydrogen atom, it is necessary to formulate the Hamiltonian 

in three dimensions and it is appropriate to formulate it in spherical polar coordinates 

(𝑟, 𝜃, 𝜙) which is shown in Figure 2, where 𝑟 indicates the distance from the origin to the 

surface, 𝜃 indicates the angle of the radial vector measured from the positive z-axis, and 

𝜙 indicates the angle measured counterclockwise from the positive x-axis when viewed 

from above. The solution from Schrödinger’s equation will give the probability of finding 

an electron at a particular position relative to the nucleus, which is located at the origin 

(𝑂) of the graph.  

 

Figure 3.1. Spherical Coordinates in Three-Dimensional 

 



27  

 

 

Equation 3.1 below shows the Schrödinger’s equation in spherical coordinates 

{
−ℏ2

2𝑚
[
1

𝑟

𝜕2

𝜕𝑟2
𝑟 +

1

𝑟2

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
+

1

𝑟2

1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
]

+ 𝑉(𝑟)}Ψ(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙) 

(3.1) 

Note that the potential (𝑉) is a function of 𝑟 as this equation is for hydrogen atom case, 

which will be explained more in section 4.3.  

3.2. Separation of Variables 

From subsequent solutions for Hydrogen atom or Hydrogen-like atom, it is 

assumed that the variables are separable.  

 
𝛹(𝑟, 𝜃, 𝜙) = 𝑅(𝑟) 𝑌(𝜃, 𝜙) 

 

(3.2) 

where 

 
𝑌(𝜃, 𝜙) = Φ(𝜙)Θ(𝜃) 

(3.3) 

Using equation 3.3 and dividing it with 
−ℏ2

2𝑚𝑟2, equation 3.1 can be simplified to 

 [𝑟
𝜕2

𝜕𝑟2
𝑟 +

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
+ (

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) (𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) + 𝑉(𝑟)] 𝑅(𝑟) 𝑌(𝜃, 𝜙)

= −
𝐸 2𝑚𝑟2

ℏ2
𝑅(𝑟) 𝑌(𝜃, 𝜙) 

 

(3.4) 

Focusing on the equation on the left hand side and defining the moment of inertia 

as, 𝐼 =  𝑚𝑟2, equation 3.4 can be simplified to 
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 [𝑟𝑌{𝑟𝑅′′ + 𝑅′} + 𝑅
1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
+ (𝑅

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) (𝑠𝑖𝑛 𝜃

𝜕𝑌 

𝜕𝜃
) + 𝑉(𝑟)]

= −
2𝐸𝐼

ℏ2
𝑅 𝑌 

(3.5) 

Dividing equation 3.5 with 𝑅(𝑟)𝑌(𝜃, 𝜙), 

 [
𝑟

𝑅
{𝑟𝑅′′ + 𝑅′} +

1

𝑌

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
+

1

𝑌
(

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) ( 𝑠𝑖𝑛 𝜃

𝜕𝑌

𝜕𝜃
) + 𝑉(𝑟)]

= −
2𝐸𝐼2

ℏ2
 

 

(3.6) 

Setting 𝑘 =
2𝐸𝐼

ℏ2  and note that 𝑘 is a function of 𝑟 only,  

 [𝑟𝑌{𝑟𝑅′′ + 𝑅′} + 𝑅
1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
+ (𝑅

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) (𝑌 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) + 𝑉(𝑟)]

+ 𝑘 = 0 

(3.7) 

Separating 𝑅 and 𝑌 from equation 3.7,  

 

𝑟

𝑅
{𝑟 𝑅′′ + 𝑅′} + 𝑉(𝑟) + 𝑘 = 𝜆 

(3.8) 

 
1

𝑌

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
+

1

𝑌

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕𝑌

𝜕𝜃
= −𝜆 (3.9) 

Substituting equation 3.3 to equation 3.9, and by using the separation of variables,  

 [
1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
+

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
]Φ(𝜙)Θ(𝜃) = −𝜆𝛷(𝜙)𝛩(𝜃) (3.10) 

 
Θ(θ)

sin2𝜃

𝜕2Φ

𝜕𝜙2
+

Φ(𝜙)

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕Θ

𝜕𝜃
= −𝜆𝛷(𝜙)𝛩(𝜃) (3.11) 

 
1

Φ(𝜙)

𝜕2𝛷

𝜕𝜙2
+

1

Θ(𝜃)
sin 𝜃

𝜕

𝜕𝜃
𝑠𝑖𝑛 𝜃

𝜕𝛩

𝜕𝜃
= −𝜆 𝑠𝑖𝑛2𝜃 (3.12) 
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1

𝛷(𝜙)

𝜕2𝛷

𝜕𝜙2
= −𝑚𝑙

2 (3.13) 

 𝜆 𝑠𝑖𝑛2𝜃 +
1

Θ(𝜃)
sin 𝜃

𝜕

𝜕𝜃
𝑠𝑖𝑛 𝜃

𝜕𝛩

𝜕𝜃
= 𝑚𝑙

2 (3.14) 

Equations (3.8), (3.14), and (3.13) are the separated wave equations for R(r), 

(), and (), respectively. Two separation constants have been introduced,  and ml
2. 
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4. Analytical Solutions for the Hydrogen Atom 

4.1. Particle on a Ring – the Phi Equation 

The simplest of these is equation (3.13).  In the literature this is often called the, “particle 

on a ring” problem. Its general solution is  

 
Φ = 𝐴𝑒𝑖𝑚𝑙𝜙 + 𝐵𝑒−𝑖𝑚𝑙𝜙 

(4.1) 

𝑚𝑙 is a dimensionless number. As the wave function depends only on the angle 𝜙, 

boundary conditions can be introduced. A cyclic boundary condition shown in equation 

(4.2) is used, since there are no barriers to the particle’s motion as long as it moves on the 

ring (Levine, 2014). Hence, there is no requirement for the wave function to vanish at any 

point on the ring.  

 
Φ(𝜙 + 2𝜋) = Φ(𝜙) 

(4.2) 

 

       

   ll

llll

imimB

imimAimBimA





2expexp

2expexpexpexp





 (4.3) 

It follows that, 

 
𝑒2𝜋𝑚𝑙𝜙 = 𝑒−2𝜋𝑚𝑙𝜙 = 1          𝑚𝑙 = 0,±1,±2, ±3,… 

(4.4) 
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To normalize the wave function (equation 4.1), each term is expanded according 

to Euler’s relation.  

 
Φ = A[cos(𝑚𝑙𝜙) + 𝑖 sin (𝑚𝑙𝜙)] + 𝐵[𝑐𝑜𝑠(𝑚𝑙𝜙) − 𝑖 𝑠𝑖𝑛 (𝑚𝑙𝜙)] 

(4.5) 

 
𝛷 = (𝐴 + 𝐵) cos(𝑚𝑙𝜙) + (𝐴 − 𝐵) 𝑖 sin (𝑚𝑙𝜙) 

(4.6) 

 
Φ∗ = (𝐴 + 𝐵) 𝑐𝑜𝑠(𝑚𝑙𝜙) − (𝐴 − 𝐵) 𝑖 𝑠𝑖𝑛 (𝑚𝑙𝜙) 

(4.7) 

By multiplying equation 4.5 and equation 4.6 together, 

 
Φ Φ∗ = (𝐴2 + 𝐵2)[𝑐𝑜𝑠2(𝑚𝑙𝜙) + 𝑠𝑖𝑛2(𝑚𝑙𝜙)]

+ 2𝐴𝐵[𝑐𝑜𝑠2(𝑚𝑙𝜙) − 𝑠𝑖𝑛2(𝑚𝑙𝜙)] 

(4.8) 

 
Φ Φ∗ = (𝐴2 + 𝐵2) + 2𝐴𝐵[𝑐𝑜𝑠2(𝑚𝑙𝜙) − 𝑠𝑖𝑛2(𝑚𝑙𝜙)] 

(4.9) 

By looking at Figure 4 from the section “Schrodinger equations in spherical 

coordinates”, it can be seen that the particle only moves from (0 − 2𝜋). This domain is 

used to integrate and simplify equation 4.10 as follows 

 𝐴2 + 𝐵2 =
1

2𝜋
 (4.10) 

The sign of the eigenvalue determines the direction of travel of the particle so 

either 𝐴 = 0 or 𝐵 = 0. Equation (4.1) can be written as, 

 Φ(𝜙) =
1

√2𝜋
𝑒𝑖𝑚𝑙𝜙                         𝑚𝑙 = 0,±1,±2,±3,… (4.11) 

 

4.2. Particle on a Sphere – the Theta Equation 

Classical solution for particle on a sphere can found in a number of textbooks. 

This follows that of Atkins et al. Equation (3.14) from the section “Schrödinger’s 
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Equation in Spherical Coordinates” denotes a particle on a sphere. From (3,14) 

 
 

 

 
1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕Θ

𝜕𝜃
−

𝑚𝑙
2Θ

𝑠𝑖𝑛2𝜃
+ 𝜆Θ = 0 (4.12) 

Introducing a variable substitution, 

 
𝑧 = cos 𝜃 

(4.13) 

 
𝜕𝑧

𝜕𝜃
= −sin 𝜃 (4.14) 

 
𝜕

𝜕𝜃
=

𝜕

𝜕𝑧

𝜕

𝜕𝜃
= −

𝜕

𝜕𝑧
sin 𝜃 (4.15) 

Defining  

 
𝑃(𝑧) = 𝛩(𝜃) 

(4.16) 

Equation (4.12) is transformed to  

 
−1

sin 𝜃

𝜕

𝜕𝜃
𝑠𝑖𝑛2𝜃

𝜕𝑃

𝜕𝑧
−

𝑚𝑙
2𝛩

𝑠𝑖𝑛2𝜃
+ 𝜆𝛩 = 0  (4.17) 

Using trigonometric substitution 

 
𝑠𝑖𝑛2𝜃 = 1 − 𝑧2 

(4.18) 

Equation (4.17) can be simplified to 

 −
1

sin 𝜃

𝜕

𝜕𝜃
(1 − 𝑧2)

𝜕𝑃

𝜕𝑧
−

𝑚𝑙
2𝛩

(1 − 𝑧2)
+ 𝜆𝛩 = 0 (4.19) 

Applying chain rule to equation (4.19), 

 
𝜕

𝜕𝑧
[(1 − 𝑧2)

𝜕𝑃

𝜕𝑧
] + [𝜆 −

𝑚𝑙
2

(1 − 𝑧2)
] 𝑃 = 0 (4.20) 

Defining 
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(4.22) 

𝑃(𝑧) can be identified as the associated Legendre functions. Using equation 

(4.21) and (4.22), equation (4.20) becomes, 
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(4.23) 

Dividing equation 4.25 with 
  221

m

z and rearranging, 
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(4.24) 

By simplifying equation 4.26, 

 
(1 − 𝑧2)𝐺" − 2𝑧(1 + |𝑚𝑙|)𝐺′ + (𝜆 − |𝑚𝑙| − 𝑚𝑙

2)𝐺 = 0 
(4.25) 

Assuming 𝐺 a polynomial, 
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𝐺(𝑧) = ∑ 𝑎𝑛𝑧

𝑛

𝑛=0

 
(4.26) 

 
𝐺′(𝑧) = ∑ 𝑛𝑎𝑛𝑧

𝑛−1 =

𝑛=1

∑ 𝑛𝑎n𝑧
𝑛−1 = ∑(𝑛 + 1)𝑎𝑛+1𝑧"

𝑛=0𝑛=0

 
(4.27) 

 
𝐺′′(𝑧) = ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑧

𝑛−2 =

𝑛=2

∑ 𝑛(𝑛 − 1)𝑎𝑛𝑧
𝑛−2

𝑛=0

= ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑧"

𝑛=0

 

(4.28) 

Substituting equation (4.26), (4.27), and (4.28) to equation (4.25), 

 
∑{(1 − 𝑧2)𝑛(𝑛 − 1)𝑎𝑛𝑧

𝑛−2 − 2𝑧(1 + |𝑚𝑙|)𝑛𝑎𝑛𝑧
𝑛−1

𝑛=0

+ (𝜆 − 𝑚𝑙
2 − |𝑚𝑙|)𝑎𝑛𝑧

𝑛} = 0 

(4.29) 

The first term in equation (4.29), (1 − 𝑧2)𝑛(𝑛 − 1)𝑎𝑛𝑧
𝑛−2 can be written as, 

 
∑{(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑧

𝑛 − 𝑛(𝑛 − 1)𝑎𝑛𝑧
𝑛}

𝑛=0

 
(4.30) 

Substitute equation (4.30) to equation (4.29), 

 
∑ 𝑧𝑛{(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑛(𝑛 + 1)𝑎𝑛 − 2(1 + |𝑚𝑙|)𝑛𝑎𝑛

𝑛=0

+ (𝜆 − 𝑚𝑙
2 − |𝑚𝑙|)𝑎𝑛} = 0 

(4.31) 

When 𝑧 = cos 𝜃 = 1, the series diverges unless it terminates for some value of 𝑛. 

So for some value of 𝑛, 

 

 

(4.32) 

Equation (4.32) then can be simplified to  

 𝑎𝑛+2 =
(𝑛 + |𝑚𝑙|)(𝑛 + |𝑚𝑙| + 1) − 𝜆

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 (4.33) 

          nn ammnmnnann   

2

2 12112 
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Therefore, 

 
𝜆 = (𝑛 + |𝑚𝑙|)(𝑛 + |𝑚𝑙| + 1) 

(4.34) 

 1 ll  
(4.35) 

 

 
𝑙 = 𝑛 + |𝑚𝑙|                    𝑛 = 0,1,2, … 

(4.36) 

 𝛩(𝜃) can be constructed as 

 𝛩(𝜃) = 𝑠𝑖𝑛|𝑚𝑙|𝜃 ∑ 𝑎𝑛𝑐𝑜𝑠
𝑛𝜃

𝑙−|𝑚𝑙|

𝑛=0,2,4
𝑛=1,3,5

 (4.37) 

The specific relation between the normalized function and the associated 

Legendre function is  

 𝛩(𝜃) = {(
2𝑙 + 1

2
)
(𝑙 − |𝑚𝑙|)!

(𝑙 + |𝑚𝑙|)!
}

1
2

𝑃𝑙
|𝑚𝑙|(cos 𝜃) (4.38) 

Using normalization condition, 𝑎0 coefficient can be determined 

 ∫ 𝛩2(𝜃) sin 𝜃 𝑑𝜃 = 1
𝜋

0

 (4.39) 

Substituting equation (4.37) to equation (4.39) and by calculating 𝛩(𝜃) for 𝑚𝑙 =

0,1,2, … 𝑎𝑛𝑑 𝑙 = 0,1,2, .. the analytical solution of 𝛩(𝜃) equation can be found. Table 4.1 

shows a few of the analytical eigenfunctions. 
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Table 4.1 Analytical Results of 𝛩(𝜃) 

Analytical Eigenfunctions 

𝑙 𝑚𝑙 𝛩(𝜃) 

0 0 √2

2
 

1 0 √6

2
cos 𝜃 

 ±1 √3

2
sin 𝜃 

2 0 √10

4
(3𝑐𝑜𝑠2𝜃 − 1) 

 ±1 √15

2
sin 𝜃 cos 𝜃 

 ±2 √15

4
𝑠𝑖𝑛2𝜃 

3 0 3√14

4
(
5

3
𝑐𝑜𝑠3𝜃 − cos 𝜃) 

 ±1 √42

8
sin 𝜃 (5𝑐𝑜𝑠2𝜃 − 1) 

 ±2 √105

4
𝑠𝑖𝑛2𝜃 cos 𝜃 

 ±3 √70

8
𝑠𝑖𝑛3𝜃 
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4.3. The Radial Equation 

The potential energy in the radial equation, (3.8) is the Coulombic potential.  

 𝑉(𝑟) = −
𝑍𝑒2

4𝜋𝜖0𝑟
 (4.40) 

where 𝑍 is the atomic number, which for the hydrogen atom will be 1. 𝜖0 is the quantity 

of vacuum permittivity which has a value of 8.854 × 10−12 C2 N-1 m-2. 

Substituting 𝑘, 𝜆, 𝐼, and (4.40) into equation 3.8 and rearranging,  

 −
ℏ2

2𝑚
{𝑅′′ +

2

𝑟
𝑅′} +

𝑙(𝑙 + 1)ℏ2𝑅

2𝑚𝑟2
−

𝑍𝑒2

4𝜋𝜖0𝑟
𝑅 = 𝐸𝑅 (4.41) 

Using an operator notation in order to define a function of the differentiation 

operator (𝑅′′ =
𝜕2

𝜕𝑟2  𝑎𝑛𝑑 𝑅′ =
𝜕

𝜕𝑟
), equation 4.41 can be re-written as 

 −
ℏ2

2𝑚
{

𝜕2

𝜕𝑟2
+

2

𝑟

𝜕

𝜕𝑟
} + [

𝑙(𝑙 + 1)ℏ2

2𝑚𝑟2
−

𝑍𝑒2

4𝜋𝜖0𝑟
] 𝑅 = 𝐸𝑅 (4.42) 

Solutions of the radial wave equation can be found in many different textbooks. 

According to (Atkins et al, 2011) and (Abramowits et al, 1965), the acceptable solutions 

for radial wave function are the associated Laguerre functions. By incorporating the 

associated Laguerre functions into radial wavefunction, the analytical solutions for few 

lower orbitals can be shown in Table 2. 

 𝑅𝑛𝑙(𝑟) = −{(
2𝑍

𝑛𝑎
)
3 (𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]3
} 𝜌𝑙𝐿𝑛+𝑙

2𝑙+1(𝜌)𝑒−
𝜌
2 (4.43) 

 Where 𝜌 = (
2𝑍

𝑛𝑎
) 𝑟 and 𝑎 =

4𝜋𝜀0ℏ2

𝜇𝑒2  is the Bohr radius which has a value of 

5.529576 × 10−9 𝑐𝑚.  
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Table 4.2 Radial Wave Functions 

𝑛 𝑙 𝑅𝑛𝑙(𝑟) 

1 0 

2 (
𝑍

𝑎
)

3
2
𝑒−

𝑍𝑟
𝑎  

0 2 1

√2
(
𝑍

𝑎
)

3
2
(1 −

𝑍𝑟

2𝑎
) 𝑒−

𝑍𝑟
2𝑎 

1 2 
1

2√6
(
𝑍

𝑎
)

5
2
𝑟𝑒−

𝑍𝑟
2𝑎 

0 3 
2

3√3
(
𝑍

𝑎
)

5
2
(1 −

2𝑍𝑟

3𝑎
+

2𝑍2𝑟2

27𝑎2
) 𝑒−

𝑍𝑟
3𝑎 

1 3 8

27√6
(
𝑍

𝑎
)

3
2
(
𝑍𝑟

𝑎
−

𝑍2𝑟2

6𝑎2
)𝑒−

𝑍𝑟
3𝑎 

2 3 4

81√30
(
𝑍

𝑎
)

7
2
𝑟2𝑒−

𝑍𝑟
3𝑎 

 

The allowed energy in the radial wave function (equation 4.42) can be expressed 

as  

 𝐸𝑛 = −(
𝑍2𝑚𝑒4

32𝜋2𝜖0
2ℏ2

)
1

𝑛2
           𝑛 = 0,1,2, … (4.44) 

The roles of quantum numbers in the Hydrogen atom are now clear. The principal 

quantum number, 𝑛, has values that range from 𝑛 = 1,2,3… It controls the range of 

values of 𝑙 = 0,1,2, … 𝑛 − 1 and the overall energy in each orbital. The orbital angular 

momentum quantum number, 𝑙 denotes the shapes of the orbital. The magnetic quantum 

number, 𝑚𝑙, denotes the number of orbitals and their orientation within a subshell. 
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For a one electron wave functions in atoms are called atomic orbitals. Atomic 

orbitals with 𝑙 = 0 are called s-orbitals, while 𝑙 = 1, 𝑙 = 2, and 𝑙 = 3 are called p-, d-, 

and f-orbitals, respectively. These atomic orbitals can be represented by using energy 

sequence shown in Table 4.3 (Atkins et al., 2011).  

Table 4.3 Orbitals 

𝑛 𝑙 Orbitals 

1 0 1s 

2 0 2s 

 1 2p 

3 0 3s 

 1 3p 

 2 3d 

  

4.4. The Einstein Coefficient 

Since the wave functions of 𝛩(𝜃), 𝛷(𝜙), and 𝑅(𝑟) have been calculated, 

Einstein A Coefficients can then be calculated by using equation 2.22.   

In order to deal with the internal motion of the system, a reduced mass 𝜇 is 

introduced and it is defined as 

 
𝜇 =

𝑚𝑒 − 𝑚𝑁

𝑚𝑒 + 𝑚𝑁
 

(4.45) 

where 𝑚𝑒 and 𝑚𝑁 are the electronic and nucleus mass with a value of 9.10304 ×

10−28𝑔 for 𝜇  in this case. It is important to note that 𝜇 in the energy equation represents 

mass and is different from 𝜇𝑈𝐿 in the Einstein A coefficient which represents the 
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transition dipole moment. The transition dipole moment is a three-dimensional integral 

where 𝜇𝑈𝐿 and 𝑀𝑥,𝑦,𝑧 is a vector. 

 𝜇𝑈𝐿⃑⃑ ⃑⃑ ⃑⃑  = ∫𝛹𝑈𝑀𝑥,𝑦,𝑧
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑𝛹𝐿𝑑𝜏 (4.46) 

where 𝑀𝑥,𝑦,𝑧 = 𝑒 ⋅ 𝑟  with 𝑟 = [
𝑥
𝑦
𝑧
] in which 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 defines the direction of the 

moment and 𝑒 is the photon charge with the value of  1.6 × 10−19𝐶 = 4.8027 ×

10−10statcoulombs. To calculate 𝜇𝑈𝐿, two wave functions (upper level and lower level) 

must be considered, and the following comparison will consider an upper energy level of 

2𝑝 (𝑛 = 2, 𝑙 = 1) and a lower energy level of 1𝑠 (𝑛 = 1, 𝑙 = 0). 

 

 
|𝜇𝑈𝐿|

2 = |𝜇𝑥,𝑈𝐿|
2
+ |𝜇𝑦,𝑈𝐿|

2
+ |𝜇𝑧,𝑈𝐿|

2
 

(4.47) 

To compute the wave function, the radial wave function and spherical wave 

function are needed. By multiplying both wave functions, the hydrogen wave function 

can be calculated.  

 
𝛹(𝜃, 𝜙, 𝑟) = 𝑌(𝜃, 𝜙)𝑅(𝑟) 

(4.48) 

Using equation 4.11, Table 4.1, and Table 4.2,   

 𝛹2𝑝 =
1

4√2𝜋
(
𝑍

𝑎
)

5
2
𝑟𝑒−

𝑍𝑟
2𝑎 cos 𝜃 (4.49) 

 𝛹1𝑠 =
1

√𝜋
(
𝑍

𝑎
)

3
2
𝑒−

𝑍𝑟
2𝑎 (4.50) 

 

  



41  

Using the newly found wave functions, the transition dipole moment can be 

calculated. The transition dipole moment is calculated form the upper energy level to the 

lower energy level. Noting 

 
𝑥 = 𝑟 𝑠𝑖𝑛𝜃 cos𝜙 

𝑦 = 𝑟 sin 𝜃 sin𝜙 

𝑧 = 𝑟 cos 𝜃 

(4.51) 

Since spherical coordinates are needed to simulate the hydrogen atom, therefore 

the differential volume will be in spherical coordinates.  

 
𝑑𝜏 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 

(4.52) 

Using equation 4.49 and 4.50,  

 𝜇𝑥,𝑈𝐿 = ∭𝛹2𝑝 ⋅ 𝛹1𝑠 ⋅ 𝑒𝑥 ⋅ 𝑑𝜏 (4.53) 

 𝜇𝑦,𝑈𝐿 = ∭𝛹2𝑝 ⋅ 𝛹1𝑠 ⋅ 𝑒𝑦 ⋅ 𝑑𝜏 (4.54) 

 𝜇𝑧,𝑈𝐿 = ∭𝛹2𝑝 ⋅ 𝛹1𝑠 ⋅ 𝑒𝑧 ⋅ 𝑑𝜏 (4.55) 

Equation 4.59-4.61 can be separated into three integrals 

 𝜇𝑥,𝑈𝐿 =
𝑒

4𝜋√2
∫ 𝑟4𝑒−

3𝑍𝑟
2𝑎 𝑑𝑟 ∫ cos 𝜃 𝑠𝑖𝑛2𝜃 𝑑𝜃 ∫ cos𝜙 𝑑𝜙

2𝜋

𝜙=0

𝜋

𝜃=0

∞

𝑟=0

= 0 (4.56) 

as ∫ sin𝜙 𝑑𝜙
2𝜋

𝜙=0
= 𝑠𝑖𝑛 𝜙|

0

2𝜋

= 0 

 𝜇𝑦,𝑈𝐿 =
𝑒

4𝜋√2
∫ 𝑟4𝑒−

3𝑍𝑟
2𝑎 𝑑𝑟 ∫ cos 𝜃 𝑠𝑖𝑛2𝜃 𝑑𝜃 ∫ sin𝜙 𝑑𝜙

2𝜋

𝜙=0

𝜋

𝜃=0

∞

𝑟=0

= 0 (4.57) 

as ∫ sin𝜙 𝑑𝜙
2𝜋

𝜙=0
= 𝑐𝑜𝑠 𝜙|

0

2𝜋

= 0 
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𝜇𝑧,𝑈𝐿 =
𝑒

4𝜋√2
∫ 𝑟4𝑒−

3𝑍𝑟
2𝑎 𝑑𝑟 ∫ sin 𝜃 𝑐𝑜𝑠2𝜃 𝑑𝜃 ∫ 𝑑𝜙

2𝜋

𝜙=0

𝜋

𝜃=0

∞

𝑟=0

=
256 ⋅ 𝑒 ⋅ 𝑎

243𝑍√2
 (4.58) 

where 𝑎 is the Bohr radius  

By substituting the value, 

 
𝜇𝑈𝐿 = 1.8946 × 10−18 

 

 𝜈 =
𝐸

ℎ
= −

𝑍2𝜇𝑒4

8𝜖0
2ℎ3

(
1

𝑛𝑈
2 −

1

𝑛𝐿
2) = 2.4652 × 10−15 𝑠−1  

 𝐴𝑈𝐿 =
8𝜋ℎ𝜈𝑈𝐿

3

𝑐3

|𝜇𝑈𝐿|
2

6𝜖0ℏ2
= 6.2654 × 108 𝑠−1  

 According to NIST (Sansonetti et al., n.d.) , 𝐴𝑈𝐿 is 6.2659 × 108 𝑠−1 
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5. Matrix Formulations for the Hydrogen Atom 

Analytical solutions do not exist for most problems. In this section, the Phi, Theta, 

and Radial equations are transformed into a matrix eigenvalue problem by using finite 

difference equations. This is done in order to develop computational procedures that can 

later be extended to more general problems. For the present problem, computations can 

be verified with the analytical solutions.  

5.1. Phi Equation 

A second order finite difference approximation to the second derivative is used in 

Equation (3.13).  

  

 
Φ𝑖−1 − 2Φ𝑖 − Φ𝑖+1

Δ𝜙2
= −𝑚𝑙

2Φ (5.1) 

Using equation 5.1 and the cyclic boundary condition (equation 4.4) which is 

being implemented on the first and last rows, the matrix eigenvalue problem can be 

constructed as follows 

 
1

Δ𝜙2

[
 
 
 
 
 
−2 1 0
1 −2 1
⋱ ⋱ ⋱

0 0 1
⋱ ⋱ 0
⋱ ⋱ 0

0 ⋱ ⋱
0 … …
1 0 0

⋱ ⋱ 0
1 −2 1
0 1 −2]

 
 
 
 
 

[
 
 
 
 
 

𝜙

]
 
 
 
 
 

= −𝑚𝑙
2

[
 
 
 
 
 

𝜙

]
 
 
 
 
 

 

(5.2) 

where the cyclic boundary condition is implemented on the first and last rows.  
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5.2. Theta Equation 

By rearranging the basic governing equation, (3.13), and casting it in an operator 

notation  

 

 [
𝜕2

𝜕𝜃2
+

cos θ

sin 𝜃

𝜕

𝜕𝜃
−

𝑚𝑙
2

𝑠𝑖𝑛2𝜃
]𝛩 = −𝜆𝛩 (5.3) 

As before we replace the derivatives with second order finite differences. 

 

 [
𝛩𝑖+1 − 2𝛩𝑖 + 𝛩𝑖−1

𝛥𝜃2
+

cos 𝜃

sin 𝜃
(
𝛩𝑖+1 − 𝛩𝑖−1

2𝛥𝜃
) −

𝑚𝑙
2𝛩𝑖

𝑠𝑖𝑛2𝜃
] = −𝜆𝛩𝑖 (5.4) 

 

Equation (5.4) then can be rearranged into a row of a matrix equation as   

 



































































































1

1

1

1

22

2

22
...

2

1

sin

cos1

sin

2

2

1

sin

cos1
...

i

i

i

i

i

i

i

i

ii

i m












 

(5.5) 

 

All of the matrix coefficients have a term that becomes singular at the boundaries, 

0 and . Ostensibly, the problem can be eliminated by imposing Dirichlet conditions, 

(0)=()=0. Von Neumann conditions, ’(0)=’()=0 also will eliminate the 

singularities. Examples of these approaches are found throughout the literature. However, 

by inspection of the analytical solutions, 𝛩(𝜃) and 𝛩′(𝜃) go to finite values at the 

boundaries. These conditions are appropriate only for specific solutions. The matrix 

approach will return several solutions. 
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The first term on the left hand side of equation (5.3) is a second derivative, which 

can be evaluated using one-sided differences at the boundaries.  

𝜕𝛩

𝜕𝜃
=

−
3
2𝛩𝑖 + 2𝛩𝑖+1 −

1
2𝛩𝑖+2

2𝛥𝜃
 (5.6) 

𝜕2𝛩

𝜕𝜃2
=

2𝛩𝑖 − 5𝜃𝑖+1 + 4𝛩𝑖+2 − 𝛩𝑖+3

𝛥𝜃2
 (5.7) 

𝜕𝛩

𝜕𝜃
=

−
3
2𝛩𝑖 + 2𝛩𝑖−1 −

1
2𝛩𝑖−2

2𝛥𝜃
 (5.8) 

𝜕2𝛩

𝜕𝜃2
=

2𝛩𝑖 − 5𝛩𝑖−1 + 4𝛩𝑖+2 − 𝛩𝑖−3

𝛥𝜃2
 (5.9) 

 

The remaining terms, those with sin in the denominator, are extrapolated to the 

boundaries from the interior points, using a Taylor series. We define these terms as the 

function F(). At the lower, i=1 boundary, for example, 

 

 𝐹1 = 𝐹2 − 𝐹2
′𝛥𝜃 + 𝐹2

′′
𝛥𝜃2

2
− 𝐹2

′′′
𝛥𝜃3

6
+ 𝐻. 𝑂. 𝑇 (5.10) 

 

The complete expansion of the theta equation can be found in Appendix A.  
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Matrix then can be constructed using finite difference equations for forward 

differencing (equations 5.12 and 5.13), backward differencing (equations 5.14 and 5.15), 

and central differencing (equation 5.7 and 5.8) which shown in equation 5.16.  

 

[
 
 
 
 
 
 
 
 
 2

𝛥𝜃2
+ 𝑓1

1

𝛥𝜃2
−

cos𝜃𝑖

sin 𝜃𝑖

1

2𝛥𝜃
 
 

−5

Δ𝜃2
+ 𝑓1

−2

𝛥𝜃2
−

𝑚𝑙
2

𝑠𝑖𝑛2𝜃𝑖

⋱
 

4

𝛥𝜃2
+ 𝑓1

1

𝛥𝜃2
+

cos𝜃𝑖

sin𝜃𝑖

1

2𝛥𝜃
⋱
 

−1

𝛥𝜃2
+ 𝑓1

 
 

 
⋱
 

 

 
  
 

 

 
  
 

 
  
 

 
  
 

 
 
 

 
 
 

 
 
 

 
 
 

  
−1

𝛥𝜃2 
+ 𝑓1

⋱ 
4

𝛥𝜃2
+ 𝑓1

⋱ 
−5

𝛥𝜃2
+ 𝑓1

⋱ 
2

𝛥𝜃2
+ 𝑓1]

 
 
 
 
 
 
 
 
 

[
 
 
 
 

 
  
Θ 
 
 ]
 
 
 
 

= 𝐸

[
 
 
 
 

 
  
𝛩 
 
 ]
 
 
 
 

 

(5.11) 

In the above f1 denotes terms in the Taylor series expansion for F1(), as in 

Appendix A. 

 

5.3. Radial Equation 

To compute the radial wave function numerically, equation 4.42 will be used. 

Upon substituting the finite difference formulas and rearranging, we have the matrix 

interior row equation. 

 [−
ℏ2

2𝑚𝛥𝑟2
+

ℏ2

2𝑚𝑟𝛥𝑟
] 𝑅𝑖−1 + [

ℏ2

𝑚𝛥𝑟2
+

𝜆ℏ2

2𝑚𝑟2
−

𝑍𝑒2

4𝜋ϵ0𝑟
] 𝑅𝑖

+ [−
ℏ2

2𝑚𝛥𝑟2
−

ℏ2

2𝑚𝑟𝛥𝑟
] 𝑅𝑖+1 = 𝐸𝑅𝑖 

(5.12) 

 

From the analytical solution by Atkins et al. and Levine, it is shown that a 

reasonable computational domain for the hydrogen atom is 30𝑎0 where 𝑎0 is the Bohr 



47  

Radius. Atkins et al compared the effective potential experienced by an electron in a 

hydrogen atom and concluded the range of the domain. Therefore the domain for 𝑟 in this 

particular problem is 0 to 30𝑎0. By using this domain, there will be a singularity, at 𝑟 =

0, as we see in the second term in each of the brackets. In order to eliminate this 

singularity, the Taylor series extrapolation is used on the singular terms from the interior 

points. Note some are negative, and others positive; they tend to a finite number at r=0. 

Using the equation 5.10 from the previous subsection on the Taylor series extrapolation, 

the singular function can be written as 

 F(R) = −
ℏ2

𝑚𝑟
𝑅′ + [

𝜆ℏ2

2𝑚𝑟2
−

𝑍𝑒2

4𝜋𝜖0𝑟
] 𝑅 (5.13) 

One-sided differences are used on the boundaries as before. The complete 

derivation for the radial equation is in Appendix B. The matrix configuration for the 

radial equation is shown in equation 5.21. Note there are no extrapolated terms on the 

upper boundary. 

 

[
 
 
 
 
 
 
 
 
 −ℏ𝟐

𝒎∆𝒓
+ 𝒇𝟏

−ℏ𝟐

𝟐𝐦𝚫𝒓𝟐 +
ℏ𝟐

𝟐𝐦𝐫∆𝐫 
 

𝟓ℏ𝟐

𝟐𝐦𝚫𝒓𝟐 + 𝒇𝟏

ℏ𝟐

𝐦∆𝒓𝟐 +
𝒍(𝒍 + 𝟏)ℏ𝟐

𝟐𝒎𝒓𝟐 −
𝒁𝒆𝟐

𝟒𝝅𝒆𝟎𝒓
⋱
 

−𝟐ℏ𝟐

𝒎𝜟𝒓𝟐 + 𝒇𝟏

−ℏ𝟐

𝟐𝐦𝚫𝒓𝟐 −
ℏ𝟐

𝟐𝐦𝐫∆𝐫
⋱
 

ℏ𝟐

𝟐𝒎𝜟𝒓𝟐 + 𝒇𝟏

 
 

 
⋱
 

 

 
  
 

 

 
  
 

 
  
 

 
  
 

 
 
 

 
 
 

 
 
 

 
 
 

  
ℏ𝟐

𝟐𝒎𝜟𝒓𝟐

⋱ 
−𝟐ℏ𝟐

𝒎𝜟𝒓𝟐

⋱ 
𝟓ℏ𝟐

𝟐𝐦𝚫𝒓𝟐

⋱ 
−ℏ𝟐

𝒎∆𝒓]
 
 
 
 
 
 
 
 
 

[
 
 
 
 

 
  
𝐑 
 
 ]
 
 
 
 

= 𝑬

[
 
 
 
 

 
  
𝑹 
 
 ]
 
 
 
 

 

 

 

 
 

(5.14) 
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6. Computational Results 

Simulation results were obtained by developing the matrix (Section 5) in the code 

that was written in Fortran 95 for this thesis. Additionally, Lapack MKL library routines 

were used in order to compute the eigenvalues and the eigenfunction, while Matlab was 

used to calculate the wave function and for post processing. For all simulation results, a 

computational domain with 75 points was used for the Theta equation while 500 points 

were used for the Phi and Radial equation. A grid independence study was conducted to 

obtain a computational grid with adequate solution accuracy and low CPU and wall time. 

It is expected that the simulation results will be the same as the analytical solutions.  

Few grids were attempted for the grid independence study; 10, 50, 100, 500, and 

1000 grid points. It was found that the theta equation, 75 grid points were enough as the 

eigenvalue is the same as 50 and 100 grid points. However, when the eigenfunctions were 

compared with 75 grid points, the eigenfunctions were the same as 100 grid points but it 

was better than 50 grid points. For the phi equation, 500 grid points were needed as the 

eigenvalue and the eigenfunctions improved when compared to 400 grid points but did 

not improved after 500 grid points. For the radial equations, the eigenfunctions were 

plotted and compared between 50, 100, 500, and 1000 grid points. The result showed that 

the eigenfunctions did not improved after 500 grid points where the eigenvalue did not 

improve after 100 grid points. Therefore 500 grid points were used for the theta equation.  

Table 6.1 shows the comparison of the results between the analytical and the 

numerical eigenvalue solutions of the Theta equation and Figure 6.1 to 6.5 shows a few 

numerical results compared against the analytical results of the eigenfunctions. 
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Table 6.1. Orbitals 

Eigenvalues 

𝑙 Numerical Analytical Percentage Error (%) 

0 0 0 0 

1 −2.000 −2 0 

2 −5.998 −6 0.03333 

3 −11.99 −12 0.08333 

4 −19.96 −20 0.2 

 

 

Figure 6.1. Eigenfunctions of the Theta Equation: Analytical VS Numerical Results 𝑙 =
1,𝑚𝑙 = ±1 
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Figure 6.2. Eigenfunctions of the Theta Equation: Analytical VS Numerical Results 𝑙 =
2,𝑚𝑙 = ±1 

 

 

Figure 6.3. Eigenfunctions of the Theta Equation: Analytical VS Numerical Results 𝑙 =
3,𝑚𝑙 = ±1 
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Figure 6.4. Eigenfunctions of the Theta Equation: Analytical VS Numerical Results 𝑙 =
2,𝑚𝑙 = ±2 

 

 

Figure 6.5. Eigenfunctions of the Theta Equation: Analytical VS Numerical Results 𝑙 =
3,𝑚𝑙 = ±2 

  

Table 6.2 shows the comparison of the results between the analytical solutions 

and the numerical solutions of the Phi equation and Figure 6.6 to 6.10 shows few 
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numerical results compared against the analytical results of the eigenfunctions. From 

equation 4.12, it is shown that the results of the eigenfunctions contained real and 

imaginary components. However, by using LAPACK routine, the eigenfunctions that are 

computed includes the real components as well as the imaginary components of 𝛷.  

 

Table 6.2. Eigenvalues results of Φ(𝜙) 

Eigenvalues 

𝑚𝑙 Numerical Analytical Percentage Error (%) 

0 0 0 0 

±1 −1 −1 0 

±1 −1 −1 0 

±2 −3.998 −4 0.05 

±2 −3.998 −4 0.05 
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Figure 6.6. Eigenfunctions of the Phi equation: Analytical VS Numerical Results (ml=0) 

 

Figure 6.7. Eigenfunctions of the Phi equation: Analytical VS Numerical Results (ml=+1) 
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Figure 6.8. Eigenfunctions of the Phi equation: Analytical VS Numerical Results (ml=-1) 

 

Figure 6.9. Eigenfunctions of the Phi equation: Analytical VS Numerical Results (ml=+2) 
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Figure 6.10. Eigenfunctions of the Phi equation: Analytical VS Numerical Results (ml=-

2) 
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Table 6.3 shows the comparison of the results between the analytical solutions 

and the numerical solutions of the Radial equation and Figure 6.11 to 6.16 shows few 

numerical results compared against the analytical results of the eigenfunctions. 

Table 6.3. Eigenvalues results of R(𝑟) 

Energy Eigenvalue 

𝑛 Numerical Analytical Percentage Error (%) 

1 −0.2179𝑒−10 −0.2179𝑒−10 0 

2 −0.5447𝑒−11 −0.5448𝑒−11 0.01835 

3 −0.2417𝑒−11 −0.2421𝑒−11 0.2073 

4 −0.1129𝑒−11 −0.1362𝑒−11 17.11 

 

 

Figure 6.11. Eigenfunctions of the Radial Equation: Analytical VS Numerical Results 

(𝑙 = 0, 𝑛 = 1, 1𝑠) 
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Figure 6.12. Eigenfunctions of the Radial Equation: Analytical VS Numerical Results 

(𝑙 = 0, 𝑛 = 2, 2𝑠) 

 

 

Figure 6.13. Eigenfunctions of the Radial Equation: Analytical VS Numerical Results 

(𝑙 = 1, 𝑛 = 2, 2𝑝) 
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Figure 6.14. Eigenfunctions of the Radial Equation: Analytical VS Numerical Results 

(𝑙 = 0, 𝑛 = 3, 3𝑠) 

 

Figure 6.15. Eigenfunctions of the Radial Equation: Analytical VS Numerical Results 

(𝑙 = 1, 𝑛 = 3, 3𝑝). 
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Figure 6.16. Eigenfunctions of the Radial Equation: Analytical VS Numerical Results 

(𝑙 = 2, 𝑛 = 3, 3𝑑). 

 

By using the wave functions that were computed, Einstein A coefficient then can 

be computed by using Matlab. It is used as post processing as it has a built in function 

that able to numerically integrate a .dat file where the all the eigenfunctions that were 

computed are stored. Table 6.4 shows both the analytical and the numerical results that 

were compared to the NIST (Sansonetti et al., n.d.) database for accuracy.  
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Table 6.4. NIST (Sansonetti et al., n.d.) Versus Numerical Result: Einstein A Coefficient 

Configurations 𝐴𝑈𝐿 (NIST) 𝐴𝑈𝐿 (Numerical) Percentage Error (%) 

1𝑠
2𝑝

 
6.2649 × 108 6.2565 × 108 0.1341 

2𝑠
3𝑝

 
3.7353 × 108 3.672 × 108 1.6946 

1𝑠
3𝑝

 1.6725 × 108 1.6119 × 108 3.6233 

 

By using the Einstein A Coefficient that has been computed, a lot of coefficients 

with interest to radiation problems then can be determined. One of the radiation 

properties that were used for this example is spontaneous spectral emission 𝜖𝜆 (𝜖𝜆 =

𝑔𝑈𝑁𝑈𝐴𝑈𝐿ℎ𝑐𝜙𝜆
1

4𝜋𝜆
). 

Table 6.5. Spontaneous spectral emission comparison 

Configurations 𝜖𝜆 (NIST) 𝜖𝜆 (Numerical) 

1𝑠
2𝑝

 
8.2020 × 1012 8.1910 × 1012 

2𝑠
3𝑝

 
1.3584 × 1012 1.3354 × 1012 

1𝑠
3𝑝

 6.0822 × 1011 5.8619 × 1011 
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7. Conclusion 

Figure 7.1 and Table 7.1 shows the percentage error comparison between 

𝑅(𝑟), 𝛩(𝜃), 𝑎𝑛𝑑 𝛷(𝜙). 

 

 

Figure 7.1. Percentage Error of the Eigenvalues 

 

Table 7.1. Percentage Error of the Eigenvalues 

Eigenvalues Percentage Error (%) 

 𝑅(𝑟) 𝛩(𝜃) 𝛷(𝜙) 

1st 0. 1𝑒−18 0. 1𝑒−18 0. 1𝑒−18 

2nd 0.01835 0.03333 0.03 

3rd 0.2073 0.08333 0.03 

4th  17.11 0.2 0.125 
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Through comparing both the analytical and numerical solution, it shows that the 

matrix method is an accurate method to compute wave functions for lower energy levels 

and comparing the percentage error between 𝑅(𝑟), 𝛩(𝜃), 𝑎𝑛𝑑 𝛷(𝜙), it shows that as the 

energy level increase, the percentage error increase as well (Shown in Figure 7.1 and 

Table 7.1). However, the percentage error is significantly low, therefore it can be said 

that the matrix method is an acceptable and accurate method to compute both eigenvector 

and eigenvalue. 
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8. Future Work 

 

Even though atomic hydrogen atom has been computed; in atmospheric re-entry 

there are different monatomic, diatomic, and polyatomic species. Therefore, for future 

work, a different monatomic atom can be analyzed using the matrix method and compare 

the results with NIST database. Diatomic molecules and polyatomic molecules can be 

analyzed too using the matrix method. In order to analyze diatomic molecules and 

polyatomic molecules, three-dimensional matrix need to be constructed. In addition, 

adaptive grid refinement can be applied to the model.
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A. Taylor Series Expansion of the Theta Equation 

𝐹(𝜃) =
cos 𝜃

sin 𝜃
𝛩′(𝜃) −

𝑚𝑙
2𝛩(𝜃)

𝑠𝑖𝑛2𝜃
 

𝐹′(𝜃) =
cos 𝜃

sin 𝜃
𝛩′′(𝜃) −

1 + 𝑚𝑙
2

𝑠𝑖𝑛2𝜃
𝛩′(𝜃) + 2𝑚𝑙

2
cos 𝜃

𝑠𝑖𝑛3𝜃
𝛩(𝜃) 

𝐹′′(𝜃) =
cos 𝜃

sin 𝜃
𝛩′′′(𝜃) −

2 + 𝑚𝑙
2

𝑠𝑖𝑛2𝜃
𝛩′′(𝜃) + 2(1 + 2𝑚𝑙

2)
cos 𝜃

𝑠𝑖𝑛3𝜃
𝛩′(𝜃)

− 2𝑚𝑙
2
1 + 2𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛4𝜃
𝛩(𝜃) 

  

Taylor Series: 

𝐹0 = 𝐹1 − 𝐹1
′𝛥𝜃 −

𝐹1
′′

2
𝛥𝜃2 −

𝐹1
′′′

6
𝛥𝜃3+… 

 

𝛥𝜃 =
𝜃(𝜋)

𝑀𝑎𝑥 𝑃𝑜𝑖𝑛𝑡𝑠 − 1
 

 

Upper Boundary (𝜽 = 𝟎, 𝒊 = 𝟏): 

Forward Differencing: 

𝛩′ =
1

𝛥𝜃
[−

3

2
𝜃𝑖 + 2𝜃𝑖+1 −

1

2
𝜃𝑖+2] 

𝛩′′ =
1

𝛥𝜃2
[2𝜃𝑖 − 5𝜃𝑖+1 + 4𝜃𝑖+2 − 𝜃𝑖+3] 

𝛩′′′ =
1

𝛥𝜃3
[−

5

2
𝜃𝑖 + 9𝜃𝑖+1 − 12𝜃𝑖+2 + 7𝜃𝑖+3 −

3

2
𝜃𝑖+4] 

𝜃 = 𝛥𝜃 
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𝐹1 =
cos 𝜃

sin 𝜃

1

𝛥𝜃
[−

3

2
𝜃𝑖 + 2𝜃𝑖+1 −

1

2
𝜃𝑖+2] −

𝑚𝑙
2𝛩𝑖

𝑠𝑖𝑛2𝜃
 

𝐹1
′𝛥𝜃 = 𝛥𝜃 [

cos 𝜃

sin 𝜃

1

𝛥𝜃2
[2𝜃𝑖 − 5𝜃𝑖+1 + 4𝜃𝑖+2 − 𝜃𝑖+3]

−
1 + 𝑚𝑙

2

𝑠𝑖𝑛2𝜃

1

𝛥𝜃
[−

3

2
𝜃𝑖 + 2𝜃𝑖+1 −

1

2
𝜃𝑖+2] + 2𝑚𝑙

2
cos 𝜃

𝑠𝑖𝑛3𝜃
𝛩𝑖] 

𝐹1
′′

2
𝛥𝜃2 =

𝛥𝜃2

2
{
cos 𝜃

sin 𝜃

1

𝛥𝜃3
[−

5

2
𝜃𝑖 + 9𝜃𝑖+1 − 12𝜃𝑖+2 + 7𝜃𝑖+3 −

3

2
𝜃𝑖+4]

−
2 + 𝑚𝑙

2

𝑠𝑖𝑛2𝜃

1

𝛥𝜃2
[2𝜃𝑖 − 5𝜃𝑖+1 + 4𝜃𝑖+2 − 𝜃𝑖+3]

+ 2(1 + 2𝑚𝑙
2)

cos 𝜃

𝑠𝑖𝑛3𝜃

1

𝛥𝜃
[−

3

2
𝜃𝑖 + 2𝜃𝑖+1 −

1

2
𝜃𝑖+2]

− 2𝑚𝑙
2
1 + 2𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛4𝜃
𝛩𝑖} 

 

 

Lower Boundary (𝜽 = 𝝅, 𝒊 = 𝑴𝒂𝒙 𝑷𝒐𝒊𝒏𝒕𝒔): 

Forward Differencing: 

𝛩′ =
1

𝛥𝜃
[
3

2
𝜃𝑖 − 2𝜃𝑖−1 +

1

2
𝜃𝑖−2] 

𝛩′′ =
1

𝛥𝜃2
[2𝜃𝑖 − 5𝜃𝑖−1 + 4𝜃𝑖−2 − 𝜃𝑖−3] 

𝛩′′′ =
1

𝛥𝜃3
[
5

2
𝜃𝑖 − 9𝜃𝑖−1 + 12𝜃𝑖−2 − 7𝜃𝑖−3 +

3

2
𝜃𝑖−4] 

𝜃 = 𝜋 − 𝛥𝜃 

𝐹1 =
cos 𝜃

sin 𝜃

1

𝛥𝜃
[
3

2
𝜃𝑖 − 2𝜃𝑖−1 +

1

2
𝜃𝑖−2] −

𝑚𝑙
2𝛩𝑖

𝑠𝑖𝑛2𝜃
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𝐹1
′𝛥𝜃 = 𝛥𝜃 [

cos 𝜃

sin 𝜃

1

𝛥𝜃2
[2𝜃𝑖 − 5𝜃𝑖−1 + 4𝜃𝑖−2 − 𝜃𝑖−3]

−
1 + 𝑚𝑙

2

𝑠𝑖𝑛2𝜃

1

𝛥𝜃
[
3

2
𝜃𝑖 − 2𝜃𝑖−1 +

1

2
𝜃𝑖−2] + 2𝑚𝑙

2
cos 𝜃

𝑠𝑖𝑛3𝜃
𝛩𝑖] 

𝐹1
′′

2
𝛥𝜃2 =

𝛥𝜃2

2
{
cos 𝜃

sin 𝜃

1

𝛥𝜃3
[
5

2
𝜃𝑖 − 9𝜃𝑖−1 + 12𝜃𝑖−2 − 7𝜃𝑖−3 +

3

2
𝜃𝑖−4]

−
2 + 𝑚𝑙

2

𝑠𝑖𝑛2𝜃

1

𝛥𝜃2
[2𝜃𝑖 − 5𝜃𝑖−1 + 4𝜃𝑖−2 − 𝜃𝑖−3]

+ 2(1 + 2𝑚𝑙
2)

cos 𝜃

𝑠𝑖𝑛3𝜃

1

𝛥𝜃
[
3

2
𝜃𝑖 − 2𝜃𝑖−1 +

1

2
𝜃𝑖−2] − 2𝑚𝑙

2
1 + 2𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛4𝜃
𝛩𝑖} 
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B. Taylor Series Expansion of the Radial Equation 

𝐹 = −
ℏ2

𝑚

𝑅′

𝑟
+

𝜆ℏ

2𝑚

𝑅

𝑟2
−

𝑍𝑒2

4𝜋𝜀0

𝑅

𝑟
 

𝐹′ = −
ℏ2

𝑚
[
𝑅′′

𝑟
+

−𝑅′

𝑟2
] +

𝜆ℏ

2𝑚
[
𝑅′

𝑟2
+

−2𝑅

𝑟3
] −

𝑍𝑒2

4𝜋𝜀0
[
𝑅′

𝑟
+

−𝑅

𝑟2
] 

𝐹′′ = −
ℏ2

𝑚
[
𝑅′′′

𝑟
−

𝑅′′

𝑟2
+

2𝑅′

𝑟3
−

𝑅′′

𝑟2
] +

𝜆ℏ

2𝑚
[
𝑅′′

𝑟2
−

2𝑅′

𝑟3
−

2𝑅′

𝑟3
+

6𝑅

𝑟4
]

−
𝑍𝑒2

4𝜋𝜀0
[
𝑅′′

𝑟
−

𝑅′

𝑟2
−

𝑅′

𝑟2
+

2𝑅

𝑟3
] 

 

Taylor Series: 

𝐹0 = 𝐹1 − 𝐹1
′𝛥𝑟 −

𝐹1
′′

2
𝛥𝑟2 −

𝐹1
′′′

6
𝛥𝑟3+… 

 

𝛥𝑟 =
𝑟(30𝑎0)

𝑀𝑎𝑥 𝑃𝑜𝑖𝑛𝑡𝑠 − 1
 

 

Upper Boundary (𝒓 = 𝟎, 𝒊 = 𝟏): 

Forward Differencing: 

𝑅′ =
1

𝛥𝑟
[−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2] 

𝑅′′ =
1

𝛥𝑟2
[2𝑅𝑖 − 5𝑅𝑖+1 + 4𝑅𝑖+2 − 𝑅𝑖+3] 

𝑅′′′ =
1

𝛥𝑟3
[−

5

2
𝑅𝑖 + 9𝑅𝑖+1 − 12𝑅𝑖+2 + 7𝑅𝑖+3 −

3

2
𝑅𝑖+4] 

𝑟 = 𝛥𝑟 

𝐹1 = −
ℏ2

𝑚

1

𝑟𝛥𝑟
[−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2] +

𝜆ℏ

2𝑚

𝑅𝑖

𝑟2
−

𝑍𝑒2

4𝜋𝜀0

𝑅𝑖

𝑟
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𝐹1
′𝛥𝑟 = 𝛥𝑟 {−

ℏ2

𝑚
[

1

𝑟𝛥𝑟2
(2𝑅𝑖 − 𝑅𝑖+1 + 4𝑅𝑖+2 − 𝑅𝑖+3)

−
1

𝑟2𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2)]

+
𝜆ℏ

2𝑚
[

1

𝑟2𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2) +

−2𝑅𝑖

𝑟3
]

−
𝑍𝑒2

4𝜋𝜀0
[

1

𝑟𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2) +

−𝑅𝑖

𝑟2
]} 

𝐹1
′′

2
𝛥𝑟2 =

𝛥𝑟2

2
{−

ℏ2

𝑚
[

1

𝑟𝛥𝑟3
(−

5

2
𝑅𝑖 + 9𝑅𝑖+1 − 12𝑅𝑖+2 + 7𝑅𝑖+3 −

3

2
𝑅𝑖+4)

−
1

𝑟2𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖+1 + 4𝑅𝑖+2 − 𝑅𝑖+3)

+
2

𝑟3𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2)

−
1

𝑟2𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖+1 + 4𝑅𝑖+2 − 𝑅𝑖+3)]

+
𝜆ℏ

2𝑚
[

1

𝑟2𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖+1 + 4𝑅𝑖+2 − 𝑅𝑖+3)

−
2

𝑟3𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2) −

2

𝑟3𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2)

+
6𝑅𝑖

𝑟4
]

−
𝑍𝑒2

4𝜋𝜀0
[

𝑅′′

𝑟𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖+1 + 4𝑅𝑖+2 − 𝑅𝑖+3)

−
1

𝑟2𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2) −

1

𝑟2𝛥𝑟
(−

3

2
𝑅𝑖 + 2𝑅𝑖+1 −

1

2
𝑅𝑖+2)

+
2𝑅𝑖

𝑟3
]} 
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Lower Boundary (𝒓 = 𝟑𝟎𝒂𝟎, 𝒊 = 𝑴𝒂𝒙 𝑷𝒐𝒊𝒏𝒕𝒔): 

Forward Differencing: 

𝑅′ =
1

𝛥𝑟
[
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2] 

𝑅′′ =
1

𝛥𝑟2
[2𝑅𝑖 − 5𝑅𝑖−1 + 4𝑅𝑖−2 − 𝑅𝑖−3] 

𝑅′′′ =
1

𝛥𝑟3
[
5

2
𝑅𝑖 − 9𝑅𝑖−1 + 12𝑅𝑖−2 − 7𝑅𝑖−3 +

3

2
𝑅𝑖−4] 

𝑟 = 30𝑎0 − 𝛥𝑟 

𝐹1 = −
ℏ2

𝑚

1

𝑟𝛥𝑟
[
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2] +

𝜆ℏ

2𝑚

𝑅𝑖

𝑟2
−

𝑍𝑒2

4𝜋𝜀0

𝑅𝑖

𝑟
 

𝐹1
′𝛥𝑟 = 𝛥𝑟 {−

ℏ2

𝑚
[

1

𝑟𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖−1 + 4𝑅𝑖−2 − 𝑅𝑖−3)

−
1

𝑟2𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2)]

+
𝜆ℏ

2𝑚
[

1

𝑟2𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2) +

−2𝑅𝑖

𝑟3
]

−
𝑍𝑒2

4𝜋𝜀0
[

1

𝑟𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2) +

−𝑅𝑖

𝑟2
]} 
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𝐹1
′′

2
𝛥𝑟2 =

𝛥𝑟2

2
{−

ℏ2

𝑚
[

1

𝑟𝛥𝑟3
(
5

2
𝑅𝑖 − 9𝑅𝑖−1 + 12𝑅𝑖−2 − 7𝑅𝑖−3 +

3

2
𝑅𝑖−4)

−
1

𝑟2𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖−1 + 4𝑅𝑖−2 − 𝑅𝑖−3) +

2

𝑟3𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2)

−
1

𝑟2𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖−1 + 4𝑅𝑖−2 − 𝑅𝑖−3)]

+
𝜆ℏ

2𝑚
[

1

𝑟2𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖−1 + 4𝑅𝑖−2 − 𝑅𝑖−3)

−
2

𝑟3𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2) −

2

𝑟3𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2) +

6𝑅𝑖

𝑟4
]

−
𝑍𝑒2

4𝜋𝜀0
[

𝑅′′

𝑟𝛥𝑟2
(2𝑅𝑖 − 5𝑅𝑖−1 + 4𝑅𝑖−2 − 𝑅𝑖−3)

−
1

𝑟2𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2) −

1

𝑟2𝛥𝑟
(
3

2
𝑅𝑖 − 2𝑅𝑖−1 +

1

2
𝑅𝑖−2)

+
2𝑅𝑖

𝑟3
]} 
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