Goal
To create a completely software-based UAV simulation by utilizing a digital, on-board computer called ArduCopter and a 3D game engine, Unity, to test the success rate of a mission for various UAV models. The goal is to display the “thought processes” of ArduCopter and the actual behavior of the simulated UAV model.

Input
- Altitude
- Latitude/Longitude
- Payload
- Motor Power

Problem
1. Being able to export the output data in a reliable manner, that unity can interpret.
2. How to record the output data. MAVProxy already gives real time updates, now we locate the data log.

Results
MAVProxy/ArduCopter and Unity:
- Receive commands
- Give output
- Unfortunately there is still no link between the two to work together

In the future:
- Simulation will connect to ArduCopter through a Berkley network socket
- Acquiring funding for continuation of the project

Testing Environment

Physical Model
- Unity physics creates the simulation
- Default physics is modified by adding code
 - Ex. Multi-directional drag (show below)

\[F_{\text{Drag,N}} = -C_{\text{Drag,N}} V_N^2 \frac{V_N}{|V_N|} \]

Outputs
Physical model yields output so data can be analyzed and compared.
- Expected outputs:
 - Battery
 - Motor Speed
 - Altitude
 - Distance Flown

Unity
Game engine used to create a 3D physics simulation of the UAV. It interacts with ArduCopter and the team’s customized code.

Visualization
Simulation includes:
- Results of actuator signals
- Signals produced by various sensors
- 3D rendering of the mission

Output Data

Frame Data

MAVProxy
- MAVProxy enables use of companion computing and multiple data links with ArduCopter
- Portable, command, and console based application that helps control SITL

SITL
ArduCopter
Software capable of simulating advanced autonomous flight of quadrotor systems

MAVProxy/ArduCopter and Unity:
- Receive commands
- Give output
- Unfortunately there is still no link between the two to work together