
Annual ADFSL Conference on Digital Forensics, Security and Law 2016
Proceedings

May 24th, 1:00 PM

Acceleration of Statistical Detection of Zero-day Malware in the Acceleration of Statistical Detection of Zero-day Malware in the

Memory Dump Using CUDA-enabled GPU Hardware Memory Dump Using CUDA-enabled GPU Hardware

Igor Korkin
Independent Researchers, Moscow, Russia, igor.korkin@gmail.com

Iwan Nesterow
Independent Researchers, Moscow, Russia, i.nesterow@gmail.com

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Korkin, Igor and Nesterow, Iwan, "Acceleration of Statistical Detection of Zero-day Malware in the Memory
Dump Using CUDA-enabled GPU Hardware" (2016). Annual ADFSL Conference on Digital Forensics,
Security and Law. 10.
https://commons.erau.edu/adfsl/2016/tuesday/10

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2016
https://commons.erau.edu/adfsl/2016
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2016/tuesday/10?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Ftuesday%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 47

ACCELERATION OF STATISTICAL
DETECTION OF ZERO-DAY MALWARE IN THE
MEMORY DUMP USING CUDA-ENABLED GPU

HARDWARE
Igor Korkin Iwan Nesterow

Independent Researchers
Moscow, Russia

{igor.korkin, i.nesterow}@gmail.com

ABSTRACT
This paper focuses on the anticipatory enhancement of methods of detecting stealth software.
Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks
which use malware. In this paper, we will present first an idea of the highest stealth malware, as
this is the most complicated scenario for detection because it combines both existing anti-forensic
techniques together with their potential improvements. Second, we will present new detection
methods which are resilient to this hidden prototype. To help solve this detection challenge, we
have analyzed Windows’ memory content using a new method of Shannon Entropy calculation;
methods of digital photogrammetry; the Zipf–Mandelbrot law, as well as by disassembling the
memory content and analyzing the output. Finally, we present an idea and architecture of the
software tool, which uses CUDA-enabled GPU hardware, to speed-up memory forensics. All three
ideas are currently a work in progress.

Keywords: rootkit detection, anti-forensics, memory analysis, scattered fragments, anticipatory
enhancement, CUDA.

INTRODUCTION
According to the major antivirus companies,
there is presently a significant rise in cyber-
attacks using hidden or rootkit malware
(McAfee Labs, 2015a; Wangen, 2015;
Symantec, 2015). Three tendencies in malware
evolution have become apparent presenting
corresponding cyber-security challenges. The
first one is the custom-made malware attacks.
Applying zero-day or unknown malware makes
investigation of cyber security incidents
significantly more difficult (Jochheim, 2012).
Second, malware uses various anti-forensic
techniques, evasion approaches, and rootkit
mechanisms, which substantially impair their

detection. Finally, investigating this malware
has to meet very tight deadlines.

Well-targeted malware attacks. Recent
cyber security breaches appear to suggest that
a wide range of cyber-attacks are well-targeted.
Nowadays cyber intrusions are rising at an
unprecedented pace. The modern malware such
as BlackEnergy malware infiltrated the
systems that control critical infrastructure,
including oil and gas pipelines, water
distribution systems, and the power grid. The
economic impact of such attacks will be
colossal; for example, a cyber-attack on the 50
power plants in the USA could cause $1T in
economic damage (Jeff, 2015). US Nuclear

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 48 © 2016 ADFSL

Regulatory Commission experienced an 18%
increase in computer security incidents in the
Nuclear Power Plants. These incidents include
unauthorized access, malicious code, and other
access attempts (Dingbaum, 2016). These
cyber–attacks are already happening. Israel’s
Minister of Infrastructure, Energy and Water
said that the country’s Public Utility
Authority had been targeted by malware. He
believes that the terrorist organizations such as
Daesh, Hezbollah, Hamas, and Al Qaeda have
realized this attack (Ragan, 2016). In addition,
the U.K. government believes that ISIS is
planning major cyber-attacks against airlines,
hospitals, and nuclear power plants (Gilbert,
2015). The recent hackers’ attack on
Kaspersky Lab, which was the first cyber-
attack on Antivirus Company and car cyber
hijacking look paltry and unimportant. The
Stuxnet-like malware’s tendency was reinforced
by a cyber-attack on the Kaspersky Lab
(Kaspersky Lab, 2015). In this case, the
malware focused on stealing technologies and
snooping on ongoing investigations. The CEO
said the following: “the cost of developing and
maintaining such a malicious framework is
colossal. The thinking behind it is a generation
ahead of anything we’d seen earlier – it uses a
number of tricks that make it really difficult to
detect and neutralize. It looks like the people
behind Duqu 2.0 were fully confident that it
would be impossible to have their clandestine
activity exposed” (Kaspersky, 2015). This
vulnerability of a respected antivirus company
reflects a highly sophisticated level of cyber-
attacks. It presents a considerable challenge for
zero-day detection for both Windows and
Unix-based operating systems (Farrukh, &
Muddassar, 2012).

Anti-forensic techniques. Malware
applies a variety of anti-forensic and rootkit
techniques to overcome detection, or makes it
much more difficult. Currently, the abnormal
rise of anti-forensic techniques and digital

investigators cannot match this challenge
(SANS Institute, 2015a). According to Alissa
Torres, founder of Sibertor Forensics and
former member of the Mandiant Computer
Incident Response Team (MCIRT), “Attackers
know how forensics investigators work and
they are becoming increasingly more
sophisticated at using methods that leave few
traces behind – we are in an arms race where
the key difference is training” (Seals, 2015).
This trend has been confirmed by the recent
attack on Windows operating system (OS)
using malware, which by encrypting itself was
able to evade popular debugging tools (The
Register, 2015). The authors also underline
that “the attack is more likely to bypass
security checks” and “the source of the attack
is not easily identified by forensics analysis”
(Nat, & Mehtre, 2014). According to the
McAfee Labs 2016 Threats Predictions, “cyber
espionage attacks have become stealthier and
that they have become more impactful than
prior breaches” (McAfee Labs, 2015b). As a
result, it is not enough to create a new
detection tool. We need to take into account
both anti-forensic techniques: current ones and
their expected future developments.

Long-term malware infection.
Malicious activity of stealth malware can result
in financial, reputational, process, and other
losses. There are several examples of malware
which have been stealing data for years. Spy
network Red October (Kaspersky Lab's Global
Research & Analysis Team, 2013) collected
data from diplomatic, government, and science
agencies from the whole world for five years.
Another example was the stealthy,
sophisticated Regin malware, which has been
infecting computers since 2008; the recent
detection of dozens of its modules shows that
this spy network is still active (Weil, 2014;
Paganini, 2015). Such a long-term malware
infection is completely unacceptable for all
business.

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 49

Modern antiviruses do not cover these
three aspects of new malware and have no
ability to react swiftly against such highly
sophisticated malware. Thus actual cyber
security threats demand a complex review of
all existing hidden malware detection methods.

Aim of this project. There is a need to
develop new methods of detecting hidden
malware, which will be resilient to existing
anti-forensic techniques such as rootkit
countermeasures.

In this paper, we present a research project
which seeks to detect zero-day malware in the
memory dump under deliberate
countermeasures. By applying the synthesis of
new methods, we can detect unknown malware
in the memory at a very early stage and thus
prevent their negative sequelae.

Motivation. This paper was inspired by
the book ‘The Art of Memory Forensics’ (Ligh,
Case, Levy, & Walters, 2014) and the
preliminary version of the book ‘Rootkits and
Bootkits: Reversing Modern Malware and Next
Generation Threats’ (Matrosov, Rodionov, &
Bratus, 2016) and other papers. We were also
inspired by helpful comments on the rootkit
detection system MASHKA (Korkin, &
Nesterov, 2014) from Luka Milkovic, Nicolas
Ruff, Giovanni Vigna, Stefan Vömel and
Ibrahim (Abe) Baggili.

This paper consists of six sections.
Section 2 is devoted to the comparative

analysis of the methods used to detect stealth
software. It describes how these methods work
and what their vulnerabilities are. The
combination of existing anti-forensic techniques
shows that hidden malware can overcome all
popular stealth software detection methods.

Section 3 contains the several scenarios of
further improvements of anti-forensic methods.
The idea of the most hidden driver or highest
stealth malware (HighSteM), which overcomes

all popular detection methods and their
possible development. HighSteM functionality
will be given; HighSteM can acquire sensitive
information using memory access without any
interaction with OS functions. The example of
the keyboard keylogger, which works in this
way, is discussed. As a result, we can simulate
the most difficult case scenario for detection,
and this will be used in further research of its
detection.

In section 4, HighSteM detection methods
are presented. We will present a variety of
ideas to solve the detection challenge, using
methods of digital photogrammetry, the Zipf
Mandelbrot law, and methods of artificial
immune systems as well as by disassembling
the memory content and analyzing the output.
These methods will be analyzed in terms of
their vulnerabilities to possible anti-forensic
techniques. Developing, testing, and applying
these new methods require a huge amount of
computational resources which are not
accessible to the vast majority of laboratories.
To solve this time consuming task, we
proposed using modern graphics cards or
CUDA-enabled GPU hardware.

Section 5 explores the idea of signature
search optimization. As a basis for signature
search, the algorithm from the rootkit
detection system MASHKA was chosen. The
suggestion is to combine the facilities of CPU
and GPU so that the part with calculating and
linear search will use the number of cores of
GPU. This helps to significantly accelerate
linear search in the memory dump.

Section 6 contains the main conclusions
and further research directions.

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 50 © 2016 ADFSL

ANALYSIS OF THE
DRIVER DETECTION
APPROACHES IN THE

MEMORY DUMP
This project focuses on the detection of hidden
drivers, as they have many opportunities to
conceal themselves and because of operating in
a high privilege mode they can affect the OS
and antivirus software. Hidden drivers features
are commonly used in spyware (Paganini,
2015; Musavi, & Kharrazi, 2014) and so the
priority task for cyber-security is the detection
of hidden drivers in the Windows and Unix-
based OS. Further analysis will be carried out
for the most popular Windows OS, but all
results can be adopted for Unix-based OS as
well.

This analysis of the more popular methods
for detecting hidden software and their
resilience to anti-forensic techniques should be
of great interest to cyber-security experts. This
analysis of detection methods and
corresponding countermeasures will be based
only on publicly available information sources:
books, papers in scientific journals, conference
presentations, blog posts as well as discussions
in forums.

The explanation will be provided through
the increasing number of drivers’
manipulations for self-concealment. Each
detection method will include the
corresponding rootkit techniques to hinder the
malware or prevent its work. In addition, every
following analyzed method will be resilient
towards countermeasures of the previously
analyzed method.

Classification of Methods
Used to Reveal Drivers

The creation of resilient detection methods
requires answers to the following questions:

 How drivers work in Windows OS
and how they can be hidden;

 How to detect hidden drivers;

 How to predict and face anti-
forensic techniques.

To formulate the prerequisites of driver
detection, the following topics will be covered
in the next section:

 The virtual memory content after a
driver has been loaded;

 The details and vulnerabilities of a
Windows built-in tool, which
collects data about installed drivers;

 Analysis of the resilience of
alternative approaches to detect
drivers.

In addition, the classification of the
different methods used to detect drivers will be
given.

According to Blunden (2012), before a
kernel mode driver has been started, its
executable file is loaded in the memory, and
the driver’s information is added in to several
OS’ linked lists and after that, the DriverEntry
function is executed.

Consider the situation with three loaded
drivers- A, B, and C. Figure 1 shows the
content of the virtual memory prior to the
loading of these drivers. To simplify the model,
on the top of the figure, there are only two OS’
linked lists with three drivers’ structures,
which correspond to the three loaded drivers.
At the bottom there are three executable
driver files. All these objects may be used as
fingerprints to detect drivers.

According to Russinovich, Solomon, &
Ionescu, (2012) the Windows built-in tool uses
one of these lists to receive information about
loaded drivers, assuming that list #1 is the list
utilized by the built-in tool, e.g. called

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 51

NtQuerySystemInformation with
SystemModuleInformation (11) information
class. However, as this is a list-based
mechanism, it is vulnerable to anti-forensic
techniques. According to Blunden (2012), by
unlinking a driver’s structure from this list it is
possible to conceal the driver from the built-in
tool. This unlinking attack is also known as
Direct Kernel Object Manipulation (DKOM)
and this technique yields two positive results.
The first is that the built-in tool is not able to
find this driver; and second is that Windows
OS and the hidden driver will continue to work
correctly.

Thus, the hidden driver is one of the main
cyber-security threats, and to eliminate it, a
reliable method of detection is required to
detect all hidden drivers. After all the stealth
drivers are detected, the incident response can
be carried out using special pre-filing
investigations, such as reverse-engineering
(Matrosov, Rodionov, & Bratus, 2016),
although a review of this topic is beyond the
scope of this paper.

The most common technique to discover a
hidden driver or any rootkit is to apply the
cross-view approach, which checks equality
between two drivers’ lists. The first list was
created by the built-in tool and the second list
uses one of the alternative drivers’ detection
approaches.

Alternative detection approaches can be
classified into two categories according to the
subject of the search: first by using OS driver
structures and second by using the content of
the driver’s files in the memory. Their
classification is given in Figure 2. The first
approach can be further sub-divided into two
groups: based on the links between structures
and a signature based search of drivers
structures.

The second approach can also be further
partitioned into two subsets: signatures and a
statistically-based approach to detect the
driver’s files in the memory. Each of these
methods will be analyzed. The new detection
approach proposed at the end of this paper is
based on the statistically-based approach.

Figure 1. Fingerprints of kernel-mode drivers in a memory dump: loaded drivers and their metadata

System List #1 of Drivers Structures

Struct of
Driver A

System List #2 of Drivers Structures

Struct of
Driver B

Struct of
Driver C

Struct of
Driver A

Tag Tag Tag Tag

Struct of
Driver C

Tag

Struct of
Driver B

Tag

Loaded executable
file of Driver A

(PE .sys file)

Loaded executable
file of Driver B

(PE .sys file)

Loaded executable
file of Driver C

(PE .sys file)

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 52 © 2016 ADFSL

ApproachesBased on the
Links between Structures

These methods receive the list of drivers by
walking through the various linked lists of
driver structures in the memory.

We will be focusing on the most popular
OS’ linked lists, which are used to detect
drivers (Vomel, & Lenz, 2013):

 List of drivers’ modules, also called
PsLoadedModuleList;

 List of kernel mode threads from
‘System’ process;

 Drivers’ objects list from the object
directory also called
ObjectDirectory;

 List of recently unloaded drivers;

 Service record lists in the memory
also called ServiceDatabase;

 Database of installed services in the
system registry.

We will shortly discuss each of these lists
and techniques used to hide data from each of
them.

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 53

PsLoadedModuleList. The first and the
most famous list is PsLoadedModuleList,
which is used by ZwQuerySystemInformation
function or, in other words, by the Windows
built-in tool. This is double linked to the list of
KLDR_DATA_TABLE_ENTRY structures,
which contains the data about each kernel
module. The Volatility’s modules plugin uses
this list. It is possible to hide a driver structure
from this list by using DKOM unlinking. The
details of this anti-forensic technique are given

in Hoglund, & Butler (2005) and also in Tsaur,
& Wu (2014a) and realized in the
DhpHideModule function of Dementia, the
proof of the concept memory anti-forensic
toolkit by Milkovic (2012).

Kernel-mode threads. According to the
book (Ligh, Case, Levy, & Walters, 2014a) the
process ‘System’ with PID 4 includes the list of
kernel mode threads. This list contains the
ETHREAD structures. This idea is also used
in the Volatility’s orphan plugin; however, an

Figure 2. Classification of methods to detect drivers

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 54 © 2016 ADFSL

intruder is able to prevent detection using this
list by rewriting sensitive information from the
corresponding ETHREAD structure, e.g. field
StartAddress. As a result, the modified
structure will be of no use for detection. This
anti-forensic technique will be referred to as
DKOM patching.

DKOM patching is a widely-used
technique. Here is an idea of how to hide
EPROCESS structure – “instead of removing
the process from the linked list, replace its
content and technically the process should be
‘hidden,’ meaning it will still show up on
taskmanager etc but when you try to close or
dump it, it will close/dump the dummy
process instead” (Ch40zz, 2015).

ObjectDirectory. The third list is the
Windows Object Directory list or the object
tree, which contains structures of different
objects. In this paper, we are focusing on
DRIVER_OBJECT structures. The details of
how this tree is organized is given in
Zhanglinfu2000 (2013) and Probert (2004).
The documented function
NtQueryDirectoryObject uses this tree to get
the information about the specified directory
object (MSDN, n.d.-a); however, the driver is
able to conceal the corresponding
DRIVER_OBJECT structures by DKOM
unlinking. The details of this anti forensic
technique are given in (Tsaur, & Yeh, 2015;
Jakobsson, & Ramzan, 2008; Tsaur, & Wu,
2014a). The attack of hiding a driver from an
object directory is implemented by the
StealthInitializeLateMore function in the
AntiMida by Pistelli (n.d) and in the Zion
open source rootkit by Chen (2008).

Recently unloaded drivers. This list
includes the names, times, the start and finish
addresses of recently unloaded drivers (Ligh,
Case, Levy, & Walters, 2014b). This list is
mentioned in the following papers (MJ0011,
2009; SANS Institute, 2015b) as well as in the

forum discussion (KernelMode.info, 2012). The
Volatility’s unloadedmodules plugin uses this
list. According to the Windows Research
Kernel (WRK) the variable
PUNLOADED_DRIVERS
MmUnloadedDrivers stores the address of the
top of this list, and by using
MmLocateUnloadedDriver function, it can
locate the specified virtual address in the list
(Microsoft, n.d.-a; Microsoft, n.d.-b). We can
also get this address by calling
ReadDebuggerData function with parameter
DEBUG_DATA_MmUnloadedDriversAddr
(MSDN, n.d.-b). However, an attacker can
apply DKOM patching and overwrite sensitive
fields in the corresponding structure, and
therefore it makes the list unusable for
detection.

ServiceDatabase in the memory.
According to Ligh et al (2014c), after the
installation of a driver using Service Control
Manager (SCM), corresponding information is
added to the two lists. The first is the double
linked list of service record structures in
services.exe also known as ServiceDatabase.
The second list is located in the system
registry. Thus it is possible to get information
about loaded drivers from ServiceDatabase
using the EnumServicesStatus function with
parameter SERVICE_KERNEL_DRIVER
(MSDN, n.d.-c). The detailed analysis of SCM
mechanisms is explained is several recent books
(Stuttard, Pinto, Ligh, Adair, Hartstein, &
Richard, 2014; Ligh, Case, Levy, & Walters,
2014d) as well as in the blog of D.Clark (Clark,
2014). The ServiceDatabase details and the
many ways to conceal the service record
structure and this is in the context of Blazgel
Trojan in the book (Ligh, Adair, Hartstein, &
Richard, 2010), which hides services by DKOM
unlinking. Further examples of how to unlink a
structure of hidden service are given in
Wineblat (2009); Mask (2011); and Louboutin
(2010).

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 55

Database of Installed Services in the
System Registry. As mentioned before, if a
driver is loaded using SCM, this information
will also be duplicated in the system registry.
The list of registered kernel mode drivers and
user mode services is located in the following
registry path:
“HKEY_LOCAL_MACHINE\SYSTEM\Curr
entControlSet\services”(MSDN, n.d.-d;
Microsoft, n.d.-c). The detailed description of
this list can be found on the OSR online site.
(OSR Online, 1997). We can get information
from this list; it can also be obtained by using
registry API function RegEnumKeyEx;
however, this list is also susceptible to intruder
countermeasures such as deleting the
corresponding registry key, which contains the
information about a hidden driver. An example
of removing the driver-related information in
the registry is given in Tsaur, & Wu (2014b;
ZCM Services, 2010).

Table 1 summarizes the various analyzed
approaches to detect drivers and their
vulnerabilities. The first column gives the list
and the respective structure names. The
second column contains the software tools,
which apply these lists. The last column shows
the anti-forensic techniques, which can defeat
or overcome the detection.

As a result, we can conclude that all
approaches based on the links between

structures are susceptible to anti-forensic
techniques such as DKOM unlinking, DKOM
patching and removing registry keys. Next, the
paper will review the driver detection methods,
which are resilient to these countermeasures,
although they may have other weaknesses.

0.1. Signature-Based Search of Driver
Structures

When a driver structure is concealed by
using DKOM patching and all informative
fields are rewritten, then this structure is
useless for detection, however, if a structure is
hidden only by DKOM unlinking it, it can be
revealed by a signature-based search.

Signature-based search of driver structures
is based on the fact that driver structures have
typical fragments, or in other words,
signatures, which are the same for all
structures from one list. We can reveal all
drivers’ structures by using byte-to-byte
signature search regardless of whether or not a
structure is unlinked. Signature based search
can retrieve data and does not rely on API
calls that can be subverted. Signature-based
search, in some cases, can be sped up
significantly using the fact that driver
structures, e.g. DRIVER_OBJECT, are
located closely to each other in the memory
(Korkin, & Nesterov, 2014).

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 56 © 2016 ADFSL

Table 1
Summary table of the detection approaches based on the links between structures and their vulnerabilities

List and structure names Examples of lists using Examples of Attacks
PsLoadedModuleList,

KLDR_DATA_TABLE_ENTRY
 ZwQuerySystemInformation
 Volatility’s modules plugin

DKOM unlinkingObjectDirectory, DRIVER_OBJECT ZwQueryDirectoryObject
Service Record List,

SERVICE_RECORD EnumServicesStatus

List of kernel mode system threads,
ETHREAD Volatility’s orphan plugin

DKOM patchingMmUnloadedDrivers,
UNLOADED_DRIVERS

 ReadDebuggerData
 Volatility’s unloadedmodules plugin

Service Record List in registry RegEnumKeyEx Removing registry keys

Two signature types can be distinguished:

 Signatures based on short byte
sequence, also known as pool-tag
scanning;

 Signatures based on stand-alone
bytes, also known as magic
numbers in the structures.

Pool-tag scanning. This signature is
based on the fact that each structure from one
list contains the same four byte tags. This is
one of the most popular ways to find
structures in the memory. This tag could be
added to the structure using two ways: with
the function ExAllocatePoolWithTag or
manual by a programmer. In the first case a
four-byte tag value is added automatically at
the beginning of the allocated pool memory.
These values are reserved for each system
structures. The pool tag list of Windows
drivers is given in Rhee (2009). In the second
case, such byte signature is added by the
programmer. For example, while a driver is
started, SCM creates the
SERVICE_RECORD structure and adds the
pool-tag value: (*ServiceRecord)->Signature =
SERVICE_SIGNATURE, where
SERVICE_SIGNATURE is 0x76724573 or
"sErv" in ASCII. The details of this
manipulation are in the source code (Microsoft,

n.d. d). M. Ligh used the pool-tag scanning
detect Windows threads (Ligh, 2011).

Magic numbers in the structures. The
second type of signature is based on the fact
that structures from one list have some
common peculiarities. This signature includes
only the bytes whose values are the same for
all linked structures on the list. Also, apart
from the single bytes, we can also use the fact
that kernel mode structures include the fields,
whose values are linked with other kernel mode
structures. Therefore, these values exceed the
values of 0x8000_0000 (Schuster, 2006). This
peculiarity was described by Tsaur, & Chen
(2010) and Haukli (2014) and after that was
enhanced in Dynamic Bit Signature (DBS) to
detect hidden structures (Korkin, & Nesterov,
2014).

The summary table of signature-based
search methods of driver structures is in

Table 2.
As a result, simultaneously applying both

anti forensic techniques: DKOM unlinking and
DKOM patching renders drivers’ structures
useless for detection and significantly hinders
further analysis. Next, we will cover driver
detection approaches, which do not rely on
driver structures; therefore, these approaches
are able to detect the hidden driver, which

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 57

uses both the above mentioned countermeasures.

Table 2.
Summary table of signature-based search methods of driver structures

List and structure names Signature
examples Signature using example

PsLoadedModuleList,
KLDR_DATA_TABLE_ENTRY

Tag signature
“MmLd” Cohen (2014)

Service Record List,
SERVICE_RECORD

Tag signature
“sErv” or “serH”

Hidden Service Detector (hsd) by EiNSTeiN_
Ligh, Case, Levy, & Walters (2014f)

Volatility’s SvcScan plugin by
Ligh, Case, Levy, & Walters (2014g) and

Vomel, & Lenz (2013)

ObjectTable, DRIVER_OBJECT

Tag signature
“Driv”

Volatility’s modscan plugin by
Ligh, Case, Levy, & Walters (2014h)

Byte signature Tsaur, & Chen (2010) and Haukli (2014)
Dynamic bit

signature Korkin, & Nesterov (2014)

Signature-based Detection of
Drivers Files

Signature-based search of drivers’ files uses
priority known fragments of drivers’ files as
signatures; therefore, these methods are not
susceptible to manipulation with drivers’
structures. In comparison with the previous
signature-based methods, these methods use a
similar byte-to-byte search for drivers’ files,
but not for drivers’ structures.

There are three types of signatures to find
driver files to be discussed:

 ASCII strings;

 Magic numbers in the PE-header;

 OpCode patterns.

ASCII strings. The first type of
signatures includes various strings from an
executable file. The best known example of
ASCII strings signatures is “This program
cannot be run in DOS mode” from MS-DOS
header (Timzen, 2015; x86
Disassembly/Windows Executable Files, n.d.).
M. Russinovich used this string while

analyzing Stuxnet (Russinovich, 2011), and
also, import table, in other words, symbolic
names of functions belonging to ASCII strings
signatures. The example of this signature is
used to analyze packed PE files, “The Presence
of certain functions in the import” (NTInfo,
2014).

How to bypass ASCII strings
signatures? The ASCII strings signatures are
not resilient to the following countermeasures.
First, the hidden driver can overwrite its MS-
DOS header in the memory; and this
manipulation does not influence its OS work
(Qark, n.d.). Moreover, to hinder detection, a
hidden driver can use only two imported
functions LoadLibrary and GetProcAddress. It
is also able to perform the function-resolution
tasks and to call on any other functions (Eagle,
2011). As a result, the import table will
include just only two names, which will not be
enough for detection.

Magic numbers in the PE-header. The
second type of signature is based on the
peculiarities of the PE-header content (ELF-
header in UNIX case) or in the magic numbers.

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 58 © 2016 ADFSL

This signature is a byte template, which
includes the field values of PE header and their
corresponding offsets from the beginning of the
file (Dorfman, 2014; Choi, Kim, Oh, & Ryou,
2009). An example of the application of magic
numbers in the PE-header to detect unknown
malware is presented by Wang, Wu, & Hsieh
(2009). An example of adopting this signature
to ELF-header for unknown malware detection
in the OS Linux is given in Farrukh, &
Muddassar (2012).

How to bypass magic numbers in the
PE-header? The hidden driver can bypass
this type of signature using a similar
overwriting technique. After the driver has
been loaded its PE-header integrity is not
needed. Therefore a rootkit can overwrite the
content of PE-header and bypass signatures
based on magic numbers. This approach was
also proposed by Tsaur, & Wu (2014c).

Opcode patterns. The third type of
signatures is based on the common factors in
the content of the compiled file. Each driver is
an executable file, which includes sets of
machine language instruction or operation
codes, and further opcodes, which are executed
by CPU. An Instruction Set Architecture
(ISA) includes a specification of the set of
opcodes. Different drivers have similar opcode
fragments because they are executed on the
same CPU architecture. The most popular
example of using opcodes as a signature is the
search of starting and ending of functions. The
corresponding opcodes are also known as
‘functions prolog and epilog’ and they depend
on calling convention (Calvet, 2012). There are
three popular calling conventions that are used
with C/C++ language: stdcall, cdecl and
thiscall (Chen, 2004). Opcode based signatures
are used to detect various malware (Santos,
Brezo, Nieves, Penya, Sanz, Laorden, &
Bringas, 2010; Santos, Sanz, Laorden, Brezo, &
Bringas, 2011; Zolotukhin, & Hamalainen,
2014). There are numerous examples of using

opcodes for detection (Ghezelbigloo, &
VafaeiJahan, 2014; Singla, Gandotra, Bansal,
& Sofat, 2015; Yu, Zhou, Liu, Yang, & Luo,
2011).

An example of using opcode byte
combination to find hidden service structures is
given in the information from Ligh, M. (Ligh,
M., 2015a, 2015b). Opcode patterns are also
used in firmware analysis. The pattern
matching tool Binwalk detects the potentially
executable data by identifying known function
prolog and epilog patterns (Binwalk, 2015).

Opcode-based signatures could be further
developed using control flow analysis (Ding,
Dai, Yan, & Zhang, 2014) and data mining
techniques (Siddiqui, Wang, & Lee 2008;
Santos, Brezo, Ugarte-Pedrero, & Bringas,
2013) and also varied classification techniques
(Shabtai, Moskovitch, Feher, Dolev, & Elovici,
2012).

How to bypass opcode patterns?
Several authors have pointed out that applying
prolog and epilog signatures as well as using
other ISA opcode patterns does not make it
resilient to anti-forensic techniques. A rootkit
can bypass opcode patterns by obfuscating
prolog and epilog functions. An example of
hiding functions call is given in Emil’s Projects
(2010). Also malware can evade the signature-
based detection by packing the original code
using custom packers (Arora, Singh, Pareek, &
Edara, 2013).

As a result, we can conclude, that despite
the fact that the signature-based search of
drivers files is resilient to manipulation with
driver structures, this search is susceptible to
other anti-forensic techniques. An intruder can
circumvent signature based search of drivers
files in memory by overwriting sensitive data
for ASCII-based signatures and signatures
based on PE-header features; as well as
encrypting, packaging and obfuscating of
content of a driver file (Saleh, Ratazzi, & Xu,

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 59

2014; Dang, Gazet, Bachaalany, & Josse, 2014;
Aronov, 2015).

Further, we will present an analysis of
driver-detection approach, which is resilient to
combination of all previous anti-forensic
techniques.

Statistical Detection of
Driver Files

Statistical detection of driver files is able to
reveal loaded drivers in the memory files,
without using any fixed signature. This
detection approach is based on the fact that
the content of driver files is significantly
different from the content of other memory
parts.

Statistical detection of driver files includes
two phases. In the first step, we evaluate the
memory content by calculating various
statistics for each memory offset. This
technique is also known as the ‘sliding windows
approach.’ In the second step, we find memory
regions with abnormal values for the calculated
statistics. These memory regions are very likely
to have a driver code or raw machine code.

An impulse of using the statistical memory
analysis to find an executable code in the
memory is given in Lyda & Hamrock (2007),
which specified the Shannon's entropy notion
and was the first to apply binary entropy. The
authors discovered that by comparing entropy
values, it is possible to separate different data
types: plain text, native executables, packed
executables, and encrypted executables
(Brown, 2009).

According to the blog post by Suszter
(2014), “entropy analysis is very useful to
locate compressed, encrypted, and other way
encoded data; higher entropy can indicate
encoding of some kind; lower entropy is likely
to include anything else such as text, code,
header and data structures.”

Our analysis of publicly available sources
shows that there are no facts of using entropy
to detect hidden drivers in the memory;
however, entropy is applied in various spheres
of cyber security (Matveeva, 2014), such as
finding an executable code in the office
document files (Jochheim, 2012; Pareek,
Eswari, Babu, & Bangalore, 2013; Iwamoto, &
Wasaki, 2014; Tabish, Shafiq, & Farooq, 2009),
in PDF-files (Schmidt, Wahlisch, & Groning,
2011; Pareek, Eswari, & Babu, 2013), in the
network traffic (Nguyen, Tran, Ma, & Sharma,
2014), and in the analysis of unknown binary
files (Yurichev, 2015). Entropy analysis is also
used to find cryptographic keys in the memory
dump (Maartmann-Moe, 2008). This successful
experience can be applied to find hidden driver
content in the memory and detect rootkits.

Entropy analysis of individual files is the
most commonly used method to solve the task
of files classification, for example, to separate
packed and encrypted file from an unprotected
file. According to Devi, & Nandi (2012), “it is
very important to figure out whether a given
executable is packed or non-packed before
determining whether it is malicious or benign.”
If certain conditions are true, such as the file
has a high entropy value, unknown MD5 hash
value and also it has no digital signature, it is
most likely that this executable file is malware
(SANS Institute, 2014; Nataraja, Jacob, &
Manjunatha, 2010). In addition, in this
author’s opinion, antiviruses can usually detect
weird applications using entropy. To develop a
‘well done rootkit’ we need to be creative
about entropy (Lupi, 2011).

The sliding window approach allows us to
calculate a variety of statistics. Together with
the formula of binary entropy by Lyda and
Hamrock (2007) there are other ways of
calculating entropy (Hall, & Davis, 2006). Also
apart from entropy in the sliding window
approach, we can use other statistics such as
arithmetic mean, Chi square and Hamming

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 60 © 2016 ADFSL

weight (Conti, et al., 2010). Jochheim (2012)
finds that the most useful statistics in file
classification are the following: average,
kurtosis, distribution of averages, standard
deviation, and distribution of standard
deviations. One of the prospective methods to
measure binaries is to apply Kolmogorov
complexity for detecting malware (Alshahwan,
Barr, Clark, & Danezis, 2015).

In the case of memory dump, we do not
have separate files, so we can apply the sliding
window approach or its various modifications.
One such example is given by Matveeva and
Epishkina (2015). The authors proposed
constructing a byte value / byte offset
dependency graph. Byte offsets are placed on
the horizontal axis, and byte values are on the
vertical axis. After that, the authors calculate
and construct a frequency byte distribution for
various window-form fragments of the first
plot. The authors suggest using the following
fragment sizes: 100x100 and 2000x50.

Another approach is to use the following
configuration of sliding window method: each
block has fixed length 256 bytes, “Each block
has an overlap of 4 bytes…A short-term
Fourier analysis is applied to every 4 bytes of
the entropy stream” (Jochheim, Schmidt, &
Wahlisch, 2011).

For further analysis of the memory dump
these authors suggest the following methods:
Short-term Fourier Transform (STFT)
(Schmidt, Wahlisch, & Groning, 2011;
Iwamoto, & Wasaki, 2014) or Wavelet
transform (Matveeva, & Epishkina, 2015).

Other ways of calculating statistics apart
from binary entropy by are suggested by Lyda
and Hamrock (2007), who suggest by using one
byte, we can also calculate entropy using two
bytes or using bigram analysis (Nataraja,
Jacobb, & Manjunatha, 2010), as well as using
three bytes or trigrams (Conti, et al., 2010).
Along with the analysis of individual values

statistics, we can also evaluate the memory
content using n-gram analysis (Pareek, Eswari,
& Babu, 2013; Nath, & Mehtre, 2014).

It is possible to carry out memory analysis
using both manual and automatic modes. The
idea of automated classification of different file
types, such as random, text, machine code,
bitmap, compressed images, encoded and
encrypted data exposed in the paper (Conti, et
al., 2010). To solve a classification problem,
the authors first calculated threshold values for
different data types by using test samples.
Their results solved the classification problem
with the appropriate values of false positives
and false negatives. An alternative example of
solving the classification problem by using
entropy is given in the work by Bat Erdene,
Kim, Li, and Lee (2013).

Artificial intelligence methods look very
promising for solving the classification
problem, but the authors thought that these
methods are insufficiently precise because of
the errors of the first and second types
(Jochheim, 2012).

To make manual analysis of memory easier
and faster we can use various visualization
techniques. In his paper, Jocheim suggested
using the following byte blot: each byte in the
file was colored according to this byte hex
value, e.g. zero bytes and bytes with value
0xFF are black and white correspondingly.
Using this approach, we can easily locate zero
pages in the memory as well as the particular
sections of an executable file – .text, .data,
.rsrc.

An alternative approach for visualizing
data uses space-filling curves proposed by A.
Cortesi. He analyzed various approaches of
how to visualize the file content, such as
Zigzag, Z-order, and Hilbert to find encrypted
blocks (Cortesi, 2012). As a result of this work,
the author developed tools to visualize content

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 61

using both web-site (Cortesi, 2015a) and local
host PC (Cortesi, 2015b).

Visualization of files or memory dumps is
an up-and-coming direction in cyber-security,
which was confirmed by various projects: thus
the cantor.dust project was presented at the
REcon'13 conference, Binwalk, binglide,
Vix/Biteye, senseye, and many others
(Visualizing ELF binaries, 2014).

In addition, it is possible to apply a
combination of the approaches mentioned
before. An example of using signature-based
and statistical approach was presented in the
works by Merkel, Hoppe, Kraetzer, and
Dittmann (2010).

How to bypass statistical detection?
At the same time, the statistical detection
approach is also vulnerable to anti-forensic
techniques. The idea of countermeasures is to
apply the manipulations, which decrease the
entropy of driver content and as a result
seriously hinder localizing a driver code in the
memory areas.

There are only two publicly available
countermeasures to decrease entropy: the first
is to use Multiple Files and the second is to
add memory blocks with zero entropy.

The first method is used in the Stuxnet
and Flame, which deliberately decreased the
entropy values using Multiple Files to achieve
‘lesser maliciousness entropy’ (Teller, 2013;
Schuberth, 2014).

The second one is also known as a meta-
obfuscation technique by null content
insertion. Executable code can also hide itself
by reducing entropy values of its memory
content with the help of including memory
fragments with low entropy. An example of
such manipulation is used in spyware program
Zeus, and it includes inserting blocks of
symbols with zero entropy. Moreover,
according to the blog post, many packers use

this anti-forensic technique to hide the fact
that this file has been encrypted – “some very
good packers and protectors of malware try to
reduce entropy by inserting zero bytes in data.
The reason is that virus scanners react to files
with high entropy” (NTInfo, 2014).

To bypass the circumvention, i.e., to detect
such malware the authors (Pedrero, Santos,
Sanz, Laorden, & Bringas, 2012) proposed a
way to localize and delete such data blocks,
and after that, calculate entropy values. The
latter was made possible by applying byte
histograms to analyze the contents of the file.
However, applying byte histograms is also
vulnerable to the corresponding anti-forensic
technique, as discussed below.

Conclusion
The above analysis shows that all popular
approaches to detect drivers are susceptible to
anti-forensic techniques: see
Table 3.

By joining the results of this chapter and
the work by Korkin and Nesterov (2014) we
can state that the most popular framework for
memory analysis, Volatility, is also vulnerable
to anti-forensic technique and moreover, that
malware can overcome Volatility in both
stages: memory acquisition and memory dump
analysis.

To sum up, we can conclude that a driver
can be hidden in different ways (Jason, 2012)
but the results will always be the same –
running uncontrolled code in the privilege
memory area and the content of this code will
have a low entropy value.

This work focuses on the anticipatory
development of advanced cyber-security
solutions. As a result, in this project we will
create a new hidden-driver detection method,
which will be resilient to current driver
countermeasures and their possible
development.

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 62 © 2016 ADFSL

The task to detect a driver comes down to
the recognition task between the executable

driver code and data fragments, which are
stored in the memory.

Table 3
The list of popular approaches to detect drivers and their vulnerabilities

The ways to detect drivers Anti-forensic technique

Using driver
structures

Using links between structures DKOM unlinking
Signature-based search DKOM patching

Using content of
driver files

Signature-based detection DKOM patching & PE packing
Statistical-based detection Memory patching

THE IDEA OF THE
HIGHEST STEALTH

MALWARE
(HIGHSTEM)

In this section we will look at a prototype of
the most hidden driver, or Highest Stealth
Malware (HighSteM). The goal of this section
is to create a list of possible anti-forensic
techniques, which includes both evasion
mechanisms for popular detection approaches,
and the present authors’ ideas on how to avoid
statistically-based detection (Pedrero, Santos,
Sanz, Laorden, & Bringas, 2012). We are
trying to create anti-forensic measures, which
can prevent detection even by future detection
tools. As a result, we will formulate the most
difficult scenario for detection. The next
section will deal with detection of HighSteM.

Malware can use different ways to start up:
using shellcode in PDF-file or by registry
facilities for loading instead of the file system
(Santos, 2014; Marcos, 2014), but all in all, the
malware executable code will be loaded and
reside in the memory.

It is well known that the code, which is
running in the lowest level and is close to
hardware, has the greatest potential for self-
concealment. There are various levels of code
execution: inside OS user mode (ring 3), kernel
mode (ring 0) and outside OS VMX root mode

or hypervisor (ring -1), SMM (ring -2), and
AMT (ring -3). We chose kernel mode (ring 0),
which is the most popular among malware and
spyware platforms. HighSteM will be the
kernel mode driver for Windows OS or a
loadable kernel module (LKM) for UNIX-based
systems.

As a basis to develop the HighSteM
prototype, we will select the FU rootkit
(Blunden, 2012) or a stub driver, which is
loaded using ATSIV utility by Linchpin Labs
(Linchpin Labs, 2010). The results of our
preliminary research revealed that ATSIV uses
an undocumented startup method, which
conceals a driver from the most popular anti-
rootkit tools (Korkin, 2012). In addition, it is
possible to use Turla Driver Loader, which
loads a driver without involving Windows
loader (hfiref0x, 2016).

We can load any driver using both built-in
Windows tool (eg Service Control Manager)
and by third party software (like Atsiv or
Turla Driver Loader). In the first case, drivers’
information is added in all system lists, while
in the second case just a few lists will be
updated.

The HighSteM prototype will apply a
variety of anti-forensic techniques. First of all,
HighSteM will include techniques to prevent
the detection of existing approaches; the
details are in Section 2. Then we present some

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 63

ideas on how to improve these anti-forensic
techniques. HighSteM could improve Zeus’
manipulations to hide from entropy-analysis by
the following three steps:

1. Insert blocks of symbols with low
nonzero entropy value.

2. Use blocks with different size.
3. Significantly increase size and number

of inserted blocks.
On one hand, applying these three steps

makes a driver definitively hidden from
Pedrero’s methods (Pedrero, Santos, Sanz,
Laorden, & Bringas, 2012) and, moreover, they
can help to develop the most complex case for
detection; however, on the other hand, these
steps will lead to certain negative effects: the
size of the driver will increase and its speed of
operation will decrease. The reasons for these
disadvantages are blocks of inserted symbols,
so there will be many time-consuming jumps
between pieces of the driver code.

We also propose an idea based on
HighSteM’s payload and how to realize this in
a stealthy way. The main strategy is to elicit
sensitive information by reading various
memory regions without using the functions,
which can be hooked by anti-viruses. An idea
of the keylogger, which collects keystrokes by
checking the corresponding memory fragment,
was first proposed by Ladakis et al (2013).
These authors apply the GPU facilities to
access physical memory. They also proposed to
check a memory region by including keystrokes
with 100ms delay. This time is enough to
collect all keystrokes with an average typing
speed and also with optimal system’s overhead,
which is less than 0.1%. This paper focused
only on the Linux OS.

Adapting this idea for Windows OS is
given by Stewin and Bystrov (2012). These
authors describe how to find the OS structure
that contains the most recent keystrokes, but
without its internal details. To find out these

details, the authors propose using reverse-
engineering analysis of the kbdhid.sys file,
which may be challenging.

Our preliminary research reveals that
keystrokes’ buffer is stored in the
DEVICE_EXTENSION structure, the source
code for a USB keyboard can be found at
Microsoft’s website (n.d.-e) and so can a PC/2
keyboard (Microsoft, n.d.-f). This structure
includes the KEYBOARD_ATTRIBUTES
structure, which contains the desired codes of
keystrokes and other additional flags. The
similar structure –
KBDHID_DEVICE_EXTENSION is used in
ReactOS, which is close to Windows OS
(ReactOS, n.d.).

This memory-based monitoring technique
looks promising. On one hand, it acquires
sensitive information, and on the other hand,
cyber-security tools and well-known event
tracing solutions are not able to control
memory access. This is the most difficult
situation for detection.

In the next section, we suggest some ideas
of how to detect HighSteM-based rootkits.

DETECTION OF
HIDDEN SOFTWARE

UNDER
COUNTERMEASURES

To achieve this goal, the following three tasks
that need to be addressed:

1. Research and develop a prototype of
the hidden driver which can overcome
existing detection methods.

2. Check the driver prototype using
existing detection methods and tools.

3. Design new methods to detect hidden
drivers using analysis of Windows OS
memory.

To solve task 1, we are going to use the
example of the keyboard driver filter as the

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 64 © 2016 ADFSL

basis for the prototype of the hidden driver
(Blunden, 2009). We are planning to take the
following measures to hide this driver. We will
load the driver prototype with the help of
publicly available ATSIV utility by Linchpin
Labs (2010). This driver will be concealed from
the signature search by patching its PE-header
in the memory. To develop HighSteM, we will
solve the optimization problem with the
following two variables – the size and number
of inserted blocks of symbols and the following
three constraints:

 The maximum driver size – up to
10 megabytes.

 The level of decreasing speed of
operation – no more than two
times.

 The level of entropy decreasing – no
fewer than two times.

To speed up the development and testing
of this driver, we will use the already prepared
memory analysis system (Korkin, & Nesterov,
2014).

To solve task 2, we will use the following
popular tools to detect a deliberately hidden
driver: Kaspersky TDSSKiller, GMER,
RootRepeal, Avast Anti-Rootkit, Dr.Web
CureIt!, Sophos Anti-Rootkit, F-Secure
Blacklight and the most popular memory
analysis platform – Volatility Framework
(MidnightCowboy, 2015; Ligh, Case, Levy, &
Walters, 2014). As a result, we will
experimentally prove that these cyber-security
solutions are not able to detect this prototype
of the hidden driver.

On stage 3, we are going to apply these
three ideas to find the executable code in the
memory dump:

1. New methods of entropy calculation
and data analysis:

a. Use function P*(2-P^2) instead
of P*log(P) to calculate

entropy. Our preliminary
analysis showed that this
function grows faster on the
interval from 0 to 1 than the
original entropy and that is why
it looks more appropriate for
the analysis of computer
memory.

b. Analyze dependence of
calculated entropy values from
different lengths of sliding
windows and its further spectral
and wavelet analysis.

c. Apply methods of digital
photogrammetry to find the
executable code in the graphical
diagrams of the memory
content.

d. Use Zipf–Mandelbrot law to
analyze the executable code and
data in the memory content.

2. Disassemble memory content and carry
out the thorough analysis of the
received assembler code, using the
following ways:

a. Instruction Frequency Analysis.
b. Evaluation of the logic of the

assembler code.
c. Design and analysis of the

control flow graph based on the
received set of the assembler
code.

To implement the first idea, we are
planning to use numerical computing
environment MATLAB. Applying MATLAB’s
built-in functions help us to focus on statistical
ideas rather than on their implementation and
testing.

Methods of digital photogrammetry are
commonly used to locate different objects on
the digital images, for example, human faces
on photographs. When it comes to hidden
drivers’ detection, we have to face a similar
challenge – to localize memory fragments with

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 65

anomalous entropy values, which correspond to
the executable code (Cortesi, 2012; Kohli,
Lempitsky, & Barinova, 2015).

The Zipf–Mandelbrot law is used to check
the self-organization, correctness, and
systematicity of literary works. The executable
code has similar properties, which is why we
will use this law to evaluate the code and data
in the memory.

To realize the second idea about applying
disassembling, we will use the Capstone and
BeaEngine, which are the open source libraries
to disassembly both 32 and 64 bits code
(Nguyen, 2014).

Analysis of frequency of assembler
instructions includes preliminary and detection
phases. In the preliminary phase, we will
calculate the threshold frequency of
instructions from memory fragments, which
include only the executable code and only the
data. In the detection phase, we will calculate
frequency instructions from each memory
fragment and compare their frequency with
threshold values. Evaluation of logic will be
made by checking that the result of the
instructions execution does not overwrite the
previously achieved results. The design and
analysis of control flow graph will be
performed using Interactive Disassembler IDA
(Blunden, 2012). A similar idea of
disassembling the part of the code is utilized in
Volatility’s driverirp plugin with ‘--verbose’
flag to reveal TDL3 infection. TDL3 uses the
Stealth Hooks technique and Redirector Stubs
to hide the fact of hooking functions (Ligh,
Case, Levy, & Walters 2014i).

We will consider the following two
limitations of this research:

1. Analysis of the memory content will be
given only for 32-bit and 64-bit
Windows 7 OS, as the most popular
OS, without analysis of Unix-based OS,
such as Mac OS, Linux and mobile OS.

2. We will consider the executable
samples, which do not apply
obfuscation and polymorphism
techniques.

However, such analysis requires significant
computing capabilities from the analysts’
workspace, for example, rootkit detection
system MASHKA spends about half hour to
check memory dump, which is far too long and
hence not applicable in practice.

To speed-up the analysis, we proposed an
idea based on the use of modern video or
graphics cards. To do this we will present an
idea of accelerating memory analysis using the
CUDA library and NVIDIA graphics card.

GPU ACCELERATED
SIGNATURE-BASED
MEMORY DUMP

ANALYSIS
Nowadays modern workstations, laptops,
notebooks, and even tablets are equipped with
one or several GPU components. Besides
gaming opportunities, such components offer
general high-performance parallel computing
possibilities for a long time. For memory dump
analysis, it is important that such devices can
transfer CPU load to GPU, and also are very
suitable for signature-based and statistical
analysis. Obtaining memory dump on modern
workstations is a separate CPU-intensive task,
thus permanent analysis is barely possible but
periodic continual dumping is a realistic
scenario. Such time-based periodic dumping
and analysis can dramatically load CPU and
may be inappropriate during simultaneous
regular work.

This paper offers a statistical confidence-
estimation of hidden malware and several
algorithms to form a criterion of significance
for memory dump segments. Most of the
mentioned algorithms may be efficiently run in

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 66 © 2016 ADFSL

parallel due to inner data parallelism. As a
result, most of the analysis may be effectively
transferred to GPU, dramatically diminishing
the CPU-load during processing. This section
also describes the principles of fine-grained
algorithm splitting to run memory dump
analysis effectively on hybrid CPU/GPU aware
architectures.

The reason we need to develop an
appropriate GPU kernel based code for CUDA
aware GPUs is the internal highly localized
cohesion between memory dump data segments
and applicable statistical algorithms. Such
cohesion makes memory dump analysis very
close to classical box filtering and convolution
filters run on GPU. Both of them have good
and effective implementations for CUDA aware
GPUs and also show very high scalability and
performance. Memory throughput is no longer
possible because of a bottleneck, due to
extensive data transfer between host based and
GPU-based memories. As a part of the newly
announced “Boltzmann Initiative,” AMD
presents the Heterogeneous-computer Interface
for Portability (HIP) tool. New heterogeneous
system architecture will allow us to
automatically convert CUDA code by HIP and
expand the possible hardware base available to
run what was formerly an exclusively CUDA-
based application (Silcott, & Swinimer, 2015).
So nowadays, CUDA may be the best choice to
meet current and future requirements for
consumer and enterprise-based hardware from
both vendors.

This approach further involves
differentiating memory dump analysis
algorithms based on different memory-access
profiles during processing. Two main profiles
are easily discovered: local signature-based
detection and memory lookups to resolve
virtual to physical memory layouts (Korkin, &
Nesterov, 2014).

Local signature-based detection is the most
appropriate for running on GPU; memory

model and kernel execution principles are best
suited for running such analysis. CUDA box
filtering and convolution-based examples
bundled with the CUDA toolkit are optimal
starting points, and such processing is
effectively done to boost filtering and analysis
performance.

To utilize multiple available GPU, there
are two ways to handle them either as
independent devices or alternatively as a single
one through a unified memory model using
modern CUDA improvements. Starting with
CUDA 4 unified virtual addressing is
supported, and this provides a single virtual
memory address space for all the memory
available in the system. Memory addressing
and management enables pointers to be
accessed from the GPU code no matter where
in the system they reside, whether in device
memory (on the same or a different GPU),
host memory, or on-chip shared memory.
Latter improvements to overcome PCI-
Express’s low bandwidth and high latency are
available since CUDA 6 platform. This brings
out managed memory, which is accessible to
both the CPU and GPU by using a single
pointer. The key of the improvement is that
the system automatically migrates data
allocated in unified memory between the host
and device so that it looks like CPU memory
to code running on the CPU, and like GPU
memory to code running on the GPU.

Despite the above mentioned advances, it
is a complicated task to utilize such
functionality when non-uniform GPUs are
installed and so hand-coded algorithm splitting
must be done to avoid non-local memory
addressing. To counter this, another approach
was developed with high-grained algorithm
splitting based on memory-access patterns
during signature-based detection.

Hybrid CPU/GPU
Architecture Requirements

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 67

Software architecture for signature-based
detection must allow effective, highly-scalable
and accelerated memory dumps analysis.
Memory datasets may be accessed through
interposes- communication with dumping
routines or inner communication through
shared-thread storage. Another source of bulk
datasets may be from some SOCKET-based

network layer where datasets from different
nodes are aggregated and analyzed. As a part
of the research, such a SOCKED-based layer
was developed to further allow research and
investigation into building trusted networks
with secure runtime memory dump analysis
and incident systems.

A signature-based threaded-detection
system must:

 Effectively run on nodes with single
or multiple GPUs, on multicore and
multiprocessor systems;

 Allow different GPU memory
layouts and data handling strategies
to allow benchmarking and work on
different GPU architectures;

 Meet CPU counterpart
implementations;

 Do benchmarking and algorithm
variations for different global,
texture, constant, and shared

memory available resources and
data arrangement;

 Minimize thread divergence, where
threads of the same wrap branch to
different sections of code.

 Confirm single instruction multiple
thread manner and prevent GPU
scheduler from allocating extra
execution slices to possible
branches;

 Ensure coalesced memory access by
wrapping branches.

The goal to promote a network-aware
software platform to memory dump analysis
naturally leads on to the development of

Figure 3. Architecture of a network-aware software platform for memory dump analysis

replies

RDBMS Cluster

Network client node

Message broker RDBMS Master

Instance

CPU processing units

requests

Monitoring and

logging components

RDBMS Hot Standby

node

GPU Processing units

«flow»

«flow»

Write

channel

Read

channel

PUB/SUB

subscription

«flow»

«flow»

Async

replication

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 68 © 2016 ADFSL

scalable tool and architecture to be able to
simultaneously perform statistical-processing
and provide analytics. The main architecture
principle lies in modular and an extensible
object-oriented pipelined framework to allow
parallel code execution on shared memory
multi-processor platforms. A reliable network
aware software platform consists of a dedicated
message broker and dedicated RDBMS cluster
to register network connections and analysis
requests, as shown in Figure 3.

Overview ofNetwork-aware
Architecture

A server-side component was also developed,
which provides endpoints of communication
using a socket network programming interface.
Server-side components are responsible for
handling connections from the different nodes,
which make requests to perform the forensics
analysis of their memory dumps.

In its turn, an object-oriented pipelined
framework is responsible for promoting event
demultiplexing and concurrent processing of
the heterogeneous CPU/GPU architecture.
The application starts a stream that presents a
set of hierarchically-related analysis and
reporting services. Network data
demultiplexing and further asynchronous
processing Reactor (Reactor pattern, n.d.) was
selected as the main programming pattern.
This programming pattern makes a unified
asynchronous event handling which is
generated by a timer-driven callout queue, I/O

events received on communication ports,
events from GPU kernels, and CPU-processing
threads, as shown in Figure 4.

Each processing step in the hierarchically-
related analysis and reporting stream presents
a threading pool that makes parallel processing
possible. The thread-pool is configurable and
responsible for spawning, executing,
synchronizing, and gracefully terminating
managed threads and data flow through the
processing stream. Initial benchmarking is done
to adjust the different task decomposition
policies to permit parallel processing on GPU
and CPU resources with different computing
capabilities and performances.

Overview of Pipelined
Processing Workflow.Further

Development
Network-aware software platforms for memory
dump analysis may be an essential component
for Intrusion Detection Systems (IDS). Such
components may reside on dedicated high-
performance hardware or virtualized platforms.
High-performance tools that can utilize
available multicore CPU and multiple GPU
are required. Such tools process highly-
sensitive data and further research and
development must be done to assure security
and confidence. Digital signing and correct
identification, authentication and authorization
schemes must be provided, and there is also a
need for mechanisms for integration with the
latest directory services.

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 69

CONCLUSIONS &
FUTURE WORK

1. Detection of zero-day malware is a
well-known and current central
challenge in cyber-security. This
analysis shows that existing detection
approaches are susceptible to rootkits
which apply a variety of different
countermeasures.

2. To create the most difficult case
scenario for detection, we propose a
driver prototype based on existing anti-

forensic techniques and their possible
upgrades. To find such a driver, we
propose various improvements on
statistically-based detection.

3. We proposed an idea of using the
facilities of both GPU and CPU to
speed up memory analysis.

The Idea of a Dynamic
Memory Map

Another idea of rootkit detection is the
Dynamic Memory Map tool. This tool will help
to visualize memory content of virtual or

Figure 4. Architecture of Parallel Processing on GPU and CPU resources

Shared key-value storage

of memory dump statistic

Local memory lookups and

processing on GPU

Nonlocal memory lookups

and algorithms on CPU

GPU Thread

pool

CPU Thread

pool

Task decomposition

Networking layer

Task analytics (data

consolidation and reporting)

«flow»

«use»

«flow»

«use»

«use»

«use»

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 70 © 2016 ADFSL

physical addresses with multicolored
rectangles, corresponding to different drivers
and kernel services, as well as a user-mode
process. If we have found a memory fragment
with an executable code which is not registered
in the OS, it will mean that our OS has been
infected and this executable code has to be
subject to an additional inspection. This tool
will have two modes of operating: as an on-air
map and a logger of all memory accesses
to/from the chosen memory scope. Using Intel
VT-x with Extended Page Tables (EPT)
technology we will be able to achieve
portability for all new Intel CPUs, reduce
significant performance losses and make this
tool resilient to common OS-based anti-forensic
techniques. A collaboration with Satoshi
Tanda (2015) has suggested a preliminary
implementation of such a tool and early results
look promising. These results will be presented
at the REcon conference 2016 in the paper
“Monitoring & controlling kernel-mode events
by HyperPlatform.”

Applying Virtual Reality
(VR) Headset to Digital
Forensics Applications

Modern technologies present new devices for
head-mounted display (HMD) system: Virtual
Reality (VR) headset or VR gear, which are
extremely popular nowadays. These devices
have the following advantages:

 Comfortable for eyes, “it's like
watching a 130-inch television
screen from 10 feet away”;

 Cheap, “Google Cardboard headsets
are built out of simple, low-cost
components”;

 VR useful in a wider variety of
roles, not only for gaming.

We propose an idea to use the
opportunities of VR headset in an incident
response during the analysis of various system

logs and memory dumps. In addition, VR
headsets can be used to analyze the control-
flow-graph of disassembled code during
reverse-engineering process. New 3D view from
VR headset, instead of existing 2D picture
from desktop PC could speed-up analysis and
make it more convincing.

ACKNOWLEDGEMENTS
We would like to thank Andrey Chechulin,
Ph.D research fellow of Laboratory of
Computer Security Problems (Scientific
advisor – Prof. Igor Kotenko) of the St.
Petersburg Institute for Informatics and
Automation of the Russian Academy of
Science (SPIIRAS) for his insightful comments
and feedback which helped us to substantially
improve the quality of the paper.

We would like to thank Samantha
Gonzalez from Miami High School, Florida, US
and Sarah Wilson teacher of English, Kenosha,
Wisconsin, US for their time and effort in
checking a preliminary version of this paper.

We would also like to thank Ben Stein,
teacher of English, Kings Education, London,
UK for his invaluable corrections of the paper.

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 71

REFERENCES

Alshahwan, N., Barr, E.E., Clark, D., &
Danezis, D. (2015). Detecting Malware
with Information Complexity. [arXiv
preprint]. Retrieved on December 8, 2015,
from http://arxiv.org/pdf/1502.07661.pdf

Aronov, I. (2015). An Example of Common
String and Payload Obfuscation
Techniques in Malware. Security
Intelligence. Retrieved on December 8,
2015, from
https://securityintelligence.com/an-
example-of-common-string-and-payload-
obfuscation-techniques-in-malware/

Arora, R., Singh, A., Pareek, H., & Edara,
U.R. (2013). A Heuristics-based Static
Analysis Approach for Detecting Packed
PE Binaries. International Journal of
Security and Its Applications. 7(5). 257-
268. Retrieved on December 8, 2015, from
http://www.sersc.org/journals/IJSIA/vol7
_no5_2013/24.pdf
http://dx.doi.org/10.14257/ijsia.2013.7.5.24

Bat-Erdene, M., Kim, T., Li, H., & Lee, H.
(2013). Dynamic Classification of Packing
Algorithms for Inspecting Executables
using Entropy Analysis. Proceedings of the
8th International Conference Malicious and
Unwanted Software: "The Americas"
(MALWARE). Fajardo, PR.
http://dx.doi.org/10.1109/MALWARE.201
3.6703681

Binwalk. (2015). Firmware Analysis Tool.
Retrieved on December 8, 2015, from
http://binwalk.org/

Blunden, B. (2009). The Rootkit Arsenal:
Escape and Evasion in the Dark Corners of

the System. 1st edition. Jones & Bartlett
Learning.

Blunden, B. (2012). The Rootkit Arsenal:
Escape and Evasion in the Dark Corners of
the System. 2nd edition. Burlington, MA:
Jones & Bartlett Publishers.

Brown, W. (2009). Building and Using an
Automated Malware Analysis Pipeline
Tools, Techniques, and Mindset.
Proceedings of the Hack in The Box
Security Conference (HITB), Malaysia.
Retrieved on December 8, 2015, from
http://conference.hitb.org/hitbsecconf2009
kl/materials/D2T3%20-
%20Wes%20Brown%20-
%20Building%20and%20Using%20an%20A
utomated%20Malware%20Analysis%20Pipe
line.pdf

Calvet, J. (2012). Cryptographic Function
Identification in Obfuscated Binary
Programs. Proceedings of the RECon.
Montreal, Canada. Retrieved on December
8, 2015, from
http://recon.cx/2012/schedule/attachment
s/46_Joan_CryptographicFunctionIdentifi
cation.pdf

Chen, L. (2008). Zion system DKOM driver
kernel. Microsoft Corporation. Retrieved on
December 8, 2015, from
http://blogs.technet.com/cfs-
filesystemfile.ashx/__key/telligent-
evolution-components-attachments/01-
6336-00-00-03-07-17-55/Zion.zip

Chen, R. (2004). The history of calling
conventions, part 3. MSDN. Retrieved on
December 8, 2015, from

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 72 © 2016 ADFSL

https://blogs.msdn.microsoft.com/oldnewt
hing/20040108-00/?p=41163/

Choi, Y., Kim, I., Oh, J., & Ryou, J. (2009).
Encoded Executable File Detection
Technique via Executable File Header
Analysis. International Journal of Hybrid
Information Technology. 2(2). Retrieved on
December 8, 2015, from
http://www.sersc.org/journals/IJHIT/vol2
_no2_2009/3.pdf

Ch40zz. (2015). PspCidTable and Patchguard
on x64. Rohitab. Retrieved
from http://www.rohitab.com/discuss/topi
c/41909-pspcidtable-and-patchguard-on-
x64/?p=10101659

Clark, B. (2014). Unlinking Windows Services
from the Service Record List. Retrieved on
December 8, 2015, from
http://speakingofcyber.blogspot.ru/2014/0
8/unlinking-windows-services-from-
service.html

Cohen, M. (2014).Pooltags for common
objects. Rekall Memory Forensics
Retrieved on December 8, 2015, from
http://www.rekall-
forensic.com/epydocs/rekall-module.html

Conti, G., Bratus, S., Shubina, A., Sangster,
B., Ragsdale, R., Supan, M., Lichtenberg,
A.. & Perez-Alemany, R. (2010).
Automated Mapping of Large Binary
Objects Using Primitive Fragment Type
Classification. The International Journal of
Digital Forensics & Incident Response.
Volume 7. Pages S3-S12. Elsevier Science
Publishers. Amsterdam, The Netherlands.

Cortesi, A. (2012) Visualizing Entropy in
Binary Files. Retrieved on December 8,
2015, from
http://corte.si/posts/visualisation/entropy
/index.html

Cortesi, A. (2015a). A Browser-based Tool for
Visualizing Binary Data. Retrieved on

December 8, 2015, from
http://binvis.io/#/

Cortesi, A. (2015b). BinVis tool download.
Retrieved on December 8, 2015, from
http://www.rumint.org/gregconti/publicati
ons/binviz_0.zip

Dang, B., Gazet, A., Bachaalany, E., & Josse,
S. (2014). Practical Reverse Engineering:
x86, x64, ARM, Windows Kernel,
Reversing Tools, and Obfuscation.
Indianapolis, IN, USA: John Wiley & Sons,
1 edition, 384 p.

Devi, D., & Nandi, S. (2012). PE File Features
in Detection of Packed Executables.
International Journal of Computer Theory
and Engineering. (4)3. Retrieved on
December 8, 2015, from
http://www.ijcte.org/papers/512-
S10014.pdf

Ding, Y., Dai, W., Yan, S., & Zhang, Y.
(2014). Control Flow-based Opcode
Behavior Analysis for Malware Detection.
Computers & Security. Volume 44. 65–74.
http://dx.doi.org/10.1016/j.cose.2014.04.00
3

Dingbaum, S. (2016). Audit Of NRC’S
Network Security Operations Center.
United States Nuclear Regulatory
Commission. Reference # OIG-16-A-07.
Retrieved
from http://pbadupws.nrc.gov/docs/ML16
01/ML16011A319.pdf

Dorfman, A. (2014). FRODO: Format
Reverser of Data Objects. Proceedings of
the Hack In The Box Security Conference
(HITB), Amsterdam, Netherlands.
Retrieved on December 8, 2015, from
http://bofh.nikhef.nl/events/HitB/hitb-
2014-amsterdam/praatjes/D2T3-Format-
Reverser-of-Data-Objects.pdf

Eagle, C. (2011). The IDA Pro Book: The
Unofficial Guide to the World's Most

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 73

Popular Disassembler. No Starch Press.
2nd Edition. 672p.

Emil's Projects. (2010). Tiny C Scrambling
Compiler. OpenHardware & OpenSource.
Retrieved on December 8, 2015, from
http://uglyduck.ath.cx/ep/archive/2010/04
/Tiny_C_Scrambling_Compiler.html

Farrukh, S., & Muddassar, F. (2012). ELF-
Miner: Using Structural Knowledge and
Data Mining Methods To Detect New
(Linux) Malicious Executables. Knowledge
and Information Systems. 30 (3), 589-612
Springer-Verlag New York, NY, USA
http://dx.doi.org/10.1007/s10115-011-0393-
5

Gilbert, В. (2015). ISIS Planning Major
Cyberattacks Against Airlines, Hospitals
And Nuclear Power Plants. International
Business Times. Retrieved
from http://www.ibtimes.com/isis-
planning-major-cyberattacks-against-
airlines-hospitals-nuclear-power-plants-
2187567

Ghezelbigloo, Z., & VafaeiJahan, M. (2014).
Role-opcode vs. Opcode: the New method
in Computer Malware Detection.
International Congress on Technology,
Communication and Knowledge (ICTCK).
1-6. Mashhad. Iran.
http://dx.doi.org/10.1109/ICTCK.2014.703
3534

Hall, G.A., & Davis, W.P. (2006). Sliding
Window Measurement for File Type
Identification. Technical report, Computer
Forensics and Intrusion Analysis Group,
ManTech. Security and Mission Assurance,
Rexas

Haukli, L. (2014). Exposing Bootkits with
BIOS Emulation. Black Hat USA.
Retrieved on December 8, 2015, from
https://www.blackhat.com/docs/us-

14/materials/us-14-Haukli-Exposing-
Bootkits-With-BIOS-Emulation.pdf

hfiref0x. (2016). Driver loader for bypassing
Windows x64 Driver Signature
Enforcement. GitHub. Retrieved
from https://github.com/hfiref0x/TDL

Hoglund, G., & Butler, J. (2005). Direct
Kernel Object Manipulation. Rootkits:
Subverting the Windows Kernel. 169-212.
Addison-Wesley Professional.

Iwamoto, K., & Wasaki, K. (2014). A Method
for Shellcode Extraction from Malicious
Document Files Using Entropy and
Emulation. IACSIT International Journal
of Engineering and Technology. (8)2. 101-
106. Singapore,
http://dx.doi.org/10.7763/IJET.2016.V8.86
6

Jakobsson, M., & Ramzan, Z. (2008). Direct
Kernel Object Manipulation. Crimeware:
Understanding New Attacks and Defenses.
1st edition. 253-254. Addison-Wesley
Professional.

Jason, A. (2012). Ghost in the Shell: A
Counter-intelligence Method for Spying
while Hiding in (or from) the Kernel with
APCs. Thesis. Queen’s University.
Kingston, Ontario, Canada. Retrieved on
December 8, 2015, from
https://qspace.library.queensu.ca/bitstrea
m/1974/7605/1/Alexander_Jason_S_2012
10_MSC.pdf

Jeff, J. (2015). Cyberattack on US Power
Plants Could Cause $1T in Economic
Damage. Green Technology. Retrieved
from http://www.greentechmedia.com/arti
cles/read/cyber-attack-on-u.s.-power-
plants-could-cause-1t-in-economic-damage

Jochheim, B. (2012). On the Automatic
Detection of Embedded Malicious Binary
Code using Signal Processing Techniques.
Project Report. Retrieved on December 8,

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 74 © 2016 ADFSL

2015, from http://inet.cpt.haw-
hamburg.de/teaching/ss-2012/master-
projects/benjamin_jochheim_pr1.pdf

Jochheim, B. (2012, October 17). On the
Automatic Detection of Embedded
Malicious Binary Code using Signal
Processing Techniques. Project Report.
Retrieved on December 8, 2015, from
https://inet.cpt.haw-
hamburg.de/teaching/ss-2012/master-
projects/benjamin_jochheim_pr1.pdf

Jochheim, B., Schmidt, T.C., & Wahlisch, M.
(2011). A Signature-free Approach to
Malicious Code Detection by Applying
Entropy Analysis to Network Streams.
Project SKIMS. Retrieved on December 8,
2015, from
https://tnc2011.terena.org/getfile/489

Kaspersky Lab. (2015, June 11). The Duqu 2.0
Technical Details. Retrieved on December
8, 2015, from
https://securelist.com/files/2015/06/The_
Mystery_of_Duqu_2_0_a_sophisticated
_cyberespionage_actor_returns.pdf

Kaspersky Lab's Global Research & Analysis
Team. (2013, January 14). “Red October”
Diplomatic Cyber Attacks Investigation.
Retrieved on December 8, 2015, from
https://securelist.com/analysis/publication
s/36740/red-october-diplomatic-cyber-
attacks-investigation/

Kaspersky, E. (2015, June 10). Kaspersky Lab
investigates hacker attack on its own
network. Retrieved on December 8, 2015,
from
https://blog.kaspersky.com/kaspersky-
statement-duqu-attack/8997/

KernelMode.info. (2012). [Kernel] Unloaded
modules list. Forum discussion. Retrieved
on December 8, 2015, from
http://www.kernelmode.info/forum/viewto
pic.php?t=1549

Kohli, P., Lempitsky, V., & Barinova. O.
(2015). Detecting and Localizing Multiple
Objects in Images Using Probabilistic
Inference, U.S. Patent No. US8953888 B2.
Washington, DC: U.S. Patent and
Trademark Office.

Korkin, I., & Nesterov I. (2014, May 28-29).
Applying Memory Forensics to Rootkit
Detection. Paper presented at the
Proceedings of the 9th annual Conference
on Digital Forensics, Security and Law
(CDFSL), 115-141, Richmond, VA, USA.

Korkin, I. (2012). Windows 8 is Cyber-
Battlefield. Retrieved on December 8, 2015,
from
http://www.igorkorkin.blogspot.ru/2012/0
9/windows-8-is-cyber-battlefield.html

Ladakis, E., Koromilas, L., Vasiliadis, G.,
Polychronakis, M., & Ioannidis, S.
(2013).You Can Type, but You Can’t Hide:
A Stealthy GPU-based Keylogger.
Proceedings of the 6th European Workshop
on System Security (EuroSec). Prague,
Czech Republic. Retrieved on December 8,
2015, from
http://www.cs.columbia.edu/~mikepo/pap
ers/gpukeylogger.eurosec13.pdf

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014a). Detecting Orphan Threads. The
Art of Memory Forensics: Detecting
malware and threats in Windows, Linux,
and Mac memory. 379-380. 1st edition.
Wiley. Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014b). Recently Unloaded Modules. The
Art of Memory Forensics: Detecting
malware and threats in Windows, Linux,
and Mac Memory. 374-375. 1st edition.
Wiley. Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014c). Windows Services. The Art of
Memory Forensics: Detecting malware and

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 75

threats in Windows, Linux, and Mac
Memory. 343-366. 1st edition. Wiley.
Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014d). Revealing Hidden Services. The
Art of Memory Forensics: Detecting
malware and threats in Windows, Linux,
and Mac Memory. 362-366. 1st edition.
Wiley. Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014e). Revealing Hidden Services. The
Art of Memory Forensics: Detecting
malware and threats in Windows, Linux,
and Mac memory. 362-366. 1st edition.
Wiley. Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014f). Scanning Memory. The Art of
Memory Forensics: Detecting malware and
threats in Windows, Linux, and Mac
Memory. 351-352. 1st edition. Wiley.
Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014g). Volatility’s SvcScan Plugin. The
Art of Memory Forensics: Detecting
malware and threats in Windows, Linux,
and Mac Memory. 352-353. 1st edition.
Wiley. Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014h). Revealing Hidden Services. The
Art of Memory Forensics: Detecting
malware and threats in Windows, Linux,
and Mac Memory. 362-366. 1st edition.
Wiley. Indianapolis, IN, USA.

Ligh MH., Case, A., Levy, J., & Walters, A.
(2014i). Stealthy Hooks. The Art of
Memory Forensics: Detecting malware and
threats in Windows, Linux, and Mac
Memory. 384-386. 1st edition. Wiley.
Indianapolis, IN, USA.

Ligh, MH. (2015a). PlugX: The Memory
Forensics Lifecycle. Retrieved on December
8, 2015, from

https://prezi.com/6ruvzpnpp-8y/plugx-the-
memory-forensics-lifecycle/

Ligh, MH.. (2015b). ScInitDatabase signature.
Retrieved on December 8, 2015, from
https://github.com/volatilityfoundation/vo
latility/blob/master/volatility/plugins/mal
ware/servicediff.py

Ligh, MH.., Adair, S., Hartstein, B., &
Richard, M. (2010). The Case of Blazgel.
Malware Analyst's Cookbook and DVD:
Tools and Techniques for Fighting
Malicious Code. 664-669. 1st edition.
Wiley.

Ligh, MH. (2011). Investigating Windows
Threads with Volatility. MNIN Security
Blog. Retrieved on December 8, 2015, from
http://mnin.blogspot.ru/2011/04/investiga
ting-windows-threads-with.html

Ligh, MH., Case, A., Levy, J., & Walters, A.
(2014, July 28). The Art of Memory
Forensics: Detecting Malware and Threats
in Windows, Linux, and Mac Memory. 1st
edition. 912 pp. Wiley Publishing.

Linchpin Labs (2010). ATSIV utility.
Retrieved on December 8, 2015, from
http://www.linchpinlabs.com

Louboutin, C. (2010). Service Hiding.
Retrieved on December 8, 2015, from
http://club.1688.com/article/12193937.htm

Lupi, V. (2011). How to Write a Good Rootkit:
a Different Approach. Hakin9 Extra
Magazine, English Edition. 06. 18-21.
Retrieved on December 8, 2015, from
http://codelaughs.blogspot.it/2011/11/how
-to-write-good-rootkit-different.html

Lyda, R., & Hamrock, J. (2007). Using
Entropy Analysis to Find Encrypted and
Packed Malware. Journal IEEE Security
and Privacy. 5(2). 40-45. Piscataway, NJ,
USA.
http://dx.doi.org/10.1109/MSP.2007.48

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 76 © 2016 ADFSL

Maartmann-Moe, C. (2008). Forensic Key
Discovery and Identification. Master of
Science in Communication Technology.
Norwegian University of Science and
Technology. Retrieved on December 8,
2015, from http://www.diva-
portal.org/smash/get/diva2:347635/FULL
TEXT01.pdf

Marcos, M. (2014). Without a Trace: Fileless
Malware Spotted in the Wild. Trend
Micro. Security Intelligence Blog. Retrieved
on December 8, 2015, from
http://blog.trendmicro.com/trendlabs-
security-intelligence/without-a-trace-
fileless-malware-spotted-in-the-wild/

Mask, A. (2011). Service Hiding. Retrieved on
December 8, 2015, from
http://maskattached.blogspot.ru/2011/04/
service-hiding.html

Matrosov, A., Rodionov, E., & Bratus, S.
(2016). Rootkits and Bootkits. Reversing
Modern Malware and Next Generation
Threats. ISBN: 978-1-59327-716-1. 304 pp.
No Starch Press.

Matveeva, V., & Epishkina, A. (2015).
Searching for Random Data in File System
During Forensic Expertise. Biosciences,
Biotechnology Research Asia, BBRA.
12(1). 745-752.
http://dx.doi.org/10.13005/bbra/1720

Matveeva, V. (2014). Information Entropy and
Its Application for Information Security
Tasks. Security of Information
Technologies, Issue #4, ISSN 2074-7128,
30-36.

McAfee Labs. (2015a). Threats Report.
Retrieved on December 8, 2015, from
http://www.mcafee.com/us/resources/repo
rts/rp-quarterly-threat-q1-2015.pdf

McAfee Labs. (2015b). 2016 Threats
Predictions report. Retrieved on December
8, 2015, from

http://www.mcafee.com/us/resources/repo
rts/rp-threats-predictions-2016.pdf

Merkel, R., Hoppe, T., Kraetzer, C., &
Dittmann, J. (2010). Statistical Detection
of Malicious PE-Executables for Fast
Offline Analysis. Proceedings of
Communications and Multimedia Security.
93-105. Linz. Austria.
http://dx.doi.org/10.1007/978-3-642-13241-
4_10

Microsoft. (n.d.-a). File sysload.c. Windows
Research Kernel Source Code. Retrieved on
December 8, 2015, from
http://gate.upm.ro/os/LABs/Windows_O
S_Internals_Curriculum_Resource_Kit-
ACADEMIC/WindowsResearchKernel-
WRK/WRK-v1.2/base/ntos/mm/sysload.c

Microsoft. (n.d.-b). File mm.h. Windows
Research Kernel Source Code. Retrieved on
December 8, 2015, from
http://gate.upm.ro/os/LABs/Windows_O
S_Internals_Curriculum_Resource_Kit-
ACADEMIC/WindowsResearchKernel-
WRK/WRK-v1.2/base/ntos/inc/mm.h

Microsoft. (n.d.-c). CurrentControlSet\Services
Subkey Entries.
https://support.microsoft.com/en-
us/kb/103000

Microsoft. (n.d.-d). File
windows_nt_4_source_code_IK\nt4\priv
ate\windows\screg\sc\server\dataman.c.
Windows NT 4.0 Full Free Source Code.
Retrieved on December 8, 2015, from
http://igorkorkin.blogspot.ru/2013/09/win
dows-nt-40-full-free-source-code-
912_16.html

Microsoft. (n.d.-e). File
windows_nt_4_source_code_IK\nt4\
private\ntos\dd\kbdclass\kbdclass.h.
Windows NT 4.0 Full Free Source Code.
Retrieved on December 8, 2015, from
http://igorkorkin.blogspot.ru/2013/09/win

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 77

dows-nt-40-full-free-source-code-
912_16.html

Microsoft. (n.d.-f). File
windows_nt_4_source_code_IK\nt4\priv
ate\ntos\dd\i8042prt\i8042prt.h. Windows
NT 4.0 Full Free Source Code. Retrieved
on December 8, 2015, from
http://igorkorkin.blogspot.ru/2013/09/win
dows-nt-40-full-free-source-code-
912_16.html

MidnightCowboy (2015, May 25). Best Free
Rootkit Scanner and Remover. Retrieved
on December 8, 2015, from
http://www.techsupportalert.com/best-
free-rootkit-scanner-remover.htm

Milkovic, L. (2012). DriverHider. Dementia
Project. Retrieved on December 8, 2015,
from http://dementia-
forensics.googlecode.com/svn/trunk/Demen
tiaKM/DriverHider.cpp

MJ0011. (2009). Analysis OS and Detection
Rootkit Outside the VMWare. Retrieved
on December 8, 2015, from
http://powerofcommunity.net/poc2009/mj.
pdf

MSDN. (n.d.-a). NtQueryDirectoryObject
function. Retrieved on December 8, 2015,
from https://msdn.microsoft.com/en-
us/library/bb470238(v=vs.85).aspx

MSDN. (n.d.-b).
IDebugDataSpaces::ReadDebuggerData
method. Retrieved on December 8, 2015,
from https://msdn.microsoft.com/en-
us/library/windows/hardware/ff553536(v=
vs.85).aspx

MSDN. (n.d.-c). EnumServicesStatus function.
Retrieved on December 8, 2015, from
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682637(v=
vs.85).aspx

MSDN. (n.d.-d). Introduction to Registry Keys
for Drivers. Retrieved on December 8,
2015, from https://msdn.microsoft.com/en-
us/library/windows/hardware/ff544262(v=
vs.85).aspx

Musavi, S.A., & Kharrazi, M. (2014). Back to
Static Analysis for Kernel-Level Rootkit
Detection. IEEE Transactions on
Information Forensics and Security. (9)9.
1465-1476.
http://dx.doi.org/10.1109/TIFS.2014.23372
56

Nataraja, L., Jacobb, G., & Manjunatha, B.S.
(2010). Detecting Packed Executables
based on Raw Binary Data. Technical
Report. Retrieved on December 8, 2015,
from
https://vision.ece.ucsb.edu/sites/vision.ece.
ucsb.edu/files/publications/packed-
unpacked-tech-report.pdf

Nath, H.V., & Mehtre, B.M. (2014, March
13-14). Static Malware Analysis Using
Machine Learning Methods. Recent Trends
in Computer Networks and Distributed
Systems Security. Proceedings of the
Second International Conference, SNDS
2014, Trivandrum, India. 440-450.
http://dx.doi.org/10.1007/978-3-642-54525-
2_39

Nguyen, A. (2014, August 7). Capstone: Next-
Gen Disassembly Framework. Blackhat
USA. Retrieved on December 8, 2015, from
http://capstone-engine.org/BHUSA2014-
capstone.pdf

Nguyen, K., Tran, D., Ma, W., & Sharma, D.
(August 19-21, 2014). An Approach to
Detect Network Attacks Applied for
Network Forensics. 11th International
Conference on Fuzzy Systems and
Knowledge Discovery (FSKD). 655-660.
Xiamen, China.
http://dx.doi.org/10.1109/FSKD.2014.6980
912

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 78 © 2016 ADFSL

NTInfo. (2014). Entropy and the distinctive
signs of packed PE files. Retrieved on
December 8, 2015, from
http://n10info.blogspot.ru/2014/06/entrop
y-and-distinctive-signs-of-packed.html

OSR Online. (1997). Using the NT Registry for
Driver Install. Retrieved on December 8,
2015, from
https://www.osronline.com/article.cfm?id=
170

Paganini, P. (2015, August 28). Symantec
discovered 49 New Modules of the Regin
espionage platform. Retrieved on December
8, 2015, from
http://securityaffairs.co/wordpress/39647/
cyber-crime/symantec-49-new-regin-
modules.html

Paganini, P. (June 17, 2015). Duqu 2.0: The
Most Sophisticated Malware Ever Seen.
Retrieved on December 8, 2015, from
http://resources.infosecinstitute.com/duqu-
2-0-the-most-sophisticated-malware-ever-
seen

Pareek, H., Eswari, P. R. L., & Babu S.C.
(2013). Entropy and n-gram Analysis of
Malicious PDF Documents. International
Journal of Engineering. 2(2). Retrieved on
December 8, 2015, from
https://www.researchgate.net/publication/
235974671_Entropy_and_n-
gram_analysis_of_malicious_PDF_docu
ments

Pedrero, X.-U., Santos, I., Sanz. B., Laorden,
C., & Bringas P.-G. (2012, January 14-17).
Countering Entropy Measure Attacks on
Packed Software Detection. Proceedings of
the 9th IEEE Consumer Communications
and Networking Conference (CCNC2012),
Las Vegas, NV, USA.
http://dx.doi.org/10.1109/CCNC.2012.618
1079

Pistelli, D. (n.d.). AntiMida 1.0. Retrieved on
December 8, 2015, from
http://www.ntcore.com/files/antimida_1.0
.htm

Probert, D. (2004). Windows Kernel Internals
Object Manager & LPC. Retrieved on
December 8, 2015, from http://i-web.i.u-
tokyo.ac.jp/edu/training/ss/msprojects/dat
a/04-ObjectManagerLPC.ppt

Qark. (n.d.). Windows Executable Infection.
VX Heaven. Retrieved on December 8,
2015, from
http://vxheaven.org/lib/static/vdat/tuvd0
004.htm

Ragan, S. (2016). Israel's electric grid targeted
by malware, energy minister says. CSO
Online. Retrieved from
http://www.csoonline.com/article/3026604
/security/israels-electric-grid-targeted-by-
malware-energy-minister-says.html

Reactor pattern. (n.d.). In Wikipedia.
Retrieved on December 8, 2015, from
https://en.wikipedia.org/wiki/Reactor_pat
tern

ReactOS. (n.d.).
KBDHID_DEVICE_EXTENSION Struct
Reference. Retrieved on December 8, 2015,
from
http://doxygen.reactos.org/da/daa/struct
KBDHID__DEVICE__EXTENSION.ht
ml

Rhee, Y. (2009). Pool tag list. TechNet Blogs.
Retrieved on December 8, 2015, from
http://blogs.technet.com/b/yongrhee/archi
ve/2009/06/24/pool-tag-list.aspx

Russinovich, M., Solomon, D., & Ionescu, A.
(2012). Windows Internals, Parts 1 and 2
(Developer Reference). 6th edition.
Microsoft Press.

Russinovich, M. (2011). Analyzing a Stuxnet
Infection with the Sysinternals Tools, Part

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 79

1. Microsoft TechNet. Retrieved on
December 8, 2015, from
https://blogs.technet.microsoft.com/markr
ussinovich/2011/03/26/analyzing-a-
stuxnet-infection-with-the-sysinternals-
tools-part-1/

Saleh, M., Ratazzi E.P., & Xu S, (2014).
Instructions-based Detection of
Sophisticated Obfuscation and Packing.
Proceedings of the 33rd Annual IEEE
Military Communications Conference,
MILCOM, 1-6, Baltimore, MD, USA.
dx.doi.org/10.1109/MILCOM.2014.9

SANS Institute (2014). A Case Study of an
Incident: A Day in the Life of an IR Team.
Retrieved on December 8, 2015, from
http://computerforensicsblog.champlain.ed
u/wp-content/uploads/2014/06/APT-
Attacks-Exposed-Network-Host-Memory-
and-Malware-Analysis-Lee-Tilbury-Hagen-
5-21-2014.pdf

SANS Institute (2015b). How to Parse a
Memory Image with the Volatility
Framework. Sans Memory Forensics
Poster. Retrieved on December 8, 2015,
from http://digital-
forensics.sans.org/media/Poster-2015-
Memory-Forensics2.pdf

SANS Institute. (2015a). Rise of anti-forensics
techniques requires response from digital
investigators [Press release]. Retrieved on
December 8, 2015, from
https://www.sans.org/press/announcement
/2015/09/07/1

Santos, I., Brezo, F., Nieves, J. K., Penya,
Y.K., Sanz, B., Laorden, C., & Bringas,
P.G. (2010). Idea: Opcode-sequence-based
Malware Detection. In Engineering Secure
Software and Systems, Second
International Symposium, ESSoS, F.
Massacci, D. S. Wallach, and N. Zannone,
Eds., vol. 5965 of Lecture Notes in
Computer Science, Springer, 35-43.

http://dx.doi.org/10.1007/978-3-642-11747-
3_3. Retrieved on December 8, 2015, from
http://paginaspersonales.deusto.es/ypenya
/publi/penya_ESSoS2010_Opcode-
sequence-
based%20Malware%20Detection.pdf

Santos, I., Brezo, F., Ugarte-Pedrero, X., &
Bringas, P.G. (2013). Opcode Sequences as
Representation of Executables for Data-
mining-based Unknown Malware Detection.
Information Sciences. 231. 64-82. Elsevier
Science. New York, NY, USA.
http://dx.doi.org/10.1016/j.ins.2011.08.020

Santos, I., Sanz, B., Laorden, C., Brezo, F., &
Bringas, P.G. (2011). Opcode-sequence-
based semi-supervised unknown malware
detection. Proceedings of the 4th
International Conference on Computational
Intelligence in Security for Information
Systems, CISIS’11. 50-57. Berlin,
Heidelberg. http://dx.doi.org/10.1007/978-
3-642-21323-6_7

Santos, R. (2014). Poweliks: Malware Hides in
Windows Registry. Trend Micro. Security
Intelligence Blog. Retrieved on December
8, 2015, from
http://blog.trendmicro.com/trendlabs-
security-intelligence/poweliks-malware-
hides-in-windows-registry/

Schmidt, T., Wahlisch, M., & Groning, M.
(2011, June 15-17). Context-adaptive
Entropy Analysis as a Lightweight
Detector of Zero-day Shellcode Intrusion
for Mobiles. Poster at The ACM
Conference on Wireless Network Security
(WiSec). Hamburg, Germany.

Schuberth, T. (2014). Modern Threats and
Malware and IT-Security’s Future.
Retrieved on December 8, 2015, from
http://www.swisst.net/files/swisstnet/de/d
okumente/Communication_Conference_20
14/aktuelle_gefahren_und_die_zukunft_
der_it_security.pdf

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 80 © 2016 ADFSL

Schuster, A. (2006). Searching for processes
and threads in Microsoft Windows memory
dumps. Journal Digital Investigation: The
International Journal of Digital Forensics
& Incident Response. 3, 10-16.
http://dx.doi.org/10.1016/j.diin.2006.06.01
0

Seals, T. (2015, September 8). Anti-Forensic
Malware Widens Cyber-Skills Gap.
Retrieved on December 8, 2015, from
http://www.infosecurity-
magazine.com/news/antiforensic-malware-
widens

Shabtai, A., Moskovitch, R., Feher, C., Dolev,
S., & Elovici, Y. (2012). Detecting
Unknown Malicious Code by Applying
Classification Techniques on OpCode
Patterns. Security Informatics. 1(1).
Retrieved on December 8, 2015, from
http://www.security-
informatics.com/content/pdf/2190-8532-1-
1.pdf

Siddiqui, M., Wang, M.C., & Lee., J. (2008).
Data Mining Methods for Malware
Detection Using Instruction Sequences.
Proceedings of the 26th IASTED
International Conference on Artificial
Intelligence and Applications, (AIA’08).
358-363. Anaheim, CA, USA. ACTA Press.

Silcott, G., & Swinimer, J. (2015). AMD
Launches ‘Boltzmann Initiative’ to
Dramatically Reduce Barriers to GPU
Computing on AMD FirePro Graphics.
[Press Releases]. Retrieved on December 8,
2015, from http://www.amd.com/en-
us/press-releases/Pages/boltzmann-
initiative-2015nov16.aspx

Singla, S., Gandotra, E., Bansal, D., & Sofat,
S. (2015). A Novel Approach to Malware
Detection using Static Classification.
International Journal of Computer Science
and Information Security (IJCSIS). 13(3).
Retrieved on December 8, 2015, from

https://www.academia.edu/11754857/A_N
ovel_Approach_to_Malware_Detection_
using_Static_Classification

Stewin, P., & Bystrov, I. (2012).
Understanding DMA Malware. Paper
presented at Proceedings of the 9th
Conference on Detection of Intrusions and
Malware & Vulnerability Assessment.
Heraklion, Crete, Greece. Retrieved on
December 8, 2015, from
http://www.stewin.org/papers/dimvap15-
stewin.pdf

Stuttard, D., Pinto, M., Ligh, M.H., Adair, S.,
Hartstein, B., & Richard, M. (2014,
January 28). Attack and Defend Computer
Security Set. 1st Edition. Wiley.

Suszter, A. (2014). Examining Unknown
Binary Formats Retrieved on December 8,
2015, from
http://reversingonwindows.blogspot.ru/201
4/04/examining-unknown-binary-
formats.html

Symantec. (2015, August 27). Regin: Top-tier
espionage tool enables stealthy surveillance.
Retrieved on December 8, 2015, from
http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitep
apers/regin-analysis.pdf

Tabish, S.M., Shafiq, M.Z., & Farooq, M.
(2009). Malware Detection using Statistical
Analysis of Byte-Level File Content.
Proceedings of the ACM SIGKDD
Workshop on CyberSecurity and
Intelligence Informatics (CSI-KDD’09). 23-
31.
http://dx.doi.org/10.1145/1599272.1599278
New York, NY, USA

Tanda, S. (2015). GitHub. Retrieved on
December 8, 2015, from
https://github.com/tandasat

Teller, T. (2013). Detecting the One Percent:
Advanced Targeted Malware Detection.

Acceleration of Statistical Detection of Zero-day … CDFSL Proceedings 2016

© 2016 ADFSL Page 81

Proceedings of the RSA Conference. San
Francisco. USA. Retrieved on December 8,
2015, from
https://www.rsaconference.com/writable/p
resentations/file_upload/spo2-t19_spo2-
t19.pdf

The Register. (2015, October 8). New mystery
Windows-smashing RAT found in
corporate network. Retrieved on December
8, 2015, from
http://www.theregister.co.uk/2015/10/08/
monker_rat/

Timzen, T. (2015). Kernel Forensics and
Rootkits. Course material for Computer
Forensics III (Memory Forensics) / CS407.
[Lecture notes]. Retrieved on December 8,
2015, from
https://www.tophertimzen.com/resources/
cs407/slides/week06_01-
Rootkits.html#slide1

Tsaur, W.J., & Chen, Y.C. (2010). Exploring
Rootkit Detectors' Vulnerabilities Using a
New Windows Hidden Driver Based
Rootkit. Paper presented at The Second
IEEE International Conference on Social
Computing (SocialCom2010), Minneapolis,
MN, USA. 842-848.
http://dx.doi.org/10.1109/SocialCom.2010.
127

Tsaur, W.J., & Wu, J.X. (2014b). Removing
the driver-related information in the
registry. New Windows Rootkit
Technologies for Enhancing Digital Rights
Management in Cloud Computing
Environments. Proceedings of the 2014
International Conference on e-Learning, e-
Business, Enterprise Information Systems,
and e-Government (EEE’14). Las Vegas,
USA. 3-4. Retrieved on December 8, 2015,
from http://worldcomp-
proceedings.com/proc/p2014/EEE2315.pdf

Tsaur, W.J., & Wu, J.X. (2014c). Removing
the Signature of PE (Portable Executable)

Image. New Windows Rootkit Technologies
for Enhancing Digital Rights Management
in Cloud Computing Environments. 2-3.
Proceedings of the 2014 International
Conference on e-Learning, e-Business,
Enterprise Information Systems, and e-
Government (EEE’14). Las Vegas, USA.
Retrieved on December 8, 2015, from
http://worldcomp-
proceedings.com/proc/p2014/EEE2315.pdf

Tsaur, W.J., & Yeh, L.Y. (2015, July 27-30).
New Protection of Kernel-level Digital
Rights Management in Cloud-based
Consumer Electronics Environments.
Proceedings of the 2015 International
Conference on Grid & Cloud Computing
and Applications (GCA’15). Monte Carlo
Resort, Las Vegas, USA. Retrieved on
December 8, 2015, from http://worldcomp-
proceedings.com/proc/p2015/GCA2880.pdf

Tsaur, W.J., & Wu, J.X. (2014a). Removing
Drivers from PsLoadedModuleList. New
Windows Rootkit Technologies for
Enhancing Digital Rights Management in
Cloud Computing Environments.
Proceedings of the 2014 International
Conference on e-Learning, e-Business,
Enterprise Information Systems, and e-
Government (EEE’14). Las Vegas, USA.
Retrieved on December 8, 2015, from
http://worldcomp-
proceedings.com/proc/p2014/EEE2315.pdf

Visualizing ELF binaries. (2014). Reverse
Engineering. Retrieved on December 8,
2015, from
http://reverseengineering.stackexchange.co
m/questions/6003/visualizing-elf-binaries

Vomel, S., & Lenz, H. (2013, March 12-14).
Visualizing Indicators of Rootkit Infections
in Memory Forensics, Paper presented at
7th International Conference on IT
Security Incident Management and IT

ADFSL Conference Proceedings 2016 Acceleration of Statistical Detection of Zero-day …

Page 82 © 2016 ADFSL

Forensics (IMF), 122-139, Nuremberg,
German.

Wang, T.Y., Wu, C.H., & Hsieh, C.C. (2009).
Detecting Unknown Malicious Executables
Using Portable Executable Headers.
Proceedings of the 2009 Fifth International
Joint Conference on INC, IMS and IDC.
278-284. Washington, DC, USA.
http://dx.doi.org/10.1109/NCM.2009.385

Wangen, G. (2015, May 18). The Role of
Malware in Reported Cyber Espionage: A
Review of the Impact and Mechanism.
Information. 6(2). 183-211.
http://dx.doi.org/10.3390/info6020183

Weil, N. (2014, November 24). Stealthy,
sophisticated 'Regin' malware has been
infecting computers since 2008. Retrieved
on December 8, 2015, from
http://www.pcworld.com/article/2851472/
symantec-identifies-sophisticated-stealthy-
regin-malware.html

Wineblat, E. (2009). Service Hiding. Apriorit
Inc. Retrieved on December 8, 2015, from
http://www.codeproject.com/Articles/4667
0/Service-Hiding

x86 Disassembly/Windows Executable Files.
(n.d.). In Wikipedia. Retrieved on
December 8, 2015, from
https://en.wikibooks.org/wiki/X86_Disass
embly/Windows_Executable_Files

Yu, S., Zhou, S., Liu, L., Yang, R., & Luo, J.
(2011). Detecting Malware Variants by
Byte Frequency. 2010 Second International
Conference on Networks Security Wireless
Communications and Trusted Computing
(NSWCTC). 32-35. Wuhan, Hubei, China.
http://dx.doi.org/10.1109/NSWCTC.2010.
145

Yurichev, D. (2015). Analyzing unknown
binary files using information entropy.
Retrieved on December 8, 2015, from
http://yurichev.com/blog/entropy/

ZCM Services. (2010). Manually Adding or
Removing Services and Devices. Retrieved
on December 8, 2015, from
http://nt4ref.zcm.com.au/mansd.htm

zhanglinfu2000. (2013). The organization of the
Windows object. Retrieved on December 8,
2015, from
http://www.developermemo.com/3524027/

Zolotukhin, M. & Hamalainen, T. (2014).
Detection of Zero-Day Malware Based On
the Analysis of Opcode Sequences.
Proceedings of the 11th Consumer
Communications and Networking
Conference (CCNC). 386-391. Las Vegas,
NV, USA.
http://dx.doi.org/10.1109/CCNC.2014.686
6599

	Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware
	Scholarly Commons Citation

	Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

