
Doctoral Dissertations and Master's Theses 

Summer 8-2017 

Comparative Analysis of Conventional Electronic and OZ Concept Comparative Analysis of Conventional Electronic and OZ Concept 

Displays for Aircraft Energy Management Displays for Aircraft Energy Management 

Erik Reese Baker 
Embry-Riddle Aeronautical University 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Aerospace Engineering Commons, and the Aviation Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Baker, Erik Reese, "Comparative Analysis of Conventional Electronic and OZ Concept Displays for Aircraft 
Energy Management" (2017). Doctoral Dissertations and Master's Theses. 352. 
https://commons.erau.edu/edt/352 

This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been 
accepted for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly 
Commons. For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fedt%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1297?utm_source=commons.erau.edu%2Fedt%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/352?utm_source=commons.erau.edu%2Fedt%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


COMPARATIVE ANALYSIS OF CONVENTIONAL ELECTRONIC AND 

OZ CONCEPT DISPLAYS FOR AIRCRAFT ENERGY MANAGEMENT 

By 

Erik Reese Baker 

A Dissertation Submitted to the College of Aviation 

in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Aviation 

Embry-Riddle Aeronautical University 

Daytona Beach, Florida 

August 2017 



 ii 

© 2017 Erik Reese Baker 

All Rights Reserved. 





 iv 

ABSTRACT 

Researcher: Erik Reese Baker 

Title: COMPARATIVE ANALYSIS OF CONVENTIONAL ELECTRONIC 

AND OZ CONCEPT DISPLAYS FOR AIRCRAFT ENERGY 

MANAGEMENT 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2017 

A repeated-measures, within-subjects design was conducted on 58 participant pilots to 

assess mean differences on energy management situation awareness response time and 

response accuracy between a conventional electronic aircraft display, a primary flight 

display (PFD), and an ecological interface design aircraft display, the OZ concept 

display.  Participants were associated with a small Midwestern aviation university, 

including student pilots, flight instructors, and faculty with piloting experience.  Testing 

consisted of observing 15 static screenshots of each cockpit display type and then 

selecting applicable responses from 27 standardized responses for each screen. 

A paired samples t-test was computed comparing accuracy and response time for 

the two displays.  There was no significant difference in means between PFD Response 

Time and OZ Response Time.  On average, mean PFD Accuracy was significantly higher 

than mean OZ Accuracy (MDiff = 13.17, SDDiff = 20.96), t(57) = 4.78, p < .001, d = 0.63.  

This finding showed operational potential for the OZ display, since even without first 

training to proficiency on the previously unseen OZ display, participant performance 

differences were not operationally remarkable. 

There was no significant correlation between PFD Response Time and PFD 

Accuracy, but there was a significant correlation between OZ Response Time and OZ 
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Accuracy, r (58) = .353, p < .01.  These findings suggest the participant familiarity of the 

PFD resulted in accuracy scores unrelated to response time, compared to the participants 

unaccustomed with the OZ display where longer response times manifested in greater 

understanding of the OZ display. 

PFD Response Time and PFD Accuracy were not correlated with pilot flight 

hours, which was not expected.  It was thought that increased experience would translate 

into faster and more accurate assessment of the aircraft stimuli.  OZ Response Time and 

OZ Accuracy were also not correlated with pilot flight hours, but this was expected.  This 

was consistent with previous research that observed novice operators performing as well 

as experienced professional pilots on dynamic flight tasks with the OZ display.  A 

demographic questionnaire and a feedback survey were included in the trial.  An 

equivalent three-quarters majority of participants rated the PFD as “easy” and the OZ as 

“confusing”, yet performance accuracy and response times between the two displays 

were not operationally different. 
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CHAPTER I 

INTRODUCTION 

This study seeks to determine whether an ecological interface design (EID) such 

as the OZ concept cockpit display can improve a pilot’s energy management situation 

awareness (EM SA) over a conventional electronic flight display when observing display 

screenshots of an airplane operating at high altitude.  The two aerodynamic 

manifestations of concern during climb and subsequent level cruise are: (a) when 

airplanes fly near their absolute aerodynamic ceiling—all available thrust is required to 

maintain balanced level flight; and (b) when airplanes decelerate into the region of 

reverse command—increased thrust is required for slower flight.  If cockpit displays 

provided situation awareness (SA) specifically focused on energy management (EM) 

(i.e., thrust required with respect to thrust available or lift over drag (L/D)), then pilots 

would have the opportunity to recognize EM deviations early and perhaps correct from a 

developing loss of control inflight (LOC-I) incident.  In this chapter, the following 

relevant concepts will be briefly discussed to provide the context for this study: 

 Loss of Control Inflight 

 Airplane Upsets 

 Reverse Command and Coffin Corner 

 Energy Management Situation Awareness 

 Information Requirements 

 Ecological Interface Design 

 OZ Concept Display 
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Loss of Control Inflight 

LOC-I is defined by the Federal Aviation Administration (FAA) as a category of 

airplane accident or incident resulting from a deviation from intended flight path (FAA, 

2015a).  LOC-I was the leading cause of fatalities in commercial aviation between 2001 

and 2011 (ICAO, 2014b), involved in 22 commercial jet accidents and over 40% of all 

fatalities between 1999 and 2008 (Belcastro & Jacobson, 2010). 

Airplane Upsets 

Brooks, Ransbury, and Stowell (2014) claim that airplane upsets often precede 

fatal LOC-I events.  An airplane upset is defined by both the FAA and International Civil 

Aviation Organization (ICAO) as “an unintentional exceedance of flight parameters in 

normal line operations or training—greater than 25° nose up, greater than 10° nose down, 

greater than 45° bank, or flying within the above parameters but at airspeeds 

inappropriate for the conditions” (FAA, 2015a, p. 2; ICAO, 2014a, p. x).  Unintended 

stalls are a subset of airplane upset, since during a stall the airplane is at an inappropriate 

airspeed for the conditions (ICAO, 2014a).  Aerodynamic stalls are responsible for nearly 

half of all fatal LOC-I accidents (Brooks et al., 2014). 

Reverse Command and Coffin Corner 

Two complex aerodynamic concepts are the region of reverse command and the 

coffin corner.  The region of reverse command can occur at any altitude and is explained 

when an airplane is flown at speeds slower than the maximum lift over drag ratio 

(L/Dmax), commonly known as best endurance airspeed.  While maintaining a level 

altitude in reverse command, any decrease in desired airspeed requires a counter-intuitive 

increase in thrust due to the accumulation of induced drag as a function of lift (Carbaugh, 



 

 

3 

Rockliff, & Vandel, 2008).  When an airplane flies faster than L/Dmax airspeed, the 

relationships are normal in so much as an increase in desired speed necessitates a logical 

increase in thrust. 

LOC-I incidents sometimes occur when commercial and business jets fly at the 

edge of their flight envelopethe coffin-cornerwhich is the confluence of the 

airplane’s altitude ceiling (the highest it can possibly fly based on engine performance) 

and the narrow margin between structural overspeed (too fast) and aerodynamic stall (too 

slow) (FAA, 2013).  Airplanes are purposefully flown in that confluence in order to reap 

the operational cost benefits of fuel efficiency and faster ground speeds due to the less 

dense air at altitude, thereby placing airplanes at risk for high altitude upset when cruise 

true airspeed (TAS) is so near to the stall margin.  These emergent operational 

preferences add complexity to high altitude decision making and overall SA, increasing 

the risk for LOC-I. 

Energy Management Situation Awareness (EM SA)  

Poor energy management has been a causal factor in airplane upset LOC-I 

accidents (Belcastro & Jacobson, 2010; ICAO, 2014a).  EM is the process by which 

pilots safely and efficiently convert thermal energy (e.g., fuel) into potential energy (e.g., 

altitude) and kinetic energy (e.g., airspeed) (Merkt, 2013).  SA is “the perception of the 

elements in the environment within a volume of time and space, the comprehension of 

their meaning, and the projection of their status in the near future” (Endsley, 1995, p. 36).  

Therefore, EM SA is the degree to which a pilot has an accurate awareness of the energy 

state of their airplane. 
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EM SA data.  Although the two main devices manipulated on an airplane for EM 

are engine throttles and primary flight controls, a pilot may draw upon other available 

information in the cockpit to make EM decisions.  Cockpit designers have been able to 

provide a plethora of data crucial to proper energy management to pilots, such as 

atmospheric conditions and gross weight of the airplane.  However, the pilot is still left 

responsible for the interpretation and application of the information to determine the 

airplane’s energy state.  Furthermore, EM information is scattered throughout the cockpit 

displays and in deep layers of flight management system (FMS) pages.  Aircraft 

parameter data “come from different sources, differing in importance, and using different 

scales and frames of reference… [and do not] have any explicit relationship with other 

[data] streams–except in the operator’s head” (Eskridge, Still, & Hoffman, 2014, p. 91), 

meaning pilots spend considerable cognitive capital processing raw data in order to build 

EM SA comprehension. 

Information Requirements 

Any new primary flight display (PFD) design must first ascertain the information 

requirements of the pilots, that is, the types of flight performance information that would 

aid in making safe, timely, and accurate decisions during the conduct of a flight.  

Airplane cockpits require pilots to scan a multitude of different displays to find critical 

flight performance information (Temme, Still, & Acromite, 2003).  The FAA published 

Advisory Circular 25-11B (2014) mandates that critical flight information, called primary 

flight information (PFI), be displayed on the PFD located in the primary field of view 

(PFOV).  Important issues to consider are whether different combinations of information 

sources should be displayed on the PFD during different flight regimes and how 
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information should be displayed on the PFD in order to maintain the airplane in a safe 

operating flight envelope with respect to altitude, airspeed, attitude, angle of attack, and 

thrust. 

Ecological Interface Design 

An EID is a human-computer interface for a complex sociotechnical system, such 

as found in medicine, aviation, and nuclear power (Vicente, 2002).  While PFDs are data 

driven, full of various aeronautical data, push cognitive limits, and offer limited support 

to SA, the philosophy behind EID is to provide operators with specific work domain 

constraints, aiding their SA, so they can make informed decisions during complex 

scenarios.  EIDs present both physical and functional information through intuitive 

graphical features promoting Endsley’s levels of SA: perception, comprehension, and 

projection of future states (2012; 1995). 

OZ Concept Display 

Toward the goal of “reducing the cognitive effort required to maintain operator 

SA” (IMHC, 2015, para. 3), the Florida Institute of Human & Machine Cognition 

(IHMC) developed a new type of airplane instrument display called the OZ concept 

display.  By providing all three levels of SA information as described by Endsley (1995): 

perception (Level 1), comprehension (Level 2), and projection (Level 3), IMHC asserts 

that the OZ display “presents data in a manner that allows the operator to understand the 

situation effortlessly” (IMHC, 2015, para. 2). 

Significance of this Research 

LOC-I and airplane upsets during the enroute phase of flight are the leading cause 

of accidents and fatalities worldwide (Carbaugh, Rockliff, & Vandel, 2008).  Emphasis 
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on preventing LOC-I is a priority for the ICAO commercial aviation field as well as the 

U.S. general aviation (GA) community (ICAO, 2014b, para. 1; NTSB, 2015). 

Smith, Fadden, and Boehm-Davis (2005) examined pilot performance on altitude, 

airspeed, and heading control using the OZ display in comparison to an analog, round-

dial, Cessna cockpit.  Their study recommended further investigation of the OZ display in 

comparison to modern electronic flight information system (EFIS) technology, with 

respect to its ability to integrate multiple types of information.  The functionality of the 

OZ display incorporates EM SA data, such as L/D max speed, into the typical 

information delivered to the pilot by a PFD such as altitude, heading, and airspeed.  

Angle of attack (AOA) information is intended for future OZ designs, pending software 

modifications (D. L. Still, personal communication, September 16, 2015).  Smith et al. 

(2005) recognized the necessity to identify technology that could improve the next 

generation of flight displays.  Notably, the OZ concept display, built for a light single-

engine Cessna 172, has not been evaluated in the high altitude aerodynamic regime where 

commercial aviation commonly experiences LOC-I (Gerold, 2003).  The proposed 

research aims to address this gap. 

Statement of the Problem 

Current cockpit PFDs may not provide pilots with adequate energy management 

SA to prevent LOC-I during high altitude cruise flight.  Modern flight operations, intent 

on minimizing operating costs, seek flight paths at higher altitudes due to reduced fuel 

burn and favorable upper-level winds on certain routes in cruise, but often inadvertently 

place turbojet or turboprop airplanes near aerodynamic stall with minimal excess thrust or 

power, respectively.  Thrust, normally associated with turbojet engines, is defined as 
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work over distance (Dole & Lewis, 2000).  Power, normally associated with turboprop or 

turboshaft engines, is defined as work over time (Dole & Lewis, 2000).  Any mention of 

thrust or power in this document may be interchanged, respective to the type of engine in 

question.  A lack of availability of information about the thrust curve and area of reverse 

command can make EM decisions critical at high altitude and slow cruise speeds since 

the airplane has no EM margin for error. 

Current flight displays may not provide pilot SA in terms of energy management 

during high altitude regimes because these displays may not contain sufficient Level 2 

SA (comprehension) or Level 3 SA (projection) information.  The typical PFD and 

engine indicating and crew alerting system (EICAS) of modern airplanes offers Level 1 

SA (perception) information but does not seem to support comprehension (Level 2 SA), 

and projection of future states is limited (Level 3 SA).  Even with modern airplane stall 

alerting systems such as stick shaker, stick pusher, and AOA gauges, conditions leading 

to aerodynamic stalls might be avoided by proper reference to an intuitive, Level 3 SA 

display of EM information, such as depicted on an OZ concept display. 

If the off-nominal conditions surrounding the occurrence of high altitude upsets 

are becoming more likely, pilots should be provided with all available technology to 

properly analyze and take corrective action on complex energy management situations.  

In particular, providing PFDs with thrust required / thrust available curve information 

could reduce and possibly prevent the occurrence of aerodynamic stalls. 

Purpose Statement 

This study will evaluate a PFD and the OZ concept display in terms of how 

effectively each display provides pilots with EM SA when observing display screenshots 
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of an airplane operating at high altitude.  This study will also examine the potential utility 

of those displays in providing specific forms of EM SA such as thrust required / thrust 

available curve information.  An empirical study utilizing instrument panel screen shots 

requiring participants to make energy management decisions will comparatively measure 

the EM SA demonstrated from a PFD and the OZ concept display.  Pilot EM SA will be 

assessed using the validated SA measure Situation Present Assessment Method (SPAM) 

to evaluate differences when using either a PFD or an OZ concept display. 

Research Question 

Will an ecological interface design, such as the OZ concept cockpit display, 

provide increased EM SA compared to a PFD, in terms of greater response accuracy and 

quicker response times, when instrument-rated pilots are presented with high altitude EM 

decisions? 

Hypotheses 

Research 1) Participants presented with high altitude EM decisions will exhibit a 

difference in response accuracy and response times when using the OZ concept cockpit 

display compared to when using a conventional electronic flight display. 

Null 1) Participants presented with high altitude EM decisions will exhibit no 

difference in response accuracy and response time when using the OZ concept cockpit 

display compared to when using a conventional electronic flight display. 

Research 2) Pilot flight hours will be correlated with speed and accuracy of EM 

decisions when presented with a conventional electronic flight display. 

Null 2) Pilot flight hours will not be correlated with speed and accuracy of EM 

decisions when presented with a conventional electronic flight display. 
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Research 3) Pilot flight hours will not be correlated with speed and accuracy of 

EM decisions when presented with the OZ concept cockpit display. 

Null 3) Pilot flight hours will be correlated with speed and accuracy of EM 

decisions when presented with the OZ concept cockpit display. 

Delimitations 

This study recruited FAA instrument-rated aviation students, faculty, and staff 

from a small private Midwest university, for a within-subjects design to evaluate the EM 

SA differences between the OZ concept display and a conventional electronic display.  

This study will compare the OZ display for a Cessna-172 to a regional jet PFD for a CRJ-

700; both aircraft are modeled in Microsoft Flight Simulator X.  The experiment is a 

simulation of instrument flying with no incidental out-the-window cues, as may be 

present when flying in IMC. 

Limitations and Assumptions 

The use of the term “conventional” in this report will refer to analog and 

electronic versions of cockpit displays presently used in GA, commercial, and military 

aircraft.  The use of the term “conventional analog” will refer to round dial (RD) gauges, 

and “conventional electronic” will refer to digital PFDs. 

The participants, recruited from the single, Midwest aviation university, will 

signify a convenience sample but will generalize to the larger population of FAA 

instrument-rated pilots.  The within-subjects, repeated-measures design reduces the effect 

of individual differences.  It is assumed that any measured EM SA differences between 

the displays in the proposed study will yield similar differences in other FAA instrument-

rated pilots under the same scenarios. 
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While it is possible that mere perception, comprehension, and projection of EM 

SA in certain participants will not elicit the additional physical motor skills required 

during corrective action in an airplane, it is assumed that increased EM SA indicates an 

opportunity for pilot intervention and corrective action.  Additionally, it is assumed that 

measured increases in EM SA through an improved cockpit display design would 

translate into fewer EM incidents in practice. 

Proprioceptive environmental cues to include visual, aural, tactile / haptic cues, 

both from within and outside the cockpit, would equally affect a pilot’s EM SA for either 

type of display.  Although most air carriers have two pilots who influence each other’s 

EM SA through their crew resource management (CRM), the experiment assumes that 

the individual EM SA effect would be the same for either type of display.  Pilots would 

physically apply the thrust level and pitch control inputs consistent with what they 

indicated in their responses to interpreting the displays. 

Definition of Terms 

Aerodynamic Ceiling  Altitude where high speed MACH pre-stall buffet 

and low speed IAS pre-stall buffet meet, commonly 

referred to as the coffin corner (FAA, 2013). 

Airplane Upset An airplane in flight unintentionally exceeding the 

parameters normally experienced in line operations 

or training: pitch attitude >25° nose up or >10° nose 

down, bank angle >45°, or within the above 

parameters but flying at airspeeds inappropriate for 

the conditions (FAA, 2015a). 
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Angle of Attack (AOA) Angle between the relative wind and the chord of 

the airfoil (FAA, 2008b). 

Coffin Corner or Q-Corner Term used to describe operations at high altitudes 

where low indicated airspeed (IAS) yield high true 

airspeed (TAS) (as indicated by Mach number) at 

high angles of attack.  The high AOA results in 

flow separation that causes buffet.  Turning 

maneuvers at these altitudes increase the AOA and 

result in stability deterioration with a decrease in 

control effectiveness.  The relationship of stall 

speed to the critical Mach (Mcr) narrows to a point 

where sudden increases in AOA, roll rates, and / or 

disturbances (e.g., clear air turbulence) cause the 

limits of the flight envelope to be exceeded.  Coffin 

corner exists in the upper portion of the flight 

envelope for a given gross weight and G-force 

(FAA, 2013). 

Electronic Flight Display The modern cockpit display featuring cathode ray 

tube (CRT), liquid crystal display (LCD), or light-

emitting diode (LED) electronic digital flight 

instruments, a technological advance past 

mechanical gauges (Garland et al., 1999). 
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Energy Management (EM) Process where pilots safely and efficiently 

manipulate thermal energy (fuel) into potential 

energy (altitude) and kinetic energy (airspeed) 

(Merkt, 2013). 

Energy Management Situation Awareness (EM SA) Degree to which a pilot has 

an accurate awareness on the energy state of their 

airplane. 

Flight Envelope The region of flight parameters surrounded by load 

factor (“G”) limit and airspeed structural limit.  If 

an aircraft is pushed outside of this region then it is 

considered to be operating “outside the envelope” 

(Dole & Lewis, 2000). 

High Altitude Operations above flight level 250 (FL250) or 

25,000 feet mean sea level (MSL) (Carbaugh, 

Rockliff, & Vandel, 2008). 

Indicated Airspeed (IAS) Direct instrument reading of airspeed uncorrected 

for atmospheric density, installation error, or 

instrument error (FAA, 2008b). 

Induced Drag Portion of drag that is the inevitable consequence of 

the production of lift; varies indirectly with airspeed 

(FAA, 2008b). 

L/D max Lowest point on the total drag curve.  The speed 

slower than L/D max is known as slow flight, “back 
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side of thrust / power curve”, or “region of reverse 

command”.  Speed faster is known as normal flight 

or “front side of thrust / power curve” (Carbaugh, 

Rockliff, & Vandel, 2008). 

MACH number Ratio of the true airspeed to the speed of sound 

(FAA, 2008b). 

Maximum Altitude Altitude that the airplane is either thrust-limited: no 

longer able to provide any rate of climb; buffet-

limited: where 1.3 g loading due to turning, 

maneuvering, or turbulence would result in pre-stall 

buffet; or structural-limited: pressurization load 

limits on airframe (FAA, 2008b). 

Optimum Altitude Altitude that a given thrust setting results in the 

corresponding maximum range / minimum fuel 

burn speed.  This altitude is not constant but 

increases with a decrease in temperature, a 

reduction in weight of the airplane, or a reduction in 

speed of the airplane (FAA, 2008a). 

Parasitic Drag Portion of drag created by the shape of the airplane 

and is not associated with the production of lift; 

varies directly with airspeed (FAA, 2008b). 

Power Available (PA) Maximum power an engine of a propeller / rotor 

aircraft can produce (Dole & Lewis, 2000). 
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Power Curve Depiction of power and airspeed, normally a “J” 

shaped curve, applicable to propeller or rotor driven 

aircraft (Dole & Lewis, 2000). 

Power Required (PR) Amount of power equal to total parasitic and 

induced drag (Dole & Lewis, 2000). 

Service Ceiling Altitude that produces a rate of climb of 100 feet 

per minute (fpm; Hurt, 1965). 

Situation Awareness (SA) The perception of elements in the environment 

within a volume of time and space (Level 1 SA), the 

comprehension of their meaning (Level 2 SA), and 

the projection of their status in the near future 

(Level 3 SA) (Endsley, 1995, p. 36). 

“Six-Pack” Gauges The six flight instruments chosen by the British 

Royal Air Force in 1937 to be the standard cockpit 

set-up: altimeter, airspeed indicator, attitude 

indicator, turn and bank indicator, vertical speed 

indicator, and directional gyro (Williamson, 1937). 

Stall  Sudden reduction in lift occurring at the critical 

angle of attack when airflow separates from wing 

surface (FAA, 2008b). 

Thrust Available (TA) Maximum thrust an engine on a turbojet aircraft can 

produce (Dole & Lewis, 2000). 
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Thrust Curve Depiction of thrust and airspeed, normally a “U” 

shaped curve, applicable to thrust producing 

turbojet aircraft (Carbaugh, Rockliff, & Vandel, 

2008). 

Thrust Required (TR) Amount of thrust equal to total parasitic and 

induced drag on a turbojet aircraft (Dole & Lewis, 

2000). 

True Airspeed (TAS) Value for indicated airspeed when corrected for air 

compressibility, air density, and position error 

(FAA, 2008b). 

List of Acronyms 

ANOVA   Analysis of Variance 

AH   Abstraction Hierarchy 

AOA   Angle of Attack 

ATC   Air Traffic Control 

ATP   Airline Transport Pilot 

CAST   Commercial Aviation Safety Team 

CICTT   CAST / ICAO Common Taxonomy Team 

CFII   Certified Flight Instructor Instrument 

CFIS   Controlled Flight into Stall 

CRT   Cathode Ray Tube 

DOT   Department of Transportation 

EFIS   Electronic Flight Information System 



 

 

16 

EGPWS   Enhanced Ground Proximity Warning System 

EICAS   Engine Indicating and Crew Alerting System 

EID   Ecological Interface Design 

EM   Energy Management 

EM SA   Energy Management Situation Awareness 

EPR   Engine Pressure Ratio 

ERAU   Embry-Riddle Aeronautical University 

FAA   Federal Aviation Administration 

FFS   Full Flight Simulator 

FLXX0   Flight Level XX Thousand Feet 

FMS   Flight Management System 

g   Gravitational Force or Load 

GA   General Aviation 

IAS   Indicated Airspeed 

ICAO   International Civil Aviation Organization 

IHMC   Florida Institute of Human & Machine Cognition 

IRB   Institutional Review Board 

ISA   International Standard Atmosphere 

LCD   Liquid Crystal Display 

L/D   Lift over Drag 

LED   Light-emitting Diode 

LOC-I   Loss of Control Inflight 

LOFT   Line Oriented Flight Training 
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Mcr   Critical Mach 

MSFS   Microsoft Flight Simulator 

MSL   Mean Sea Level 

NTSB   National Transportation Safety Board 

OA   Optimum Altitude 

PA   Power Available 

PFD   Primary Flight Display 

PFI   Primary Flight Information 

PFOV   Primary Field of View 

PR   Power Required 

RD   Round Dial Display 

RMS   Root Mean Square 

SA   Situation Awareness 

SME   Subject Matter Expert 

SPAM   Situation Present Assessment Method 

SRK   Skill-Rule-Knowledge 

SVS   Synthetic Vision System 

TA   Thrust Available 

TAS   True Airspeed 

TR   Thrust Required 

UCD   User Centered Design  
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

This literature review details industry collective knowledge on the aeronautical 

hazard of airplane upset and loss of control inflight, and through the examination of 

National Transportation Safety Board (NTSB) reports, FAA advisory circulars, ICAO 

training manuals, and scholarly journals, directs the reparative focus to the potential 

contributions of improved energy management situation awareness.  In addition to 

strengthening aerodynamic education, pilot muscle memory, and stall recovery 

procedural training, the prominence of EM on the OZ display provides an opportunity for 

research on its proposed benefits to pre-upset recognition.  While the literature and 

industry knowledge of this topic are based on conventional displays, visual stall aids, and 

angle of attack indications, the contributions of a thrust curve energy management 

depiction on the OZ display have been briefly yet successfully studied.  This initial OZ 

simulator testing proved the utility of the system to provide improved adherence to flight 

performance parameters during elementary flight maneuvers, despite distractions of 

mental tasks and simulated turbulence, on a light, single engine, low altitude plane.  The 

gap uncovered is what OZ and its EM functional interface can contribute to a high 

altitude airplane upset scenario. 

Airplane Upset Recovery Training Aid 

An international industry working group with members from Boeing, Airbus, 

Flight Safety Foundation, U.S. Department of Transportation (DOT), FAA, and NTSB 

was established in 1998 to address an increasing rate of high altitude upsets per number 

of flight operations (Carbaugh et al., 2008; FAA, 2008).  High altitude upsets are defined 
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as those occurring at or above 25,000 feet mean sea level (MSL).  The Training Aid was 

updated in 2004 and again in 2008 with the most recent information and 

recommendations. 

The goal of this group was to educate pilots so they have the knowledge and skill 

to adequately operate their airplanes and prevent upsets in a high altitude 

environment.  This should include the ability to recognize and prevent an 

impending high altitude problem and increase the likelihood of a successful 

recovery from a high altitude upset situation, should it occur. (FAA, 2008a, p. 1) 

The training aid supplement informed pilots of high altitude aerodynamic concepts such 

as optimum altitude (OA), the cruise altitude for minimum fuel consumption (minimum 

cost), and the fact that increased international standard atmosphere (ISA) temperatures 

will lower OA. 

The report also cited the incomplete scenarios that, until as recently as 2009, were 

used for the training of aerodynamic stall recognition and recovery.  Most flight simulator 

training programs practice stalls at mid altitudes like 15,000 feet MSL, conveniently 

weaving them into the rest of their simulator training profiles.  The shortfall of this 

training method is that pilots would not have received practical flight training for stalls in 

the other regimes where commercial airplanes spend most of their flight time, particularly 

at typical cruising altitudes ranging from 35,000 to 39,000 feet MSL, with much different 

ISA temperatures resulting in different engine performance. 

Precursors to Loss of Control.  High altitude aircraft upset and aerodynamic 

stalls are major precursors to loss of control inflight (LOC-I) accidents (Brooks et al., 

2014), which remain a major proportion of all transport airplane accidents.  Lambregts, 
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Nesemeier, Wilborn, and Newman (2008) examined 74 upset accidents between 1993 

and 2007 from worldwide scheduled transport and commuter category airplanes and 

reported that 27 stalls (36%) were responsible for 848 fatalities (26%).  Six stalls were 

induced by the autopilot’s attempt to maintain a vertical speed or a selected altitude in a 

thrust-limited scenario, three of which occurred above FL250.  Notably, only seven stalls 

(16%) occurred from a grouping of 43 LOC upset accidents between 1958 and 1993 

found during their research, as compared with the 27 stalls (36%) in the 15 years studied 

between 1993 and 2007 (Lambregts et al., 2008). 

Loss of Control Inflight 

At the 2014 LOC-I Symposium, ICAO stated reducing LOC-I was a “global 

aviation safety priority” (ICAO, 2014b, para. 1), as evidenced in Figure 1.  In addition, 

the NTSB made preventing LOC-I part of its Top Ten Most Wanted list for 2015, 

claiming over 40% of fixed wing general aviation (GA) fatal accidents between 2001 and 

2011 were attributed to LOC-I (NTSB, 2015).  LOC-I remained on the NTSB Most 

Wanted List for 2016, which reported it as increasing to 47% of fatal fixed-wing GA 

accidents between 2008-2014 in the U.S., resulting in 1,210 fatalities (NTSB, 2016). 

According to the U.S. GA Joint Steering Committee, during the period 2001–

2010, LOC-I was the top category for fatal accidents in GA (Brooks et al., 2014), 

resulting in a greater number of fatalities than the next five categories combined. 
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Figure 1.  Fatalities by CICTT Aviation Occurrence Categories, Worldwide Commercial 

Jet Fleet, 2007-2016.  Adapted from “Statistical Summary of Commercial Jet Airplane 

Accidents, Worldwide Operations, 1959-2016” by Aviation Safety, Boeing Commercial 

Airplanes, 2017, www.boeing.com/news/techissues/pdf/statsum.pdf, p. 22.  Copyright 

2017 by Boeing. 

 

 

 

Lambregts et al. (2008) reviewed 74 LOC-I accidents from 1993 to 2007 

involving 42 hull losses and 3,241 fatalities and categorized them five ways: 

aerodynamic stall, flight control system malfunctions, spatial disorientation (confusion) 

of the crew, contaminated airfoil (icing), and atmospheric disturbance (e.g., weather, 

turbulence, wind, temperature).  Belcastro and Jacobson (2010) referred to LOC-I off-

nominal conditions, categorized as adverse conditions occurring onboard the vehicle, 

external hazards and disturbances, and abnormal flight conditions. 

Belcastro and Foster (2010) reviewed 126 Part-121 LOC-I accident reports from 

1979 to 2009 using data from the Aviation Safety Network and NTSB websites.  
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Inappropriate crew response occurred in 42.8% of accidents, and stall / departure from 

controlled flight occurred in 38.9% of accidents.  A three-dimensional scatterplot of 

worst-case combinations of LOC causal factors, shown in Figure 2, revealed stall / 

departure from controlled flight in conjunction with inappropriate crew response to be the 

most frequent and most dangerous combination, totaling 778 fatalities. 

 

 

 

 

Figure 2.  Identification of Overlap in LOC Causal and Contributing Factor 

Combinations, 1979-2009.  Adapted from “Aircraft Loss-of-Control Accident Analysis” 

by C. Belcastro & J. Foster, 2010, p. 5. 
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Examples of LOC-I Accidents 

The following LOC-I accident summaries were extracted from the NTSB 

Aviation Accident Database, all involving aircraft speed decay at altitude followed by 

aerodynamic stall.  Any non-reported near-miss incident—where corrective pilot 

intervention prevents an unsafe event—would most likely not be quantified or captured in 

any safety databases.  Some additional accidents that occurred between 1994 and 2013 

where LOC-I was the causal factor are listed in Table 1 (ASN, 2015; NTSB, 2015). 

 On April 29, 1993, a Continental Express Embraer-120 turboprop 

(FTW93MA143) experienced an aerodynamic stall and subsequent loss of control 

around 17,400 feet when the pilots selected an improper vertical mode on the 

autopilot (to climb at an angle too high and airspeed too slow) outside of normal 

parameters for the conditions, resulting in left engine propeller and cowling 

damage as well as substantial damage to the airplane fuselage during a forced 

landing. 

 On June 4, 2002, a Spirit Airlines McDonnell Douglas MD-82 turbojet 

(CHI02IA151) experienced an aerodynamic stall and subsequent loss of control 

around flight level FL330 when the engine inlet probes became blocked with ice, 

resulting in a false engine pressure ratio (EPR) and subsequent retardation of the 

throttles by the auto-throttle system.  As airspeed decayed, pitch attitude increased 

(corresponding AOA), and the airplane eventually stalled.  No injuries or airplane 

damage occurred. 

 On October 14, 2004, a Northwest Airlink Bombardier CL-600 (DCA05MA003) 

experienced an aerodynamic stall and subsequent loss of control around FL410 
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when both engines flamed out, resulting in a fatal crash of both pilots and hull 

loss of the airplane. 

 On June 14, 2008, a FedEx Douglas MD-10 (DCA08FA075) experienced an 

aerodynamic stall and subsequent loss of control around FL330 when the airplane 

could not maintain pilot selected airspeed in a turn and later when buffeting 

occurred during an airframe slat overspeed at high altitude.  Substantial damage to 

the elevators and stabilizer occurred. 

 On February 12, 2009, a Colgan Air Dash-8 (DCA09MA027) experienced an 

aerodynamic stall during approach due to inappropriate pilot response after 

airspeed decay led to a stick shaker warning.  The airplane crashed, killing 49 

people onboard and one on the ground.  This incident in particular led to 

Congressional legislation (PL 111-216, the Airline Safety and FAA Extension Act 

of 2010) and FAA regulation changes requiring, in particular, a minimum of 

1,500 flight hours prior to joining the crew of a commercial airliner. 

 On June 1, 2009, an Air France A-330 (DCA09RA052) experienced an 

aerodynamic stall when at high altitude (at FL350) their pitot tubes became 

blocked with ice and their automatic flight control systems disconnected due to 

the disagreement in air data.  The aircrew failed to properly diagnose the attitude / 

thrust situation and made inappropriate flight control responses resulting in the 

stall and eventual crash, killing 228 people over the Atlantic Ocean. 

 On July 6, 2013, an Asiana B-777 (DCA13MA120) flight crew failed to properly 

manage approach glidepath and inadequately monitored approach airspeed 

leading to the crash, total hull loss, and 3 ground fatalities.  
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Table 1 

Selection of Additional LOC-I Accidents 

Date Aircraft identification 

with NTSB Ref. No. 

Summary 

1/7/94 United Express 

(Jetstream 4101 twin 

turboprop) 

DCA94MA027 

 

Airspeed decayed to stall on approach, 

improper pilot response to stall warning, 

raised flaps 

12/22/96 Airborne Express (DC-8) 

DCA97MA016 

 

Improper pilot response during stall 

recovery at altitude 

2/16/98 China Airlines (A300) 

DCA98WA044 

 

Airspeed decay to stall during go-around 

12/11/98 Thai Airways (A310) 

DCA99W021 

 

Airspeed decay to stall during go-around 

8/16/05 West Caribbean (MD-82) 

DCA05RA093 

 

Improper pilot response during airspeed 

decay to stall at high altitude 

8/22/06 Pulkovo (TU-154) 

N/A 

 

High altitude turbulence caused AOA 

increase and airspeed decrease to stall 

12/29/12 Lancair IV-P (single 

piston prop) 

WPR13FA076 

 

Inadvertent aerodynamic stall / spin 

8/9/13 Rockwell Commander 

690B (twin turboprop) 

ERA13FA358 

 

Inadvertent aerodynamic stall / spin 

12/12/13 Piper PA-24 Commanche 

(single piston prop) 

CEN14FA084 

Inadvertent aerodynamic stall / spin 

Note.  Adapted from NTSB Aviation Accident Database & Synopses query page, 

accessed on April 24, 2015, and ASN Aviation Safety Database query page, accessed on 

April 24, 2015. 

 

 

 

Controlled flight into stall.  A subset of these LOC-I accidents, called controlled 

flight into stall (CFIS), is when fully functional airplanes unintentionally decelerate 
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through stall airspeed due to improper use or confusion with automated systems by the 

pilot.  Sherry and Mauro (2014, p. D1-1) examined 19 LOC-I accidents all caused by a 

“complex sequence of automation behaviors” followed by the inability of the flight crew 

to intervene properly.  Sherry and Mauro asserted that although many of the historic 

accident causes and safety issues have already been addressed through advances in 

technology, training procedures, and maintenance practices, still many LOC-I accidents 

occur from a range of various factors, which no common intervention strategy could 

universally mitigate. 

Sherry and Mauro (2014) concluded that in each of these 19 CFIS accidents, the 

pilot decision-making required to properly identify a low airspeed condition and respond 

correctly was not supported by the available automation cues.  The degree to which the 

automation was controlling the airplane in a manner not intended by the crew, the status 

of the sensors, and the degree to which aircraft systems were degraded was not obvious to 

the flight crew.  Sociologist Charles B. Perrow (1984) accurately describes these types of 

automation complexity failures as situations that “both start a fire and simultaneously 

deactivate the fire alarm” (Sherry & Mauro, 2014, p. D1-8). 

Stall corrective action.  The FAA recommended corrective procedures for high 

altitude aerodynamic stall emphasize a reduction in AOA by establishing a nose down 

attitude and accelerating by descending, since an increase in thrust while maintaining 

altitude is not always an available option and could actually aggravate the stall (Carbaugh 

et al., 2008).  Unfortunately, prior to the original FAA AC 120-109 published in 2012, 

industry training programs emphasized stall recovery standards to a zero loss of altitude, 

since that was the FAA Practical Test Standard.  High altitude line oriented flight training 
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(LOFT), a type of simulator training that mimics typical “line” operations in a 

chronological flow of takeoff, departure, cruise, approach, and landing instead of 

artificial simulator sequences of emergency after compound emergency, was a change 

recommended by the industry to provide more effective, real-world, applied training, and 

included familiarization with high altitude slowdowns and approaches to stalls (Carbaugh 

et al., 2008).  The FAA also suggested incorporating real-world startle and surprise 

elements into full-motion flight simulator scenarios, since a quick and correct response to 

stall conditions is paramount to successful recovery, even during potentially confusing 

circumstances (FAA, 2015b, p. 16). 

Round Dial Cockpit Display 

The round dial “six-pack” cockpit instrumentation containing airspeed indicator, 

attitude gyro, altimeter, turn and bank indicator, heading indicator, and vertical speed 

indicator, shown in Figure 3, and its modern replacement the PFD, shown in Figure 4, 

may not be the best way for pilots to make informed decisions about energy management 

(Temme et al., 2003).  The analog cockpit display shown in Figure 3 has six or more 

independent gauges, and it would take considerable time to perceive and comprehend all 

the information contained on it (Hamilton, 2001). 
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Figure 3.  An emulation of a round dial cockpit display.  Adapted from “Principles for 

Human-Centered Interaction Design, Part 1: Performative Systems” by T. Eskridge et al., 

2014, p. 89.  Copyright 2014 by T. Eskridge et al. 
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Figure 4.  Modern electronic flight information system panel primary flight display.  

Adapted from Primary Flight Display, by Denelson83, retrieved from 

https://commons.wikimedia.org/wiki/File:Primary_Flight_Display.svg 

 

Visual stall aids.  Pilots are tasked with monitoring the automated flight control 

systems, but often their effectiveness is hampered by the complex logic embedded inside 

of the aircraft’s computerized systems, through mode selections based on algorithms 

sometimes not fully understood.  Instead of “a specific fix for only one of many potential 

one-of-a-kind problems,” Sherry and Mauro recommend, “improving the detection and 

intervention strategies” (2014, p. D1-9).  The FAA has recommended yellow bands 

placed on the airspeed tape indicator to depict the 1.3Vstall range in addition to the red 

bands already in wide usage on modern PFD airspeed tapes to depict the Vstall range itself 

(FAA Safety Recommendation A-10-011, 2013; Sherry & Mauro, 2014).  The FAA also 

recommends redundant aural and visual warnings of impending low airspeed conditions 

(FAA A-10-012, 2015).  Both of these FAA safety recommendations followed the 2009 
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Colgan Air crash in Buffalo, NY, in which inappropriate pilot response to stall warnings 

was deemed the cause (NTSB Aviation Accident Report 10/01, 2010). 

Modern PFDs often contain colored speed bars on the airspeed tape indicator 

corresponding to the stall speed and / or stall buffer (normally 130% of the stall speed or 

1.3*Vs), but these values change often due to their dependence on aircraft configuration, 

bank angle, g-loading, and ice accretion.  The amber or yellow speed bands on a PFD, 

indicating the speed range margin for aerodynamic buffet, do not supply any indication of 

excess thrust (available versus required) to maintain current altitude and airspeed.  Even 

armed with these visual color-coded airspeed indicators with aural alerts, accidents 

continue to occur through numerous singular and often difficult to duplicate faults that 

manifest between pilots and complex autopilot systems during particular situations 

(Sherry & Mauro, 2014, D1-2). 

Current cockpit instrumentation displays airspeed, engine thrust, and altitude, as 

well as important environmental information such as air temperature, air density, ISA 

values, and true airspeed (TAS).  Derived flight information such as optimum altitude 

and maximum or ceiling altitude can be crucial to decisions about energy management 

but may be hidden deep within layered digital display menus available in a flight 

management systems (FMS). 

Thrust curve.  In normal flight operations, pilots fly the aircraft inside the region 

of normal command, or the front side of the thrust / drag curve.  The front side is defined 

by increases in thrust resulting in increases in aircraft airspeed.  After any disturbance in 

this region, the aircraft airspeed will return to its original airspeed as long as thrust does 

not change (Carbaugh et al., 2008).  The back side of the thrust / drag curve, or region of 
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reverse command, is defined when a reduction in airspeed counter-intuitively produces an 

increase in induced drag that necessarily requires an increase of thrust in order to 

maintain level flight.  Flight in this region is normally only purposely flown during final 

approach and landing and during slow cruise flight in training scenarios. 

Stalls can occur at any altitude, any airspeed if the critical angle of attack is 

exceeded and even in a descent.  Weather has considerable effects on the performance of 

an airplane.  The jet stream upper air currents can submit decreasing velocity wind shear 

to an airplane, actually pushing it over to the backside of the thrust curve.  Ice 

accumulation on the airframe that changes the airfoil shape may also lead to stalls at 

higher airspeed and lower angles of attack than expected.  A visual indicator of an 

aircraft’s current state on the thrust / drag curve would provide immediate SA for proper 

control of thrust and attitude.  An improvement to the current PFD paradigm could 

provide pilots with critical energy management SA information to curb high altitude 

aircraft upsets.  Other possible additions to the PFD that may benefit SA are angle of 

attack, a readout for optimum airspeed and altitude based on aircraft weight and outside 

air temperature, and any attention-grabbing, visually coded textual performance 

warnings. 

Ecological Interface Design (EID)  

Ecological interface design is a framework focused on designing human-computer 

interfaces for complex sociotechnical systems (Vicente, 2002, p. 63).  Born out of 

research at the Riso National Laboratory in Denmark in the 1960s, the philosophy behind 

EID is to provide operators with specific work domain constraints, aiding some aspect of 

their SA, so that they can make informed decisions during complex scenarios (Vicente, 
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2002, p. 63).  The functional strength of an EID lies as a monitor of complicated systems 

and relationships, and as such, are found in the medical and nuclear power industries 

where monitoring operators are faced with important and time-critical decisions, cannot 

afford to make errors, and require SA-enhancing equipment (Burns et al., 2008). 

Sharp and Helmicki (1998) describe an EID interface to aid neonatal intensive 

care providers with pediatric tissue oxygenation assessment, while Burns et al. (2008) 

report that EIDs function as the display and interface for the turbine, condenser, and 

feedwater systems in nuclear power plants.  Sharp and Helmicki (1998) found 15 of 16 

physicians made more accurate diagnoses with the EID as compared to the traditional 

interface, and Burns et al. (2008) observed an improvement in SA using EID as compared 

to traditional displays used in nuclear power plant control rooms. 

One theory supporting EID is the skill-rule-knowledge (SRK) taxonomy created 

by Rasmussen (1983): skill-based behavior is considered the most basic, muscle-memory 

type of automation for simple, learned tasks; rule-based behavior is an intermediate level 

where experience links signal cues to appropriate responses; and knowledge-based 

behavior is reserved for tasks requiring analysis, troubleshooting, and problem resolution. 

The EID framework adheres to three design principles: operators act directly on 

the interface, the interface matches domain constraints to perceptual information, and the 

interface provides a mental model for problem solving (Vicente, 2002, p, 64).  Modern 

human-machine systems aim to automate routine skill-based or rule-based activities, so 

EID is well suited for job environs where operators occasionally encounter non-routine 

situations that require difficult decision-making (Rasmussen, 1983).  Sharp and Helmicki 

(1998, p. 354) describe an EID as providing “abstract meaning from the many raw 
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streams of data” traditionally presented individually to the operator, often innocuous 

when comprehended singularly, but catastrophic in certain juxtapositions when 

considered holistically. 

Knowledge-based behavior can be more successful when operators are equipped 

with an EID versus a conventional display (Vicente, 2002, p. 62).  Through a specially 

designed graphical / conceptual interface, EID continues to promote skill- and rule-based 

behavior, conserving cognitive resources, but also enhances analytical and problem 

solving support through its perceptual and intuitive displays designed to tackle more 

challenging and error-prone knowledge-based behavior.  Interestingly, Burns et al. (2008) 

consider that EID may not be as effective as traditional interfaces at supporting rule- and 

skill-based behavior since the higher-level presentations mask the information required 

for a known or learned situation. 

A second theory supporting EID is abstraction hierarchy (AH), also developed by 

Rasmussen (1985).  The AH consists of five levels listed from high to low: (a) functional 

purpose, (b) abstract function, (c) generalized function, (d) physical function, and (e) 

physical form.  The AH describes the relationships between the system, operator 

objectives, and the methods available to achieve these objectives.  In contrast to task 

analysis normally used for system design, EID, through the AH, employs work domain 

analysis.  Whereas task analysis is limited to addressing only what is predicted or 

anticipated, work domain analysis is robust enough to address unforeseen events and 

non-routine situations.  Vincente showed that EIDs support problem-solving in 

unanticipated situations (as cited in Burns et al., 2008) and suggests EIDs can improve 

SA when implicit procedures are not available or do not exist. 
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OZ Cockpit Concept Display 

OZ is a novel cockpit display using basic principles in vision science and 

aerodynamics (Eskridge et al., 2014).  With a goal of reducing or simplifying the 

instrument scan, OZ replaces the PFD with a graphic depiction of aircraft performance, 

as shown in Figure 5, from which the pilot would otherwise have to construct a mental 

model from multiple instrument gauges (Eskridge et al., 2014, p. 91).  OZ reduces the 

traditionally detailed visual scan workload in flight to a nearly instantaneous perception 

of the entire flight system (Eskridge et al., 2014, p. 91). 

 
 
 

 

Figure 5.  OZ display for fixed wing turboprop.  Adapted from “Principles for Human-

Centered Interaction Design, Part 1: Performative Systems,” by T. Eskridge et al., 2014, 

p. 90.  Copyrght 2014 by T. Eskridge et al. 
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The OZ concept display provides intuitive energy management information and 

may mitigate LOC-I by displaying an airplane’s current power setting in relation to its 

minimum allowable speed (stall), its maximum lift (lift / drag), and its maximum 

allowable speed (structural limits), as shown in Figure 6 (Gerold, 2003).  An easily 

visible, readily apparent, and highly intuitive graphical power / drag curve provides EM 

SA to pilots. 

 

 

 

 

Figure 6.  Turboprop power on an OZ concept display.  Adapted from “OZ Human 

Centered Flight Displays,” by D. Still & T. Eskridge, PPT slide 11, retrieved January 25, 

2015 from http://www.imhc.us/groups/oz/. 

 

 

 

The OZ display also uses a green line to depict the power applied and a blue line 

to depict power available.  A vertical line on the horizontal axis represents the current 

airspeed.  This depiction is designed to allow a pilot to quickly perceive the necessary 

power required to achieve a desired airspeed.  The OZ concept display has the potential 

to reduce pilot workload and improve situational awareness, particularly in energy 

management (Albery, 2007, p. B189).  The desired result of the OZ principle is that the 

pilot can simply look at the display to determine system status, required actions, and 

amount of correction, rather than having to update a mental model containing low-level 

data referenced from multiple gauges dispersed throughout the cockpit (Eskridge et al., 
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2014, p. 91). 

Temme, Still, and Acromite (2003) initially conceived the OZ concept display 

from the standpoint of reducing the time it took for pilots to consult their instrument 

gauges.  In addition, they tried to solve the dual quandaries that current display 

technology did not effectively convey aircraft parameter deviations to the pilot and that 

these same displays were confusing to interpret due to the multitude of different frames 

of reference and units of measure displayed.  OZ, the name given during prototype-

testing when a participant pilot was told to pay no attention to the programmer behind the 

rear projection screen, uses the additive effect of both vision channels, focal (central) and 

ambient (peripheral), to counteract the excessive time required to linearly perceive and 

comprehend aviation flight information from multiple displays. 

OZ also employs a user-centered design (UCD) approach by attempting to reduce 

human informational processing and the overall cognitive workload of flight (Temme, 

Still, & Acromite, 2003).  The aim is to produce a cockpit display that can be quickly 

comprehended by pilots in the complex aviation environment, increasing overall SA.  

Specifically, OZ combines and reduces the multitude of contrasting airframe and 

environmental data so that the pilot can directly perceive the aircraft’s performance 

capabilities. 

The structure of the OZ concept display consists of both a starfield and aircraft 

metaphor that act similar to what is known as synthetic vision, a digital graphical 

depiction in the cockpit of real-world topography and an almost bird’s-eye view of the 

airplane and its surroundings, as opposed to the nose-of-the-airplane perspective provided 

in conventional displays (Temme, Still, & Acromite, 2003).  The starfield metaphor, 
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shown in Figure 7, provides aircraft attitude and geo-spatial information in the form of a 

vertical and horizontal grid representing the physical space around the aircraft composed 

of dots spaced every 10° of heading and every 500 feet of altitude. 

 

Figure 7.  Starfield metaphor.  Adapted from “OZ: A human-centered computing cockpit 

display,” by L. A. Temme, D. L. Still, and M. Acromite, 2003, In 45th Annual 

Conference of the International Military Testing Association, Pensacola, FL (pp. 70-90). 

 

 

 

The aircraft metaphor, shown in Figure 8, provides performance and maneuvering 

capability information, as well as attitude and configuration, through lines and circles 

typeset in certain arrangements.  The upper and lower bent wings provide the airspeed 

limits between overspeed (where the line ends on the outer edge) and stall (inner edge).  

The angle bend or wing pinch in each of the four wings corresponds to L/D max, or the 
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maximum ratio of lift to drag speed.  The angled wing bends also provide a useful tool 

for setting a perfect standard rate turn when rolling the airplane to align the angled line 

onto the horizon.  The horizontal position of the vertical speed struts indicates airspeed 

and moves outboard toward the overspeed limit of the bent wings when airspeed 

increases.  The green section of the vertical speed struts shows power applied, the total 

green and blue length of the vertical struts indicates power available, and un-accelerated 

flight power is achieved when the green section just touches the upper and lower bent 

wings.  The two outboard circles indicate desired airspeed selected by the pilot. 

 

 

 

 

Figure 8.  Aircraft metaphor.  Adapted from “OZ: A human-centered computing cockpit 

display,” by L. A. Temme, D. L. Still, and M. Acromite, 2003, In 45th Annual 

Conference of the International Military Testing Association, Pensacola, FL (pp. 70-90). 

 

 

 

The result of this radical design shift is an intuitive and direct visual 

representation on a single display of all the complex mental models of aerodynamic 
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relationships and aircraft performance the pilot would otherwise have to construct and 

continuously update from various displays around the cockpit (Temme, Still, & 

Acromite, 2003).  The operator of an OZ display is able to simultaneously acquire several 

different sources of cockpit information from only one display, thus greatly reducing the 

time required to scan multiple instruments and saving precious central focal vision for 

more important and immediate tasks such as forward visual scans or processing 

emergency procedures.  Temme, Still, and Acromite (2003) claim the processed data 

provided by OZ does not provide misleading information or make decisions for the pilot.  

OZ reduces the human cognitive workload of piloting by instantaneously providing 

Levels 1 and 2 SA information (perception and comprehension). 

In order to determine that an aircraft is approaching stall speed on a PFD airspeed 

indicator, a pilot must first remember the actual value of the aircraft’s stall speed, next 

reference the airspeed indicator, and then integrate that data into his mental model in the 

context of the aircraft configuration (e.g., weight, landing gear position, flap position) 

and aircraft state (e.g., attitude, climb, descent) to determine the consequence of that 

relationship.  In the OZ display, the perception and comprehension and projection of an 

aircraft’s proximity to stall speed is as simple as visually referencing the power bars in 

relation to the inboard ends of the wings, as shown in Figure 6.  No specific airspeed stall 

values need to be remembered or recalled for the given configuration, weight, or g-

loading (Eskridge et al., 2014, p. 92). 

Some Level 1 SA (perception) energy management information is present on 

most glass cockpit PFDs today, such as upper and lower airspeed limits as shown in 

Figure 4.  Acquiring all facets of relevant EM information in a commercial transport or 
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business jet requires a time-consuming scan among multiple gauges located in different 

places around the cockpit (e.g., instrument panel PFD and multi-function display, center 

console / pedestal control display unit and FMS).  This increases the chance for errors 

during perception or comprehension.  With the OZ concept display, different types of 

information are merged so they can be processed simultaneously rather than serially 

during an instrument scan.  The guiding principle behind the OZ concept display is 

simply to reduce cognitive workload (Eskridge et al., 2014, p. 92). 

While PFDs provide only digitalized versions of the same legacy instruments 

aviation has continued to use, EID displays such as the OZ concept display, present both 

physical and functional information through intuitive graphical features promoting 

Endsley’s (1995) triad of SA: perception, comprehension, and projection of future states.  

Similarly, work from Borst et al. (2008, p. 159) analyzed the Synthetic Vision System 

(SVS) and the Enhanced Ground Proximity Warning System (EGPWS), two advanced 

cockpit display technologies meant to enhance pilot terrain and obstacle SA.  Borst et al. 

claim that SVS supports perception (Level 1 SA) but fails to provide comprehension or 

projection (Levels 2 & 3 SA).  EGPWS conversely provides pilots with terrain and 

obstacle information but without “underlying data and rationale” (Borst et al., 2008, p. 

159).  Borst et al. found in their research that comprehension and perception could be 

improved by additionally providing pilots with aircraft performance characteristics and 

flight conditions, effectively establishing constraints for their forthcoming complex 

decision-making.  Borst’s team recommended an EID display for terrain awareness 

during total engine failure of a GA aircraft since the display supported all three levels of 

SA.  Their results showed better terrain awareness with the EID in terms of achieving 
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pilot goals within aircraft performance and environmental constraints, but also reported 

that the pilots flew riskier yet still successful flight profiles with this enhanced 

information, negatively affecting their margin of safety. 

OZ experimentation.  Temme, Still, and Acromite (2003) performed a series of 

exploratory experiments in a desktop flight simulator to analyze the differences in 

capabilities of the OZ concept display compared to independent, analog, round-dial 

displays.  This initial OZ testing consisted of five incremental experiments to determine if 

pilot performance, mainly altitude and heading adherence, was improved by the OZ 

concept display as compared with an analog round dial display found in many GA 

airplanes.  Training before the trials was minimal and restricted to answering questions 

about the instruments but did not explain how to use the instrumentation to minimize 

heading and altitude errors (Temme, Still, & Acromite, 2003, p. 86).  Performance scores 

were referenced to root mean square (RMS) values obtained from altitude and heading 

deviations from the desired target values.  Temme, Still, and Acromite (2003) chose RMS 

because it incorporates variability of the individual score and also its position relative to a 

target value instead of relative to an average score. 

Study 1 compared two non-pilot participants on both an OZ and an analog round 

dial display (RD) flying a Cessna 172 at constant airspeed, heading, and altitude for about 

three minutes per trial.  The counterbalanced trials consisted of four levels of turbulence, 

from nil to severe.  Participants would switch from about three minutes of one display 

type to about three minutes of the other display type for about one to two hours.  Results 

indicated that the participants using the OZ display performed better in terms of altitude 

and heading adherence than when they used the RD.  Also, no considerable differences in 



 

 

42 

performance were found using the OZ display for the varying degrees of turbulence, 

while in the RD trials, heading and altitude adherence became progressively worse when 

turbulence increased.  The non-flight experienced and novice participants learned the OZ 

display quickly since their performance scores did not improve much during the course of 

the trials (like the RD performance improved over time) but remained considerably better 

than the RD scores from the beginning.  These results suggest the OZ display is easy to 

learn (performance remained consistently superior) as compared to the RD (where 

performance continued to improve over time) and also enhances superior pilot 

performance compared to analog gauges, when operated in varying degrees of turbulence 

(Temme, Still, & Acromite, 2003, p. 90). 

Study 2 used the same two non-pilot participants maintaining the same altitude 

and heading assignment using both the OZ and RD displays but also included an OZ 

display trial where words appeared in the center of the display at a rate of one word per 

second, and participants would have to read them aloud.  This experiment was to test the 

ability of OZ to allow for focal tasks irrespective of the ambient channel control 

dedicated to flying the aircraft using the OZ symbology.  The results indicated the 

participants performed equally as superior on the unaltered OZ display as they did on the 

word-task OZ display, when compared to the RD. 

Study 3 used four different non-pilot participants to analyze the performance 

differences when obscuring varying degrees of the OZ display from 0% to 80% in 20% 

increments.  Again, these new participants performed considerably better on altitude and 

heading adherence using OZ as compared to the RD, regardless of turbulence intensity.  

In addition, the unaltered OZ and the obscured OZ both fared equally well in terms of 
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heading adherence in all levels of turbulence, indicating large portions of the OZ display 

are not required to maintain flight performance within set tolerances.  The amount of 

obscuration and turbulence level did affect performance in the altitude maintaining task, 

prompting a design change of inserting altitude pitch cues on the left and right outer 

borders of the screen instead of just on the center vertical axis, where the obscuration 

blocked them from the participants. 

Study 4 compared the performance of four trained pilots to that of three non-pilot 

volunteers who had not already been in any of the experiments.  The results indicated that 

the trained pilots performed equally well using OZ or the RD, regardless of the 

turbulence level.  The non-pilots performed better using the OZ over the RD, and the 

effect of turbulence on their performance was less with OZ than with RD.  Overall, pilots 

performed better than non-pilots, turbulence impacted non-pilots more than pilots, and 

the difference in performance between OZ and RD was greatest for the non-pilots.  The 

performance of the non-pilots was equivalent to the previous three experiments, which all 

used different groups of non-pilots. 

Study 5 used the same four pilots who were in Experiment 4 but made the task 

considerably more difficult.  The participants now had to maintain a specified airspeed 

with active throttle control as well as maintain specified headings and altitudes, while 

flying slower than the minimum drag speed (L/D max) in the area of reverse command.  

The results showed that OZ performance was better than RD in both altitude and heading 

adherence, in all levels of turbulence.  Mean altitude error remained consistent on the OZ 

display, even as turbulence increased.  Temme, Still, and Acromite (2003) expressed their 

view that since the experienced pilots who have flown RD in the real airplane performed 
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better with OZ during the experiment, the OZ is not only easier to operate but also easier 

to learn. 

The stated primary goal of Temme, Still, and Acromite (2003) was to determine if 

the OZ concept display could reduce the time and cognitive effort required to maintain an 

accurate and timely instrument scan since an OZ display could provide the pilot with the 

same information normally retrieved from multiple gauges throughout the cockpit.  

Temme, Still, and Acromite (2003) noted that it is faster for pilots to read and interpret 

information from the OZ graphical display versus a RD, which presents information 

primarily with alphanumerics.  The human visual system takes longer to process and 

integrate information from the dials, gauges, arrows, and pointers of a RD (Temme, Still 

& Acromite, 2003, p. 75).  Temme, Still, and Acromite (2003) were hopeful that their 

display may eventually integrate every piece of information a pilot needs to properly fly 

an aircraft, noting that it supports situation awareness and spatial orientation particularly 

well. 

Further experimentation with OZ.  Recognizing the capability of a functional 

display to improve pilot task accomplishment and aircraft state awareness through a 

presentation of complex, high level information, Smith (2008) performed a series of 

experiments exploring the benefits of the OZ display over RDs.  In particular, OZ uses 

graphics to provide a visual representation of the functional relationships between thrust, 

drag, and airspeed on the lift / drag curve. 

In three incremental studies, Smith et al. (2004), Smith et al. (2005), and Smith 

and Boehm-Davis (2005) compared both novice and experienced pilot performance 

between the OZ display and an analog RD Cessna 172 display when pilots were tasked to 
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perform flight maneuvers, secondary tasks, and turbulent conditions.  The results of these 

studies suggested that a visual graphic depiction of the power curve, like on the OZ 

display, improves the ability of pilots to directly manage energy (energy management or 

EM) in the airplane, rather than relying on analog RD gauges.  RDs alternatively require 

pilots to extract information from various separate instruments, and then process, 

comprehend, and finally act on that information to make the proper power level and flight 

control manipulations.  Smith (2008) makes two assertions from this research: OZ 

improves and standardizes energy management, and OZ improves the understanding and 

knowledge of energy management.  This research was approached from the perspective 

of improving pilot training in order to reduce the number of hours required for 

proficiency.  Smith (2008) purports that flight training using an OZ display can teach 

energy management more effectively, and in addition, positively transfer that increased 

knowledge to a RD display.  He viewed the OZ as a training device only and recognized 

it is not the standard PFD pilots find on commercial, military, and GA aircraft. 

Using a repeated-measures, mixed design study, Smith (2008) reported that after a 

comparison of novice flight participants randomly assigned to four treatments of flight 

training followed by flight performance (OZ-OZ, OZ-RD, RD-OZ, RD-RD), those 

trained on the OZ display showed considerably more accurate knowledge and 

performance for EM than those trained on RDs.  Participants using OZ exclusively for 

both training and performance sections showed considerably more accurate flight 

performance.  Smith (2008) concluded that EM knowledge transfer did occur from OZ to 

RD, and that performance improvements (OZ better than RD) were consistent in power, 
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airspeed, and pitch.  Smith’s (2008) approach was to identify display technology that will 

improve cockpit design in the future. 

The first of Smith et al.’s (2004) three experiments involved experienced regional 

airline pilots who performed a series of 11 maneuvers (climbing / descending, banking 

turns, airspeed acceleration / deceleration) on the OZ display and a RD for a Cessna 172 

PC emulator.  Smith et al. (2004) found that power settings during maneuvers were 

managed more consistently with OZ, and there were considerably fewer differences in 

parameter deviations between participants.  Pilots using a RD seemed to rely on 

heuristics, a way of managing an analytical task without analytical behavior, in that they 

used a rudimentary, binary, one-or-the-other approach to energy management and instead 

controlled airspeed or altitude with pitch alone, thus devolving the flight performance 

problem into something considerably easier.  Overall, pilots using a RD applied more 

power than necessary for the maneuvers.  His explanation was that the functional OZ 

display gave pilots perceptual cues for power settings, changing this task from an 

analytical problem-solving one to a substantially easier skill-based one.  Smith et al. 

(2004) references the Skill-Rule-Knowledge framework of behaviors Rasmussen (1983) 

developed, listed from most basic to most advanced: fastest, skill-based perceptual-motor 

behavior using environmental cues; rule-based behavior associating perceptual signs with 

appropriate goals; and slowest, knowledge-based behavior requiring analytical problem-

solving. 

In a second experiment, Smith et al. (2005) used general aviation pilot 

participants on similar maneuvers but also incorporated turbulence and a secondary 

“distracting” task of locating an object’s position in relation to the aircraft’s position 
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using another display in the cockpit (e.g., a radar screen or TCAS display).  This 

experiment included slow flight (near Vs) maneuvers in order to capture more complex 

energy management scenarios.  The results showed a decrease in accuracy of RD flight 

parameter performance with a corresponding increase in difficulty on the secondary tasks 

of turbulence mitigation or object location, while OZ participants showed no decrease in 

flight performance with added task workload.  Also, Smith et al. (2005) reported that by 

simplifying the tasks of proper energy management, pilots had available cognitive 

capacity to perform the additional scenario tasks of locating the object and mitigating the 

turbulence.  Smith et al. (2005) recommended further research comparing the OZ concept 

display to modern glass cockpit displays since EFIS cockpits are more effective at 

integrating flight information into the digital PFD versus RD, which have multiple 

gauges providing individual presentations of information. 

Smith and Boehm-Davis (2005) performed a third experiment to evaluate the 

ability of functional OZ displays to better train pilots.  The method followed the same 11 

maneuvers as the first experiment, except with novice participants.  Results showed 

novices using OZ were more accurate and consistent in their flight performance than 

those using RD.  Also, the performance of the novices was similar to the first experiment 

when experienced regional pilots flew the same maneuvers.  Since flight experience 

seemed not to be a factor, Smith and Boehm-Davis proposed that the direct perceptual 

graphics of OZ do make energy management easier as compared with the cognitive 

requirements using a RD. 

Expanding on Previous OZ Studies 

While the studies by Smith (2008), Smith and Boehm-Davis (2005), Smith et al. 



 

 

48 

(2005), and Smith et al. (2004) focused on measuring manual pilot flight performance 

using OZ versus RD in a light single engine aircraft, this proposed research study would 

examine the ability of pilots to extract energy management information from the displays 

themselves.  Whereas Smith et al. (2005) studied if pilots flew more precisely in terms of 

altitude, airspeed, and heading control with OZ opposed to RD, this research studies 

whether pilots have enhanced overall EM SA.  In addition, this research will examine 

pilots EM SA when flying a twin-engine jet aircraft at high altitudes at or above Flight 

Level 250, as opposed to the earlier studies which used a Cessna 172 operating at low 

altitudes.  The different performance characteristics of the dissimilar aircraft, as well as 

the very different flight atmospheric environment, will expand the body of knowledge in 

regards to functional displays, human cognition, and EM SA. 

Situation Awareness (SA)  

Aviation performance of pilots can be evaluated through assessment of their 

situation awareness: the degree to which a pilot is cognizant of what is going on, in, and 

around the aircraft.  In her seminal paper, Endsley (1995, p. 36) defined SA as “the 

perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future.”  

This definition implies three levels of SA: perception (Level 1 SA), comprehension 

(Level 2 SA), and projection (Level 3 SA); see Figure 9.  Endsley, Bolstad, Jones, and 

Riley (2003, p. 268) further define SA as the “internalized mental model of the current 

state of the operator’s environment.” 
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Figure 9.  Model of situation awareness.  Adapted from “Toward a Theory of Situation 

Awareness in Dynamic Systems,” by M. R. Endsley, 1995, Human Factors 37, 32-64.  

Copyright 1995 by M. R. Endsley. 

 

 

 

Carol (1992) describes pilot SA as continuous perception, the ability to forecast, 

and the execution of tasks based on those details.  SA can also be thought of as three-

dimensional problem solving, complicated by time compression, encompassing an 

individual’s experience and capabilities.  Tenney, Adams, Pew, Huggins, and Rogers 

(1992) explain that SA factors heavily in overall piloting performance with the increasing 

automation in flight cockpits and subsequent increased dependence on human cognition 

over traditional piloting stick and rudder physical motor skills. 

Since at present analog and electronic cockpit instruments typically present only 

Level 1 SA (perception) information, the pilot is left to rely on working memory, mental 
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models, and experience in order to tackle many complex goals involved with modern-day 

aviation.  Endsley and Jones (2012) describe Level 2 SA (comprehension) information, as 

the “synthesis of disjointed Level 1 elements and a comparison of that to one’s goals” (p. 

16).  By placing Level 2 SA elements onto the PFD directly, which an EID like the OZ 

display does, the pilots would gain increased SA almost immediately and without a 

corresponding increase in cognitive workload.  This heightened SA would give pilots an 

understanding of what the data and instrumentation mean in regards to the goal of 

maintaining the aircraft within safe and stable performance parameters, instead of relying 

on the pilot to deduce a correspondingly corrective flight control response.  This design 

gives the pilots the information they need to make better decisions about an aircraft flight 

profile and aims to reduce the human errors that do exist. 

Level 3 SA (projection) information is more critical to this system design than 

Level 2 SA since high altitude upsets usually result from a pilot not knowing that the 

current (benign) configuration will result in an impending undesirable aerodynamic 

event.  Alternatively, the presentation of Level 2 SA information with trend data might 

suffice for Level 3 SA information.  Airplane upsets might occur less frequently if pilots 

are provided greater comprehension of current performance parameters, but more 

importantly, projection of future states of such parameters can be more beneficial to 

pilots than even outside corrective action. 

Goal versus data processing.  When new display systems are designed and 

installed into aircraft, there are limitations to how many instrument indications a pilot can 

mentally integrate and also to the physical space remaining in the cockpit.  Due to the 

physical limitations of the PFD, the information presented must be prioritized, but there 
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are obvious disadvantages to only displaying data and thus encouraging data-driving 

processing, which is highly taxing cognitively (Endsley & Jones, 2012).  Pilots must 

mentally process the data and then make their own Level 2 and 3 SA decisions.  In goal-

driven processing, typically more intuitive and less cognitively taxing, pilots can use the 

Level 1, 2, and 3 SA information and spend most of their cognitive resources on higher-

order goals instead.  However, displaying only goal-driven processes would deprive the 

pilot of the “raw data” required to make complex decisions.  Pilots would have to trust 

the aircraft computers if they were not able to see the actual parameters it uses to 

formulate an automated decision.  A decision between goal- and data-driven processing 

thereby occurs.  The optimal solution from a display perspective is a compromise--

displayed information among data and goals, potentially customized by the pilot 

depending on flight regime and individual preference (Endsley & Jones, 2012). 

The quality of perception, recognition, and future projection of aircraft states are 

essential to energy management, since aircraft are complicated machines in dynamic 

environments, and often pilot inputs and their consequent implications take time to 

manifest.  If EM is not precise, aircraft upset can lead to aerodynamic stall, sometimes 

unrecoverable.  Adequate EM SA can safely navigate an aircraft through the 

environmental hazards of high altitude flight.  This research will examine the ability of 

the OZ display to enhance EM SA in high altitude flight. 

Mode awareness.  Modern cockpits containing complex FMS, autopilots, and 

auto-throttles, designed to relieve pilot workload, might actually increase cognitive 

demand (Endsley & Jones, 2012).  Greater SA has an unintended casualty, as the 

complex cockpit display designs that provide it might actually hinder pilots from proper 
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perception and comprehension of flight information.  The phenomenon known as mode 

awareness is the degree to which a pilot is aware of how the computer logic is controlling 

the aircraft (Sarter & Woods, 1995).  Pilot error due to a lack of awareness or confusion 

related to the functions of the automated systems is often cited in accident reports (Sherry 

& Mauro, 2014).  An EID display, such as the OZ display, using situation awareness 

oriented design principals, may allow for greater comprehension and computer logic 

transparency by providing improved perception of relevant flight information. 

Modern aircraft operations have seen pilot duties evolve from a very hands-on 

and active participant requiring frequent stick and rudder manipulation to a detached 

supervisory monitor of advanced flight computers capable of controlling aircraft from 

takeoff to landing (Sarter & Woods, 1995).  The cognitive demands required of pilots 

increased greatly with the introduction of automated flight controls and computers.  Not 

only were pilots responsible for knowing how to fly their airplane properly, but now in 

the modern age they also have to master the rules, algorithms, and operating systems of 

the flight computers onboard. 

In order to operate these advanced systems properly, pilots must first integrate 

large quantities of data from various sources throughout the cockpit and next maintain an 

accurate mental model of what the aircraft is doing in its airspace and what the 

automation is doing with the input it has received, both from the pilot and from pre-

selected internal algorithms (Sarter & Woods, 1995).  Lastly, pilots need to understand 

the complex rule structures of the autopilot, FMS, and flight director included, so they 

can correctly predict future states of the aircraft and future behavior of its automation.  

One of the hazards of technological advancements in the cockpit has been automated 
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autopilot systems that contain a plethora of different ways (modes) to accomplish the 

same aviation task, often providing pilots with confusing automation choices, each with 

its own rule set or algorithm.  Pilots unaware of the selected (active) mode and what rules 

pertain to that particular mode may inadvertently be the root for errors of commission or 

omission due to what is called a lack of mode awareness and a general gap in the mental 

model. 

Sarter and Woods (1995, p. 122) describe the phenomena of mode awareness as a 

special form of SA for “human supervisory controllers” (e.g., pilots monitoring an 

airplane autopilot’s various autonomous modes) and their need to properly understand 

what the airplane is doing, how it is doing it, and why it is doing it.  Mode awareness 

problems originate from “technology-centered automation”those systems without a 

visible or obvious trail of status and behavior, evidently designed without the operator 

(pilot) in mind (Sarter & Woods, 1995, p. 115). 

Sarter and Woods (1995) imply that cognitive demand required for proper mode 

awareness is poorly supported by displays currently available.  The penalty for low mode 

awareness is “new human-machine error forms and new paths toward accidents” (Sarter 

& Woods, 1995, p. 111) as evidenced when confused pilots incorrectly command an 

FMS or autopilot with respect to altitude, airspeed, or lateral or vertical navigation.  

Pilots, either through a lack of full understanding of the system or a misinterpretation of 

the current mode, can unwittingly place an aircraft in hazardous situations.  Examples 

include the accidents of Air France 447 in June 2009 (NTSB Report DCA09RA052), 

where the pilots were confused about autopilot functionality and capabilities and failed to 

properly diagnose an approach to stall situation, or Asiana 214 in July 2013 (NTSB 
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Report DCA13MA120), where the pilots’ insufficient monitoring of airspeed resulted 

from automation misunderstanding of the complexities of the auto-throttle and autopilot 

systems.  The recommendation made by Sarter and Woods (1995) is to take a “process-

oriented [vice] product-oriented approach … to design tools that support monitoring, 

assessment, and awareness demands on [pilots]” (p. 122).  Mode awareness confusion 

can inhibit a pilot’s ability to discern how an aircraft is trending from an EM perspective. 

Increased air traffic density brought along improved technologies and revised 

regulations and procedures.  On account of this, a flight deck automation working group 

was established to update a 1996 FAA report indicating vulnerabilities in pilot 

management of automation and SA (Abbott, McKenney, & Railsback, 2013, p. 1).  The 

working group, consisting of key members from industry as well as aviation researchers, 

addressed the safety and efficiency of modern flight deck systems for flight path 

management and energy-state management (Abbott, et al., 2013, p. 1).  Finding 2 of 28 

was devoted to “vulnerabilities in pilot knowledge and skills for manual flight 

operations”, specifically inadequate energy management (Abbott et al., 2013, p. 2).  

According to Abbot et al. (2013, p. 73), ubiquitous and powerful cockpit technology led 

to a degradation in manual piloting skills, decreased recognition of an energy deviation, 

and more difficult recovery from an upset condition.  The working group recognized that 

as modern piloting tasks change from manual manipulation of flight controls to passive 

monitoring of complex computer systems, the skills required to safely fly must be 

updated and changed in professional training settings as well as primary flight training 

centers (Abbott et al., 2013, p. 121). 
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Situation Awareness Measurement 

The effectiveness of any human-factors derived design is determined by how well 

SA is supported throughout the design.  Since SA is “an internalized mental construct” 

(Endsley & Jones, 2012, p. 259), accurate measurement is difficult to define or obtain.  It 

is rare that individual participants show consistency between behaviors and outcomes.  

Furthermore, many human factors either combine to influence SA or completely mask it 

altogether.  Several methods are available to measure SA.  Endsley and Jones (2012) 

assert that the most complete analysis utilizes a combination of methods. 

Breton, Tremblay, and Banbury (2007) list 28 different tools and use two 

distinctions to classify SA measurement tools: on- or off-line and direct or indirect.  

Whereas on-line methods tend to include the SA queries concurrently during the 

scenario, off-line methods typically pause the testing scenario to cognitively assess SA 

through interrogation of environmental and operational knowledge of the test scenario.  

Off-line methods may even assess SA retrospectively after the scenario is complete.  

Artificiality occurs using either on- or off-line methods that interrupt a scenario with 

external stimuli, but some positive results have been seen when the queries are organic to 

the scenario, for example, if air traffic control (ATC) is asking the pilots for information 

similarly as would happen in the real world. 

Indirect methods, sometimes referred to as inferred or process-oriented methods, 

measure process, behavior, and performance.  These indirect methods analyze 

communication and psychomotor mannerisms such as eye tracking or heart rate to gain 

insight toward processes or mechanisms used to obtain SA.  Inferred methods also may 

examine behavior traits, such as reaction time or decision-making, or performance results 
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on applicable tasks within a scenario.  Inferred methods are usually subjective by nature, 

based upon a subject matter expert (SME) assessment of a participant’s SA relative to the 

known truths of the scenario, but even so it has been shown that performance, behavior, 

and process (e.g., what a participant is looking at through eye-trackers) do not always 

correlate directly to SA.  High SA does not always result in high performance, and high 

performance does not always stem from high SA (Endsley, 1995).  Furthermore, methods 

that assess the participant’s process of acquiring SA cannot analyze what the participant 

will actually do with the information that was gathered.  Memory, attention span, and 

cognition all combine during the perception / comprehension / projection phases of SA. 

Direct methods rely on the subjectivity of SMEs and raters to decipher the 

complex synthesis of the internal human cognition that is SA.  The Situation Present 

Assessment Method (SPAM), described as a real-time probe technique, is an example of 

a direct method.  SPAM examines participant’s Level 1 and Levels 2/3 SA by measuring 

the reaction time to probes (Breton et al., 2007).  Unlike other methods, SPAM 

interrogations do not artificially interrupt or stop the scenario but incorporate these 

queries into its natural flow of task performance.  In an experiment, Endsley, Sollenberg, 

and Stein (2000) found a slight correlation between SPAM response times and mental 

workload. 

Summary 

Aircraft upsets are a hazard in modern aviation and a safety concern throughout 

the industry as the frequency of accidents in GA, corporate, military, and commercial 

aviation increases.  Knowledge-based actions required to manage airplane energy exist 

during all phases of flight.  However, the high altitude environment complicates this 
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relationship between thrust, lift, and drag since aircraft are often at cruise with a narrow 

margin between overspeed and stall.  PFDs and analog six-pack RD cockpits display 

individual pieces of critical information in series, whereas the OZ concept display merges 

compound data into a comprehensive presentation of aircraft state in a parallel fashion 

(Eskridge et al., 2014, p. 92).  Research with the OZ concept display has reported 

advantages of a functional display for delivering valid and reliable perceptual cues to 

pilots.  The OZ display’s predominant graphical feature of the thrust curve provides 

thrust required, thrust available, overspeed, and stall limits directly to the pilot.  Smith 

(2008), Smith and Boehm-Davis (2005), Smith et al. (2004), Smith et al. (2005), and 

Temme et al. (2003) have all reported improvements in flight performance over RDs 

when both novices and experienced pilots use the OZ display.  EM SA could be enhanced 

through the use of the OZ display to reduce aircraft upsets.  The proposed study will 

utilize a within-subjects, counter-balanced experimental design to compare the OZ 

graphical EID display and conventional electronic flight displays for providing EM SA. 
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CHAPTER III 

METHODOLOGY 

The study protocol was submitted for review and approval by the Institutional 

Review Board (IRB) for Embry-Riddle Aeronautical University and Lewis University 

(see Appendix A).  Prior to participation in the study, participants were asked to read and 

complete an informed consent form (see Appendix B).  Treatment of all participants was 

in accordance with the ethical standards of the American Psychological Association. 

Research Approach 

This empirical study evaluated how energy management situation awareness (EM 

SA) was supported by both a PFD, similar to what is used in modern transport aircraft, 

and the OZ Concept ecological interface design (EID) display, designed by the Institute 

for Human Machine Cognition (IHMC).  This study ascertained how effective each 

display was at providing pilots with EM SA, operationally defined as speed and accuracy 

of on-screen responses to EM questions when observing display screenshots of an 

airplane operating at high altitude.  Participants were seated at a personal computer 

terminal displaying an EM situation depicted on a static cockpit display screenshot, they 

interpreted the aircraft’s energy state and acknowledged the requirement, if any, for 

aircraft flight control inputs by selecting multiple options from a list of possible on-

screen responses.  The two cockpit display designs were evaluated in terms of each 

condition’s utility for supporting pilot EM SA.  The degree of EM SA supported was 

determined by accuracy and response time to the on-screen queries. 

An experiment utilizing aircraft instrument panel screenshots requiring 

participants to make energy management decisions comparatively measured the EM SA 
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demonstrated on both a PFD and an OZ concept display.  The purpose of this experiment 

was to examine the overall EM SA of each display screenshot.  Rather than running 

participants through full motion flight simulators, this screenshot technique was faster 

and less costly to implement, reflected speed of understanding more directly, and 

provided a similar level of fidelity for both displays.  Admittedly, proprioceptive, aural, 

and haptic cues important to developing and maintaining SA, are lost when just using a 

static, artificial, out-of-context screenshot method.  Pilot EM SA was assessed during the 

experimental trials using the validated SA measure SPAM to evaluate differences in pilot 

analysis of each aircraft energy state condition when presented with either a PFD or an 

OZ concept display.  SPAM measures reaction time (response latency) (Durso et al., 

1997) to real-time probes in action scenarios in order to assess SA (Breton et al., 2007). 

Design and procedures.  A within-participants, repeated-measures experiment 

exposed each participant to a series of static cockpit screenshots, 15 from each of two 

display types.  Each participant sat in front of a personal computer terminal.  Initially, 

participants were presented with a demographic questionnaire ascertaining their age, 

gender, race / ethnicity, and flight experience / qualifications (see Appendix C).  

Participants were required to qualify for an FAA Third Class medical certificate, 

effectively screening for vision issues (color, depth, etc.) and any other physical or 

psychological impairments that would affect their ability to participate in the study.  

Participants were also required to hold a current FAA instrument rating, since knowledge 

and understanding of controlling an aircraft using only an instrument gauge scan was 

necessary for the trials.  The demographic survey also ascertained flight experience 

particular to instrument time, inferring instrument scanning skills and electronic flight 
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instrument system (EFIS) experience, as well as high altitude background, inferring 

training, education, and flying qualities.  The participants were next presented with a 

short tutorial explaining each of the two cockpit display types, the symbology presented, 

and the complete taxonomy of choices for the on-screen responses. 

Once the experiment began, participants were presented with a series of 15 

cockpit display screenshots from each display type.  Each participant received the 

screenshot series in the same order but in a counterbalanced design, so that each 

participant viewed all of one cockpit type followed by all of the other type.  For each 

cockpit screenshot, the participant viewed the cockpit display screenshot photo and 

assessed the current and near future state of the aircraft’s energy, decided what is 

currently happening to the aircraft with respect to energy state, and what, if any, pilot 

action is required in regards to energy management in terms of airspeed, aircraft pitch 

attitude, or altitude adjustment. 

The EM situations chosen were sufficiently complex to result in measurable 

difficulty with conventional flight displays.  This particular study did not consider aircraft 

configuration, such as speed brakes or lateral or directional control inputs, but those 

could be evaluated for future research.  The addition of AOA to a PFD provides very 

useful EM information but was not included on either of these two display conditions and 

was not evaluated in this study but may provide fruitful future research. 

When each new screenshot was presented, the participant acknowledged the 

aircraft’s current energy state and any input intentions (thrust levers, pitch adjustments) 

that may be required by selecting from the appropriate on-screen response options.  The 

list of standardized responses, shown in Table 2, was on-screen for the participants to 
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choose, so as to decrease the variation in responses (see also Appendix D).  This list was 

also included in the tutorial each participant received prior to the experiment. 

 

 

Table 2 

 

Selection of Standardized Participant Responses to Screenshot Stimuli 

Attitude Airspeed Energy State Thrust Lever 

Input 

Climbing Accelerating  Power avail > 

Power req 

 

Add Thrust 

Descending  Decelerating Power req > 

Power avail 

 

Reduce thrust 

Level Constant Power avail = 

Power req 

Pitch Up 

Left Bank Near 

Overspeed 

 

 Pitch Down 

Right Bank Near Stall  Roll Wings Level 

 

   No Input Required 

 

 

 

Following the experiment, participants were presented with an on-screen 

computerized survey requesting open-ended, qualitative, free-form, typed feedback 

regarding their attitudes and impressions of the experiment structure, the two display 

types, the difficulty or ease of display interpretation; their level of understanding about 

energy management, and their corresponding situation awareness of it (see Appendix E).  

This provided insight for further design modifications and future studies. 

Apparatus and materials.  Fifteen screenshots of the electronic flight display 

PFD (see Figure 10) were taken during a desktop simulator (Flight Sim X) flight of a 

medium sized regional jet, a CRJ-700.  Fifteen screenshots of the EID OZ Concept flight 
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display (see Figure 11) were taken during a desktop simulator (Flight Sim X) flight of a 

single-engine Cessna 172.  The OZ emulator is currently only programmed with C-172 

performance data.  The series of display screenshots detailed the aircraft’s 

instrumentation at high altitude cruise flight through various degrees of energy states: 

balanced flight (thrust required < thrust available), the region of reverse command (thrust 

required > thrust available), and energy states leading up to aerodynamic stall.  The 

simulator scenario placed both aircraft at its respective optimum altitude, or highest 

sustainable altitude for that specific gross weight and atmospheric temperature, and 

included various combinations of thrust level position, bank angle, and pitch angle. 

The screenshot stimuli and on-screen responses were shown to the participants in 

a slideshow format, as shown in Figures 10, 11, and 12.  A precision computer-based 

psychological testing software, “Inquisit 5 Lab” by Millisecond, was used to present the 

slideshow and record elapsed time for each screenshot and subsequent response selection.  

Participants were seated at a desktop personal computer terminal in a secluded, private 

office away from visual and aural distraction, they viewed the slideshow on a personal 

monitor, and they used a pointing device “mouse” to select “click” on-screen responses 

and progress to the next screenshot stimuli.  The 27 possible responses were shown on-

screen directly below the display graphics for both conditions, in a checkbox fashion, 

where participants were instructed to mark all that apply using their computer mouse. 
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Figure 10.  Display screenshot testing stimuli for PFD display condition. 

 

 

 

Indicate the condition.  Mark all that apply. 

 
                                                                                      
Climbing    Descending    Level    Left bank    Right bank    Other 

 
                                                                                                         
Accelerating    Decelerating    Constant    Near overspeed    Near stall    Other 

 
                                                                                                       
Power avail > power req    Power avail = power req    Power avail < power req    Other 

 

Indicate the response.  Mark all that apply. 

 
                                                                                                              
Add thrust    Reduce thrust    Pitch up    Pitch down    Roll wings level    No input required    Other 

 

Figure 11.  Standard list of responses to high altitude energy management decisions. 
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Figure 12.  Display screenshot testing stimuli for OZ display condition. 

 

 

 

Population/Sample 

This study recruited a volunteer sample of Lewis University undergraduate and 

graduate students, staff, faculty, and flight instructors who held at least an FAA 

instrument rating and qualified for an FAA third class medical certificate, by advertising 

the study through mass email to the aviation department, posted flyers in the aviation 

building, and word of mouth through the flight school instructors and aviation faculty.  

There was no benefit offered to the participants in this study.  This sample had varied 

aviation backgrounds in operational experience, licenses, type ratings, flight hours, 

instructor time, instrument time, and high altitude exposure.  The evaluation of the 

experimental results determined the utility of both display types in regards to EM SA.  

The repeated-measures, within-participants design de-emphasized individual differences 
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in aeronautical skill, experience, and cognitive ability, and mitigated potential variance in 

sample selection. 

Testing was conducted within the Lewis University Aviation & Transportation 

Department in Romeoville, IL, over the course of 20 days during the summer term.  

Ninety (90) volunteer participants initiated the study, returning 85 valid and complete 

responses for both sets of stimuli.  Data from five participants were excluded from the 

analysis due to technical / procedural problems.  The valid cases were further reduced to 

N=58 after removing those participants without a medical clearance and an instrument 

license.  Data from student pilots currently pursuing an instrument rating were retained. 

A power analysis using G*Power 3.1 software determined a minimum sample 

size to be between 54 participants, based on a t-test for two paired dependent means, a 

two-tailed alpha between .05, and an effect size of .5.  This was confirmed with Faul et 

al. (2009) and Cohen (1992). 

Sources of the Data 

Data was collected for each participant linking display screenshot, participant on-

screen question response, and elapsed response time.  A response answer key was created 

by a subject matter expert (SME), a professional pilot with an Airline Transport Pilot 

(ATP) rating, Certified Flight Instructor Instrument (CFII) certificate, a first class 

medical certificate, and over 4,800 flight hours in fixed and rotary wing aircraft.  The 

answer key was validated by a second SME, a professional pilot with an ATP, a Gold 

Seal CFII, a first class medical, and over 12,700 flight hours in fixed wing aircraft.  The 

accuracy of responses and elapsed response times were both considered ratio data.  

Display type (PFD vs. OZ display) and participant demographic data (gender, age, flight 
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experience, recency, etc.) was considered nominal data and stratified according to the 

sample composition.   

The participants’ EM SA during these scenarios was measured with the Situation 

Present Assessment Method (SPAM) in real-time.  Breton et al. (2007) endorse the use of 

SPAM in flight simulators where the inclusion of SPAM queries does not require 

suspension (stopping or pausing) of the scenario.  SPAM also distinguishes workload 

from SA by only measuring the elapsed response time once the participant begins 

processing the query.  The assumption was that if workload is low, the participant would 

be able to answer the query immediately, whereas if workload is high, the participant 

may be delayed answering the query.  In this design, the query shows up simultaneously 

with the display condition, so workload was not measured or considered.  SPAM differs 

from other common SA measures in that SPAM requires only that a participant know 

where to find targeted information, rather than having to recall from memory that piece 

of information (Durso et al., 1997). 

SPAM in this experiment queried participants on the nature of flight control 

response required, thrust lever and / or pitch control, if any, with regards to the 

participant’s interpretation of aircraft EM, current and near future aircraft energy states.  

SPAM measured response time and accuracy of the participants’ survey query answers, 

as shown in Table 2.  The measured data was the participant’s on-screen responses to 

each static screenshot of cockpit gauges, either PFD or OZ display, portraying a 

particular aircraft energy state.  The screenshot and the survey question both appeared on 

the screenshot.  Elapsed time required to make the response after seeing the screenshot 

condition was also measured.  The graded response data was paired with the elapsed time 
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data as the dependent variables.  The independent variable was the display type: PFD or 

OZ display. 

Each participant used a mouse to click on 27 possible responses for each screen; 

they were instructed to check any / all statements that applied to the aircraft scenario 

depicted.  The stimuli response data were scored in the following manner: the 

participant’s responses were compared to the answer key, summing matches of either a 

correct response or a correct blank or omission, depending on the question and screen.  

Either a checked box where the answer key indicated a blank or a blank where the answer 

key indicated a checked box, would both be considered a “miss” and not counted in the 

match totals.  These 27 responses for each of the 15 screens in that particular display type 

corresponded to four constructs: airspeed, attitude, energy, and corrective response.  

However, the PFD Accuracy and OZ Accuracy variables were aggregates for the sum of 

all questions, respective to display type.  The maximum possible score for each display 

was 405. 

Data Collection Device 

Instrument reliability.  The stability and consistency of the SA measure queries 

in this design were ensured since each given stimulus situation only had one correct 

answer.  Any individual should be expected to repeat their same answers during identical 

trials performed at a later time.  Assuming learning effects stemming from repeated 

testing, this trial only included one pass through each display type.  Any learning effects 

gained from the display design tutorial prior to beginning the experiment was equal 

across the participants.  The given responses for each specific screenshot scenario should 

remain the same in future trials. 
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Reliability was improved by utilizing a computer to collect data for the dependent 

variables of response accuracy and response time.  In an effort to minimize the learned 

and expected behavior during the trial for individual participants, the order of displayed 

screenshots was randomized using a random number generator to order the screenshots, 

and their occurrence within the trial was not necessarily chronological with respect to 

when they occurred in the previously flown simulator scenario.  However, the experiment 

was counter-balanced so that half of the participants received the random order of display 

“A” screenshots followed by the random order of display “B” screenshots, while the 

other half of participants received the opposite order.  The same randomly chosen order 

of screenshots within each display set was consistent for each participant, ensuring 

reliability between participant trials. 

This experiment employed the same simulator scenario parameters flown in both 

the PFD and the OZ display and then used these screenshots for the participants who 

experienced both in a repeated measures design.  Reliability was strengthened by running 

each participant through an identical single series consisting of both display sets during 

the same flight scenario, essentially providing each participant with two attempts at each 

energy state screenshot.  Cronbach’s coefficient alpha was computed to test construct 

question internal consistency for the PFD Accuracy and OZ Accuracy variables. 

Instrument validity.  Durso et al. (2006) support the incremental validity of SA 

queries using SPAM when used with several cognitive tests, since SA is a construct 

above and beyond these underlying cognitive mechanisms.  The screenshot used in this 

experiment and the SPAM questionnaire was rated by two SMEs, satisfying face validity 

prior to implementation with the participants.  The two SMEs also ensured that the 
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questions asked were clearly stated and that the participants understood the question the 

way it was intended. 

Treatment of the Data 

Descriptive statistics.  Data were collected for each participant linking display 

type, screenshot scenario energy state, accuracy of response, and elapsed response time.  

Descriptive statistics included measures of central tendency, dispersion, distribution, and 

percentiles.  The data were sorted, aggregated and cleaned using Microsoft Excel, and the 

various statistical analyses were run using IBM SPSS Statistics Version 23. 

Hypotheses testing.  Research Hypothesis 1 (Participants presented with high 

altitude EM decisions will exhibit a difference in response accuracy and response time 

when using the OZ concept display compared to when using the conventional electronic 

flight display) was tested using a paired samples t-test, comparing the differences of EM 

SA performance means in accuracy and time within individual participants on both the 

PFD and the OZ display. 

Null Hypothesis 1 (Participants presented with high altitude EM decisions will 

exhibit no difference in response accuracy and response time when using the OZ concept 

cockpit display compared to when using a conventional electronic flight display) was 

tested using a paired samples t-test, comparing the differences of EM SA performance 

means in accuracy and time within individual participants on both the PFD and the OZ 

display. 

Research Hypothesis 2 (Pilot flight hours in airplanes will be correlated with 

speed and accuracy of EM decisions when presented with the conventional electronic 

flight display) and Null Hypothesis 2 (Pilot flight hours in airplanes will not be correlated 
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with speed and accuracy of EM decisions when presented with the conventional 

electronic flight display) were tested using Spearman’s correlation statistics to measure 

strengths of relationships. 

Research Hypothesis 3 (Pilot flight hours in airplanes will not be correlated with 

speed and accuracy of EM decisions when presented with the OZ concept EID display) 

and Null Hypothesis 3 (Pilot flight hours in airplanes will be correlated with speed and 

accuracy of EM decisions when presented with the OZ concept EID display) were tested 

using Spearman’s correlation statistics to measure strengths of relationships. 

Assumptions for the t-tests are: independent observations, randomly sampled 

data, normal distribution of all dependent variables, and homogeneity of covariance 

(Field, 2009).  These assumptions were met since the independent performance scores 

were generated by different individuals, and participants served as their own controls 

(repeated measures design).  Assumptions for a non-parametric Spearman’s correlation 

test are that the data be ordinal (Field, 2009). 

Qualitative data.  The post-experiment written survey administered immediately 

following the experiment while the participant remained seated at the computer terminal 

provided qualitative data in the form of open-ended, free-form, typed feedback about the 

experiment structure, the two display types, the difficulty or ease of display 

interpretation, the level of understanding about energy management, and corresponding 

situation awareness of it.  
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Pilot Study  

A pilot study was performed with N=14 participants to gain some initial analysis 

for the hypotheses and relationships between the PFD and the OZ display, as well as test 

the software stimulus delivery and overall flow of the experiment.  Results showed non-

significant differences in means between PFD and OZ on both accuracy and response 

time, yet the OZ display did fare better: 3.13 seconds faster and a slightly more accurate 

aggregate result (1.64 to 1.51 out of 4.00).  The accuracy grading rubric awarded one 

point for correct answers to each of four constructs: airspeed, attitude, energy, and 

corrective response.  A perfect accuracy score was a 4.00 for each of the ten screens on 

that display condition.  Participants were more accurate using the PFD for attitude and 

corrective response individually, but more accurate using the OZ for airspeed and energy 

management individually.   

The stimuli screenshots, originally taken from low altitude scenarios, were 

replaced with more complex aerodynamic scenarios at maximum operational altitude, 

near coffin corner for both aircraft types.  Some of the demographic survey answer 

choices were adjusted based on SME and participant feedback.  A screen counter (n of 

15) was added when number of total stimuli went from 20 to 30. 
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CHAPTER IV 

RESULTS 

Descriptive Statistics 

Participant Demographics.  The 58 valid cases consisted of 54 males (93.1%) 

and 3 females (5.2%) with 1 preferring not to answer.  There were 35 participants 

(60.3%) in the 18-24 year old age group, 15 (25.9%) in the 25-34 year old age group, and 

8 (13.8%) spread among the other decade groups from 35-74 years old.  Forty-three 

participants (74.1%) identified as being not Hispanic or Latino, 11 (19.0%) as Hispanic 

or Latino, and 4 (6.9%) preferred not to answer.  Fifty-one participants (87.9%) identified 

as being White, 3 (5.2%) as Black or African American, 2 (3.4%) as Asian, 1 (1.7%) as 

American Indian or Native Alaskan, and 1 (1.7%) preferred not to answer. 

Twenty-five participants (43.1%) held a bachelor’s degree, 17 (29.3%) completed 

some college but no degree, 6 (10.3%) held a high school diploma, 6 (10.3%) held a 

master’s degree, 2 (3.4%) held an associate’s degree, and 2 (3.4%) held a doctoral 

degree.  Twenty-nine participants (50.0%) were university students in aviation fields, 15 

(25.9%) flight instructors, 6 (10.3%) commercial pilots, 5 (8.6%) chief or assistant chief 

pilots, 2 (3.4%) aviation faculty, and 1 preferred not to answer. 

Thirty-five participants (60.3%) held a current first class medical certificate, 11 

(19.0%) a second class, and 12 (20.7%) a third class.  Eighteen participants (31.0%) held 

a private pilot certificate and were working toward their instrument rating, 9 (15.5%) an 

instrument rating, 1 (1.7%) a commercial rating, 16 (27.6%) a certified flight instructor 

instrument rating, 7 (12.1%) a multi-engine rating, 6 (10.3%) an airline transport pilot 

rating, and 1 (1.7%) a remote pilot operator license.  Five participants (8.6%) had 
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between 51 and 100 flight hours in airplanes; 27 (46.6%) between 101 and 500; 10 

(17.2%) had between 501 and 1,000; 4 (6.9%) between 1,001 and 1,500; 9 (15.5%) 

between 1,501 and 5,000; 2 (3.4%) between 5,001 and 10,000; and 1 (1.7%) more than 

10,001. 

Dependent Variables.  Each participant viewed 15 screens of each display type 

for a total of 30 screens.  On each screen, participants indicated a response to 27 different 

checkboxes for current airspeed (7 boxes), aircraft attitude (7 boxes), current energy (5 

boxes), and pilot corrective response (8 boxes).  Correct responses matching the key were 

summed for each display type for a total of two performance scores: both PFD Accuracy 

and OZ Accuracy had a maximum perfect score of 405: 27 responses multiplied by 15 

screens.  Elapsed time spent viewing and responding to each of the 15 screens for each 

display type was recorded in milliseconds and then averaged for a total of two time 

scores: PFD Time and OZ Time.  Response times and response accuracy were analyzed 

independently and not according to the level of accuracy.  Response times associated 

with low accuracy were not discounted in the analysis.  Descriptive statistics are shown 

in Table 3.  Histograms are shown in Figures 13 through 18.  Response time for PFD and 

OZ both had positive skew with most participants registering quicker response times, 

while both PFD and OZ accuracy scores displayed a more normal curve appearance 

centered on their mean.  Response time variables were analyzed after a square root 

transformation reduced the skew and improved normality, as shown in Figures 15 and 16, 

but no remarkable results differing from the original analysis emerged with the 

transformed data.   
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Table 3 

 

Dependent Variables  

Variable M (SD) Min. Max. Skewness Kurtosis 

PFD Time 39.88 (14.10) 20.70 86.70 1.132 1.144 

OZ Time 43.35 (19.46) 15.86 114.85 1.270 2.019 

PFD Accuracy 348.84 (12.95) 321.00 377.00 .304 -.272 

OZ Accuracy 335.67 (13.22) 304.00 361.00 -.131 -.441 

Note.  N = 58.  Times are displayed in seconds.  Min. = Minimum; Max. = Maximum.   

 

 

 

 

Figure 13.  Total elapsed time participants spent viewing and responding to high altitude 

energy management decisions presented on a PFD. 
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Figure 14.  Total elapsed time participants spent viewing and responding to high altitude 

energy management decisions presented on an OZ display. 
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Figure 15.  Total elapsed time participants spent viewing and responding to high altitude 

energy management decisions presented on a PFD with transformation. 
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Figure 16.  Total elapsed time participants spent viewing and responding to high altitude 

energy management decisions presented on an OZ display with transformation. 
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Figure 17.  Total correct responses to high altitude energy management decisions 

presented on a PFD. 
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Figure 18.  Total correct responses to high altitude energy management decisions 

presented on an OZ display. 

 

 

 

Reliability Testing 

Cronbach’s coefficient alpha was computed to assess whether the items 

aggregated into the accuracy score had acceptable internal consistency.  The alpha for the 

aggregated items relating to the PFD display was .13, and the alpha for the aggregated 

items relating to the OZ display was .63.  The difference in these coefficient alpha values 

was unexpected since the questions were the same for both conditions. 

Hypothesis Testing 

Hypothesis 1.  Null Hypothesis 1 (Participants presented with high altitude EM 

decisions will not exhibit any differences in response accuracy and response times when 

using the OZ concept display compared to when using the conventional electronic flight 
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display) was tested using a paired samples t-test, comparing the differences of EM SA 

performance means in accuracy and time within individual participants on both the PFD 

and the OZ display.  There was not a statistically significant difference in means between 

PFD Time and OZ Time.  On average, mean PFD Accuracy was significantly higher than 

mean OZ Accuracy scores (MDiff = 13.17, SDDiff = 20.96), t(57) = 4.78, p < .001, d = 0.63, 

as shown in Table 4.  Thus, Null Hypothesis 1 was retained for response times but 

rejected for response accuracy. 

 

 

Table 4 

 

Paired Samples Test  

Variable MDiff (SDDiff) t(57) p LL UL Cohen’s d 

PFD-OZ 

Time 
-3.47 (17.83) -1.48 .143 -8.16 1.21 0.19 

PFD-OZ 

Accuracy 
13.17 (20.96) 4.78 <.001 7.65 18.68 0.63 

Note.  Times are displayed in seconds.  LL = 95% Confidence Interval Lower Limit; UL = 95% Confidence 

Interval Upper Limit. 

 

 

 

To further explore this finding, a Pearson bivariate correlation was run between 

PFD Accuracy and PFD Time as well as between OZ Accuracy and OZ Time.  Results 

showed no significant correlation between PFD Accuracy and PFD Time, r (58) = .011, p 

> .05.  However, results showed a significant correlation between OZ Accuracy and OZ 

Time, r (58) = .353, p < .01.  For the OZ display condition, better accuracy was 

associated with slower response times.  Scatterplots for accuracy versus time for both 

PFD and OZ are shown in Figures 19 and 20, respectively. 
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Figure 19.  Scatterplot of elapsed time participants spent viewing and responding to high 

altitude energy management decisions presented on the PFD plotted against total correct 

responses on the PFD. 
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Figure 20.  Scatterplot of elapsed time participants spent viewing and responding to high 

altitude energy management decisions presented on the OZ plotted against total correct 

responses on the OZ. 

 

 

 

Hypothesis 2.  To evaluate Null Hypothesis 2 (Pilot flight hours in airplanes will 

not be correlated with speed and accuracy of EM decisions when presented with the 

conventional electronic flight display), a non-parametric Spearman’s rho correlation was 

run between pilot flight hours in airplanes (categorical data) and PFD Time and PFD 

Accuracy.  Neither of these two relationships were significant, as shown in Table 5.  

Thus, Null Hypothesis 2 was retained. 
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Table 5 

 

Correlation of Accuracy and Time with Flight Hours 

Variable N  
Correlation 

coefficient 
p 

PFD Time 58 .055 .680 

PFD Accuracy 58 .228 .085 

OZ Time 58 .024 .860 

OZ Accuracy 58 .149 .264 

 

 

 

A one-way analysis of variance (ANOVA) revealed that PFD Accuracy score 

means were not significantly different across all seven flight time categories, F(6,51) = 

1.11, p > .05,  = .11, as shown in Figure 21, but that PFD RT means were significantly 

different across all seven flight time categories, F(6,51) = 2.50, p < .05,  = .37, as 

shown in Figure 22.  Further exploring this result, by removing the three cases above 

5,001 flight hours, PFD Response Time means were not significantly different across the 

remaining five flight time categories, F(4,50) = .751, p > .05,  = .14, as shown in Figure 

23. 
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Figure 21.  Plot of total correct response means to high altitude energy management 

decisions presented on a PFD against all seven categories of participant flight hour 

demographics.  
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Figure 22.  Plot of elapsed time means participants spent viewing and responding to high 

altitude energy management decisions presented on a PFD against seven selected 

participant flight hour demographic categories 

 

 

 



 

 

86 

 

Figure 23.  Plot of elapsed time means participants spent viewing and responding to high 

altitude energy management decisions presented on a PFD against five selected 

participant flight hour demographic categories. 

 

 

 

Hypothesis 3.  To evaluate Null Hypothesis 3 (Pilot flight hours in airplanes will 

be correlated with speed and accuracy of EM decisions when presented with the OZ 

concept EID display), a non-parametric Spearman’s rho correlation was run between pilot 

flight hours in airplanes (categorical data) and OZ Time and OZ Accuracy.  Neither of 

these two relationships were significant, as shown in Table 5.  Thus, Null Hypothesis 3 

was rejected.   

A one-way ANOVA revealed that neither OZ Accuracy score means F(6,51) = 

1.24, p > .05,  = .15 or OZ Response Time means F(6,51) = .83, p > .05,  = .14 were 
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significantly different across all seven flight time categories, as shown in Figures 24 and 

25.   

 

 

 

Figure 24.  Plot of total correct response means to high altitude energy management 

decisions presented on an OZ display against all seven categories of participant flight 

hour demographics. 
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Figure 25.  Plot of elapsed time means participants spent viewing and responding to high 

altitude energy management decisions presented on an OZ display against all seven 

categories of participant flight hour demographic. 

 

 

 

Qualitative Feedback Data 

The post-experiment feedback survey question responses are presented in 

Appendix F.  Questions #1-3 allowed participants to indicate multiple responses, while 

questions #4-6 permitted mutually exclusive responses. 

When asked about the overall study difficulty, a majority indicated it was 

“interesting” (58.6%), “confusing” (56.9%), and “challenging” (50.0%).  Participants 

regarded the difficulty of the PFD display as “easy” (69.0%), “interesting” (25.9%), 

“challenging” (15.5%), and “fun” (15.5%).  Participants regarded the difficulty of the OZ 

display as “confusing” (72.4%), “interesting” (53.4%), “challenging” (44.8%), “difficult” 

(43.1%), and “annoying” (13.8%).  On a question forcing only one exclusive answer, 42 
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(72.5%) participants indicated they would “definitely not”, “no”, or “maybe” desire to fly 

an aircraft with the OZ display.  Consistent to the previous question, another forced 

exclusive answer to the usefulness priority of an OZ display compared with a PFD 

display or round dial analog gauges resulted in 28 (48.3%) indicating they would prefer a 

PFD first, analog second, and OZ third.  Nineteen (32.8%) indicated they would prefer a 

PFD first, followed by OZ, with analog last.  Seven (12.1%) indicated they would prefer 

analog primarily, followed by a PFD, and lastly OZ.  Only 3 (5.2%) indicated they would 

prefer flying an OZ aircraft ahead of either a PFD or analog cockpit. 
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

Discussion 

Hypotheses Findings.   

Hypothesis 1.  Mean PFD Accuracy scores were significantly higher (13 points) 

than mean OZ Accuracy scores, and mean PFD Response Times were 3.5 seconds faster 

than mean OZ Response Times (not statistically significant).  This finding showed 

operational potential for the OZ display since even without first training to proficiency on 

the previously unseen OZ display, participant performance differences were not 

operationally remarkable from the PFD, a display with which 82.75% of participants 

stated a “decent amount”, “extensive”, or “expert” experience. 

While Temme, Still, and Acromite (2003) and Smith (2008) studied OZ after 

participants were given ample time to train to a level of proficiency where their 

performance could not noticeably improve further, this study only provided two static 

pictures describing what participants would see on the OZ display.  Perhaps with 

increased training, a more detailed tutorial prior to the experiment phase, and a check for 

adequate understanding prior to the stimuli, results from this study could be consistent 

with the superior pilot performance of OZ compared with analog gauges noticed in the 

earlier studies.  That this study showed non-significant differences in response time and 

an operationally non-remarkable difference in accuracy score, provides encouragement 

for future OZ research in different aerodynamic regimes, different aircraft, and different 

pilot demographic groups. 
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A perfect accuracy score was 405 correct responses, indicating the means of 348 

and 335 correctly matching responses, PFD and OZ respectively, equated to 85.93% and 

82.72% accuracy, respectively.  The high accuracy scores were undoubtedly affected by 

the large percentage of correct “blank” responses and suggest a different query response 

instrument should be used in future testing.  OZ response times were only 3.5 seconds 

slower (approximately 8.75% of the faster PFD time), and OZ accuracy was only 13 

points lower (approximately 3.21% of a perfect score of 405) than PFD accuracy, so with 

proper training and practice, OZ performance could potentially improve. 

The positive skew of response times on both displays suggests that values were 

not normalized around a mean but concentrated near shorter response times and 

decreased in frequency as response time increased.  Reasons include participants may 

have been rushing or guessing, leading to data contamination.  Response time histograms 

were transformed using a square root transformation, but no remarkable results emerged 

from analyzing the transformed variables, probably due to the robustness of these tests.  

Field (2009, p. 155) quotes Glass, Peckham, and Sanders (1972) in that “the payoff of 

normalizing transformation in terms of more valid probability statements is low.” 

The significant positive correlation between OZ Time and OZ Accuracy was 

surprising since accuracy plotted against response time was expected to resolve similar to 

a normal curve with the highest accuracy scores reserved for a mean response time with 

decreased accuracy correlated to both tails of the curve representing very fast and very 

slow response times.  In other words, participants responding too quickly would be 

expected to display poor accuracy, as well as those responding too slowly, perhaps if they 

had difficulty interpreting the displays and were taking a long time to respond, would 
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also be expected to display decreased accuracy.  However, this was not the case, since the 

correlation was moderately strong and showed that participants responding more slowly 

also scored more accurately.  It would be interesting to study this same relationship in a 

new experiment that included greater training on the OZ display prior to testing.  Perhaps 

more interesting was that PFD Accuracy and PFD Times were not correlated, meaning 

that there was greater variability and perhaps more randomness in response times and 

accuracy scores on the PFD display.  Accuracy did not seem to change as response time 

varied suggesting that the PFD provides aircraft performance information in a meaningful 

and discernable manner.  These findings suggest the participant familiarity of the PFD 

resulted in accuracy scores unrelated to response time, compared to the participants’ lack 

of training, exposure, and experience with the OZ display where longer response times 

manifested in greater understanding of the OZ display. 

Hypothesis 2.  Hypothesis 2 was rejected as speed and accuracy of EM decisions 

on the PFD display were not correlated with pilot flight hours.  It was thought that 

increased experience would translate into a faster and more accurate assessment of the 

aircraft stimuli; perhaps the stimuli were either too easy or too difficult to decipher, no 

matter the flight experience of the participant. 

Hypothesis 3.  Hypothesis 3 was not rejected as speed and accuracy of EM 

decision on the OZ display were not correlated with pilot flight hours.  Participants, 

regardless of flight experience, fared equally well on the OZ display, yet the aggregate 

accuracy score was slightly worse on the OZ display than on the PFD display.  This was 

consistent with previous research from Smith (2008) that observed novice operators 
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performed as well as experienced professional pilots on dynamic flight tasks with the OZ 

display. 

Qualitative Feedback.  The qualitative post-experiment feedback survey 

revealed a comfort with the PFD and analog round dial gauges, consistent with the types 

of aircraft cockpit displays familiar to modern aviators like these participants and an 

uneasiness with the OZ display consistent since this was the first time these participants 

saw the OZ display and they were afforded little training or explanation of the symbology 

or logic behind the display.  Interestingly, a similar majority of participants rated the PFD 

display as “easy” and the OZ display as “confusing,” yet as discussed earlier, 

performance accuracy scores and response times between the two display types were not 

correspondingly different. 

Limitations 

Categorical Data.  Demographic information was collected at the beginning of 

each trial as categorical data.  While information such as age and flight hours could have 

been collected as continuous ratio data allowing for more powerful analysis using 

different types of procedures, the decision was made to use standard categories to make 

participant data entry simple.  While these categories hindered the variance of the sample 

data since raw values were unavailable, the range of flight hours categories provided was 

considered adequate to sort participants into groups of flight experience for the analyses 

planned. 

Construct Validity.  This research discovered the difficulties of measuring the 

transient and ephemeral qualities of SA.  Situation awareness is a complex construct, and 

there should be increased effort in attempting to align measures of energy management 
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SA to analogous elements such as airspeed recognition, attitude recognition, energy 

recognition, and corrective response selection.  While response time and accuracy 

attempted to infer EM SA, there is no assurance that pilots demonstrating high SA will 

always make correct cockpit decisions and vice versa with pilots exhibiting low SA who 

do not always make poor choices in the cockpit, a paradox further highlighted by Endsley 

(1995). 

Sample Size.  The small sample (N=58) after filtering out those without an 

instrument rating was disappointing after more than 90 participants volunteered for the 

trial.  Participants were not discouraged from taking the trial without an instrument 

rating.  Notably, results revealed that none of the four dependent variables were 

significantly different across the seven flight hour categories, suggesting no 

contamination occurred from the 19 participants who did not hold an instrument rating 

but were working toward one.  Nonetheless, more effort should be made on future studies 

to screen for the instrument rating prior to initiating the experiment to increase the 

generalizability of results.   

Stimuli.  The query response instrument could be improved in a future study.  

Some of the post-test feedback comments revealed that the lack of previous aircraft state 

context surrounding the aircraft scenario created an artificial difficulty in deciphering the 

current energy state and recommended corrective actions.  Moreover, the PFD stimuli 

were difficult to analyze due to the absence of trend information on the airspeed and 

attitude indicators normally present on genuine PFD displays and the absence of energy 

information on any PFD display.   
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Accuracy Scoring.  The method chosen to grade the response items was that a 

correct match to the answer key (either checked or not checked) was equally awarded one 

point, while disagreements (either checked when key was blank or blank when key was 

checked) were awarded zero points.  Un-checked responses were considered correct since 

they matched the un-checked blank on the answer key.  Since there were 640 unmarked 

responses (79% of the 810 total), participants could earn a correct answer simply by 

leaving the question blank or skipping it altogether, so accuracy scores were weighted 

toward those participants who left blanks due to lack of knowledge, lack of time, or other 

reasons.  Other scoring methods were evaluated (awarding one point for correct matches 

but awarding zero points for correct blank matches and subtracting one point for 

disagreements), but the original method was retained for its tendency to accurately 

reward participants for correctly interpreting the displays and responding to the correct 

options.  The inherent difficulties in scoring a multiple response query highlights the need 

for a better designed query response instrument to control for this phenomenon. 

Response Time.  Response time data were not evaluated in accordance with 

associated accuracy scores, so, in effect, a response time from a low accuracy screen was 

not discounted as invalid.  For example, if a participant quickly completes a screen, 

recording a fast response time but a very inaccurate score, their response time data should 

be considered invalid.  In future studies, there should be an algorithm developed that can 

appropriately discern a valid response time value from an invalid one. 

Also, since each screen had different sets of possible answers, there is the 

possibility that more difficult screens would take longer to answer and vice versa.  This 

then would invalidate the average response time data since they would not be 



 

 

96 

standardized across screens or across display conditions.  The within-subjects design does 

attempt to mitigate this by aggregating all response times for a certain display, but there 

is no assurance that total aggregate for each screen is equivalent in difficulty.  This then 

should be corrected for future studies, equivalent difficulty in screens and displays, so 

that the participant mean difference in time and accuracy could be validly compared.   

Recommendations 

While this study did not find significant differences in EM SA provided by the 

OZ display in comparison with the PFD display, the complexities and nuances of these 

cognitive constructs are admittedly difficult to capture.  The experience and comfort level 

using the two conditions (PFD and OZ) were not equal, could have affected the results, 

and therefore should be controlled in a future study. 

This study employed static screenshots without any context or trend information, 

so pilot participants were at a disadvantage when they attempted to decipher the 

scenarios.  A future study could employ dynamic simulator scenarios in that the pilot 

participant is fully engaged in the moments prior to the queries, providing greater SA to 

the pilot before they are asked to ascertain the current SA or EM situation. 

While Smith (2008) studied normal flight tasks, a new area for EID display 

research could involve unusual attitude recovery performance using existing OZ software 

and Cessna flight simulators compared with traditional electronic PFD displays, as well 

as analog round dials, which are still predominantly in use in U.S. flight schools.  An 

unusual attitude is akin to a flight upset, when the aircraft is off its normally expected 

flight trajectory, typically experienced prior to LOC-I. 
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A consideration for future research is in the accuracy and fidelity of the scenario 

stimuli themselves.  The OZ software is currently only programmed to emulate a single-

engine Cessna 172 in Microsoft Flight Simulator (MSFS).  It would be beneficial to study 

pilot performance with an OZ display programmed for a common commercial airliner to 

analyze the effectiveness of that display to relevant professional aircraft platforms. 

This study relied on the complexity of aerodynamic relationships of coffin corner 

flight operations where aircraft were limited by altitude, airspeed, and engine thrust.  This 

was achievable on the PFD displays taken from a CRJ-700 on MSFS flown near 

operational ceiling, but accuracy of engine parameters is uncertain in that software.  A 

more realistic depiction of aircraft operational parameters would be found in an FAA 

approved “Level-D” full flight simulator (FFS) under a complex aerodynamic high 

altitude energy scenario.  A future study which employed the OZ software programmed 

for a twin-engine airliner and the fidelity and accuracy of a dynamic FFS should provide 

more clarity on the hypothesis that the OZ display could enhance EM SA. 

The sample population centered on an aviation university with only slight 

variation in pilot experience and demographics, limiting the generalizability of this study.  

A larger multiple site study could investigate display differences with a more varied pilot 

base.  Future studies could enhance reliability by running the same participants through 

multiple trials to ensure the reliability of the data obtained from just one run through the 

trial. 

Increased EM SA was inferred by two factors: greater accuracy of the on-screen 

responses and faster response times.  Subsequent research could develop a better scoring 

method to synthesize response time and accuracy so that a metric could account and 
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weigh the distinction between fast / inaccurate and slow / accurate responses.  A quick, 

yet inaccurate response is not operationally similar to a slow and accurate response. 

Conclusions 

Overwhelmingly, the feedback from the participants after leaving the testing 

center was that they were intrigued by the OZ display and wanted more time to fly and 

learn it.  This study was created to evaluate the OZ display for its unique EID 

capabilities, specifically in the EM realm.  While the almost 100-year-old instrument 

layout in cockpits worldwide will most likely not undergo a radical modification, a 

potential utilization of this OZ display could be realized in the flexible and customized 

digital real estate of advanced electronic cockpit displays.  An initial hypothesis was that 

the OZ display, as compared with a PFD, would provide greater EM information more 

directly to the pilot thus improving his SA.  This hypothesis was directed toward the 

operational theory that increased EM SA would decrease a flight crew’s potential for 

LOC-I by avoiding aircraft upsets or correcting from them more quickly.  This compound 

goal requires extensive research, and this study hoped to start this process by identifying 

potential benefits and drawbacks to certain cockpit instrumentation. 
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AGREEMENT TO PARTICIPATE IN 

Comparative Analysis of Conventional Electronic and OZ Concept Display for 

Aircraft Energy Management 
 

STUDY LEADERSHIP.  We are asking you to take part in a research project that is led by 

Erik Baker, Ph.D. Candidate, Embry-Riddle Aeronautical University. 

 

PURPOSE.  The purpose of this study is to examine the effectiveness of two different 

aircraft cockpit displays in promoting energy management situation awareness.  We hope 

to use what we learn from this study to enhance flight safety by quantifying effectiveness 

of energy management situation awareness in general aviation operations. 

 

ELIGIBILITY.  To be in this study, you must be 18 years or older. 

 

PARTICIPATION.  During the study, you will be asked to take part in an experimental 

session where you will be seated at a computer terminal. 

1. You will observe a computer monitor, respond to an on-screen question, and then 

repeat this procedure about 30 times.  The experimental session will take about 20 

minutes of your time. 

2. This computer-based evaluation may include: (a) determining flight information 

from the on-screen display, and (b) responding to on-screen questions with a pointer 

device (mouse). 

3. We will ask you to respond to a demographic questionnaire prior to starting the 

experimental session.  After the experiment has finished, we will also ask you to respond 

to a satisfaction survey regarding the nature of the cockpit displays used in the trial. 

 

 RISKS OF PARTICIPATION.  The risks of participating in this study are minimal, no 

more than in everyday life.  

 

 BENEFITS OF PARTICIPATION.  We do not expect the study to benefit you 

personally; however, the research may help us learn how to improve aviation safety for 

the general aviation community.   

 

VOLUNTARY PARTICIPATION.  Your participation in this study is completely 

voluntary.  You may stop or withdraw from the study at any time or refuse to answer any 

particular question without it being held against you.  Your decision whether or not to 

participate will have no effect on your current or future connection with anyone at 

Embry-Riddle Aeronautical University or Lewis University.  Any data collected from 

participants who “opt-out” before or during the experiment will be considered incomplete 

but will remain CONFIDENTIAL and be kept in the same manner as complete 

participant data, further explained below. 

  

RESPONDENT PRIVACY.  Your individual information will be protected in all data 

resulting from this study.  Your responses to this survey will be CONFIDENTIAL.  In 



 

 

111 

order to protect the confidentiality of your responses, any information that is obtained in 

connection with this study and that can be identified with you will remain strictly 

confidential and will be disclosed only with your permission or as required by law.  

Confidentiality will be maintained by means of assigning a code number for all data 

collected from each participant.  We will use only the code number, and therefore no 

names or identifying information will be used in this study or in any of the research 

reports.  Results will be reported at the group level and will not identify you individually. 

Confidentiality means that you will know or can readily learn the participant’s identity, 

but you will not disclose or make it possible for anyone outside of the research team to 

learn it. 

 

FURTHER INFORMATION.  If you have any questions or would like additional 

information about this study, please contact Erik Baker, baker7fa@my.erau.edu, 815-

836-5936. 

 

The ERAU Institutional Review Board (IRB) has approved this project.  You may 

contact the ERAU IRB with any questions or issues at (386) 226-7179 or 

teri.gabriel@erau.edu.  ERAU’s IRB is registered with the Department of Health & 

Human Services – Number – IORG0004370. 

 

CONSENT.  Your selection of the on screen “AGREE” radio button will replace your 

signature, indicate that you understand the information on the form, that someone has 

answered any and all questions you may have about this study, that you are 18 years of 

age or older, and that you voluntarily agree to participate in it. You may print a copy of 

this form for your records.  A copy of this form can also be requested from Erik Baker, 

baker7fa@my.erau.edu, 815-836-5936. 

 

 

 

 

 

 

  

I DO NOT agree to 

participate 

I agree to participate 

mailto:baker7fa@my.erau.edu
mailto:teri.gabriel@erau.edu
mailto:baker7fa@my.erau.edu
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APPENDIX C 
 

Demographic Questionnaire 
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Demographic Questionnaire 

 

1) "What is your gender?" 

 

"Female",  

"Male",  

"I prefer not to answer this question", 

"Other (please specify):" 

 

2) "What is your age?" 

 

"18-24 years old", 

"25-34 years old", 

"35-44 years old", 

"45-54 years old", 

"55-64 years old", 

"65-74 years old", 

"75 years or older", 

"I prefer not to answer this question" 

 

3) "What is your ethnicity?" 

 

"Hispanic or Latino (a person of Cuban, Mexican, Puerto Rican, Cuban, South or Central 

American, or other Spanish culture or origin, regardless of race)", 

"Not Hispanic or Latino", 

"I prefer not to answer this question" 

 

4) "What is your race? Mark one or more races to indicate what you consider yourself to 

be." 

 

"American Indian or Alaska Native (a person having origins in any of the original 

peoples of North and South America (including Central America) who maintains cultural 

identification through tribal affiliation or community attachment)",  

"Asian (a person having origins in any of the original peoples of the Far East, Southeast 

Asia, or the Indian Subcontinent, including, for example, Cambodia, China, India, Japan, 

Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam)",  

"Black or African American (a person having origins in any of the black racial groups of 

Africa)", 

"Native Hawaiian or Other Pacific Islander (a person having origins in any of the original 

peoples of Hawaii, Guam, Samoa, or other Pacific Islands)", 

"White (a person having origins in any of the original peoples of Europe, the Middle 

East, or North Africa)", 

"I prefer not to answer this question", 

"Info you would like to add:" 

 



 

 

114 

5) "What is the highest degree or level of schooling you have completed? If currently 

enrolled, highest degree received so far." 

 

"Doctoral or professional degree", 

"Master's degree", 

"Bachelor's degree", 

"Associate's degree", 

"Postsecondary non-degree award", 

"Some college, no degree", 

"High school diploma or equivalent", 

"Less than high school", 

"I prefer not to answer this question" 

 

6) "What is your current employment status?  Mark all that apply." 

 

"University student (non-aviation)", 

"University student (aviation)", 

"Flight Instructor", 

"Chief or Asst. Chief Pilot", 

"Commercial pilot", 

"Corporate pilot", 

“Cargo pilot”, 

"General Aviation pilot", 

"Faculty (aviation)", 

"Faculty (non-aviation)", 

"I prefer not to answer this question", 

"Other (Please specify):" 

 

7.) “What FAA medical certificate do you currently hold?” 

 

“None”, 

“Third class medical”, 

“Second class medical”, 

“First class medical”, 

“I prefer not to answer this question” 

 

8) "What pilot ratings do you currently hold?  Mark the highest or all that apply." 

 

“None”, 

"Student", 

"Recreational", 

"Sport", 

"Private", 

"Instrument", 

"Commercial", 

"Certified Flight Instructor", 
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"Certified Flight Instructor Instrument", 

"Multi-Engine Instructor", 

"Airline Transport Pilot", 

"Remote Pilot", 

"Dispatcher", 

"I prefer not to answer this question", 

"Other (please specify):" 

 

9) "How many flight hours do you have?" 

 

"none", 

"between 1 and 50", 

"between 51 and 100", 

"between 101 and 500", 

"between 501 and 1000", 

"between 1001 and 1500", 

"between 1501 and 5000", 

"between 5001 and 10000", 

"more than 10001", 

"I prefer not to answer this question" 

 

10) "How much experience do you have with electronic flight displays (EFIS, PFD, 

glass, etc.)?" 

 

"None", 

"A little", 

"Decent amount", 

"Extensive", 

"Expert", 

"I prefer not to answer this question" 

 

11) "How much experience do you have with high altitude flight (above FL250)?" 

 

"None", 

"A little", 

"Decent amount", 

"Extensive", 

"Expert", 

"I prefer not to answer this question" 

 

12) "How much experience do you have with video gaming?" 

 

"None", 

"A little", 

"Decent amount", 

"Extensive", 
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"Expert", 

"I prefer not to answer this question" 

 

13) "How much experience do you have with the OZ display?" 

 

"Never heard of it", 

"A little", 

"Decent amount", 

"Extensive", 

"I have previously participated in this trial", 

"I prefer not to answer this question" 
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APPENDIX D 
 

Data Collection Device 
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Energy Management Trials 

 

1) "Indicate the condition.  Mark all that apply." 

 

"Climbing", 

"Descending", 

"Level", 

"Left bank", 

"Right bank", 

"Other (Please specify):" 

 

"Accelerating", 

"Decelerating", 

"Constant", 

"Near overspeed", 

"Near stall", 

"Other (Please specify):" 

 

"Power avail > power req", 

"Power avail = power req", 

"Power avail < power req", 

"Other (Please specify):" 

 

 

2) "Indicate the response.  Mark all that apply." 

 

"Add thrust", 

"Reduce thrust", 

"Pitch up", 

"Pitch down", 

"Roll wings level", 

"No input required", 

"Other (Please specify):" 
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APPENDIX E 
 

Post-experiment Feedback Survey 
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Feedback Survey 

 

1) "I found this study to be: __________.  Mark all that apply." 

 

"Easy", 

"Difficult", 

"Confusing", 

"Interesting", 

"Challenging", 

"Exciting", 

"Fun", 

"Annoying", 

"I prefer not to answer this question", 

"Other (please specify):" 

 

 

2) "I found the PFD display to be: __________.  Mark all that apply." 

 

"Easy", 

"Difficult", 

"Confusing", 

"Interesting", 

"Challenging", 

"Exciting", 

"Fun", 

"Annoying", 

"I prefer not to answer this question", 

"Other (please specify):" 

 

 

3) "I found the OZ display to be: __________.  Mark all that apply." 

 

"Easy", 

"Difficult", 

"Confusing", 

"Interesting", 

"Challenging", 

"Exciting", 

"Fun", 

"Annoying", 

"I prefer not to answer this question", 

"Other (please specify):" 
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4) "I would like to fly an aircraft with the OZ display." 

 

"Definitely not",  

"No", 

"Maybe", 

"Yes", 

"Definitely yes", 

"I prefer not to answer this question", 

"Other (please specify):" 

 

 

5) "How do you compare the usefulness of the OZ display to a PFD or traditional 

gauges?" 

 

"OZ best, PFD next, round dials last",  

"OZ best, round dials next, PFD last",  

"PFD best, OZ next, round dials last", 

"PFD best, round dials next, OZ last", 

"Round dials best, OZ next, PFD last", 

"Round dials best, PFD next, OZ last", 

"I prefer not to answer this question", 

"Other (please specify):" 

 

 

6) "How do you rate the usefulness of the OZ display for energy management (EM)?" 

 

"Not useful at all",  

"Useful for EM, but not for anything else",  

"Useful for EM and some other aviation tasks", 

"Useful for EM and most aviation tasks", 

"Very useful for all aviation tasks", 

"Essential", 

"I prefer not to answer this question", 

"Other (please specify):" 
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APPENDIX F 
 

Post-experiment Feedback Results  
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Q1) Response to Study Difficulty 

Response N  Percent 

Easy 3 5.2 

Difficult 9 15.5 

Confusing 33 56.9 

Interesting 34 58.6 

Challenging 29 50.0 

Exciting 11 19.0 

Fun 12 20.7 

Annoying 2 3.4 

Needed more info 1 1.7 

 

Q2) Response to PFD Difficulty 

Response N  Percent 

Easy 40 69.0 

Difficult 2 3.4 

Confusing 3 5.2 

Interesting 15 25.9 

Challenging 9 15.5 

Exciting 4 6.9 

Fun 9 15.5 

Annoying 2 3.4 

Became easier 1 1.7 

Easier to 

understand 
2 3.4 

Missing trend info 1 1.7 

 

Q3) Response to OZ Difficulty 

Response N  Percent 

Easy 7 12.1 

Difficult 25 43.1 

Confusing 42 72.4 

Interesting 31 53.4 

Challenging 26 44.8 

Exciting 8 13.8 

Fun 5 8.6 

Annoying 8 13.8 

Great concept 1 1.7 

Liked target A/S 1 1.7 

Display sweet 1 1.7 

Easier with 

practice 
1 1.7 

 

Q4) Response to Desire to Fly an 

Aircraft with OZ 

Response N  Percent 

Definitely not 12 20.7 

No 11 19.0 

Maybe 19 32.8 

Yes 9 15.5 

Definitely yes 5 8.6 

Yes with more 

practice  
2 3.4 

 

Q5) Response to Priority of Usefulness 

Response N  Percent 

PFD, Round, OZ 28 48.3 

PFD, OZ, Round 19 32.8 

Round, PFD, OZ 7 12.1 

OZ, PFD, Round 3 5.2 

Prefer not to 

answer 
1 1.7 
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Q6) Response to Usefulness of OZ for 

EM 

Response N  Percent 

Not useful 13 22.4 

Useful for EM 12 20.7 

Useful for some 19 32.8 

Useful for most 5 8.6 

Very useful for all 4 6.9 

Essential 1 1.7 

Confusing 1 1.7 

Need to 

understand better 
1 1.7 

Useful for military 1 1.7 

Need more 

practice 
1 1.7 
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