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tems while enforcing conformance with the systems’ governing equations as E>, 15, ps S : S :
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updating unknown system parameters simultaneously with neural network &, v S
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advantages such as faster convergence, reduced data requirements, and sim- A B Cé 0_' '\\W o - T \
plified loss functions. The effectiveness of FE-PINN is demonstrated through Figure: Simulated soil column. Nodes A and B are fixed. Displ;cement history of nodes F 7. -0 \\ ,,,,,,,,, /
a 2D linear elastic full waveform inversion problem, where it not only accu- ;14 G used to train FE-PINN. Rayleigh damping is assumed. S e I
rately estimates elastic modulus values with less than 0.01% error, but also ! : Time [§ ’ ’ ’ : Time [9 ’ ’
orovides an efficient surrogate model which can be used for forecasting. The Parameter Values Solution ~ ---- Prediction
success of FE-PINN in this simplified problem provides grounds for optimism > vy =17=10.3 Figure: True solution data (obtained with a FE simulation) compared to FE-PINN
that it can be applied to more intricate systems — a direction the authors » 01 = pr = 2000 kg - m—3 prediction. Due to FE-PINN's high accuracy, the curves are nearly identical.
iIntend to explore in future research endeavors. » £, = 69.2307 MPa
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FE-PINN Workflow e
» a; = 0.000435366 Due to the strong performance of FE-PINN on this simplified problem, the
 Sparse Measured Data 5 _ authors are motivated to attempt the following.
ynamics » Apply FE-PINN to data from a real, 3D geophysical experiment

The dynamics of this system are given by the equation » Evaluate the performance of FE-PINN against traditional PINNs and FE
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» Given time t, FE-PINN predicts the displacement vector u(t)
» Autodifferentiation is used to obtain 4(t) and ii(t)
-, . . Results
» Data loss: mean-squared error of misfit between predicted and measured displacements D T Val FE-PINN Esti D A
» Physics loss: mean of squared residual of dynamic equation arameter lrue value - stimate Percent Cocuracy
» Total loss is a linear combination of data and physics loss S 69.2307 MPa 69.2302 MPa 99.999%
» Total loss minimized using ADAM optimizer, updating neural network weights along E; 23.0769 MPa 23.0764 MPa 99.998%

with physical parameters Table: Comparison of FE-PINN's estimates vs. ground-truth values.



