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Introduction
This research introduces a novel framework called Finite Element Physics-
Informed Neural Networks (FE-PINNs) for solving complex problems in engi-
neering. Building upon the strengths of traditional Physics-Informed Neural
Networks (PINNs) and the Finite Element (FE) method, FE-PINN offers an
efficient and accurate approach for solving challenging inverse problems in
civil engineering. PINNs [1] use neural networks to approximate physical sys-
tems while enforcing conformance with the systems’ governing equations as
a soft constraint during the optimization process, which allows system pa-
rameters to be updated alongside the weights of the PINN. FE-PINN extends
this approach by using PINNs to solve the system of equations resulting from
applying the FE method to potentially complicated real-world systems, while
updating unknown system parameters simultaneously with neural network
weights. The architecture closely resembles traditional PINNs but exhibits
advantages such as faster convergence, reduced data requirements, and sim-
plified loss functions. The effectiveness of FE-PINN is demonstrated through
a 2D linear elastic full waveform inversion problem, where it not only accu-
rately estimates elastic modulus values with less than 0.01% error, but also
provides an efficient surrogate model which can be used for forecasting. The
success of FE-PINN in this simplified problem provides grounds for optimism
that it can be applied to more intricate systems – a direction the authors
intend to explore in future research endeavors.
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Figure: A graphical representation of the FE-PINN training process.

▶ Given time t, FE-PINN predicts the displacement vector u(t)

▶ Autodifferentiation is used to obtain u̇(t) and ü(t)

▶ Data loss: mean-squared error of misfit between predicted and measured displacements

▶ Physics loss: mean of squared residual of dynamic equation

▶ Total loss is a linear combination of data and physics loss

▶ Total loss minimized using ADAM optimizer, updating neural network weights along
with physical parameters
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Figure: Simulated soil column. Nodes A and B are fixed. Displacement history of nodes F
and G used to train FE-PINN. Rayleigh damping is assumed.

Parameter Values

▶ ν1 = ν2 = 0.3

▶ ρ1 = ρ2 = 2000 kg ·m−3

▶ E1 = 69.2307 MPa

▶ E2 = 23.0769 MPa

▶ a0 = 0.149824

▶ a1 = 0.000435366

Dynamics
The dynamics of this system are given by the equation

Mü(t) + Cu̇(t) +Ku(t) = f (t) (1)

Loss Function
The loss function is formulated as follows.

L = LD +
1
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(Mü(tj) + Cu̇(tj) +Ku(tj)− f (tj))
2
i (2)

where LD denotes data loss. At each optimization step, the values of E1 and
E2 are updated along with the parameters of the neural network.

Results
Parameter True Value FE-PINN Estimate Percent Accuracy

E1 69.2307 MPa 69.2302 MPa 99.999%
E2 23.0769 MPa 23.0764 MPa 99.998%

Table: Comparison of FE-PINN’s estimates vs. ground-truth values.

Figure: True solution data (obtained with a FE simulation) compared to FE-PINN
prediction. Due to FE-PINN’s high accuracy, the curves are nearly identical.

Future Goals
Due to the strong performance of FE-PINN on this simplified problem, the
authors are motivated to attempt the following.

▶ Apply FE-PINN to data from a real, 3D geophysical experiment

▶ Evaluate the performance of FE-PINN against traditional PINNs and FE
model-updating schemes.

Acknowledgements
Funding for this project was provided by Embry-Riddle Aeronautical
University’s Office of Undergraduate Research as a part of the Summer
Undergraduate Research Fellowship (SURF) program.


