
Annual ADFSL Conference on Digital Forensics, Security and Law 2016 
Proceedings 

May 25th, 9:00 AM 

Inferring Previously Uninstalled Applications from Residual Partial Inferring Previously Uninstalled Applications from Residual Partial 

Artifacts Artifacts 

Jim Jones 
George Mason University, Fairfax, Virginia, United States 

Tahir Khan 
George Mason University, Fairfax, Virginia, United States 

Kathryn Laskey 
George Mason University, Fairfax, Virginia, United States 

Alex Nelson 
National Institute of Standards and Technology, Gaithersburg, Maryland, United States 

Mary Laamanen 
National Institute of Standards and Technology, Gaithersburg, Maryland, United States 

See next page for additional authors 

(c)ADFSL 

Follow this and additional works at: https://commons.erau.edu/adfsl 

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security 

Studies Commons, Forensic Science and Technology Commons, Information Security Commons, 

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and 

the Social Control, Law, Crime, and Deviance Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Jones, Jim; Khan, Tahir; Laskey, Kathryn; Nelson, Alex; Laamanen, Mary; and White, Douglas, "Inferring 
Previously Uninstalled Applications from Residual Partial Artifacts" (2016). Annual ADFSL Conference on 
Digital Forensics, Security and Law. 3. 
https://commons.erau.edu/adfsl/2016/wednesday/3 

This Peer Reviewed Paper is brought to you for free and 
open access by the Conferences at Scholarly Commons. 
It has been accepted for inclusion in Annual ADFSL 
Conference on Digital Forensics, Security and Law by an 
authorized administrator of Scholarly Commons. For 
more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2016
https://commons.erau.edu/adfsl/2016
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2016/wednesday/3?utm_source=commons.erau.edu%2Fadfsl%2F2016%2Fwednesday%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/


Presenter Information Presenter Information 
Jim Jones, Tahir Khan, Kathryn Laskey, Alex Nelson, Mary Laamanen, and Douglas White 

This peer reviewed paper is available at Scholarly Commons: https://commons.erau.edu/adfsl/2016/wednesday/3 

https://commons.erau.edu/adfsl/2016/wednesday/3


Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

INFERRING PREVIOUSLY
UNINSTALLED APPLICATIONS FROM

DIGITAL TRACES
Jim Jones†, Tahir Khan†, Kathryn Laskey†, Alex Nelson‡,

Mary Laamanen‡, and Douglas White‡
†George Mason University, Fairfax, Virginia, United States

‡National Institute of Standards and Technology, Gaithersburg, Maryland, United States

ABSTRACT

In this paper, we present an approach and experimental results to suggest the past presence
of an application after the application has been uninstalled and the system has remained
in use. Current techniques rely on the recovery of intact artifacts and traces, e.g., whole
files, Windows Registry entries, or log file entries, while our approach requires no intact
artifact recovery and leverages trace evidence in the form of residual partial files. In the case
of recently uninstalled applications or an instrumented infrastructure, artifacts and traces
may be intact and complete. In most cases, however, digital artifacts and traces are al-
tered, destroyed, and disassociated over time due to normal system operation and deliberate
obfuscation activity. As a result, analysts are often presented with partial and incomplete
artifacts and traces from which defensible conclusions must be drawn. In this work, we
match the sectors from a hard disk of interest to a previously constructed catalog of full
files captured while various applications were installed, used, and uninstalled. The sectors
composing the files in the catalog are not necessarily unique to each file or application, so
we use an inverse frequency-weighting scheme to compute the inferential value of matched
sectors. Similarly, we compute the fraction of full files associated with each application that
is matched, where each file with a sector match is weighted by the fraction of total catalog
sectors matched for that file. We compared results using both the sector-weighted and file-
weighted values for known ground truth test images and final snapshot images from the M57
Patents Scenario data set. The file-weighted measure was slightly more accurate than the
sector-weighted measure, although both identified all of the uninstalled applications in the
test images and a high percentage of installed and uninstalled applications in the M57 data
set, with minimal false positives for both sets. The key contribution of our work is the sug-
gestion of uninstalled applications through weighted measurement of residual file fragments.
Our experimental results indicate that past application activity can be reliably indicated
even after an application has been uninstalled and the host system has been rebooted and
used. The rapid and reliable indication of previously uninstalled applications is useful for
cyber defense, law enforcement, and intelligence operations.

Keywords: digital forensics; digital artifact; digital trace; partial artifact; residual artifact;
uninstalled application

c© 2016 ADFSL Page 113



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

1. INTRODUCTION

The practice of digital forensics is the art and
science of inferring and proving past activity
given some set of residual digital artifacts
and traces. These artifacts and traces may
be files, Windows Registry entries, log en-
tries, memory contents, network traffic, etc.,
and past activity of interest may be legiti-
mate and illegitimate user activity, system
activity, application installation and usage,
malware infection and operation, etc. While
whole artifacts may be recoverable in some
cases, many situations require inferring and
proving past activity given residual partial
artifacts and traces. We propose that past
activity, specifically application installation
and usage, can be reliably suggested from
digital traces, even when the application in
question has been uninstalled and usage of
the system and media has continued. We as-
sume that full artifacts created by an activ-
ity degrade monotonically and non-linearly
over time. Specifically, files created as a con-
sequence of application installation, usage,
and uninstallation are subsequently deleted,
and some sectors from these deleted files will
be overwritten while other sectors may per-
sist on the digital media. Given prior knowl-
edge of the full file artifacts created by an ap-
plication, we can then search media of inter-
est for traces in the form of matching partial
artifacts, i.e., sectors from the original full
artifact, and reason over these matches to
suggest past application presence. Our ap-
proach complements existing methods that
rely on evidence from intact full-file artifacts,
an uncleansed Windows Registry, intact log
entries, or traces from other sources such as
memory contents or network traffic.

In the sections that follow, we discuss prior
work in this area, then we describe the two
core elements of our approach: (i) building
a catalog of sectors associated with specific
applications, and (ii) reasoning over sectors

that match entries in that catalog. Subse-
quent sections present our experimental re-
sults against a test set with known ground
truth and the M57 Patents Scenario (Woods
et al., 2011) disk images, for which we have
some ground truth. We close the paper with
a summary of our conclusions, limitations of
this approach, and future research plans.

2. RELATED WORK
Related work to establish the presence of in-
stalled and uninstalled applications has gen-
erally relied on intact file artifacts (Kop-
pen et al., 2013; Quick et al., 2013), log
file analysis (Forte, 2004), and examina-
tion of the Windows Registry when avail-
able (Laamanen et al., 2014; Nelson et al.,
2014; Wong, 2007). Additional techniques
and methods rely on traces such as email
addresses, URLs, etc. extracted from raw
data (Garfinkel, 2013), or data structures
and other known-layout data from memory
(Ligh et al., 2014). Intact file artifacts for
uninstalled applications may be files remain-
ing from an aborted or poorly written unin-
stall application, or may be user files which
are created during application use and are
deliberately not deleted as part of the appli-
cation uninstall process, such as user pref-
erence files. Log files include varying levels
of detail depending on the application cre-
ating the log, and establishing the integrity
of the log file requires secure creation, trans-
mission, and storage of the log file. Reg-
istry artifacts may include application spe-
cific keys as well as command line execution
arguments, recently accessed files, and simi-
lar indicators of application installation and
usage, whether the application in question
has been uninstalled or not. In contrast, our
work does not require recovery of any intact
artifacts and is specifically designed to sug-
gest applications that have been uninstalled.

Our work relies on recovery and analysis

Page 114 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

of file fragments in the form of disk sectors.
Collange, Dandass, Daumas, and Defour
(Collange et al., 2009), Garfinkel, Nelson,
White, and Roussev (Garfinkel et al., 2010),
and later Young, Foster, Garfinkel, and Fair-
banks (Young et al., 2012) and Foster (Fos-
ter, 2012) examined sector content unique-
ness as it relates to specific file identification.
This initial work successfully identified files
with distinct content, such as videos, from
a limited number of sectors, but the later
work also hinted at issues with sector con-
tent common across multiple files. These is-
sues fully emerged in the work of Garfinkel
and McCarrin (Garfinkel et al., 2015) in the
form of “common data structures found in
Microsoft Office documents and multimedia
files.” Garfinkel and McCarrin label such file
fragments “non-probative blocks” and devel-
oped heuristics to account for these blocks
and reliably detect file presence from frag-
ments. By comparison, we are inferring the
past presence of applications based on blocks
from multiple files. Further, our approach
pre-selects potentially probative blocks then
weights matching blocks based on their fre-
quency in our catalog.

3. APPROACH AND

METHODOLOGY
The theory underpinning our approach is
that application installation and use creates
files, and application uninstallation deletes
these files. The sectors containing the con-
tents of these deleted files are overwritten
over time, but some sectors may remain in-
tact until subsequent examination. These
residual sectors, or traces, may be used to
infer the likelihood that a particular appli-
cation was previously installed on the exam-
ined system.

It is important to note that just because
we empirically establish that an application
installation and use creates a specific set of

files and corresponding sectors, this does not
imply that the presence of these sectors or
even intact files proves the current or past
presence of the application in question. That
is, if I know A causes B and I subsequently
find B, I cannot logically conclude that A
occurred. On the other hand, if A is estab-
lished to be the only possible cause of B, then
I can logically conclude that the presence of
B does prove A. In the context of files and
associated sectors, prior research (Garfinkel
et al., 2010)(Garfinkel and McCarrin, 2015)
showed that while a sector may not have only
one possible producer, in practice it is likely
to have only one, especially for high entropy
sectors. In our work, a pre-processing step
removes sectors appearing in our clean OS
images, sectors with low entropy, and sectors
appearing more than 100 times in our ini-
tial catalog, thereby removing sectors known
to be produced by, or likely produced by,
other processes. Further, we weigh the in-
fluence of sectors based on the number of
different catalog applications in which they
appear. In practice, this is accomplished by
our Inverse Document Frequency weight de-
scribed below. Finally, we note that we are
not proving the past presence of an applica-
tion. Rather, we are suggesting an increased
likelihood that a particular application was
present at some past time, where proof to
the standard required by the circumstances
would have to be obtained from additional
evidence.

Our approach, summarized in Figure 1,
reasons over media sectors that match en-
tries in a catalog associating sectors with
specific application activities. The catalog
was created for 16 Windows applications in
a controlled environment using virtual ma-
chine snapshots. Catalog entries are post-
processed to remove less useful sectors and
to assess each sector’s potential inferential
value. We then match sectors from a digital
storage device of interest, e.g., a hard drive,

c© 2016 ADFSL Page 115



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

to the entries in the catalog and compute
weighted measures that represent the like-
lihood that the associated application was
previously installed on the media of interest.

Figure 1. Approach Overview

3.1 Catalog Creation and
Post-processing

We are leveraging the NIST Diskprinting ef-
fort (Laamanen et al., 2014) to collect appli-
cation traces. Diskprinting uses virtual ma-
chine snapshots to record the state of a sys-
tem before and after an action of interest.
Each snapshot together with captured net-
work traffic is called a slice. A series of slices,
which reflect sequential activities regarding a
single application, is called a diskprint. The
contents of two adjacent snapshots may then
be compared to extract differences (Figure
2). For our purposes, the file systems of
adjacent snapshots are compared to iden-
tify new, modified, or deleted files. For the
NIST diskprinting data, these activities are
application Install, Open, Close, Uninstall,
and system Reboot (indicated as I, O, C,
U, and R in Figure 3). Diskprints are made
up of sequential and cumulative slices, hence
the nomenclature B (Base), BI (Base + In-
stall), ..., BIOCUR (Base + Install + Open

+ Close + Uninstall + Reboot) in Figure 3.
Diskprints are created with shared baseline
states, by rolling the virtual machine state
back to a common point before applications
were installed, in order to isolate effects of
the operating system.

Figure 2. Slices and differencing

Figure 3. A diskprint is a series of related
slices

Page 116 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

We use 29 application diskprints of the
NIST diskprint data (NIST, 2015), repre-
senting 16 applications across one or more
different Windows platforms (Table 1) plus
three clean Operating System diskprints:
one WinXP and two Win7. The applications
were selected in part to facilitate subsequent
testing against the M57 Patents Scenario im-
ages.

Table 1. NIST Diskprints

Each NIST Diskprint slice contains a
snapshot of the system hard disk in the form
of a VMDK file. For each pair of adja-
cent slices, we computed file differences and
512-byte sector-aligned MD5 hashes for each
new or modified file (Garfinkel et al., 2012).
For experimental purposes, we used MD5s
because of their smaller bit count and ac-
ceptable impact of false positives from MD5
weaknesses (Dandass et al., 2008). However,
an operational deployment of this research
would need to employ a more secure cryp-
tographic hash per NIST guidelines on hash
selection (NIST, 2012). The diskprint sec-
tor hash data currently computes the final
sector hash of each file based on file extant
vs. padding the final sub-sector fragment
with zeros and computing a 512-byte hash.

We discard these sub-512 byte sector hashes
since they will never match our media of
interest hashes, which are always based on
a full 512-byte sector hash. We have dis-
cussed but not implemented padding sub-
512 byte diskprint fragments with zeros prior
to computing the MD5 hash. We process
the diskprint sector hash data as described
in the following paragraphs and ingest the
data into a hashdb (NPS-DEEP, 2015) in-
stance.

Table 2. Keyword Whitelist

Application keywords
Adv Keylogger keylogger
Chrome chrome,google
Eraser eraser
Firefox firefox,mozilla
HxD hex editor hxd
Invisible Secrets “invisible secrets”
MS Office office,“microsoft shared”
Python python
Safari safari
Sdelete sdelete
Thunderbird thunderbird
TrueCrypt truecrypt
UPX upx
WinRar winrar
WinZip winzip
Wireshark wireshark

File differencing as implemented on the
diskprint data has the potential to capture
spurious traces, i.e., file differences that are
not related to the activity in question but
are the product of unrelated system activity.
We describe this property of a file as attribu-
tion, where positive attribution means a file
is a result of the activity in question, negative
attribution means the file is not the result of
the activity in question, and marginal attri-
bution means the file is due to the activity in
question but in a non-probative way (such as
the $BitMap or pagefile.sys files on a Win-

c© 2016 ADFSL Page 117



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

dows system).
Positive attribution is determined by

keyword searching of the filename and
path associated with each sector hash.
This information is stored in files us-
ing differentially-annotated Digital Forensics
XML, or DFXML (Garfinkel, 2012; Nelson
et al., 2014)), a language that associates
file system metadata with file content sum-
maries, including file paths, full-file hashes,
and sector-level hashes. The DFXML lan-
guage facilitates interaction between tools,
such as those used in our processing steps.

For each application, sector hashes whose
source file paths contain matching keywords
from Table 2 are retained. Keywords were
derived by examining string frequencies in
the collective file path names for each appli-
cation and selecting the most common, sub-
ject to human review.

For example, whitelisting the Firefox19
on 64-bit Windows 7 (Win7x64) diskprint
reduced trace files from 1,054 to 289,
and reduced associated sector hashes from
16,096,960 to 157,530. This whitelisting ap-
proach is something of a blunt instrument,
yet we obtain good results in our subsequent
experiments. In the section on future work,
we propose alternative catalog construction
techniques to increase the quality of col-
lected file fragments (sectors).

Sector hashes, including those from files
with positive attribution, are not necessarily
unique. We describe this property of a sec-
tor as its frequency, where distinct means the
sector only occurs once in the post-processed
diskprint data, application common means
the sector occurs in one or more applica-
tion diskprints but not elsewhere, and global
means the sector occurs outside of the ap-
plication diskprints (i.e., in the baseline OS
states).

We limit sector hash value frequency in
the hashdb instance to 100. While somewhat
arbitrary, this limit allows for some multi-

application or multi-print hashes to remain
while removing hashes not likely to have dis-
criminatory value and keeping the hashdb to
a manageable size. If desired, we can later
select hash values below the f=100 threshold,
or we can reprocess the original diskprint
sector hash data if results indicate that sec-
tor hashes with frequency greater than 100
have inferential value.

As a practical matter, hashdb supports
a maximum frequency parameter when the
hashdb instance is created. However, this
only prevents the addition of more hash val-
ues which have already reached the maxi-
mum frequency - it does not remove the hash
value from the hashdb instance. To prevent
undesired effects on our subsequent calcula-
tions, we set a maximum frequency of 101
prior to ingest, then we remove all hashes
with frequency of 101 after ingest is com-
plete. Without this extra step, the catalog
would contain all sector hashes in the origi-
nal data and all sector hashes with frequency
greater than 100 would be retained with fre-
quency equal to 101, regardless of the ac-
tual frequency of these sector hashes. With
this extra step, the catalog contains sector
hashes with accurate frequency counts, and
only sector hashes with actual frequencies of
100 or less.

Certain low entropy sector contents, such
as all zeros or all ones, occur with high fre-
quency in many sources and have no discrim-
inatory value. For example, the following
sector hashes with the noted content occur
thousands or millions of times in the original
NIST diskprint sector hash data.

# repeated 00
bf619eac0cdf3f68d496ea9344137e8b
# repeated 01
393a0fa0f348fb03871ab93726057ddc
# repeated FF
de03fe65a6765caa8c91343acc62cffc
# repeated 00; 06 @offset 510

Page 118 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

c5d77850e62433f25d5496bfad94c1b2

These sector hashes would be removed
by our maximum frequency processing step
above. However, we filter these sector hashes
out at an earlier processing stage simply to
speed up subsequent processing.

The NIST diskprint data includes
diskprints of non-application activities
on three operating system variants: two
WinXP and one Win7x64. Any hash value
appearing in these base OS diskprints does
not have discriminatory value for a subse-
quently installed application, so we remove
these hash values from the hashdb instance.
As a practical matter, this was accomplished
by using hashdb’s add repository command
to build a hashdb instance of all OS hash
values, then using hashdb’s subtract hash
command to remove those hash values from
the original hashdb instance.

The combined whitelist and frequency
limit processing resulted in an overall file
count of 99,227 and sector hash count of
44,677,825 (file and sector hash counts before
whitelist and frequency limits were not com-
puted). Removing the base OS diskprint sec-
tor hash values reduced the overall file count
to 20,239 and sector hash count to 7,933,265.

To facilitate later calculations of applica-
tion likelihood, we count and store the total
sector hashes and total files per application
in the final catalog. These totals (Table 3)
are extracted from the final noise-reduced
hashdb instance using hashdb’s hash table
command (v.1.0.0 and prior) with subse-
quent grep expressions (for hash totals) and
hashdb’s sources command with subsequent
grep expressions (for file totals). These to-
tals are for all slices in each diskprint, where
each diskprint contains 5-6 slices. 5-slice
diskprints result from applications where the
“Open” and “Close” steps were combined as
a single “Run” step.

3.2 Image Processing

Media of interest is assumed to be
a raw image of a hard disk or sim-
ilar. We use the md5deep tool
(https://github.com/jessek/hashdeep)
to compute sector-aligned 512-byte MD5
hashes for the entire disk or disk image,
storing the results in a DFXML file. We
then use hashdb’s scan expanded com-

Table 3. Total hashes & files per app
diskprint

Diskprint Hashes Files
AdvKeylogger-WinXP 4,716 23
Chrome28-W7x32 686,986 669
Chrome28-W7x64 670,051 499
Chrome28-WinXP 1,035,098 624
eraser-W7x32 69,984 24
Firefox19-W7x32 103,341 132
Firefox19-W7x64 106,270 146
Firefox19-WinXP 96,377 115
HxD171-W7x32 4,774 12
InvSecrets21-WinXP 6,689 19
OfficePro2003-W7x32 1,090,216 3,800
OfficePro2003-W7x64 1,077,126 3,804
OfficePro2003-WinXP 656,354 2,801
Python264-WinXP 86,287 2,355
Safari157-W7x32 316,224 907
Safari157-W7x64 569,645 1,504
Safari157-WinXP 343,824 918
sdelete-W7x32 642 5
sdelete-W7x64 642 4
Thunderbird2-WinXP 68,102 172
TrueCrypt63-WinXP 24,520 16
UPX-W7x32 1,796 19
UPX-W7x64 1,813 19
Winrar5beta-W7x32 9,196 41
Winrar5beta-W7x64 18,328 81
Winzip17pro-W7x32 240,229 149
Winzip17pro-W7x64 262,854 153
Wireshark-W7x32 171,515 617
Wireshark-W7x64 209,666 611
TOTALS 7,933,265 20,239

c© 2016 ADFSL Page 119



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

mand (v1.0.0) to identify hash values in
the DFXML file that match hash values
from the hashdb instance. The hashdb
scan expanded command output includes
the file source and repository information
from the hashdb instance. We require these
details, as we are using the repository name
to hold the diskprint (application) identifier,
and the source file information allows us to
compute which files in the catalog, and how
much of each file, is matched. Matches are
written to an interim text file.

The matches text file is processed to
compute the various measures of diskprint
matching, i.e., application presence. Out-
put includes the number and fraction of dis-
tinct hashes matched for each diskprint (ap-
plication), the number and fraction of total
files matched for each diskprint where a file
match is declared if one or more hash val-
ues from that file are matched. Output also
includes weighted versions of these two mea-
sures, which are discussed below.

After we eliminated weak or non-probative
sector hash values in our noise reduction
process, we then applied weights to match-
ing sector hashes based on their occurrence
across applications, i.e., their frequency in
the catalog. A sector hash that occurs in N
different diskprinted applications is weighted
with a factor 1/N (this is the hyperbolic for-
mulation of Inverse Document Frequency de-
scribed by Zobel and Moffat (Zobel et al.,
1998)). A sector hash value that occurs in
only one diskprinted application is weighted
1/1=1.0; a sector hash value that occurs in 2
different diskprinted applications is weighted
1/2=0.5; and so on. This calculation is
shown in Equation 1 below, where WSP is
weighted sector %, NSM is the number of
sector matches, and the subscript DP indi-
cates “per diskprint”. The results of this cal-
culation are in Appendix A under the head-
ing w sector% (weighted sector %). In this
calculation, each matching sector for a given

diskprint is weighted by its inverse frequency
in the catalog; these weighted matching sec-
tor counts are then summed and divided by
the total number of sectors in the catalog for
that diskprint to give a weighted sector % for
that diskprint.

WSPDP =

NSM∑
S=1

1

freqS

sectors totalDP

(1)

Instead of declaring a file present if one
or more hash values from that file are found
(as the data in Appendix A under the head-
ing “files found” does), we next compute
the percent of each file that is matched and
weight the summation accordingly. For ex-
ample, if we match M sectors for a file out
of N total sectors in the catalog for that
file, then that file hit is worth M/N. We
sum all of the weighted file hits for each
diskprint and divide by the total number of
files in the catalog for that diskprint to give
a weighted file % for that diskprint. This
calculation is shown in Equation 2 below,
where WFP is weighted file %, NFM is the
number of file matches, the subscript DP in-
dicates “per diskprint”, and the subscript F
indicates “per file”. The results of this calcu-
lation are in Appendix A under the heading
w file% (weighted file %).

WFPDP =

NFM∑
F=1

matched sectorsF
total sectorsF

files totalDP

(2)

Sample output for one of the test images
is shown in Appendix A. This Win7x64 test
image had Chrome installed, opened, closed,
and uninstalled, then the system was re-
booted and the snapshot taken. The three
Chrome diskprints (for Chrome on WinXP,
Win7x32, and Win7x64) are the three high-
est valued hits based on both weighted sec-
tor % and weighted file % (the sort key in

Page 120 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

the table). Other data are included in this
verbose output, to include the total sector
hashes and total files for each diskprint, as
well as hits and % of total for each.

4. RESULTS

We generated eight test images, five contain-
ing the installation, use, and uninstallation
of a single catalog application and three con-
taining the installation, use, and uninstal-
lation of multiple catalog applications. We
also processed the four final day disk images
from the M57 Patents Scenario case. We also
processed WinXP, Win7x32, and Win7x64
images with no applications of interest in-
stalled and found no more than 1% matching
sectors per application.

4.1 Single-application test
cases

For each single application test case, we
started with a fresh install of the appro-
priate OS (WinXP, Win7x32, or Win7x64)
and mimicked the diskprint activity as de-
scribed in the diskprint data, e.g., install,
open, close, uninstall, and reboot. These
test cases did not use NIST’s source me-
dia for the OS or application, and did not
strictly follow the details of activity per-
formed by NIST personnel when creating the
diskprint images. Results from the post-
reboot snapshot of the seven single appli-
cation test cases are summarized in Table
4, where only the top 5 weighted file % re-
sults are shown. In each test case, the in-
stalled/uninstalled application was correctly
identified and the weighted sector % and
weighted file % measures indicate a sharp
drop off for catalog applications that were
not present on that test image.

4.2 Multiple-application test
cases

Three test cases were constructed in a man-
ner similar to the single application test
cases, but multiple applications were in-
stalled, used, and uninstalled, and multiple
reboots occurred. Two of these test cases
incorporated two applications and one incor-
porated three applications. Results from the
post-reboot snapshot of these three multiple
application test cases are summarized in Ta-
ble 5. For these cases, the top 10 results
based on weighted file % are shown. In all
three cases, all installed/uninstalled applica-
tions are correctly identified, after which the
weighted file % drops off sharply.

4.3 M57 Patents Scenario
images

The M57 Patents Scenario is a publicly avail-
able data set. The scenario was created for
educational and research purposes by fac-
ulty and students at the Naval Postgraduate
School. The creators of the data set mim-
icked criminal activity in a lab environment
over the course of a month, capturing disk
and device images and network traffic dur-
ing the exercise. Scenario documentation in-
cludes a description of the systems and net-
works involved, characters, and a storyline.
For our purposes, the final day snapshots are
sufficiently realistic system images, by merit
of having been physical machines operated
for a real-world month. Also, we have some
ground truth about installed and uninstalled
applications based on the scenario documen-
tation (availability restricted to faculty at
accredited institutions), work by Roussev &
Quates (Roussev et al., 2012) that analyzed
the same images, and our own direct anal-
ysis of the scenario images. Results from
processing the final day (2009-12-11) images
for the four scenario users (Charlie, Jo, Pat,
and Terry) are summarized in Appendix B,

c© 2016 ADFSL Page 121



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

where the host OS is indicated after the sys-
tem name.

In the M57 results of Appendix B, green
cells indicate true positives, which are con-
firmed installed or uninstalled programs
based on the scenario documentation, other
published analysis, and direct forensic exam-
ination of the scenario images. White cells
are true negatives, similarly verified. Red
cells indicate false positives, which we define
as weighted file % scores above the lowest
true positive. Blue cells are false negatives,
which we define as a known installed appli-
cations with a weighted file % lower than at
least one true negative. Yellow cells indicate
other OS versions of detected applications.
For the true positives, Python and Firefox
installations are confirmed for all four sys-
tems. For the Charlie system, Thunderbird
is also confirmed by the scenario documen-
tation, and Invisible Secrets is suggested by
the scenario documentation (“...emails pro-
prietary information steganographically hid-
den in JPEG image...”) and confirmed by
Roussev and Quates as well as a direct exam-
ination of the image. The presence of True-
Crypt on the Jo system, Advanced Keylog-
ger on the Pat system, and Chrome on the
Terry system are all confirmed in the sce-
nario documentation. Advanced Keylogger
is also confirmed in the scenario documen-
tation to have been uninstalled prior to the
Pat 2009-12-11 image.

We examined the scenario images directly
using Autopsy 4.0.0 in an effort to under-
stand the apparent false positives and the
lone false negative (eraser on the Terry im-
age). A summary of our preliminary findings
is below. A more extensive analysis is un-
derway to establish if these are in fact false
positives, or if some of them represent as yet
undocumented true positives. The results of
this analysis will be reported in future work.

(Charlie/Jo/Terry)Safari: Apple’s

QuickTime and Apple’s software
update applications are present on
the Charlie and Jo systems and
may explain the Safari results due
to catalog artifacts in common
(Safari would include the Apple
software update application and
possibly QuickTime as well). The
Terry system also indicated Safari,
although at a lower level than the
Charlie and Jo systems, but the
Terry system does not show
indications of a QuickTime
installation.

(Jo/Pat/Terry)Thunderbird:
Thunderbird is known to have
been installed on the Charlie
system on 11-12-2009, but is not
documented or apparent on the
other three systems. It is possible
that Thunderbird was installed on
all four systems on 11-12-2009 but
immediately uninstalled on the
three non-Charlie systems.

(Pat/Terry) HxD: HxD may have
been installed and uninstalled
between snapshots, hence no
entries were found in locations like
Program Files. The Cygnus hex
editor was confirmed on the
Charlie system, so the scenario
operators are know to have
installed a hex editor, although a
different one than HxD detected
on the Pat and Terry systems.

(Terry)Winzip: Possibly due to
compression libraries bundled in
Windows Vista and also used by
Winzip, but not bundled in
Windows XP.

(Terry)Eraser: Likely due to a
difference in application versions
between the catalog and the M57

Page 122 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

image. Most of the eraser sectors
in the catalog come from the
eraser.exe file, hence a minor
change in the compiled code would
prevent sector matches. The
eraser application has a small
number of files, hence is more
susceptible to such a variation
than other applications with large
numbers of files and hence
unchanged sectors across versions.

Of particular interest in the M57 results
is the successful detection of Advanced Key-
logger on the Pat system after uninstallation
and continued use. Such detections are the
main goal of our work and is distinct from
other work such as Roussev and Quates that
relied on mid-scenario snapshots to detect
Advanced Keylogger. In contrast, our ap-
proach detected Advanced Keylogger using
only the final scenario snapshot, after Ad-
vanced Keylogger had been uninstalled and
the system used for five additional days. Fig-
ure 4 shows the presence and persistence of
Advanced Keylogger sector artifacts over the
life of the scenario. The data consists of 17
snapshots over 26 calendar days, where days
without snapshots are indicated by an aster-
isk along the X-axis of Figure 4. The vertical
axis in the graph, sector %, is the matched
sectors as a fraction of the total sectors as-
sociated with Advanced Keylogger in the
catalog. Advanced Keylogger was installed
between the 12/2 and 12/3 snapshots, and
uninstalled between the 12/4 and 12/7 snap-
shots. Subsequent system usage further de-
stroyed probative sectors, yet our weighted
file % measure still detected Advanced Key-
logger in the 12/11 snapshot (21.97% based
on the remaining 24 sectors from 8 different
files). We speculate that 100% of the cat-
alog sectors were not matched in the 12/3
and 12/4 snapshots due to slight differences
in artifacts created during installation and

use of Advanced Keylogger the different sys-
tems of the catalog and the M57 scenario.

Figure 4. Sector artifact persistence for Ad-
vanced Keylogger on Pat’s M57 system

One unresolved issue is to determine the
threshold at which an application should
be considered present or previously present.
While the M57 results might indicate a
weighted file % threshold of about 3%, the
contents of deleted files are modified (de-
stroyed) over time, so a single threshold for
uninstalled applications is unlikely to exist.
However, we are conducting related work to
model the persistence of deleted files over
time under different artifact and system us-
age conditions. This related works aims to
provide a basis for asserting the implications
of a particular weighted file % for a specific
application after a known amount of time
and activity. Additionally, our catalog of 16
applications tested on the four images of the
M57 data set is not large enough to conclude
statistical significance. However, as a practi-
cal matter, the current use cases for our ap-
proach are (a) for an analyst to work down
the list in decreasing weighted file % score
until applications are no longer confirmed or
no longer of interest, or (b) to have a spe-
cific set of applications of interest and only
seek to confirm those in decreasing order of
weighted file %. Regarding the first use case,

c© 2016 ADFSL Page 123



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

our M57 results indicate that present or pre-
viously present applications almost always
score higher than non-present or never in-
stalled applications. The second use case
also addresses part of the scalability ques-
tion, in that our approach need not catalog
a great number of applications in order to be
of use, but rather only catalog applications
of interest to the analyst.

5. CONCLUSIONS

AND FUTURE WORK
In this work, we leveraged an existing cat-
alog of full-file artifacts from specific appli-
cations to detect and reason over matching
sectors recovered from media of interest. We
used these matching sectors to suggest past
uninstalled applications on test images and
the drive images of the M57 Patents Sce-
nario. Our results suggest that:

• Partial file contents (traces) remain af-
ter files are deleted due to application
uninstallation

• These traces can be used to suggest the
past presence of uninstalled applications

Current approaches to determine prior ap-
plication presence rely on intact artifact re-
covery, log analysis, Windows Registry anal-
ysis, and trace evidence analysis. Our ap-
proach complements these methods, espe-
cially when intact artifacts and traces are
not available and the Windows Registry has
been cleaned or is unavailable, e.g., on a non-
Windows system.

Our approach requires that applications
of interest be processed into the catalog
prior to trace detection and computation.
While processing new applications is rela-
tively straightforward, it does require re-
sources as well as knowledge of, and access
to, applications of interest. Additionally,

utilities that overwrite unallocated space
would likely defeat our approach as we rely
on fragments of deleted files residing in this
unallocated space. Our approach is also vul-
nerable to deliberate deception, as the place-
ment of specific file fragments in the unallo-
cated space of a device or image, or even the
creation and deletion of selected full-file ar-
tifacts, would cause spurious suggestion of
an application that in fact had never been
installed.

We are considering combining the
weighted sector and weighted file measures,
and also adding sector entropy and relative
partial artifact location on the media to our
measure of application presence calculation.
Additionally, we are examining methods
for more robust and precise noise reduction
at the point of catalog creation, and we
are considering sector differencing as an
alternative to file differencing. Future
work will extend our approach to malware
applications and mobile platforms.

Acknowledgements

This paper results from research sup-
ported by the Naval Postgraduate School
Assistance Grant/Agreement No. N00244-
13-1-0034 awarded by the NAVSUP Fleet
Logistics Center San Diego (NAVSUP FLC
San Diego). The views expressed in written
materials or publications, and/or made by
speakers, moderators, and presenters, do
not necessarily reflect the official policies
of the Naval Postgraduate School or the
National Institute of Standards and Tech-
nology nor does mention of trade names,
commercial practices, or organizations imply
endorsement by the U.S. Government.

Page 124 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

Table 4. Single application test case results

Source Image: Chrome28-W7x64

diskprintName w sector% w file%

Chrome28-W7x64 3.63% 21.46%

Chrome28-WinXP 1.16% 21.20%

Chrome28-W7x32 3.54% 16.26%

Winzip17pro-W7x32 0.46% 3.63%

Winzip17pro-W7x64 0.41% 3.53%

... ... ...

Source Image: Winrar5beta-W7x64

diskprintName w sector% w file%

Winrar5beta-W7x32 8.39% 56.18%

Winrar5beta-W7x64 4.21% 32.80%

Winzip17pro-W7x32 0.44% 3.53%

Winzip17pro-W7x64 0.41% 3.46%

sdelete-W7x32 0.04% 0.14%

... ... ...

Source Image: sdelete-W7x64

diskprintName w sector% w file%

sdelete-W7x64 7.75% 33.95%

sdelete-W7x32 7.75% 27.16%

Winzip17pro-W7x32 0.44% 3.52%

Winzip17pro-W7x64 0.41% 3.45%

Firefox19-W7x64 0.01% 1.67%

... ... ...

Source Image: UPX-W7x64

diskprintName w sector% w file%

UPX-W7x32 2.97% 52.16%

UPX-W7x64 2.94% 52.16%

Winzip17pro-W7x32 0.44% 3.52%

Winzip17pro-W7x64 0.41% 3.45%

Firefox19-W7x64 0.01% 1.69%

... ... ...

Source Image: Firefox19-W7x64

diskprintName w sector% w file%

Firefox19-WinXP 6.88% 57.32%

Firefox19-W7x32 6.42% 51.52%

Firefox19-W7x64 6.26% 47.25%

Winzip17pro-W7x32 0.44% 3.57%

Winzip17pro-W7x64 0.41% 3.48%

... ... ...

Table 5. Multiple application test case re-
sults

Source Image: Firefox, Chrome, & Safari

diskprintName w file%

Safari157-W7x32 94.32%

Safari157-WinXP 92.80%

Safari157-W7x64 57.12%

Firefox19-WinXP 46.57%

Firefox19-W7x32 42.83%

Firefox19-W7x64 37.73%

Chrome28-WinXP 22.10%

Chrome28-W7x64 12.88%

Chrome28-W7x32 9.84%

Winzip17pro-W7x32 3.62%

... ...

Source Image: Chrome & Firefox

diskprintName w file%

Firefox19-WinXP 57.21%

Firefox19-W7x32 52.04%

Firefox19-W7x64 47.33%

Chrome28-W7x64 20.45%

Chrome28-WinXP 20.37%

Chrome28-W7x32 15.58%

Winzip17pro-W7x32 3.64%

Winzip17pro-W7x64 3.53%

Thunderbird2-WinXP 1.68%

Winrar5beta-W7x64 0.42%

... ...

SourceImage: WinRAR & WinZip

diskprintName w file%

Winzip17pro-W7x64 35.60%

Winzip17pro-W7x32 34.88%

Winrar5beta-W7x32 9.97%

Winrar5beta-W7x64 9.29%

Firefox19-WinXP 2.66%

Firefox19-W7x64 2.60%

Firefox19-W7x32 2.23%

Thunderbird2-WinXP 1.49%

sdelete-W7x64 0.17%

Wireshark-W7x32 0.16%

... ...

c© 2016 ADFSL Page 125



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

6. REFERENCES

Collange, S., Dandass, Y. S., Daumas,
M., & Defour, D. (2009). Using graphics
processors for parallelizing hash-based
data carving. In System Sciences, 2009.
HICSS’09. 42nd Hawaii International
Conference on (pp. 1-10). IEEE.

Dandass, Y. S., Necaise, N. J., & Thomas,
S. R. (2008). An empirical analysis of disk
sector hashes for data carving. Journal of
Digital Forensic Practice, 2 (2), 95-104.

NPS-DEEP. (2015). Hashdb. Last ac-
cessed 10.4.15, https://github.com/

NPS-DEEP/hashdb.

Forte, D. V. (2004). The “Art” of log
correlation: Tools and Techniques for Cor-
relating Events and Log Files. Computer
Fraud & Security, 2004(8), 15-17.

Foster, K. (2012). Using distinct sec-
tors in media sampling and full media
analysis to detect presence of documents
from a corpus (Doctoral dissertation,
Monterey, California. Naval Postgraduate
School).

Garfinkel, S. (2012). Digital forensics
XML and the DFXML toolset. Digital
Investigation, 8 (3), 161-174.

Garfinkel, S. L. (2013). Digital media triage
with bulk data analysis and bulk extractor.
Computers & Security, 32, 56-72.

Garfinkel, S. L., & McCarrin, M. (2015).
Hash-based carving: Searching media for
complete files and file fragments with sector
hashing and hashdb. Digital Investigation,
14, S95-S105.

Garfinkel, S., Nelson, A., White, D., &

Roussev, V. (2010). Using purpose-built
functions and block hashes to enable small
block and sub-file forensics. digital investi-
gation, 7, S13-S23.

Garfinkel, S., Nelson, A. J., & Young,
J. (2012). A general strategy for differential
forensic analysis. Digital Investigation, 9,
S50-S59.

Koppen, J., Gent, G., Bryan, K., DiP-
ippo, L., Kramer, J., Moreland, M., &
Fay-Wolfe, V. (2013). Identifying Remnants
of Evidence in the Cloud. In Digital Foren-
sics and Cyber Crime (pp. 42-57). Springer
Berlin Heidelberg.

Laamanen, M., Nelson, A. (2014).
NSRL Next Generation - Diskprinting.
Forensics @ NIST, Gaithersburg, MD,
December 3, 2014. Last accessed 10.4.15,
http://www.nsrl.nist.gov/Documents/

Diskprints.pdf.

Ligh, M. H., Case, A., Levy, J., & Walters,
A. (2014). The art of memory forensics:
detecting malware and threats in windows,
linux, and Mac memory. John Wiley & Sons.

Nelson, A., Laamanen, M., Tebbutt,
J., Long, D. (2014) Indexing the Windows
Registry for Software Detection. The Amer-
ican Academy of Forensic Sciences 66th
Annual Scientific Meeting , February 20,
2014, Seattle, WA. Last accessed 10.4.15,
http://www.nsrl.nist.gov/Documents/

20140220%20Diskprint%20AAFS.pdf.

Nelson, A. J., Steggall, E. Q., & Long,
D. D. (2014). Cooperative mode: Compar-
ative storage metadata verification applied
to the Xbox 360. Digital Investigation, 11,
S46-S56.

NIST. (2015). Diskprint Data

Page 126 c© 2016 ADFSL

https://github.com/NPS-DEEP/hashdb
https://github.com/NPS-DEEP/hashdb
http://www.nsrl.nist.gov/Documents/Diskprints.pdf
http://www.nsrl.nist.gov/Documents/Diskprints.pdf
http://www.nsrl.nist.gov/Documents/20140220%20Diskprint%20AAFS.pdf
http://www.nsrl.nist.gov/Documents/20140220%20Diskprint%20AAFS.pdf


Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

Downloads. Last accessed 10.4.15,
http://www.nsrl.nist.gov/dskprt/

sequence.html.

NIST. (2012). Recommendation for Appli-
cations Using Approved Hash Algorithms,
Special Publication 800-107 Revision 1.
2012. Last accessed 10.5.15. http://

csrc.nist.gov/publications/nistpubs/

800-107-rev1/sp800-107-rev1.pdf

Quick, D., & Choo, K. K. R. (2013).
Digital droplets: Microsoft SkyDrive foren-
sic data remnants. Future Generation
Computer Systems, 29 (6), 1378-1394.

Roussev, V., & Quates, C. (2012). Con-
tent triage with similarity digests: the M57
case study. Digital Investigation, 9, S60-S68.

Wong, L. W. (2007). Forensic analysis
of the Windows Registry. Forensic Focus, 1.

Woods, K., Lee, C. A., Garfinkel, S.,
Dittrich, D., Russel, A., & Kearton, K.
(2011). Creating realistic corpora for
forensic and security education. ADFSL
Conference on Digital Forensics, Security
and Law.

Young, J., Foster, K., Garfinkel, S., &
Fairbanks, K. (2012). Distinct sector hashes
for target file detection. Computer, (12),
28-35.

Zobel, J., & Moffat, A. (1998). Ex-
ploring the similarity space. In ACM SIGIR
Forum (Vol. 32, No. 1, pp. 18-34). ACM.

c© 2016 ADFSL Page 127

http://www.nsrl.nist.gov/dskprt/sequence.html
http://www.nsrl.nist.gov/dskprt/sequence.html
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf


CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

Appendix A. SAMPLE ANALYSIS OUTPUT FOR

SOURCE IMAGE “CHROME WIN7X64”

diskprintName sectors
found

sectors
total

sec% w
sec%

files
found

files
total

file% w
file%

Chrome28-W7x64 66795 670051 9.97% 3.63% 153 499 30.66% 21.46%
Chrome28-WinXP 40831 1035098 3.94% 1.16% 208 624 33.33% 21.10%
Chrome28-W7x32 66795 686986 9.72% 3.54% 152 669 22.72% 16.26%
Winzip17pro-W7x32 2186 240229 0.91% 0.46% 41 149 27.52% 3.63%
Winzip17pro-W7x64 2162 262854 0.82% 0.41% 42 153 27.45% 3.53%
Firefox19-W7x32 4183 103341 4.05% 0.59% 18 132 13.64% 2.44%
Firefox19-WinXP 4183 96377 4.34% 0.63% 17 115 14.78% 2.40%
Firefox19-W7x64 4184 106270 3.94% 0.57% 18 146 12.33% 2.37%
Thunderbird2-WinXP 17 68102 0.02% 0.01% 6 172 3.49% 1.09%
Winrar5beta-W7x64 9 18328 0.05% 0.01% 7 81 8.64% 0.38%
Winrar5beta-W7x32 9 9196 0.10% 0.02% 7 41 17.07% 0.38%
Safari157-WinXP 573 343824 0.17% 0.02% 31 918 3.38% 0.32%
Safari157-W7x32 573 316224 0.18% 0.02% 31 907 3.42% 0.30%
Safari157-W7x64 575 569645 0.10% 0.01% 35 1504 2.33% 0.24%
sdelete-W7x64 1 642 0.16% 0.04% 2 4 50.00% 0.17%
Wireshark-W7x32 51 171515 0.03% 0.01% 10 617 1.62% 0.16%
sdelete-W7x32 1 642 0.16% 0.04% 2 5 40.00% 0.14%
OfficePro2003-WinXP 1014 656354 0.15% 0.02% 33 2801 1.18% 0.13%
OfficePro2003-W7x32 1014 1090216 0.09% 0.01% 33 3800 0.87% 0.11%
OfficePro2003-W7x64 1014 1077126 0.09% 0.01% 33 3804 0.87% 0.08%
Wireshark-W7x64 11 209666 0.01% 0.00% 5 611 0.82% 0.02%
eraser-W7x32 21 69984 0.03% 0.02% 2 24 8.33% 0.01%
TrueCrypt63-WinXP 1 24520 0.00% 0.00% 1 16 6.25% 0.01%
Python264-WinXP 23 86287 0.03% 0.01% 6 2355 0.25% 0.00%
AdvKeylogger-WinXP 0 4716 0.00% 0.00% 0 23 0.00% 0.00%
InvSecrets21-WinXP 0 6689 0.00% 0.00% 0 19 0.00% 0.00%
UPX-W7x32 0 1796 0.00% 0.00% 0 19 0.00% 0.00%
HxD171-W7x32 0 4774 0.00% 0.00% 0 12 0.00% 0.00%
UPX-W7x64 0 1813 0.00% 0.00% 0 19 0.00% 0.00%

Page 128 c© 2016 ADFSL



Inferring Previously Uninstalled Applications from ... CDFSL Proceedings 2016

Appendix B. M57 PATENTS SCENARIO RESULTS

Charlie (XP) Jo (XP)

diskprintName w file% diskprintName w file%

Python264-WinXP 98.98% Python264-WinXP 98.83%

InvSecrets21-WinXP 63.16% TrueCrypt63-WinXP 50.00%

Thunderbird2-WinXP 61.00% Thunderbird2-WinXP 24.73%

Safari157-W7x32 10.25% Safari157-W7x32 11.35%

Safari157-WinXP 10.16% Safari157-WinXP 11.26%

Safari157-W7x64 6.69% Safari157-W7x64 7.37%

Firefox19-WinXP 3.26% Firefox19-WinXP 3.24%

Firefox19-W7x32 2.77% Firefox19-W7x32 2.74%

Firefox19-W7x64 2.50% Firefox19-W7x64 2.62%

Chrome28-WinXP 2.11% Chrome28-WinXP 2.15%

Winzip17pro-W7x64 2.08% Chrome28-W7x64 2.03%

Chrome28-W7x64 2.02% Chrome28-W7x32 1.52%

Chrome28-W7x32 1.52% sdelete-W7x64 1.35%

Winzip17pro-W7x32 1.51% Winzip17pro-W7x64 1.26%

sdelete-W7x64 1.35% sdelete-W7x32 1.08%

sdelete-W7x32 1.08% Winrar5beta-W7x64 0.95%

TrueCrypt63-WinXP 0.73% Winrar5beta-W7x32 0.94%

Winrar5beta-W7x32 0.64% Winzip17pro-W7x32 0.72%

Winrar5beta-W7x64 0.64% OfficePro2003-WinXP 0.43%

OfficePro2003-WinXP 0.37% OfficePro2003-W7x32 0.41%

OfficePro2003-W7x32 0.32% OfficePro2003-W7x64 0.37%

OfficePro2003-W7x64 0.31% Wireshark-W7x32 0.07%

Wireshark-W7x32 0.06% HxD171-W7x32 0.04%

eraser-W7x32 0.01% eraser-W7x32 0.02%

AdvKeylogger-WinXP 0.01% Wireshark-W7x64 0.02%

Wireshark-W7x64 0.00% AdvKeylogger-WinXP 0.01%

UPX-W7x32 0.00% InvSecrets21-WinXP 0.00%

HxD171-W7x32 0.00% UPX-W7x32 0.00%

UPX-W7x64 0.00% UPX-W7x64 0.00%

Legend True positive True negative False positive False negative Different OS

c© 2016 ADFSL Page 129



CDFSL Proceedings 2016 Inferring Previously Uninstalled Applications from ...

Pat (XP) Terry (Vista)

diskprintName w file% diskprintName w file%

Python264-WinXP 98.91% Python264-WinXP 85.52%

Thunderbird2-WinXP 24.94% Thunderbird2-WinXP 27.81%

AdvKeylogger-WinXP 21.97% Winzip17pro-W7x64 10.37%

HxD171-W7x32 8.39% Winzip17pro-W7x32 10.05%

Firefox19-WinXP 3.17% HxD171-W7x32 8.37%

Firefox19-W7x64 2.93% Safari157-W7x32 5.46%

Firefox19-W7x32 2.78% Safari157-WinXP 5.35%

Winzip17pro-W7x64 2.03% Chrome28-WinXP 4.83%

Chrome28-WinXP 1.64% Chrome28-W7x64 4.81%

Chrome28-W7x64 1.63% Firefox19-WinXP 3.59%

Winzip17pro-W7x32 1.50% Chrome28-W7x32 3.59%

Chrome28-W7x32 1.22% Firefox19-W7x64 3.56%

TrueCrypt63-WinXP 1.22% Firefox19-W7x32 3.55%

Winrar5beta-W7x64 0.85% Safari157-W7x64 3.47%

Winrar5beta-W7x32 0.84% Winrar5beta-W7x64 2.21%

Safari157-WinXP 0.62% Winrar5beta-W7x32 2.19%

Safari157-W7x32 0.54% TrueCrypt63-WinXP 0.97%

OfficePro2003-WinXP 0.47% OfficePro2003-W7x32 0.39%

OfficePro2003-W7x32 0.45% OfficePro2003-WinXP 0.35%

OfficePro2003-W7x64 0.42% OfficePro2003-W7x64 0.35%

Safari157-W7x64 0.39% Wireshark-W7x32 0.09%

Wireshark-W7x32 0.10% eraser-W7x32 0.05%

Wireshark-W7x64 0.02% Wireshark-W7x64 0.05%

eraser-W7x32 0.02% AdvKeylogger-WinXP 0.03%

InvSecrets21-WinXP 0.00% InvSecrets21-WinXP 0.00%

UPX-W7x32 0.00% UPX-W7x32 0.00%

sdelete-W7x32 0.00% sdelete-W7x32 0.00%

UPX-W7x64 0.00% UPX-W7x64 0.00%

sdelete-W7x64 0.00% sdelete-W7x64 0.00%

Legend True positive True negative False positive False negative Different OS

Page 130 c© 2016 ADFSL


	Inferring Previously Uninstalled Applications from Residual Partial Artifacts
	Scholarly Commons Citation
	Presenter Information

	Inferring Previously Uninstalled Applications from Residual Partial Artifacts

