Integrating Aviation Technology, Emergency Services, and Human Resilience: Considerations from Social Scientists

Chelsea A. LeNoble Ph.D.
Embry-Riddle Aeronautical University, lenoblec@erau.edu

Joel M. Billings Ph.D.
Embry-Riddle Aeronautical University, BILLINJ5@erau.edu

Allison A. Kwesell Ph.D.
Embry-Riddle Aeronautical University, kwesella@erau.edu

Ray H. Chang Ph.D.
Embry-Riddle Aeronautical University, changr2@erau.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Aviation Safety and Security Commons, Defense and Security Studies Commons, Emergency and Disaster Management Commons, Fire Science and Firefighting Commons, Industrial and Organizational Psychology Commons, Mass Communication Commons, Occupational Health and Industrial Hygiene Commons, Other Communication Commons, and the Training and Development Commons

https://commons.erau.edu/ntas/2020/presentations/47

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Integrating Aviation Technology, Emergency Services, and Human Resilience: Considerations from Social Scientists

Chelsea A. LeNoble
Joel M. Billings
Alli Kwesell
Ray Chang

Embry-Riddle Aeronautical University
Across disaster phases…

1. UAS application to disaster management

2. Psychosocial considerations of this integration

We can do this...

...if we also do that!

Human Security Faculty Cluster
UAS & Disaster Management Integration

A Framework

Occupational Health

Mitigation

Recovery

Preparation

Response

Incident Command

Population Resilience

Training
UAS & Disaster Management Integration

Social Science Challenges

- Integrating UAS & greater disaster response team
- Role of UAS team members across disaster phases
- Communication & coordination networks
- Impact on performance & well-being
- Impact on disaster-impacted communities
Preparation Uses

- UAS Uses in Disaster Prep
 - Preassessment
 - Mapping
 - Non-emergency
 - Emergency
- UAS Training and Integration
 - Preplanning
 - Deployment

FFs in South Korea are trained to use drones at the scene of high-rise building fire.
Disaster Response Multiteam System
1. Identify Component Teams
2. Prioritize Cross-Training
3. Cultivate Shared Identity
Response Uses

Information Flow

- Incident Command orders deployment
- User deploys UAS
- UAS collects data
- User reads data
- User translates data into findings
- User transfers findings to Incident Command
- Incident Command translates data
- Incident Command reacts to translation
- Feedback/reevaluate

Resource Delivery

Ocean/Beach Monitoring
Response Uses

• UAS integration - Improve situation awareness
 • Fire expansion (forest fires)
 • Impacted areas (after disaster, FEMA)

• Communication & Coordination - Better inform disaster responders
 • Resource availability across sites
 • Who is in trouble, where to find them
 • Establishing personnel accountability system
Response Considerations

<table>
<thead>
<tr>
<th>General</th>
<th>Incident Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Limitations of weather, line of sight, tethering, video quality, power source</td>
<td>• Formal communication and coordination processes that integrate UAS into disaster response MTS</td>
</tr>
<tr>
<td>• Government regulations, licenses, jurisdiction</td>
<td>• Feedback and debrief data integrated into training and simulations</td>
</tr>
<tr>
<td>• Self-efficacy for UAS use versus relying on previous practices in FUBAR/SNAFU contexts</td>
<td></td>
</tr>
</tbody>
</table>
Recovery Uses

Private Sector
- Insurance
- Mapping

FEMA
Preliminary damage assessments for inaccessible areas

General
Documentation of structural recovery progress
Recovery Considerations

Occupational Health

• Stressors unique to UAS operation
• Context of existing work stress
• Disaster responder performance & Well-being

Time pressure
• Decision-making
• Environmental hazards
• Physical demands & fatigue
• Interpersonal interactions
• Task context novelty

Long hours
• Shift work
• Under-staffing
• Fatigue
• Variable workload

Cognitive demands
• Ergonomic design
• Vigilance
• Attention switching
• Vicarious performance
• Visual strain

Considerations

Time pressure
• Decision-making
• Environmental hazards
• Physical demands & fatigue
• Interpersonal interactions
• Task context novelty

Long hours
• Shift work
• Under-staffing
• Fatigue
• Variable workload

Cognitive demands
• Ergonomic design
• Vigilance
• Attention switching
• Vicarious performance
• Visual strain
Recovery Considerations

Crisis Communication: Public Concerns with UAS

- **Stigma toward the word “drone”**
 Initially used in conflict situations

- **Privacy**
 Drone owners are not required to register with FAA making privacy violations unidentifiable (Ackerman, 2017)

- **Who is in charge?**
 Who is flying the drone? What do we trust?
Recovery Considerations

Crisis Communication: Leveraging UAS as a mechanism for recovery
Recommendations

Future Work
• How do we best integrate UAS considering the challenges of both disaster settings and MTS?
• How does the community influence UAS integration in disaster management and vice-versa?

Application
• Best practices for training response teams with UAS
• Ensuring well-being of all disaster response teams
• Strategies to communicate UAS involvement with the public

Integrating UAS & greater disaster response team
Role of UAS team members across disaster phases
Communication & coordination networks
Impact on performance & well-being
Impact on disaster-impacted communities
Questions?

Contact Information

Chelsea A. LeNoble
Chelsea.LeNoble@erau.edu

Ray Chang
Ray.Chang@erau.edu

Joel M. Billings
Joel.Billings@erau.edu

Allison Kwesell
Allison.Kwesell@erau.edu