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ABSTRACT 

 

Smith, Asher MSAE, Embry-Riddle Aeronautical University, December 2017. Optimized 

Thruster Allocation Utilizing Dual Quaternions for the Asteroid Sample Return Mission 

(OSIRIS-REx).  

 

As spacecraft require higher positional accuracy from the attitude control systems, 

new algorithm developments, along with sensor and actuator resolution and range 

improvements are necessary to achieve the desired science accuracies. For agile 6-Degrees 

of freedom (6-DOF) spacecraft with redundancy, the actuators are usually oversized or 

overpopulated to meet the desired slew requirements. Currently, most spacecraft utilize an 

over-actuated thruster system to produce 6-DOF control. This thesis presents a simulation 

of the OSIRIS-REx mission during the descent phase to the asteroid Bennu, with a focus 

on utilizing dual quaternion dynamics and a newly developed thruster allocation method.  

The dual quaternion based dynamics are chosen in order to demonstrate its feasibility in 

real-time applications. Contrary to typical plant dynamics, which decouple the spacecraft 

orbit and attitude dynamics, the dual quaternion description provides a compact and 

coupled dynamics system. Due to the coupled nature of dual quaternions, a newly 

developed thruster distribution matrix is implemented to take both the coupled command 

body forces and torques and transform them into the individual thruster frames. The 

developed method is based on a min-max optimization that results in a constant thruster 

distribution matrix. From the optimization, a minimum thrust solution is calculated for the 

coupled position and attitude commands. Therefore, its integration into the dual quaternion 

dynamics is intuitive and simplistic. The final result is a computationally fast thruster 

allocation solution for real-time applications. 
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1. Introduction 

In most NASA class B or higher missions, the spacecraft bus is required to have 

some (if not all) actuator redundancy. This is particularly true for pose missions (attitude 

and positional control). Due to their capability to provide simultaneous positional and 

attitude control, the primary actuator that is used within large agile spacecraft today is 

thrusters. Additionally, thrusters are easily used in combination with one another, 

providing an easy solution to the necessity of redundancy. If enough thrusters are utilized, 

full six degree-of-freedom (6-DOF) control is possible.  

When designing the majority of current spacecraft control problems, there are two 

separate control requirements that must be accounted for: the positional control, and the 

attitude control. Strictly speaking, the positional control problem deals with translational 

motion such as orbital maintenance or injection, and the attitude control problem deals with 

the rotational requirements of the spacecraft. For most current design processes, the 

dynamics are assumed uncoupled to reduce complexity and allow for a simple solution. 

However, the true physics of the problem are coupled and do not separate out the positional 

and attitude dynamics into separate systems. Therefore, a design based on the coupled 

dynamics can produce a more realistic solution to meet the tighter requirements of future 

missions. Since the attitude dynamics are inherently non-linear, the ability to design and 

verify a coupled dynamics control system is a function of a higher fidelity simulation. The 

coupled positional and attitude dynamics system lead to the dual quaternion description 

due to its compactness and relative simplicity when describing the dynamics (Seo, 2015).  

A typical dual quaternion is composed of two separate quaternions combined into 
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a single dual quaternion. One of these quaternions describes the translational motion of the 

spacecraft, while the second describes the attitude based motion. This dual quaternion 

description then inherits all the general benefits provided by a regular quaternion such as 

its non-singular implementation of three-dimensional attitude dynamics. From this, the 

dual quaternion is able to simultaneously describe both the translational and rotational 

dynamics, which results in it being a viable alternative 6-DOF representation of the 

spacecraft control problem. Additionally, it has been shown to be the most compact and 

computationally efficient tool when compared to others (Aspragathos & Dimitros, 1998), 

(Funda & Paul, 1990), and (Funda, Taylor, & Paul, 1990). 

Inherent within the 6-DOF dual quaternion description is a requirement of a 

coupled 6-DOF command input. To properly utilize thrusters to complete this 6-DOF 

approach, a process known as control allocation is utilized, which is the connecting link 

between the control laws to the individual actuators.  

Currently, there is a division of three main methods for completing the thruster 

allocation. The first is a selection matrix method, also known as the decoupled method. 

This method is based on having multiple tables of thruster combinations for different 

commands, such as a slew about a single axis. These tables can then be combined and 

proportionally scaled depending on the input command. Most current spacecraft utilize this 

design approach due to its intuitiveness, simplicity, and computational efficiency. 

However, this method is unable to account for a non-regular thruster configuration, such 

as a non-axisymmetric layout due to the inherent axis coupling effect (Wang M., 2009). 

The second method is a process of Linear Programming. These routines generally 

use an optimizing scenario such as the Simplex method. This process provides an optimal 
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thruster allocation given a command input (Bodson, 2002) and (Wang M., 2009). However, 

the Simplex method is rarely used in flight computers for thruster-based allocation due to 

the optimization routine running in the control loop algorithm. Therefore, the on-board 

processing power required is generally too high to be practical (Ankersen, Aleshin, 

Vankov, & Volochinov, 2005), (Crawford, 1969), (Doman, Gambel, & Ngo, 2007), and 

(Wang M., 2009).  

This thesis proposes a third thruster allocation method, which is a combination of 

the first two methods in order to reap the benefits of both methods while mitigating many 

of their individual drawbacks. The proposed method does this by calculating a single 

optimized thruster distribution matrix. It provides the benefits of being an optimized 

thruster allocation method and therefore is more efficient that the typical thruster selection 

method.  

Additionally, since the proposed method results in a single optimized thruster 

distribution matrix, it requires less memory storage on board the spacecraft computers 

when compared to the thruster selection method. This is due to the thruster selection 

method requiring multiple lookup tables for the various spacecraft maneuvers, which all 

must be individually stored on the spacecraft computers.  

Due to the optimization and the single resulting distribution matrix, the axis 

coupling effects of the thrusters are inherently included in the thruster firing calculations. 

In addition, because of the calculations used to form the distribution matrix, it accounts for 

asymmetries of the thrusters about the center of mass and its effect on the thruster torques. 

In comparison to the selection matrices, which require additional post processing to 

account for asymmetries about the center of mass, the distribution matrix automatically 
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accounts for all of these characteristics. 

The basis of the proposed method is a pseudo inverse distribution matrix with an 

additional optimization. Non-optimized pseudo inverse methods have been proposed 

previously in propulsion systems such as underwater vehicles (Garus, 2004) and aircraft 

(Johansen & Fossen, 2013). However, the proposed method optimizes the given pseudo 

inverse allocation matrix which results in a constant distribution matrix. Additionally, it 

does not require calculations within the control loop. Therefore, it is very applicable to real-

time applications due to its simplicity and computational speed (Smith & Seo, 2017). 
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2. Dual Quaternion Dynamics 

The driving purpose of utilizing the dual quaternion is to present the most compact 

and computationally efficient 6-DOF simulation.  Additionally, due to its dual nature, the 

kinematics and dynamics of the system are coupled and therefore allow for a higher fidelity 

simulation (Seo, 2015). Furthermore, the dual format still inherits all the traditional 

benefits of a regular quaternion such as avoiding a gimbal lock situation. 

The original concept of the dual quaternion was derived from the idea of describing 

the dynamics of a system with a screw motion which includes a rotation and translation 

along the rotation axis. Typically, the 6-DOF system is described with a separate 

translation vector and Euler angles or a quaternion. However, one method to combine these 

two components into a single entity is through the idea of a screw motion.  

Originally characterized by Chasles’ theorem, the screw motion can be described 

in full by utilizing two characteristics, the screw axis and the screw pitch. These 

characteristics directly correspond to the rotation and translation of a system (Wu, Hu, Hu, 

Li, & Lian, 2005). Utilizing this concept to express velocities in a 3D space was originally 

conceptualized to derive a mathematical method to describe the screw motion; the result is 

known as the dual quaternion. 

2.1. Quaternions Overview 

The concept of quaternions was originally created by Hamilton as a rotational 

transformation utilizing a redundant set in order to avoid singularities generally posed by 
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full sets such as Euler angles. The general formulation of a quaternion is as follows (Wu, 

Hu, Hu, Li, & Lian, 2005). 

 𝑞 = [
�⃑�
𝑞4

] (1) 

where �⃑� = [𝑞1, 𝑞2, 𝑞3]
𝑇 ∈ ℝ3 is the vector component of the quaternion and 𝑞4 ∈ ℝ is the 

scalar component. Herein, a vector quaternion refers to a quaternion with a zero-scalar 

component, and a scalar quaternion refers to a quaternion with a zero-vector component.  

To properly utilize the quaternion in the equations of motion, a set of binary operators 

defined in Table (2.1) is utilized to manipulate the values in the context of quaternion 

algebra. 

Table 2.1 Binary quaternion operators where 𝑎, 𝑏 are quaternions (Seo, 2015) 

Addition 𝑎 + 𝑏 = [�⃗� + �⃗⃗�, 𝑎4 + 𝑏4] 

Scalar Product 𝜆𝑎 = [𝜆�⃗�, 𝜆𝑎4] 

Product 𝑎𝑏 = [𝑎4�⃗⃗� + 𝑏4�⃗� + �⃗�x�⃗⃗�, 𝑎4𝑏4 − �⃗� ∙ �⃗⃗�] 

Conjugate 𝑎∗ = [−�⃗�, 𝑎4] 

Dot Product 𝑎 ⋅ 𝑏 = [0⃗⃗, �⃗� ∙ �⃗⃗� + 𝑎4𝑏4] 

Cross Product 𝑎 x 𝑏 = [𝑏4�⃗� + 𝑎4�⃗⃗� + �⃗� x �⃗⃗�, 0] 

Norm ‖𝑎‖2 = 𝑎𝑎∗ = 𝑎∗𝑎 = 𝑎𝑎 

 

 The purpose of quaternions is to describe a 3 dimensional rotation in 3-sphere. For 

a frame rotation about a generic unit axis 𝑛, describing a rotation from on frame denoted 

as 𝐵, to another frame, 𝐷, it can be described by the following 
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 𝑞𝐵/𝐷 = [sin (
𝜃

2
) 𝑛, cos (

𝜃

2
)] (2) 

To describe a rotation from one frame such as 𝑟𝐵 to another frame such as 𝑟𝐷, the 

quaternion can be used as by pre-multiplying by the quaternion conjugate and post 

multiplying by the quaternion utilizing the quaternion product defined previously (Wu, Hu, 

Hu, Li, & Lian, 2005). 

 𝑟𝐷 = 𝑞𝐵/𝐷
∗𝑟𝐵𝑞𝐵/𝐷 (3) 

By taking the time derivative of the quaternion, the following kinematic equations can be 

derived. 

  �̇� = [−
1

2
(�⃗�𝑥𝜔 + 𝑞4𝜔),−

1

2
�⃗�𝑇𝜔] (4) 

where �⃗�𝑥 is defined as the skew symmetric matrix and 𝜔 is the angular velocity of the 

system. 

�⃗�𝑥 = [

0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
] (5) 

Additionally, 𝜔 is the rotational dynamics of the system. Typically, it is defined using 

Euler’s Equations as follows 

𝐼�̇� + 𝜔 x 𝐼𝜔 =  𝜏 (6) 

where 𝐼 is the moment of inertia matrix, and 𝜏 is any external torque applied to the system. 

2.2. Dual Numbers  

The concept of a dual number is defined and used to develop the dual quaternion. 

They have the following characteristics. The nomenclature and derivations have been taken 

from (Wu, Hu, Hu, Li, & Lian, 2005). 
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�̂� = 𝑎 + 𝜀𝑏 (7) 

where 𝜀2 = 0 but 𝜀 ≠ 0. In general, 𝑎 is denoted as the real part of the dual number and 𝑏 

is denoted as the dual part. The dual numbers have a distinct set of operators as defined in 

(Wu, Hu, Hu, Li, & Lian, 2005). 

Table 2.2 Dual number operators 

Addition �̂�1 + �̂�2 = 𝑎1 + 𝑏1 + 𝜀(𝑏1 + 𝑏2) 

Scalar Product 𝜆�̂� = 𝜆𝑎 + 𝜀 𝜆𝑏 

Product �̂�1�̂�2 = 𝑎1𝑎2 + 𝜀(𝑎1𝑏2 + 𝑎2𝑏1) 

2.3. Dual Vectors 

The concept of a dual vector is very similar to the dual numbers.  However, instead 

of containing two separate scalar values, it contains two vectors. The real part of the dual 

vector denotes the unit direction and the dual part denotes the rotation with respect to the 

origin of the coordinate frame. Herein the “dual” form is denoted with the caret, ^, such as 

�̂�. 

A typical unit dual vector is known as a Plücker line (Wu, Hu, Hu, Li, & Lian, 

2005). In general, line 𝐼 can be described as a Plücker line 𝐼 = 𝐼 + 𝜀𝑚. Geometrically, 𝐼 is 

a unit vector, and 𝑚 is the rotation about the axis defined by 𝑝 x 𝐼, and is normal to the 

plane containing the line 𝐼 and the frame’s origin. This is directly linked to Chasles 

theorem, which states the general displacement of a rigid body can be described by a 

rotation about and axis, typically known as the screw axis, and a translation parallel to that 

axis. For the defined Plücker line, the screw axis is 𝑚 and the translation is 𝑝 as seen in 

Figure 2.1 (Wu, Hu, Hu, Li, & Lian, 2005) 
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Figure 2.1 Plücker line with rotation pointing out of the page (Wu, Hu, Hu, Li, & Lian, 

2005) 

 

Additionally, the utilization of Plücker lines can describe the relationship between 

two separate lines. One such example shares many similarities to the dot product of two 

unit vectors. The scalar product between two separate Plücker lines can be shown to be 

equal to the cosine of the dual angle.  

𝜃 = 𝜃 + 𝜀𝑑  (8) 

where 𝜃 is the crossing angle and 𝑑 is the common perpendicular distance between the two 

lines. 
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Figure 2.2 Relationship between Plücker lines (Wu, Hu, Hu, Li, & Lian, 2005) 

 

In general, this relationship can be formed by the following. 

Î1Î2 = cos(𝜃)  (9) 

where 𝐼1 = 𝐼1 + 𝜀𝑚1 and 𝐼2 = 𝐼2 + 𝜀𝑚2. Lastly, 𝐼1𝑥 𝐼1 = 𝑠𝑖𝑛(𝜃) �̂�. The new Plücker �̂� is 

the common perpendicular intersecting line. 

2.4. Dual Quaternions 

At its fundamental level, a dual quaternion is a regular quaternion but with dual 

number components included.  

�̂� = [�̂⃗�, �̂�4] (10) 

where �̂⃗� is a dual vector and �̂�4 is a dual number. Additionally, it can be written as follows 

�̂� = 𝑞𝑟 + 𝜀𝑞𝑑 (11) 

where 𝑞𝑟 denotes the real part (rotation) of the system, and 𝑞𝑑 denotes the dual part 

(translation) of the system. In general, the dual vector can be considered the same as a dual 



11  

quaternion with a 0 scalar component.  Also, due to the formulation of the dual quaternion 

utilizing two separate quaternions, it inherits all of the benefits of the traditional single 

quaternion (Wu, Hu, Hu, Li, & Lian, 2005). However, as with quaternions, the dual 

quaternion has specific operators as follows.  

Table 2.3 Binary quaternion operators where �̂�, �̂� are dual quaternions and 𝜆 ∈ ℝ (Seo, 

2015) 

Addition �̂� + �̂� = [𝑎𝑟 + 𝑏𝑟 , 𝑎𝑑 + 𝑏𝑑] 

Scalar Multiplication 𝜆�̂� = 𝜆𝑎𝑟 + 𝜆𝑎𝑑 

Product �̂� ∗𝑑 �̂� = [𝑎𝑟 ∗𝑞 𝑏𝑟 , 𝑎𝑟 ∗𝑞 𝑏𝑑 + 𝑎𝑑 ∗𝑞 𝑏𝑟] 

Swap �̂�† = [𝑎𝑑 , 𝑎𝑟] 

Conjugate �̂�∗ = [𝑎𝑟
∗ , 𝑎𝑑

∗ ] 

Dot Product �̂� ⋅ �̂� = [𝑎𝑟 ⋅ 𝑏𝑟 , 𝑎𝑟 ⋅ 𝑏𝑑 + 𝑎𝑑 ⋅ 𝑏𝑟] 

Cross Product �̂� x b̂ = [𝑎𝑟 x 𝑏𝑟 , 𝑎𝑟 x 𝑏𝑑 + 𝑎𝑑 x 𝑏𝑟] 

Norm ‖�̂�‖ = �̂��̂�∗ 

By taking two separate frames, 𝐷 and 𝐵, the relationship between them can be described 

by either a rotation, 𝑞, followed by a translation, 𝑟𝐷, or the opposite with a translation, 𝑟𝐵, 

followed by a rotation, 𝑞. From here it can be shown using Eqn. (3), that 𝑟𝐷 = 𝑞∗𝑟𝐵𝑞, and 

using this, a Plücker line can be defined which satisfies 𝐼𝐷 = �̂�∗𝐼𝐵�̂�. Herein, the unit dual 

quaternion is a function of both the rotation 𝑞 and the translation 𝑟𝐷, or the opposite 

translation 𝑟𝐵 and rotation 𝑞.  
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To derive this, the following steps were adapted from (Wu, Hu, Hu, Li, & Lian, 

2005). Initially, two Plücker lines expressed in the separate 𝐷 and 𝐵 frames are taken as 

follows. 𝐼𝐷 = 𝐼𝐷 + 𝜀𝑚𝐷 and 𝐼𝐵 = 𝐼𝐵 + 𝜀𝑚𝐵, 

𝐼𝐵 = 𝑞∗𝐼𝐷𝑞 

𝑚𝐷 = 𝑝𝐷 x 𝐼𝐷 

= (𝑞∗ 𝑝𝐵𝑞 − 𝑟𝐷) x (𝑞∗𝐼𝐵𝑞) 

= 𝑞∗ 𝑚𝐵𝑞 − 𝑟𝐷 x (𝑞∗𝐼𝐵𝑞) 

= 𝑞∗𝑚𝐵𝑞 +
1

2
(𝑟𝐷∗𝑞∗𝐼𝐵𝑞 + 𝑞∗𝐼𝐵𝑞𝑟𝐷) 

(12) 

If a new quaternion is defined as 𝑞𝑡 =
1

2
𝑞𝑟𝐷, and a dual quaternion is defined as �̂� = 𝑞 +

𝜀𝑞𝑡. It is possible to show that Eqn. (11) is equivalent to the following: 

𝐼𝐵 + 𝜀𝑚𝑏 = (𝑞 + 𝜀𝑞𝑡)∗ ∗𝑑 (𝐼𝐷 + 𝜀𝑚𝐷) ∗𝑑 (𝑞 + 𝜀𝑞𝑡) (13) 

So, 𝐼𝐵 = �̂�∗ ∗𝑑 𝐼𝐷 ∗𝑑 �̂�, where the dual quaternion from here is the following: 

�̂� = 𝑞 + 𝜀𝑞𝑡 

= 𝑞 + 𝜀
1

2
𝑞𝑟𝐷 

= 𝑞 + 𝜀𝑞𝑞∗𝑟𝐵𝑞  

= 𝑞 + 𝜀
1

2
𝑟𝐷𝑞 

(14) 

As stated previously, the dual quaternion motion is tied directly to the concept of screw 

motion. Therefore, it can be written directly as a function of the individual screw elements. 
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 �̂� = [sin (
𝜃

2
)𝑛, cos (

𝜃

2
)] (15) 

where 𝑛 denotes the screw axis and 𝜃 is the dual angle of the screw motion. The derivation 

for this form can be found geometrically from Figure 2.3, and it was also adapted from 

(Wu, Hu, Hu, Li, & Lian, 2005).  

 

Figure 2.3 Visualization of the screw motion with a rotation 𝜃 about the 𝑛 axis at 

point 𝑐. Followed by a translation 𝑟 (Wu, Hu, Hu, Li, & Lian, 2005). 

 

To derive Eqn. (14), initially a dual quaternion is defined. 

  �̂� = 𝑞 + 𝜀
1

2
𝑞 (16) 

Using Figure 2.3, and solving for some of the geometry the segment 𝑐 can found 

r 
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 𝑐 =
1

2
(𝑟 − 𝑑𝑛 + cot (

𝜃

2
) 𝑛 x 𝑟) (17) 

where 𝑑 is the pitch of the screw motion derived as 

𝑑 = 𝑟 ∙ 𝑛 (18) 

Using Eqn. (16), it can be shown that the following statement is true. 

sin (
𝜃

2
) 𝑐 x 𝑛 +

𝑑

2
cos (

𝜃

2
) 𝑛 =

1

2
(sin (

𝜃

2
) 𝑟 x 𝑛 + cos (

𝜃

2
) 𝑟) (19) 

Taking the quaternion 𝑞 = [sin (
𝜃

2
) 𝑛, cos (

𝜃

2
)] into consideration with Eqn. (19), the 

following steps can be taken 

�̂� = 𝑞 + 𝜀
1

2
𝑞 

= [sin (
𝜃

2
) 𝑛, cos (

𝜃

2
)] + 𝜀

1

2
[cos (

𝜃

2
) 𝑟 + sin (

𝜃

2
) 𝑟 x 𝑛, −𝑑 sin (

𝜃

2
)] 

= [sin (
𝜃

2
) 𝑛 + 𝜀 (

𝑑

2
cos (

𝜃

2
) 𝑛 + sin (

𝜃

2
) 𝑐 x 𝑛) , cos (

𝜃

2
) − 𝜀

𝑑

2
sin (

𝜃

2
)] 

= [sin (
𝜃

2
) �̂�, cos (

𝜃

2
)]  

To better understand the concept of how a dual quaternion for formed, a simple 

example for a spacecraft’s states in a circular orbit with orbital radius of 𝑟𝐵/𝐼
𝐼 , about a 

generic body with gravitation constant 𝜇 is formed.  

Initially the dual quaternion as seen in Eqn. (20) is taken. For this example it is 

assumed that the desired frame is equal to the inertial frame, so 𝑞𝐵/𝐷 = 𝑞𝐵/𝐼. 
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 �̂�𝐵/𝐷 = 𝑞𝐵/𝐷 + 𝜀
1

2
𝑟𝐵/𝐷

𝐷 𝑞𝐵/𝐷 (20) 

If the spacecraft is aligned with the inertial axis, 𝑞𝐵/𝐷 will be the unit quaternion, 

and 𝑟𝐵/𝐷
𝐷  will be the position vector of the spacecraft in inertial space with a zero scalar 

component.  

 

𝑞𝐵/𝐷 = [

0
0
0
1

] 

𝑟𝐵/𝐷
𝐷 =

[
 
 
 
𝑟𝑥

𝐼

𝑟𝑦
𝐼

𝑟𝑧
𝐼

0 ]
 
 
 

 

 

When this is all combined, the dual quaternion can be formed. Note that the multiplication 

is a quaternion operator as defined previously. 

�̂�𝐵/𝐷 = [

0
0
0
1

] + 𝜀 [

0
0
0
1

]

[
 
 
 
𝑟𝑥

𝐼

𝑟𝑦
𝐼

𝑟𝑧
𝐼

0 ]
 
 
 

 

= [

0
0
0
1

] + 𝜀

[
 
 
 
𝑟𝑥

𝐼

𝑟𝑦
𝐼

𝑟𝑧
𝐼

0 ]
 
 
 

 

2.5. Dual Quaternion Equations of Motion 

For the following analysis, three frame indices are defined. The body-fixed 

frame, 𝐵, reference/desired frame, 𝐷, and the inertial frame, 𝐼. Furthermore, the individual 

vector quaternions are described in the following format in terms of the previously defined 
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reference frames. The vector quaternion 𝑎𝑦/𝑧
𝑥  is a vector 𝑎 of the 𝑦 frame relative to the 𝑧 

frame represented in the 𝑥 frame. 

Initially, the definition of a dual quaternion is taken as follows: 

 �̂�𝐵/𝐷 = 𝑞𝐵/𝐷 + 𝜀
1

2
𝑟𝐵/𝐷

𝐷 𝑞𝐵/𝐷 (21) 

where the rotation is described by �̂�𝐵/𝐷 and the translation is described by 𝑟𝐵/𝐷
𝐵 . 

Continuing, the definition of �̂�𝐷/𝐼 can also be formed by a similar process. Therefore, the 

6-DOF relative error between the body frame and the reference/desired frame can be 

defined by the following (Wu, Hu, Hu, Li, & Lian, 2005). 

 �̂�𝐵/𝐷 = �̂�𝐷/𝐼
∗ ∗𝑑 �̂�𝐵/𝐼 = [𝑞𝐵/𝐷 ,

1

2
𝑞𝐵/𝐷 ∗𝑞 𝑟𝐵/𝐷

𝐵 ] (22) 

where 𝑟𝐵/𝐷
𝐵 = 𝑟𝐵/𝐼

𝐵 − 𝑟𝐷/𝐼
𝐵 is the relative position vector quaternion between the body frame 

and the desired/reference frame, expressed in the body frame. Throughout the entirety of 

the calculations, it is assumed that the desired states are known and their derivatives are 

bounded. Taking the time derivative of the dual quaternion in Eqn. (20) results in the 

following derivation adapted from (Wu, Hu, Hu, Li, & Lian, 2005). 
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2�̇̂�𝐵/𝐷 = 2�̇�𝐵/𝐷 + 𝜀(�̇�𝐷𝑞𝐵/𝐷 + 𝑟𝐷�̇�𝐵/𝐷) 

= 𝜔𝐵/𝐷
𝐷 𝑞 + 𝜀 (�̇�𝐷𝑞𝐵/𝐷 +

1

2
𝑟𝐷𝜔𝐵/𝐷

𝐷 𝑞𝐵/𝐷) 

= 𝜔𝐵/𝐷
𝐷 𝑞 + 𝜀 (�̇�𝐷𝑞 + (𝑟 x 𝜔𝐵/𝐷

𝐷 )𝑞 +
1

2
𝜔𝐵/𝐷

𝐷 𝑟𝐷𝑞𝐵/𝐷) 

= (𝜔𝐵/𝐷
𝐷 + 𝜀(�̇�𝐷 + 𝑟 x 𝜔𝐵/𝐷

𝐷 )) (𝑞 + 𝜀
1

2
𝑟𝐵/𝐷

𝐷 𝑞𝐵/𝐷) 

2�̇̂�𝐵/𝐷 = �̂�𝐵/𝐷
𝐷 ∗𝑑 �̂�𝐵/𝐷 

= �̂�𝐵/𝐷 ∗𝑑 �̂�𝐵/𝐷
𝐵 ∗𝑑 �̂�𝐵/𝐷

∗ ∗𝑑 �̂�𝐵 𝐷⁄  

 

           �̇̂�𝐵 𝐷⁄ =
1

2
�̂�𝐵 𝐷⁄ ∗𝑑 �̂�𝐵 𝐷⁄

𝐵    (23) 

Next, a dual relative velocity can defined. 

 �̂�𝐵/𝐷
𝐵 = �̂�𝐵/𝐼

𝐵 − �̂�𝐷/𝐼
𝐵  (24) 

Additionally, the body dual velocity is defined as the following. 

�̂�𝐵/𝐷
𝐵 = �̂�𝐵 𝐷⁄

∗ ∗𝑑 �̂�𝐵 𝐷⁄
𝐷 ∗𝑑 �̂�𝐵/𝐷 

= (𝑞𝐵/𝐷 + 𝜀
1

2
𝑟𝐷𝑞𝐵/𝐷)

∗

∗𝑑 (�̂�𝐵 𝐷⁄
𝐷 + 𝜀(�̇�𝐷 + 𝑟𝐷 x �̂�𝐵 𝐷⁄

𝐷 )) 

                             ∗𝑑 (𝑞𝐵/𝐷 + 𝜀
1

2
𝑟𝐷𝑞𝐵/𝐷)  

 

       �̂�𝐵/𝐷
𝐵 = �̂�𝐵 𝐷⁄

𝐵 + 𝜀(𝑞𝐵/𝐷
∗(�̇�𝐷 + 𝑟𝐷 x �̂�𝐵 𝐷⁄

𝐷 )𝑞𝐵/𝐷 + �̂�𝐵 𝐷⁄
𝐵  x 𝑟𝐷) (25) 

Utilizing the quaternion equations of motion defined in Eqn. (4) and the quaternion 

property stating 𝑞𝑞∗ = 1, the following equation can be formed. 
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�̇�𝐵 =
𝑑𝑞𝐵 𝐷⁄

∗

𝑑𝑡
𝑟𝐷𝑞𝐵 𝐷⁄ + 𝑞𝐵 𝐷⁄

∗𝑟𝐷𝑞𝐵 𝐷⁄ + 𝑞𝐵 𝐷⁄
∗𝑟𝐷�̇�𝐵 𝐷⁄  

= −𝑞𝐵 𝐷⁄
∗ �̇�𝐵 𝐷⁄ 𝑞𝐵 𝐷⁄

∗ 𝑞𝐵 𝐷⁄ + 𝑞𝐵 𝐷⁄
∗ �̇�𝐷𝑞𝐵 𝐷⁄ + 𝑞𝐵 𝐷⁄

∗𝑟𝐷�̇�𝐵 𝐷⁄  

 

                      𝑟𝐵 = 𝑞𝐵 𝐷⁄
∗ (�̇�𝐷 + 𝑟𝐷 x 𝜔𝐵 𝐷⁄

𝐷 )𝑞 (26) 

By substituting Eqn. (25) into Eqn. (26), it results in an equation for dual rates. 

�̂�𝐵/𝐷
𝐵 = �̂�𝐵 𝐷⁄

𝐵 + 𝜀(�̇�𝐵 + �̂�𝐵 𝐷⁄
𝐵  x 𝑟𝐵) (27) 

To derive the equation of motion for the dual acceleration of the system, Eqn. (25) can be 

rewritten in terms of the dual quaternion with dual body frame rates in reference to the 

inertial reference frame. This derivation is an adaption of one presented in (Wang & Sun, 

2012). 

�̂�𝐵 𝐷⁄
𝐵 = �̂�𝐵 𝐼⁄

𝐵 − �̂�𝐷 𝐼⁄
𝐵  

�̂�𝐵 𝐷⁄
𝐵 = �̂�𝐵 𝐼⁄

𝐵 − �̂�𝐵 𝐷⁄
∗ ∗𝑑 �̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄  

 

(28) 

Taking the time rate of change derivative of Eqn. (28) results in the dual acceleration of 

the system. 

�̇̂�𝐵 𝐷⁄
𝐵 = �̇̂�𝐵 𝐼⁄

𝐵 − �̂�𝐵 𝐷⁄
∗ ∗𝑑 �̇̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄ − �̂�𝐵 𝐷⁄
∗ ∗𝑑 �̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̇̂�𝐵 𝐷⁄

− �̇̂�𝐵 𝐷⁄
∗ ∗𝑑 �̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄  

= �̇̂�𝐵 𝐼⁄
𝐵 − �̂�𝐵 𝐷⁄

∗ ∗𝑑 �̇̂�𝐷 𝐼⁄
𝐷 ∗𝑑 �̂�𝐵 𝐷⁄ − �̂�𝐵 𝐷⁄

∗ ∗𝑑 �̂�𝐷 𝐼⁄
𝐷 ∗𝑑

1

2
 �̂�𝐵 𝐷⁄ ∗𝑑 �̂�𝐵 𝐷⁄

𝐵

+
1

2
�̂�𝐵 𝐷⁄

𝐵 ∗𝑑 �̂�𝐵 𝐷⁄
∗ ∗𝑑 �̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄  

�̇̂�𝐵 𝐷⁄
𝐵 = �̇̂�𝐵 𝐼⁄

𝐵 − �̂�𝐵 𝐷⁄
∗ ∗𝑑 �̇̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄ + �̂�𝐵 𝐷⁄
𝐵  x (�̂�𝐵 𝐷⁄

∗ ∗𝑑 �̂�𝐷 𝐼⁄
𝐷 ∗𝑑 �̂�𝐵 𝐷⁄ ) 

 

 

 

 

 

(29) 
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From Newton’s Second Law, a dual form of 𝐹 = 𝑚𝑎 is formed using a dual inertia matrix, 

𝑀𝐵 and the dual acceleration in Eqn. (29). 

𝑓𝐵 = �̂�𝐵 ∗𝑑 �̇̂�𝐵 𝐷⁄
𝐵  (30) 

 �̂�𝐵 =

[
 
 
 
 
 

𝑚 0 0 0 01x3 0
0 𝑚 0 0 01x3 0
0 0 𝑚 0 01x3 0
0 0 0 1 01x3 0

03x1 03x1 03x1 03x1 𝐼𝐵 03x1

0 0 0 0 01x3 1 ]
 
 
 
 
 

 (31) 

where 𝑚 is the mass of the body, and 𝐼𝐵 is the moment of inertia matrix for the body in the 

body frame. From this point, the following equation of motion is formed and organized to 

fit the format as seen in (Seo, 2015), which is the format used during the simulations 

contained herein.  

(�̇̂�𝐵 𝐷⁄
𝐵 )

†
= (�̂�𝐵)

−1
(𝑓𝐵 − �̂�𝐵 𝐼⁄

𝐵  𝑥 (𝑀𝐵(�̂�𝐵 𝐼⁄
𝐵 )

†
) − 𝑀𝐵(�̂�𝐵 𝐷⁄ ∗𝑑 �̇̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄ )
†

− 𝑀𝐵(�̂�𝐷 𝐼⁄
B  x �̂�𝐷 𝐼⁄

𝐵 )
†
) 

(32) 

where 𝑓𝐵 = 𝑓𝐵 + 𝜀𝜏𝐵 which are the external forces and torques on the body frame.  

2.6. External Forces for Dual Quaternion Dynamics 

The external forces on the body frame, 𝑓𝐵, are broken up into individual 

disturbances as follows. 

 𝑓𝐵 = 𝑓𝑔
𝐵 + 𝑓𝑔𝑔

𝐵 + 𝑓𝑐
𝐵 (33) 
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where the individual subscripts denote the separate external disturbances on the body 

frame. Subscript 𝑔 denotes the gravitational force, 𝑔𝑔 denotes the gravity-gradient, and 𝑐 

is for the control input.  

2.6.1. Gravitational Force 

Due to the focus of this thesis being on satellite dynamics, gravity is the primary 

external perturbation being applied to the body of interest.  Therefore, to derive the forces 

caused on a body due to gravity, Newton’s Law of Gravitation is taken as follows (Curtis, 

2010) 

 𝑓𝑖⃗⃗⃗ =  −
𝐺𝑚1𝑚2

‖𝑟𝑖⃗⃗⃗ ⃗‖3 𝑟𝑖⃗⃗⃗   (34) 

where 𝑓𝑖⃗⃗⃗ is the force due to gravity on body, 𝑖, 𝐺 is the universal gravitational constant, 𝑚1 

is the mass of the first body, 𝑚2 is the mass of the second body, and 𝑟𝑖⃗⃗⃗  is the positional 

vector of the 𝑖 body. So, writing this equation in terms of the acceleration due to gravity 

for two separate bodies results in the following 

 𝑟1̈ = −
𝐺𝑚2

‖𝑟1‖3
𝑟1 (35) 

 𝑟2̈ = −
𝐺𝑚1

‖𝑟2‖3
𝑟2 (36) 

By evaluating the relative position of these two bodies, 𝑟 = 𝑟2 − 𝑟1, and by extension their 

relative accelerations, �̈� = 𝑟2̈ − 𝑟1̈, the relative motion of two bodies is described. This is 

also typically known as the two body problem. 

 

�̈� =  −
𝐺𝑚1

‖𝑟2‖3
𝑟2 −

𝐺𝑚2

‖𝑟1‖3
𝑟1 
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= −
𝐺(𝑚1 + 𝑚2)

‖𝑟‖3
 𝑟 

�̈� = −
𝜇

‖𝑟‖3
𝑟 

 

 

(37) 

where 𝜇 is the gravitational parameter for the central body. Since the central body is 

generally significantly more massive than the satellite, 𝑚2 can be neglected.  Therefore, 𝜇  

is considered as a constant for each central body. Eqn. (37) is typically known as the orbit 

equation and is the base form for the dual gravity force vector and it describes the forces 

due to gravity on the body. From this point, the Eqn. (37) must be converted into dual form 

so it can be utilized within the dual quaternion equations. Since the force due to gravity is 

a pure translational force without any induced torques, in the dual form it contains a zero 

vector for the dual component of the dual quaternion resulting in the following equation 

adapted from (Seo, 2015).  

 𝑓𝑔
𝐵 = [𝑚𝑎𝑔

𝐵, 0⃗⃗], 𝑎𝑔
𝐵 = −𝜇

𝑟𝐵/𝐼
𝐵

‖𝑟𝐵/𝐼
𝐵 ‖

3 (38) 

where 𝑎𝑔
𝐵 is the acceleration due to gravity which is equivalent to �̈�. 

2.6.2. Gravity Gradient Torque 

Gravity gradient torques are caused by the difference of gravity on separate parts 

of an orbiting body.  Therefore, if an orbiting body is broken up into individual differential 

masses, 𝑑𝑚, the force due to gravity on the individual differential masses that are furthest 

away from the orbited body are actually less than the force due to gravity on the other 

differential masses that are closer to the orbited body.  Although typically small, these 

differences in gravitational forces can cause a torque about the center of mass of the 
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orbiting body. The following figure displays the geometry of the gravity gradient torque 

problem, and the derivation is adapted from (Curtis, 2010). 

 

 

 

Figure 2.3 Gravity gradient torque geometry definitions (Curtis, 2010) 

 

 

Typically, the torque about the center of mass of an object is calculated by completing the 

cross product of the position vector, 𝜌, with the force vector applied at 𝑑𝑚. Therefore, in 

terms of the differential mass, 𝑑𝑚, and the corresponding differential force, 𝑑𝑓, applied to 

that differential mass, the torque applied at the center of mass can be calculated. Since there 

is an infinite number of these differential masses and forces, a body integral is completed 

to sum up all of the torques caused by the differential masses resulting in Eqn. (38). 

rB/I
B
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 𝑓𝑔𝑔
𝐵 = ∫𝜌 x 𝑑𝑓𝑔𝑑𝑚

 

𝐵

 (39) 

where the integral 𝐵 is the body integral which represents a triple integral about each of 

the body axis. 

The acceleration due to gravity derived earlier in Eqn. (37) can be substituted into 

Eqn. (39) in combination with 𝑑𝑚, resulting in the following 

 𝑓𝑔𝑔
𝐵 = ∫−

𝜇

‖𝑟‖3
𝜌 x (𝑟𝐵 𝐼⁄

𝐵 + 𝜌)𝑑𝑚

 

𝐵

 (40) 

To further simplify the equation, ‖𝑟‖3 is expanded and simplified using the assumption 

that ‖𝑟𝐵 𝐼⁄
𝐵 ‖ ≫ ‖𝜌‖. 

 

‖𝑟‖3 =
1

(𝑟 ⋅ 𝑟)
3
2

 

=
1

((𝑟𝐵 𝐼⁄
𝐵 + 𝜌) ⋅ (𝑟𝐵 𝐼⁄

𝐵 + 𝜌))

3
2

 

≅
1

𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝑟𝐵 𝐼⁄

𝐵 + 2𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝜌

 

≅
1

(𝑟𝐵 𝐼⁄
𝐵 𝑟𝐵 𝐼⁄

𝐵 )
3
2 (1 +

2𝑟𝐵 𝐼⁄
𝐵 𝜌

𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝑟𝐵 𝐼⁄

𝐵 )

3
2

 

≅
1

(𝑟𝐵 𝐼⁄
𝐵 𝑟𝐵 𝐼⁄

𝐵 )
3
2

(1 −
3𝑟𝐵 𝐼⁄

𝐵 ⋅ 𝜌

𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝑟𝐵 𝐼⁄

𝐵 ) 

(41) 

This is then substituted into Eqn. (40) 
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𝑓𝑔𝑔
𝐵 =

−𝜇

‖𝑟𝐵 𝐼⁄
𝐵 ‖

3 ∫𝜌 x (1 −
3𝑟𝐵 𝐼⁄

𝐵  ⋅  𝜌

𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝑟𝐵 𝐼⁄

𝐵 ) (𝑟𝐵 𝐼⁄
𝐵 + 𝜌)𝑑𝑚

 

𝐵

 

=
−3𝜇

‖𝑟𝐵 𝐼⁄
𝐵 ‖

3 ∫𝜌 x 
𝑟𝐵 𝐼⁄

𝐵 ⋅  𝜌

𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝑟𝐵 𝐼⁄

𝐵 (𝑟𝐵 𝐼⁄
𝐵 + 𝜌)𝑑𝑚

 

𝐵

 

=
−3𝜇

‖𝑟𝐵 𝐼⁄
𝐵 ‖

3 ∫𝜌 x 
𝑟𝐵 𝐼⁄

𝐵  ⋅ 𝜌

𝑟𝐵 𝐼⁄
𝐵 ⋅ 𝑟𝐵 𝐼⁄

𝐵 𝑟𝐵 𝐼⁄
𝐵 𝑑𝑚

 

𝐵

 

= 3𝜇
𝑟𝐵/𝐼

𝐵  x (𝐼𝐵𝑟𝐵/𝐼
𝐵 )

‖𝑟𝐵/𝐼
𝐵 ‖

5  

where 𝐼𝐵 is the same moment of inertia matrix of the body in the body frame from 

previously. Due to the gravity gradient being a pure torque disturbance, the real part of the 

dual quaternion will be a 0⃗⃗.  The dual formulation of gravity gradient is as follows 

 𝑓𝑔𝑔
𝐵 = [0⃗⃗, 𝑓𝑔𝑔

𝐵 ], 𝑓𝑔𝑔
𝐵 = 3𝜇

𝑟𝐵/𝐼
𝐵  x (𝐼𝐵𝑟𝐵/𝐼

𝐵 )

‖𝑟𝐵/𝐼
𝐵 ‖

5  (42) 

2.6.3. Control Force 

The control force 𝑓𝑐
𝐵 is a dual quaternion based controller, which requires a coupled 

force and torque input. In a typical utilization, where it drives the errors to zero, it will 

cause the following limit to occur  

 
lim
𝑡→∞

{ �̂�𝐵/𝐷 , �̂�𝐵/𝐷
𝐵 } = {1̂, 0̂} (43) 

This is a single coupled controller in comparison to other typical simulations which have a 

decoupled position and attitude controllers.  Therefore, its integration and optimization will 

be different. However, this is one of the primary benefits of utilizing dual quaternions 
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because it simplifies the control design for a system due to its coupled nature. Typical 

coupled systems that are not dual quaternions require a constraint equation to tie the 

positional and attitude controller. However, with the dual quaternions the constraints are 

inherent within the control design. 

Additionally, it leads directly into the thruster distribution matrix optimization 

which also requires a coupled force and torque input as seen in the following sections. 

Investigation into controllers within the dual quaternion space is not a focus of this thesis. 

However, it is an area of future research. 
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3. Control Allocation: Pseudo Inverse Optimization Method 

The primary objective behind the newly developed thruster allocation method was 

to develop an optimized thruster distribution matrix that will account for both the desired 

body forces and torques simultaneously.  This was accomplished by developing a constant, 

optimized thruster distribution matrix which is an improvement on the typically utilized 

thruster selection logic and more computationally efficient when compared to other 

optimized allocation methods such as the Simplex method (Ankersen, Aleshin, Vankov, & 

Volochinov, 2005), (Crawford, 1969), (Doman, Gambel, & Ngo, 2007), and (Wang M., 

2009). 

3.1. Control Allocation Overview 

For simplistic simulations, the concept of actuator allocation is typically 

disregarded. For these systems, a general controls diagram of the system and controller can 

be created as in Figure 3.1. 

 

Figure 3.1 Traditional controls block diagram 

 

where the Controller block contains the designed controller which produces and desired 

control output, 𝑢, which is then led into the Plant block, which contains all of the system 
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kinematics and dynamics equations. These equations are used to calculate the system state 

variable 𝑥, which is then read by the Sensor block which contains any of the onboard 

sensors such as gyroscopes, start trackers, etc. The output of the sensor is then compared 

to the desired reference state, 𝑥𝑟𝑒𝑓, to form the state error, 𝑥𝑒𝑟𝑟. 

However, for more realistic simulations, actuators are utilized to create the forces 

and torques about the body frame. Therefore, an allocation process is required to take the 

desired command input 𝑢 from the controller and distribute it to the appropriate actuators. 

Typically, this is completed after the controller calculates the command input, but prior to 

implementation into the plant dynamics as seen in Figure 3.2.  

 

Figure 3.2 Controls block diagram with distribution matrix included 

 

Once the controller allocation is completed within the distribution matrix block, it 

results in an actuator command 𝑢𝐷. Typically, this is a command vector for all the 

contained actuators. This is then inputted into the plant dynamics, where models for the 

actuators are contained. Therefore, the actuator commands will cause the actual physical 

body forces and torques, which depending on the accuracy and type of actuators, will differ 

slightly from the ideal forces and torques calculated by the controller. 
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3.2. Traditional Thruster Selection Method 

The most commonly utilized thruster allocation method in spacecraft today is a 

thruster selection matrix. Also known as the decoupled method, it is based on individual 

lookup tables for each of the degrees of freedom of a system. This method is used due to 

its simplicity and ease of understanding. For a spacecraft using thrusters for attitude only 

based control, 3-DOF, a total of six tables are used.  

As an example, the generic spacecraft thruster layout is taken as in the following 

figure with a total of 8 thrusters. 

 

Figure 3.3 Generic spacecraft example thruster layout 
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By taking the thruster layout, the selection tables can be created for each of the 3-

DOF. For example, a positive rotation about the x-axis can be formed as follows. For this 

example, it is assumed that the corresponding thrusters on opposite sides of the center of 

mass are capable of producing and equal and opposite torque about the center of mass. 

Therefore, the thruster layout as a whole is perfectly symmetric about the center of mass 

of the body. 

  

𝑥𝑟𝑜𝑡 = 𝑎𝜏+𝑥 

= 𝑎

[
 
 
 
 
 
 
0
0
1
1
1
1
0
0]
 
 
 
 
 
 

 

(44) 

where 𝑎 is a scaling value chosen by the controller, and 𝜏+𝑥 is which thrusters must fire to 

complete the a slew maneuver about the positive x axis. By extension, a vector and scaling 

value can be created for each of the 3-DOF resulting in the following 

 

𝜏 = 𝑎𝜏+𝑥 + 𝑏𝜏−𝑥 + 𝑐𝜏+𝑦 + 𝑑𝜏−𝑦 + 𝑒𝜏+𝑧 + 𝑓𝜏−𝑧 

𝜏 = 𝑎

[
 
 
 
 
 
 
0
0
1
1
1
1
0
0]
 
 
 
 
 
 

+ 𝑏

[
 
 
 
 
 
 
1
1
0
0
0
0
1
1]
 
 
 
 
 
 

+ 𝑐

[
 
 
 
 
 
 
1
0
0
1
0
1
1
0]
 
 
 
 
 
 

+ 𝑑

[
 
 
 
 
 
 
0
1
1
0
1
0
0
1]
 
 
 
 
 
 

+ 𝑒

[
 
 
 
 
 
 
1
0
1
0
1
0
1
0]
 
 
 
 
 
 

+ 𝑓

[
 
 
 
 
 
 
0
1
0
1
0
1
0
1]
 
 
 
 
 
 

 

(45) 

where 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are all individual scaling factors for each of the 3-DOF. 𝜏 is the 

compiled thruster command vector. This concept can easily be extended out to a full 6-

DOF if desired, using the same method. 
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As an example, if the constants are chosen to vary from 0-1, and it is desired to have a slew 

about the positive x-axis and a slew of half the rate about the positive y-axis, Eqn. (45) 

would be formed as follows 

 

𝜏 = 1

[
 
 
 
 
 
 
0
0
1
1
1
1
0
0]
 
 
 
 
 
 

+ 0

[
 
 
 
 
 
 
1
1
0
0
0
0
1
1]
 
 
 
 
 
 

+ 0.5

[
 
 
 
 
 
 
0
1
1
0
1
0
0
1]
 
 
 
 
 
 

+ 0

[
 
 
 
 
 
 
1
0
0
1
0
1
1
0]
 
 
 
 
 
 

+ 0

[
 
 
 
 
 
 
0
1
0
1
0
1
0
1]
 
 
 
 
 
 

+ 0

[
 
 
 
 
 
 
1
0
1
0
1
0
1
0]
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 

0
0.5
1.5
1

1.5
1
0

0.5]
 
 
 
 
 
 

 

 

In addition, as previously stated, this current example assumes perfect symmetry of the 

thrusters about the center of mass. If any asymmetries were in place, additional calculations 

would be needed to form thruster selection tables that retain pure translation and rotation 

maneuvers, which would then be scaled in the same manner as in Eqn. (45). 

3.3. Pseudo Inverse Optimization Method 

The concept of the pseudo inverse optimized distribution matrix is to create 

constant matrix that completes the control allocation similar to the selection logic. 

However, it will also optimize the resulting thruster force vector and it will require only a 

single matrix product calculation instead of multiple scalar multiplications and vector 

additions for each of the selection logic tables. Additionally, the result accounts for any 

asymmetry of the thrusters about the center of mass. 
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The following distribution matrix method is an adapted process to utilize a coupled 

force and torque input and optimally distribute it to all the necessary thrusters (Smith & 

Seo, 2017). The optimization process is performed to calculate the minimum thrust 

required for an individual command input, through the use of a min-max solver.  The 

desired final product of the pseudo inverse optimization method is a purely positive 

constant thruster distribution matrix, 𝐷 ∈  ℝ𝑛𝑥12, which when multiplied by a vector of 

desired forces and torques,  𝐹𝑝𝑜𝑠, produces a 𝑁 dimensional vector of thruster fire ratios, 𝜏. 

 𝜏 = 𝐷 𝐹𝑝𝑜𝑠 (46) 

To calculate this optimized thruster distribution matrix, the following process is completed. 

For any 6DOF system, a desired command force and torque 6x1 vector 𝐹𝑑𝑒𝑠 ∈  ℝ6 is 

assembled by separating the vector 𝐹𝑑𝑒𝑠 into the body axis forces 𝐹 and torques 𝑁. 

 𝐹𝑑𝑒𝑠 = [
𝐹

𝑁/𝑎
] =

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑋
𝑌
𝑍]
 
 
 
 
 

6𝑥1

 (47) 

 

where 𝑎 is a scaling factor with units of length resulting in the vector 𝐹𝑑𝑒𝑠 having units of 

force. The scaling factor 𝑎 of the torque components in 𝐹𝑑𝑒𝑠 is chosen for mathematical 

convenience. The desired force vector 𝐹𝑑𝑒𝑠 is translated to a non-negative 12x1 vector 

𝐹𝑝𝑜𝑠 ∈  ℝ12 | 𝐹𝑝𝑜𝑠 ≥ 0 with the positive and negative components of each section 

separated. This variation comes from 𝐹𝑝𝑜𝑠 being composed of a 12x1 vector which is 

strictly positive by taking the positive and negative values of the desired forces and torques 

input 𝐹𝑑𝑒𝑠 and rearranging the negative values to the bottom 6 vector locations and taking 
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their absolute value. While they are no longer negative, their location within the bottom 

half of 𝐹𝑝𝑜𝑠 denotes that they are negative values. 

 

𝐹𝑝𝑜𝑠 = [
𝐹𝑑𝑒𝑠(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

|𝐹𝑑𝑒𝑠(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)|
] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑝𝑜𝑠

𝑦𝑝𝑜𝑠

𝑧𝑝𝑜𝑠

𝑋𝑝𝑜𝑠

𝑌𝑝𝑜𝑠

𝑍𝑝𝑜𝑠

|𝑥𝑛𝑒𝑔|

|𝑦𝑛𝑒𝑔|

|𝑧𝑛𝑒𝑔|

|𝑋𝑛𝑒𝑔|

|𝑌𝑛𝑒𝑔|

|𝑍𝑛𝑒𝑔|]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12𝑥1

 (48) 

The necessity of a purely positive desired force and torque vector is inherent from the 

thrusters, which can only be fired in a single direction along single axis thrusters.  This 

vector is multiplied with the distribution matrix as seen in Eqn. (43).  Since the distribution 

matrix is also a purely positive matrix, the resulting thruster force vector will be the force 

required for each thruster along its positive axis direction. 

Next, a set of 𝑛 ≥ 6 thrusters, to ensure 6 DOF, is compiled into a 𝑛 dimensional 

vector 𝜏. 

𝜏 = [

𝜏1

𝜏2

⋮
𝜏𝑛

]

𝑛𝑥1

 (49) 

where 𝜏𝑖 for 𝑖 = 1, 2, … 𝑛 is the thrust provided by each individual thruster along its own 

axis. Due to thruster’s single directional force, 𝜏 must be a non-negative vector. 

Additionally, a matrix 𝑀 ∈ ℝ6x𝑛 is formed by the thruster locations and relative attitudes 
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based on the body frame located at the center of mass of the spacecraft. It is a basic 

kinematic transformation matrix. These locations and relative attitudes, compiled into the 

matrix 𝑇𝑑𝑖𝑟  ∈  ℝ3x𝑛, are used to calculate the torque capabilities of each thruster about the 

body axis, 𝑇𝑁 ∈  ℝ3x𝑛, by computing the cross product of each thruster attitude with its 

corresponding location relative to the spacecraft center of mass. 

𝑀 = [
𝑇𝑑𝑖𝑟

𝑇𝑁
] 

(50) 

This matrix can then be used to describe the relation between the desired forces and torques 

vector, 𝐹𝑑𝑒𝑠, and the thruster force vector 𝜏. 

𝐹𝑑𝑒𝑠 = 𝑀𝜏 (51) 

From this point, to get it into a distribution matrix form, the pseudo inverse of 𝑀 is 

calculated by completing a singular value decomposition as follows: 

𝑀+ = 𝑉0𝑆6𝑥6
−1 𝑈𝑇 (52) 

𝑀 = 𝑈𝑆𝑉𝑇 = 𝑈[𝑆6𝑥6 06𝑥(𝑛−6)][𝑉0 𝑉𝑛𝑢𝑙𝑙]
𝑇 (53) 

where 𝑆 is a 6x6 positive-definite diagonal matrix, 𝑉0 is a nx6 matrix which satisfies the 

following condition in Eq. (54), and 𝑉𝑛𝑢𝑙𝑙 is a nx(n-6) matrix whose columns span the null 

space of 𝑀 (Smith & Seo, 2017).  

𝑉0
𝑇𝑉0 = 𝐼6𝑥6 (54) 

From this point, the cost function that is utilized for the min-max optimization is formed 

as follows in Eq. (55). The cost function’s result is a vector solution, which corresponds to 

one of the components that make up 𝐹𝑝𝑜𝑠. Therefore, since 𝐹𝑝𝑜𝑠 ∈  ℝ12, 𝑖 = 1, 2, … 12, 

there will be a total of 12 optimized vector solutions, as explained later. 

𝐹𝑖(𝑥) = 𝑀+𝑏𝑖 + 𝑉𝑛𝑢𝑙𝑙𝑥 (55) 
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where 𝑏𝑖 is a 6x1 unit vector with all 0 components apart from a 1 placed in the 𝑖 location 

of 𝑏 when 𝑖 = 1, 2, … 6, or a -1 placed in the 𝑖 − 6 location of 𝑏 when 𝑖 = 7, 8, … 12. These 

correspond to the positive and negative parts of 𝐹𝑝𝑜𝑠 shown previously. 

To complete the optimization process using cost function in Eqn. (55), MATLAB’s 

min-max optimization function, fminimax, is called, and is based on the following equation 

(Optimization Toolbox 4 User's Guide, 2008). 

 𝐷𝑖 = minmax𝐹𝑖(𝑥) (56) 

where 𝐹𝑖(𝑥) is the selected cost function being optimized from Eqn. (55), and 𝐷𝑖  ∈ ℝnx1 

is the resulting optimized solution vector. The min-max optimization minimizes the 

maximum element of each 𝐷𝑖 vector. Therefore, it results in a minimum thrust solution for 

each vector 𝐷𝑖 
 (Smith & Seo, 2017). The solver starts with an initial condition of an nx1 

zero vector, 𝑥0, and solves for the min-max solution, 𝑥, based on the cost function in Eqn. 

(55). This optimization is run individually for each component of 𝐹𝑝𝑜𝑠, so 𝑖 = 1, 2, … 12, 

so a set of 12 𝐷𝑖 vectors is created, which are then compiled into the complete, optimized, 

distribution matrix 𝐷. 

𝐷 = [𝐷1 𝐷2 …𝐷12]  (57) 

Additionally, the following constraint is applied to the optimization.  

𝐴𝑥 ≤ 𝑐 (58) 

where 𝐴 is chosen to be −𝑉𝑛𝑢𝑙𝑙, 𝑐 = 𝑀+𝑏𝑖, and 𝑏𝑖 is the same variable from the cost 

function in Eqn. (55). When this constraint is applied to the optimization, it will restrict the 

resulting 𝐷𝑖 vectors to be purely positive. Therefore, when the compiled thruster 

distribution matrix 𝐷 is used in conjunction with 𝐹𝑝𝑜𝑠, as seen in Eqn. (46), the thruster 
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solution vector, 𝜏, will be purely positive. This is a requirement due to thrusters only being 

able to fire in a single direction. Therefore, the positive thrust vector, 𝜏, will already be 

aligned with the individual thruster axis’ and thrust directions.  
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4. OSIRIS-REx 8 Thruster Example 

The OSIRIS-REx scenario, simulated as a testbed, for the dual quaternion and 

thruster distribution matrix was one of the sections for the landing maneuver where 

OSIRIS-REx is descending down towards the asteroid Bennu to gather a sample of the 

regolith.  It simulates a total descent of 30 meters, over 500 seconds during which a basic 

slew maneuver is preformed to align the spacecraft axes with Bennu’s inertial axes.  

This was all simulated utilizing dual quaternion dynamics within NASA Goddard’s 

open source flight software known as “42”. For completeness, the dual quaternion 

equations of motion are included again as follows 

�̂�𝐵 𝐷⁄ = 𝑞𝐵 𝐷⁄ + 𝜀
1

2
𝑟𝐵 𝐷⁄

𝐷 𝑞𝐵 𝐷⁄  

(�̇̂�𝐵 𝐷⁄
𝐵 )

†
= (�̂�𝐵)

−1
(𝑓𝐵 − �̂�𝐵 𝐼⁄

𝐵  𝑥 (𝑀𝐵(�̂�𝐵 𝐼⁄
𝐵 )

†
) − 𝑀𝐵(�̂�𝐵 𝐷⁄ ∗𝑑 �̇̂�𝐷 𝐼⁄

𝐷 ∗𝑑 �̂�𝐵 𝐷⁄ )
†

− 𝑀𝐵(�̂�𝐷 𝐼⁄
B  x �̂�𝐷 𝐼⁄

𝐵 )
†
) 

 

4.1. OSIRIS-REx Mission Overview 

The Origins, Spectral Interpretation, Resource Identification, Security, Regolith 

Explorer (OSIRIS-REx) is also known as the Asteroid Sample Return Mission. The 

mission objective for OSIRIS_REx is to collect a sample of regolith from the surface of 

the asteroid Bennu and return it in a capsule back to Earth for analysis. The driving 

motivation behind the mission objective is the desire to find clues and answers to many of 

the questions regarding the origins of the solar system, since many asteroids are remnants 

of the debris from the solar system formation process. 
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The asteroid 101955 Bennu was chosen due to its carbonaceous composition, which 

may contain some information regarding the early history of the solar system. Therefore, 

it is also possible that the asteroid contains the molecular precursors to the origins of life 

on Earth. On a separate note, due to its relative orbit to Earth, it is also potentially a very 

hazardous asteroid which might impact the Earth in the late 22nd century. Therefore, 

OSIRIS-REx will provide necessary details to mitigate the possibility of a collision in the 

future. The primary science objectives are the following, taken from the OSIRIS-REx 

mission overview (Mission Objectives, 2017).  

Table 4.1 OSIRIS-REx's key science objectives (Mission Objectives, 2017) 

Objective Description 

1 Return and analyze a sample of Bennu’s surface 

2 Map the asteroid 

3 Document the sample site 

4 Measure the orbit deviation caused by non-gravitational forces (the 

Yarkovsky effect) 

5 Compare observations at the asteroid to ground-based observations 

 The OSIRIS-REx mission contains multitudes of different trajectory sections for 

the duration of its life. However, for the simulations contained herein, a section of the 

Touch and Go (TAG) maneuver is analyzed. During the TAG maneuver, the primary 

objective is to touch down safely on the asteroid for a long enough period of time to gather 

a sample of regolith from the surface. Once the sample is gathered, the mass of the sample 

will be tested to determine if it meets the mission requirements. If the sample is deemed to 

be not be sufficient, then additional TAG maneuvers may be attempted. The section of the 
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TAG maneuver that is analyzed is a small 30-meter section of the descent from 

approximately 475 meters to 445 meters. 

4.2. External Forces: Gravity and Gravity Gradient 

For spacecraft based simulations, the force due to gravity is generally the primary 

external force on the body. However, since the exact shape and properties of Bennu are not 

known, its irregular gravity field would be very difficult to model correctly. Therefore, for 

simplicity of analysis, it is modeled as a point source, so the irregularities of mass 

distribution were not taken into account for the contained simulations. One additional 

benefit with the simplified gravity model is it significantly simplifies and shortens the 

simulation analysis time.  The gravity force on the spacecraft is implemented into the dual 

quaternion simulation utilizing the Eqn. (38), repeated here for completeness.  

 𝑓𝑔
𝐵 = [𝑚𝑎𝑔

𝐵, 0⃗⃗], 𝑎𝑔
𝐵 = −𝜇

𝑟𝐵/𝐼
𝐵

‖𝑟𝐵/𝐼
𝐵 ‖

3  

The other external perturbation that was taken into account during the simulation was the 

gravity gradient as seen in Eqn. (42). Due to the gravity of the asteroid being modeled as a 

point source, and its total mass being relatively small, the torque produced from the gravity 

gradient perturbation is also relatively small. However, it was still included for simulation 

accuracy. The equation utilized is repeated below.  

 𝑓𝑔𝑔
𝐵 = [0⃗⃗, 𝑓𝑔𝑔

𝐵 ], 𝑓𝑔𝑔
𝐵 = 3𝜇

𝑟𝐵/𝐼
𝐵  x (𝐼𝐵𝑟𝐵/𝐼

𝐵 )

‖𝑟𝐵/𝐼
𝐵 ‖

5   
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4.3. Controller  

Since the focus of this thesis is the dual quaternion dynamics and optimal 

distribution matrix, a non-dual quaternion based, heritage optimal ramp coast glide 

controller was utilized. This controller was taken from the OSIRIS-REx simulation utilized 

in (Smith & Seo, 2017). Therefore, the focus will not be on the controller but instead on 

the dual quaternion dynamics and the effectiveness of the optimal distribution matrix.  

However, a basic description of the controller is given. 

At its basic form, the ramp coast glide controller contains two separate components, 

and it will switch between these two components depending on the spacecraft’s state 

relative to the desired state. When this error state passes a below predetermined error 

maximum the control type is switched to the second component. 

The simpler of the two components is when the error is below the error maximum, 

where it represents a critically damped Proportional Derivative (PD) controller. When the 

error state is above the error maximum, it is controlled by the first component, which is an 

optimal bang bang controller with a maximum imposed rate. The concept behind an 

optimal bang bang controller is to minimize the amount of time it takes to perform a 

maneuver. Generally, this is accomplished by setting the actuators to their maximum value 

towards the desired state resulting in an acceleration, and then half way through the 

maneuver set the actuators to the negative max value to cause the system to brake and stop 

at the desired state. However, for the current implementation, there is a coasting period at 

a predetermined maximum rate between the accelerating and braking sections. 

The error maximum cutoff point, 𝑥𝑐, is based on the maximum desired acceleration, 

𝑎𝑚𝑎𝑥 , and the natural frequency of the controlled system, 𝜔0.  
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 𝑥𝑐 =
𝑎𝑚𝑎𝑥

𝜔0
2  (58) 

Therefore, when the state 𝑥 is less than 𝑥𝑐 the control is based off a PD controller as follows 

 𝑎 = −𝐾𝑝𝑥 − 𝐾𝑑𝑣 (59) 

where 𝐾𝑝 is the proportional gain, 𝐾𝑑 is the derivative gain, and 𝑣 is the velocity of the 

system. These gain are chosen to create a critically damped response. 

 

𝐾𝑑 = 2𝑚𝜔0 

𝐾𝑝 = 𝑚𝜔0
2 

(60) 

Since the gains are calculated to great a critically damped response, the natural motion of 

the system for this control segment is 

 

𝑥(𝑡) = (𝑥0 + (𝑣0 + 𝜔0𝑥0)𝑡)𝑒0
−𝜔𝑡 

𝑣(𝑡) = (𝑣0 − 𝜔0(𝑣0 + 𝜔0𝑥0)𝑡)𝑒
−𝜔0𝑡 

(61) 

where 𝑡 is the time, and 𝑣0 is the initial velocity. Therefore, when 𝑡 → ∞ 

 

𝑥 ≈ (𝑥0 + 𝜔0𝑥0)𝑡𝑒
−𝜔0𝑡 

𝑣 ≈ −𝜔0(𝑣0 + 𝜔0𝑥0)𝑡𝑒
−𝜔0𝑡 ≈ −𝜔0𝑥 

(62) 

Next, when the state is larger than the cutoff point, it takes the form of the following bang 

bang controller 

 𝑎 = 𝑎𝑚𝑎𝑥𝑠𝑔𝑛(𝑣𝑐𝑚𝑑 − 𝑣) (63) 

where 𝑣𝑐𝑚𝑑 is the bang bang switching line defined as 

 𝑣𝑐𝑚𝑑 =  − 𝑠𝑔𝑛(𝑥)√2𝑎𝑚𝑎𝑥(|𝑥| − 𝑥0) (64) 

The 𝑠𝑔𝑛(𝑥) function is known as a sign function and is represented as the following 

 𝑠𝑔𝑛(𝑥) =  {
−1 if 𝑥 < 0
   1 if 𝑥 > 0

 (65) 
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Additionally, the braking point, 𝑥𝑏, is calculated based on the system characteristics and 

the maximum chosen rate 𝑣𝑚𝑎𝑥. 

 𝑥𝑏 =  𝑥0 +
1

2𝑎𝑚𝑎𝑥
𝑣𝑚𝑎𝑥

2  (66) 

where 𝑥0 =
1

2
𝑥𝑐. All of these characteristics are combined into the following figure for 

clarity. 

 

Figure 4.1 Visual representation of the ramp coast glide controller 

 

There is a current known problem with this control design if the state passes the 

cutoff point 𝑥𝑐 prior to reaching the switching line 𝑣𝑐𝑚𝑑. This would cause the controller 

to not switch to the PD control smoothly since there would be a velocity error between the 

expected velocity of 𝑣𝑐𝑚𝑑 and the true velocity at 𝑥𝑐. However, this error does not occur 



42  

in the contained simulations. Therefore, it is noted but disregarded for the remainder of the 

analysis. 

To further the accuracy of the simulation, a fixed control cycle time step was 

included of ten milliseconds. This results in a non-continuous time controller, similar to 

what is implemented on in-flight spacecraft such as OSIRIS-REx. Due to the set control 

cycle, the thruster fire times are quantized to match this control cycle.  Therefore, they can 

only perform one set of commands during each control cycle and cannot not switch prior 

to the next control cycle command. 

4.4. Thruster Specifications  

Initially, the actuators that are used in the simulation are defined. The only actuator 

utilized for the duration of the simulation are thrusters. On OSIRIS-REx, there are two 

separate sets of thrusters denoted as the A set and B set. Since they are decoupled and only 

a single set is used for nominal mission operations, there will be a separate optimized 

distribution matrix for each. Therefore, for the following simulation, only the A set of 

thrusters is utilized. The A set of thruster locations and attitudes were set up and utilized 

to form the following 𝑀 matrix of thruster attitudes and torque capabilities about the center 

of mass as seen from Eqn. (50). The center of mass of the spacecraft in reference to the 

arbitrary reference point is as follows. 

𝐶𝑀 = [−0.006 0.003 0.770] 
 

𝑀 =

[
 
 
 
 

0.4330
0.25

0.8660
0.7606

−0.6543
−0.1914

−0.4330
0.25

0.8660
0.7606
0.6439
0.1944

−0.4330
−0.25
0.8660

−0.7606
0.6439

−0.1970

0.4330
−0.25
0.8660

−0.7606
−0.6543
0.1940

0.4330
0.25

−0.8660
−0.9122
0.9168

−0.1914

−0.4330
0.25

−0.8660
−0.9122
−0.9065
0.1944

−0.4330
−0.25

−0.8660
0.9174

−0.9065
−0.1970

0.4330
−0.25

−0.8660
0.9174
0.9168
0.1940 ]
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Graphically, these values depict the thruster layout below. 

 

Figure 4.2 OSIRIS-REx thruster layout 

  

Additionally, each of the thrusters described herein are identical small attitude based 

thrusters capable of producing 4.45 Newtons of thrust.  Therefore, it is possible to have 

thruster saturation if the command forces and torques require a higher thrust than is 

possible for an individual thruster. When this occurs, the entire thruster force vector is 

scaled down proportionally. Therefore, the attitude maneuver is retained but the magnitude 

is lowered so the previously saturated thruster is firing at the maximum value. However, it 

is noted that a stability analysis of the saturation has not been completed for all cases. The 
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contained simulations where the thrusters become saturated are stable and therefore it is 

not a current area of focus. However, it has been suggested as an investigation point for the 

future. 

4.5. Thruster Distribution Matrix Calculation  

Following the steps laid out in section 3, the singular value decomposition of the 

𝑀 matrix is completed along with evaluating MATLAB’s fminimax function optimization, 

resulting in the following optimized distribution matrix.  

D = 

[
 
 
 
 
 
 
 
0.0000 0.0000 0.0010 0.0000 0.3204 1.2870 0.6745 1.0903 0.2896 0.2980 0.0000 0.0000
0.6745 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0903 0.2906 0.2980 0.3204 1.2870
0.6745 1.0903 0.0000 0.2980 0.0000 1.2870 0.0000 0.0000 0.2906 0.0000 0.3204 0.0000
0.0000 1.0903 0.0028 0.2980 0.3204 0.0000 0.6745 0.0000 0.2878 0.0000 0.0000 1.2870
0.0933 0.0826 0.2896 0.2980 0.0000 1.2870 0.5812 1.0077 0.0010 0.0000 0.3204 0.0000
0.5812 0.0981 0.2906 0.2980 0.3204 0.0000 0.0933 0.9923 0.0000 0.0000 0.0000 1.2870
0.5735 0.9923 0.2906 0.0000 0.3204 1.2870 0.1010 0.0981 0.0000 0.2980 0.0000 0.0000
0.1010 1.0077 0.2878 0.0000 0.0000 0.0000 0.5735 0.0826 0.0028 0.2980 0.3204 1.2870]

 
 
 
 
 
 
 

 

 

This distribution matrix provides the capabilities to transform any 6-DOF body command 

input to an optimized thruster command as shown in Eqn. (46). Additionally, the 

distribution matrix fulfills the strictly positive constraint imposed on the optimization to 

produce a strictly positive thruster force vector.  Once this optimal distribution matrix is 

obtained, it is integrated into the dual quaternion based OSIRIS-REx simulation. In this 

simulation, the heritage ramp coast glide controller, discussed previously, provides the 

ideal forces and torques command vector, which are then used in combination to the 

distribution matrix in order to calculate the individual thruster firing times. The actual 

forces and torques produced by the thrusters is then compared to the ideal forces and 

torques to determine the effectiveness of the optimal distribution matrix. 

As a quick verification and example, if a 𝐹𝑑𝑒𝑠 vector is taken as follows, 

representing a multiple body axis translation and rotation, it will be transformed into the 
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𝐹𝑝𝑜𝑠 vector to be used in combination with the thruster distribution matrix. 

𝐹𝑑𝑒𝑠 = 

[
 
 
 
 

1
1
0

−1
−1
0 ]

 
 
 
 

                      𝐹𝑝𝑜𝑠 =

[
 
 
 
 
 
 
 
 
 
 

 

1
1
0
0
0
0
0
0
0
1
1
0]
 
 
 
 
 
 
 
 
 
 

 

 

This vector is then pre-multiplied by the thruster distribution matrix as seen in Eqn. (46) 

resulting in the following. 

𝜏 = 𝐷 𝐹𝑝𝑜𝑠 = 

[
 
 
 
 
 
 
0.2980
1.2980
2.0852
1.0903
0.4963
0.6793
1.8637
1.7271]

 
 
 
 
 
 

 

 
This is the resting thruster force vector 𝜏. In order to confirm its validity the kinematic 

transformation equation, Eqn. (51), can be utilized.  

𝐹𝑑𝑒𝑠 = 𝑀𝜏 

= 𝑀

[
 
 
 
 
 
 
0.2980
1.2980
2.0852
1.0903
0.4963
0.6793
1.8637
1.7271]

 
 
 
 
 
 

 

=

[
 
 
 
 

1
1
0

−1
−1

0 ]
 
 
 
 

 

The resulting 𝐹𝑑𝑒𝑠 vector is identical to the 𝐹𝑑𝑒𝑠 vector used to form 𝐹𝑝𝑜𝑠. Therefore, it the 
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distribution matrix effectively converts the desired body forces and torques into the 

individual thruster frames. 

4.6. OSIRIS-REx TAG Maneuver Simulation Results 

During the simulation, the spacecraft maneuver includes multiple simultaneous axis 

rotations, in addition to a positional change. The control objective of the simulation is to 

align the spacecraft body axis to Bennu’s initially fixed axis system, and to perform a 

translational maneuver of the spacecraft along an arc towards Bennu’s surface. Utilizing 

the thruster distribution matrix and controller, the control objective was met as seen in 

Figures 4.1, and 4.2. These two figures are the dual and real components of the dual 

quaternion respectively. 

 

Figure 4.3 Spacecraft Position in Inertial Space 
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Figure 4.4 Spacecraft Quaternion Based Attitude in Inertial Space 

 

To determine the effectiveness of the thruster distribution matrix, the command force and 

torque vector calculated by the control law was utilized as the 𝐹𝑑𝑒𝑠 vector for each control 

step. This was inputted into Eqn. (33) with the thruster distribution to calculate the thruster 

force vector for each command cycle as seen in Figure (4.3). The thruster force vector was 

then converted back to body forces and torques to provide a straightforward comparison to 

the produced body forces and torques and the ideal body forces and torques as seen in 

Figure (4.4).   
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Figure 4.5 Thruster forces over the Bennu orbit simulation 

 

The inclusion of thruster saturation is observable from these results as it is clearly seen in 

Figure 4.5 for thrusters 2, 4, 6, and 8, which are saturated for approximately the first 40 

seconds of the simulation.  This directly corresponds to the difference in the ideal body 

torque and the commanded resulting body torque as seen in Figure 4.6.   



49  

 

 Figure 4.6 Body axis torque commands versus ideal torque commands  

 

The precision of the command body torques in relation to the ideal body torques was 

analyzed per control cycle and there was an initial high percent error due to four of the 

thruster being saturated for the beginning of the simulation.  Once the thrusters stopped 

being saturated, all of the percent errors were all contained within a 0.10 percent error for 

the remaining duration of the simulation as seen in Figure 4.7. Therefore, it is concluded 

that the pseudo inverse method of thruster distribution matches very closely to the ideal 

torque scenario.  
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Figure 4.7 Body axis command torque error 

 

The last area of analysis for the efficiency of the distribution logic is the angular 

rate and the attitude errors of the body frame. These errors are the actual spacecraft rates 

and angles produced by the thrusters in comparison to the desired rates and angles. The 

plots show the body angles and rates trending towards a steady state of zero error, and 

therefore further prove the distribution logic is preforming as expected. 
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Figure 4.8 Body frame angle errors 

 

 

Figure 4.9 Body frame angular rotation rate errors 
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4.7. Non-Quantized and Non-Saturated Thruster Simulation Results 

To further confirm the effectiveness of the thruster distribution matrix, the 

quantization and saturation of the thrusters were turned off for a simulation run in order to 

analyze the percent errors that the distribution matrix solution produces when compared to 

the ideal command input.  

 

 

Figure 4.10 Non-quantized and non-saturated thruster forces over the Bennu orbit 

simulation with non-saturated and non-quantized thrusters 
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The differences can be immediately noticed due to the thrusters 2, 4, 6, and 8 no longer 

being saturated.  Therefore, the resulting plots of the ideal body torque when compared to 

the command torque, showed little to no error.  

 

Figure 4.11 Body axis torque commands versus ideal torque commands with non-

saturated and non-quantized thrusters 

 

This is even more apparent when analyzing the graph of the individual control cycle 

command errors, which analyzed the error of the command torque compared to the ideal 

toque. The command errors had a maximum peak of just less than 0.1 percent about a 

single axis. The remaining two axis of the spacecraft all remained at a significantly lower 
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percent error, which further emphasizes the distribution matrix’s ability to efficiently 

distribute the control torques to all axis of the spacecraft. 

 

Figure 4.12 Body axis command torque error 

 

For completeness, the following figures are included for the non-quantized and non-

saturated thruster simulation.  As expected the simulation still obtains the desired control 

object with slightly faster settling time and slightly higher rotational rates due to the 

increased torque capabilities. While the direct improvements of the results are not as 

apparent as they are in the previous figures, the trends are still able to be observed. 
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Figure 4.13 Spacecraft Quaternion Based Attitude in Inertial Space with non-saturated 

and non-quantized thrusters  

 

 

Figure 4.14 Body frame angle errors with non-saturated and non-quantized thrusters  
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Figure 4.15 Body frame angle errors with non-saturated and non-quantized thrusters  
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5. Conclusion 

The application of a dual quaternion dynamics simulation in combination with an 

optimized thruster distribution matrix is analyzed for this thesis.  The decision to utilize 

the dual quaternion instead of a more traditional 3-dimension position vector and attitude 

quaternion is made due to the inherent benefits of the coupled system while utilizing dual 

quaternion.   The dual quaternion provides a simulation in which the position and attitude 

equations of motion are coupled. Therefore, when compared to a traditional system where 

the translational orbit and attitude motion are decoupled, the interconnection between the 

two types of motion will be included. With this framework in place, the optimized thruster 

distribution matrix was utilized to provide a minimum thrust solution to the thruster 

allocation problem. This solution is more compact and computationally efficient than a 

typical thruster allocation problem utilized in most spacecraft today.  Additionally, it 

resulted in a very accurate and precise solution when the resulting body forces and torques 

from the distribution matrix was compared to the ideal body forces and torques.  
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6. Recommendations 

The primary area of future work that is recommended to investigate is the 

robustness of the thruster distribution matrix.  Since the calculation of the optimized 

thruster distribution matrix requires exact model knowledge for the thruster locations and 

attitudes, the effect of slight variations in those numbers needs to be addressed.  

Additionally, the topic of failed thrusters and how the efficiency of the distribution matrix 

including the failed thruster compares to full distribution matrix without any failed 

thrusters is an area of interest. Next, investigation into an optimal controller that is 

optimized within the dual quaternion space is desired. Therefore, the entirety of the 

simulation will be within the dual quaternion format. Lastly, a stability analysis of the 

thruster saturation for cases outside of the analyzed simulation would be beneficial to the 

research’s robustness. 
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A. Pseudo Inverse Optimization MATLAB Code 

 %% ////////////////////////////////////////////////////////////////// 
% File: [Min, MinId, Max, MaxId, y] = CalcExtrema(data) 
% Authors: Asher Smith 
% Revision: 8/18/2017 
% Purpose: Computes the thrust distribution matrix for nt = 8 thusters 

%       in 2 clusters of 4. 
% Output: Vector [nt x 12]  thrust distribution matrix 'Dist'. 
%         The 12 columns of Dist are: 
%         [+Fx +Fy +Fz +Tx +Ty +Tz -Fx -Fy -Fz -Tx -Ty -Tz] 
%               where +Fi (-Fi) denotes a positive (negative) unit  

%      force along axis i 
%                     +Ti (-Ti) denotes a positive (negative) unit  

%       torque around axis i. 
% 
%////////////////////////////////////////////////////////////////////// 

  
clc 
clear 
close all 
set(0,'defaultfigurecolor',[1 1 1]) 

  
global Minv b Vnull 

  
%% Set Initial Conditions and Variables 
nt = 8;                         % number of thrusters 
X  = 0.5;                       % distance of clusters from center of 

spacecraft 
d  = 0.03;                      % distance of thrusters from center of 

cluster 
cm = [-0.006; 0.003; 0.77];     % center-of-mass location 
r2 = sqrt(2); 
r3 = sqrt(3); 
a=1; 

  
% Thrust directions 
M = [0.433013   -0.433013   -0.433013   0.433013    0.433013     

    -0.433013   -0.433013   0.433013;... 
     0.25       0.25        -0.25       -0.25       0.25        0.25          

    -0.25       -0.25;... 

     0.866025   0.866025    0.866025    0.866025    -0.866025    

    -0.866025   -0.866025   -0.866025];    

     
% Thruster locations 
R = [1.227      -1.227      -1.227      1.227       1.227       -1.227        

    -1.227     1.227;... 
     1.157      1.157       -1.157      -1.157      1.157       1.157 

    -1.157     -1.157; 
     1.725056   1.725056    1.725056    1.725056    0.421366     

     0.421366    0.421366   0.421366]; 
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% Adds three rows to M for the torques, given by the cross products of 

the lever arms (R-cm) and the thrusts. 
M(4:6,:) = cross(R(1:3,:)-kron(cm, ones(1,nt)),M(1:3,:)); 

  
%% Compute pseudoinverse and null space basis 
[U,S,V] = svd(M); 
Minv = V(:,1:6)*S(:,1:6)^-1*U'; 
Vnull = V(:,7:nt); 

  
%% Find force/torque distribution matrix. The index j cycles over unit 
% positive and negative forces and torques for each axis.  

% The general thrust solution is Minv*b+Vnull*x. 'minimax' 
options1=optimoptions('fminimax','MinAbsMax',6); % Minimize abs values 
f = ones(nt,1); 
z = zeros(6,1); 
for j = 1:12 
    b = z; 
    x = zeros(nt-6,1); 
    if j>6 
        b(j-6,:) = -1; 
    else 
        b(j) = 1; 
    end 
    constr = Minv*b; 
    x = fminimax('dfun',x,-Vnull,constr,[],[],[],[],[],options1); 
    Dist(:,j) = Minv*b + Vnull*x; 
end 
disp('Distibution Matrix = ') 
disp(Dist) 

  
% Numerical 0 Elimination 
for a = 1:8 
    for b = 1:12 
        if Dist(a,b) < 1e-10 
           Dist(a,b) = 0;  
        end 
    end 
end 
disp(Dist) 

 

 

 

function [f,g] = dfun(x) 
global Minv b Vnull 

  
f = Minv*b + Vnull*x; 
g = -f; 
end 

 


	12-2017
	Optimized Thruster Allocation Utilizing Dual Quaternions for the Asteroid Sample Return Mission (OSIRIS-REx)
	Asher Smith
	Scholarly Commons Citation


	tmp.1513803994.pdf.jZuNO

