
Doctoral Dissertations and Master's Theses

Fall 12-2017

Low-Cost Wearable Head-Up Display for Flight General Aviation Low-Cost Wearable Head-Up Display for Flight General Aviation

Pavan K. Chinta
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Aviation Safety and Security Commons

Scholarly Commons Citation Scholarly Commons Citation
Chinta, Pavan K., "Low-Cost Wearable Head-Up Display for Flight General Aviation" (2017). Doctoral
Dissertations and Master's Theses. 362.
https://commons.erau.edu/edt/362

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fedt%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/362?utm_source=commons.erau.edu%2Fedt%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

LOW-COST WEARABLE HEAD-UP DISPLAY

FOR LIGHT GENERAL AVIATION

A Thesis

Submitted to the Faculty

of

Embry-Riddle Aeronautical University

by

Pavan K. Chinta

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Aerospace Engineering

December 2017

Embry-Riddle Aeronautical University

Daytona Beach, Florida

ACKNOWLEDGEMENTS

First, I’d like to thank the Lord for his continued blessings in my life. I would like

to dedicate this project as an attempt to glorify His name. In His name, I rest my thesis.

I am thankful for the incredible family I have: my father, mother and brother. My

family has been supportive in all my of endeavors from pursuing the various internships to

continuing my education at Embry-Riddle, despite all the financial hardships along the way

– they have never, for once, made me feel like I was a burden and constantly reminded me

that we are one team working towards a common goal (my education).

I am very grateful for the work Dr. Richard “Pat” Anderson has been doing at the

Eagle Flight Research Center, which has been instrumental in giving students the practical

experience needed while still in school that is vastly missing in most other schools.

With God’s grace, I have found an extension of my family in Dr. Borja Martos,

who has been a fatherly figure to me over the course of my graduate degree. Dr. Martos

has supported me in every decision, regardless of the repercussions on the ongoing project.

He worked with me very patiently, even remotely during my internships to ensure that I

made enough progress every semester and was on track for a timely graduation. Always

accessible, even late at nights to answer my questions, he arrived very early to work

(without ever complaining), on countless occasions, just so I can get good flight test data

and put up with hardware/software failure several times due to clerical error on my part.

The work presented here would by no means be complete without such amazing support,

care, love and encouragement from Dr. Borja Martos.

Further, I’m grateful for the amazing students I worked with, Jefferson Romney for

creating the Bosch Data Acquisition System, Rico Kast for helping with the Angle of

Attack boom, Agustin Giovagnoli and Ethan Jacobs for helping with obtaining flight-test

data, Javier Cisneros and Sergio Moreno Bacca for helping with the head-tracking module,

and Alfonso Noriega and Vinod Gehlot for helping with implementation of the Data

Acquisition software on LabVIEW. The lab technician, EJ Maynard, has always been

available for a quick taxi on the plane to ensure proper functioning of all the instruments –

I’m very thankful for all his efforts in maintaining the aircraft.

Finally, I feel blessed to have a motherly figure in Shirley Koelker and Kerry

Orpinuk, who have been supporting the students in every situation. In particular, Shirley

has an amazing sense of emotional intelligence and gave wonderful words of

encouragement whenever the students seemed lowly.

The work presented in this thesis is a culmination of the effort of all the people

mentioned previously.

Pavan K. Chinta

November 13th 2017, Daytona Beach, Florida

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. xii

LIST OF ACRONYMS ... xiii

NOMENCLATURE .. xv

ABSTRACT ... xvii

 INTRODUCTION... 1

1.1 Motivating Factors .. 4

1.2 Technology Review ... 7

1.2.1 Brilliant Eyes ... 7

1.2.2 TopMax ... 8

1.2.3 Aero Glass ... 9

1.2.4 Skylens .. 11

1.3 Research Hypothesis ... 12

 THEORY AND BACKGROUND ... 14

2.1 Head-Up Display ... 14

2.2 Angular Units Calculation ... 18

2.3 Head-Tracking Algorithm ... 21

2.4 Angle-of-Attack .. 25

2.4.1 Maximum Endurance .. 28

2.4.2 Maximum Range ... 28

2.4.3 Carson Cruise .. 28

2.5 Complementary Filter ... 29

2.5.1 Discrete Form .. 31

2.6 Flight-Path Angle .. 34

2.7 Areas of Focus ... 35

2.7.1 Flight Phase Performance.. 36

2.7.2 Post-Takeoff Phase .. 36

2.7.3 Cruise Phase .. 36

2.7.4 Landing Phase ... 37

2.7.5 Certification Cost .. 37

2.8 HUD Modes .. 38

2.8.1 Post-Takeoff Mode .. 38

2.8.2 Cruise Mode .. 39

2.8.3 Landing Mode ... 39

 METHODOLOGY ... 41

3.1 Experimental Hardware ... 41

3.1.1 Experimental Aircraft .. 42

3.1.2 Display Device .. 45

3.1.3 Flight Test Computer (FTC) ... 46

3.1.4 Head-Tracking System .. 46

3.2 Experimental Software .. 48

3.2.1 Software Overview .. 48

3.2.2 Gauges Description ... 50

3.2.3 Key Software Features .. 55

3.3 Experimental Setup ... 56

3.3.1 Pitch Ladder Calibration ... 56

3.3.2 Head-Tracking System Selection .. 59

3.3.3 Overall Effectiveness .. 62

3.3.4 Complementary Filter Testing .. 64

 RESULTS AND ANALYSIS ... 65

4.1 Calibration of the Pitch Ladder ... 65

4.2 Head-Tracking System Selection .. 66

4.3 Overall Effectiveness .. 71

4.4 Complementary Filter Testing... 73

 CONCLUSIONS ... 77

5.1 Future Work .. 78

REFERENCES .. 79

APPENDIX A BOSCH BNO055 CALIBRATION .. 82

APPENDIX B ACCELEROMETER DATA FROM BOSCH BNO055 85

APPENDIX C EFRC HUD SOURCE CODE .. 87

viii

LIST OF FIGURES

Figure 1.1 Relevant Parameters with Positive Impact on Accidents between 1959 and

1989 in the Civil Jet Transport Category (Vandel & Weener, 2009). 4

Figure 1.2 Brilliant Eyes, Proposed by Aerocross Systems at EAA’s Air Venture in 2013

(Croft, 2013). ... 8

Figure 1.3 Thales Group is Offering Demonstrations of its Head-Worn TopMax HUD on

a Bose Noise-Cancelling Headset. (Thurber, 2015) .. 9

Figure 1.4 The Aero Glass Wearable HUD with an IR Camera to Estimate the Head

Orientation using a Lightweight Plate of Retro-Reflective Markers Attached to the

Cockpit Frame Above the Pilot’s Head (Bimber, 2015). .. 10

Figure 1.5 Elbit Systems Skylens on ATR flight (Elbit Systems, 2016). 11

Figure 2.1 Coordinate Axis Systems for the Aircraft and the Pilot’s Head, Held in Neutral

Position. ... 15

Figure 2.2 A Sample Wearable HUD Based on the F-16 HUD Design. 16

Figure 2.3 Actual Horizon on the HUD with Rotation of the Pilot’s Head. 17

Figure 2.4 Shifting of the HUD Contents with Rotation of the Pilot’s Head. 18

Figure 2.5. Radius of Projection of the Epson BT-200 glasses. 19

Figure 2.6 First Person View of the HUD, with a Bird at 6o above the Horizon.............. 19

Figure 2.7 2D Rotation of âI to âH by an Angle , on a plane with normal along âI x âH. 23

ix

Figure 2.8 Bode Plot Illustrating Zero Amplitude Change and Zero Phase Delay for T = 1

sec using the Complementary Filter in Eq. (23) and Eq. (24). 30

Figure 2.9 The Wind Triangle Projected onto the Vertical Plane (Beard & McLain, 2012).

 ... 34

Figure 2.10 EFRC HUD Post-Takeoff Mode. .. 38

Figure 2.11 EFRC HUD Cruise Mode. ... 39

Figure 2.12 EFRC HUD Landing Mode. .. 40

Figure 3.1 Overall schematic of the EFRC HUD. .. 41

Figure 3.2 Air Data Probe Mounted on the Experimental Aircraft (Cessna 182Q). 43

Figure 3.3 NovAtel UIMU-HG1700... 43

Figure 3.4 Epson Moverio BT-200 and Assumed Reference Frame on the Experimental

Aircraft. .. 46

Figure 3.5 COTS Bosch Unit Connected to Arduino for Head-Tracking Purposes. 47

Figure 3.6. PixHawk Mini for Head-Tracking Purposes. ... 47

Figure 3.7. Overall Architecture of the EFRC HUD Software. .. 48

Figure 3.8 Altitude Indicator Implementing the Abstract Linear Gauge. 51

Figure 3.9. The Pitch Indicator has Implemented the Abstract Symmetric Gauge Class. 52

Figure 3.10 The Roll Indicator has Implemented the Abstract Curvilinear Gauge Class. 53

Figure 3.11 AOA in Post-Takeoff and Landing Modes of the EFRC HUD..................... 54

Figure 3.12 Properly Calibrated Pitch Ladder (Illustration is Shown when the Pilot’s

Line-of-Sight is Parallel to the “Real” Horizon). .. 56

x

Figure 3.13 Uncalibrated (or Misaligned) Pitch Ladder (Illustration is Shown when the

Pilot’s Line-of-Sight is Parallel to the “Real” Horizon). ... 57

Figure 3.14 Rotating the Securely Fit Glasses and the Arduino Uno about the Different

Axes to Verify the Reliability of the Android’s Attitude Estimation Scheme

(assuming that the Bosch BNO055 Solution is True). .. 58

Figure 3.15 Looking at Different Angles from the “Real” Horizon to Calibrate the Pitch

Ladder. ... 59

Figure 3.16 Head-Tracking System Selection. ... 60

Figure 3.17 Experimental Setup for the Head-Tracking Module to be Functional In-

Flight. ... 64

Figure 4.1 Rotating the Epson BT-200 and BNO055 Simultaneously about the X-Axis to

Get Pitch. ... 65

Figure 4.2 PixHawk Mini Autopilot Solution Compared to the NovAtel Solution (with ±

2 Degree Tolerance Lines). ... 67

Figure 4.3 Bosch BNO055 Solution Compared to the NovAtel Solution (with ± 2 Degree

Tolerance Lines). ... 67

Figure 4.4 Accelerometer Method Solution Compared to the NovAtel Solution (with ± 2

Degree Tolerance Lines). .. 68

Figure 4.5 Flight Path Angle of the Test-Aircraft during Approach from the NovAtel

Unit. ... 69

Figure 4.6 Acceleration of the Test-Aircraft during the Approach from the NovAtel Unit.

 ... 69

xi

Figure 4.7 Roll Rate of the Aircraft during the Test Maneuver from the NovAtel Unit. . 70

Figure 4.8 Pitch Rate of the Aircraft during the Test Maneuver from the NovAtel Unit. 70

Figure 4.9 Yaw Rate of the Aircraft during the Test Maneuver from the NovAtel Unit. 70

Figure 4.10 Accelerometer Method Solution compared to the NovAtel Solution in

Straight-and-Level Flight. ... 71

Figure 4.11 Climbing from 5500 feet to 6000 feet Without Any Assistance. 71

Figure 4.12 Climbing from 5500 feet to 6000 feet Using the EFRC HUD. 72

Figure 4.13 Inexperienced Pilot Performing Climb Task Using the Glasses. 72

Figure 4.14 Inexperienced Pilot Performing Approach Task with the Head-Tracking

Module in Session. .. 73

Figure 4.15 Flight test data for Short Period excitation in Light Atmospheric Turbulence.

 ... 74

Figure 4.16 Flight Test Data for Dutch Roll Excitation in a Calm Atmosphere. 75

Figure 4.17 Flight Test Data for Straight-and-Level Flight in Moderate Atmospheric

Turbulence. .. 76

Figure 4.18 Flight Test Data for Straight-and-Level Flight in High Atmospheric

Turbulence. .. 76

file:///C:/Users/cpava/Documents/Files/HUD_Research/Thesis%20Stuff/Dissertation/Thesis_Dissertation.docx%23_Toc498691098
file:///C:/Users/cpava/Documents/Files/HUD_Research/Thesis%20Stuff/Dissertation/Thesis_Dissertation.docx%23_Toc498691098
file:///C:/Users/cpava/Documents/Files/HUD_Research/Thesis%20Stuff/Dissertation/Thesis_Dissertation.docx%23_Toc498691099
file:///C:/Users/cpava/Documents/Files/HUD_Research/Thesis%20Stuff/Dissertation/Thesis_Dissertation.docx%23_Toc498691100
file:///C:/Users/cpava/Documents/Files/HUD_Research/Thesis%20Stuff/Dissertation/Thesis_Dissertation.docx%23_Toc498691100

xii

LIST OF TABLES

Table 1.1 List of the Currently Available COTS HMDs. ... 7

Table 3.1 Epson BT-200 Specifications. .. 45

Table 3.2 Summary of the Different Attitude Estimation Methodologies Being

Compared... 62

Table 3.3 Flight Test Matrix ... 62

Table 4.1 Iterative Calibration of the Epson BT-200’s Pitch Ladder using the “Real”

Horizon. ... 66

xiii

LIST OF ACRONYMS

AHRS = Attitude and Heading Reference System

AOA = Angle-of-Attack

AOS = Angle-of-Sideslip

AR = Augmented Reality

COTS = Commercial-off-The-Shelf

CT = continuous-time

DAS = Data Acquisition System

DT = discrete-time

EFRC = Eagle Flight Research Center

EFVS = Enhanced Flight Vision System

FAA = Federal Aviation Administration

FPA = Flight-Path Angle

FPV = First-Person View

GA = General Aviation

GAJSC = General Aviation Joint Steering Committee

HGT = Head-Up Guidance Technology

HMD = Head-Mounted Display

HUD = Head-Up Display

IMU = Inertial Measurement Unit

LOC = loss-of-control

xiv

MEMS = Microelectromechanical Systems

MR = Mixed Reality

NTSB = National Transportation and Safety Board

OOP = owner/operator/pilot

xv

NOMENCLATURE

fℎ = Complementary High-Pass Filter Function

f𝑙 = Complementary Low-Pass Filter Function

g = Gravitational Acceleration

p = Roll Rate

q = Pitch Rate

s = Lapace Variable

T = Complementary Filter Time-Constant

V = Freestream velocity

VN, VE, VD, = North Velocity, East Velocity, Down Velocity with respect to the Earth

α = Angle-of-Attack

α𝑓  = Complementary Filtered Angle-of-Attack

αi = Angle-of-Attack from Inertial Source

αg = Angle-of-Attack due to Wind Gust

αv = Angle-of-Attack from Air Data Source

β = Angle-of-Sideslip or Head-Orientation Filter’s First Tuning Gain

βf = Complementary Filtered Angle-of-Sideslip

βi = Angle-of-Sideslip from Inertial Source

βg = Angle-of-Sideslip due to Wind Gust

βv = Angle-of-Sideslip from Air Data Source

𝑛𝑧 = Normalized Acceleration in Z-Direction

xvi

𝑛𝑦 = Normalized Acceleration in Y-Direction

𝜓 = Aircraft Heading

𝜃 = Aircraft Pitch Attitude

𝜑 = Aircraft Roll Attitude

z = Variable in the Discrete-Time Domain

xvii

ABSTRACT

Chinta, Pavan MSAE, Embry-Riddle Aeronautical University, December 2017. Low Cost

Wearable Head-Up Display for Light General Aviation.

A low-cost wearable Commercial-off-The-Shelf (COTS) Augmented Reality (AR)

Head-Up Display (HUD) system is designed, successfully reduced to practice, and flight

tested. The system is developed based on the need for a technology that improves loss-of-

control (LOC) safety in the General Aviation (GA) sector. The accuracy of the flight-path

based system is determined to be within a degree of the truth source. The repeatability of

the data from the COTS system is excellent. A complementary filter is proposed for air

data flow angles and successfully flight tested for straight and level flight, dynamic

maneuvering, and atmospheric turbulence, provided that a reasonably accurate lift curve is

determined. A novel accelerometer method is proposed for estimating the relative pitch

attitude estimation of the pilot’s head. The method is evaluated on the ground and in flight,

and is shown to be superior to other commercially available solutions. The HUD system is

shown, through various test points, to make flying more intuitive and efficient, thereby

affecting the GA LOC. In all the performed tasks, experienced and inexperienced pilots are

used to fly the aircraft and evaluate the technology.

1

 INTRODUCTION

One of the key aspects of the aviation sector is its cautious attitude towards

accepting new technologies, primarily due to the ever rising costs of certification. In

addition, even after a technical evolution comes to the market, users typically wait “for the

technology to age [or be proven safe] before accepting it” (Motors, 2013). For example, in

most military and commercial aircraft, there is a dedicated instrument that shows Angle-

Of-Attack (AOA), uses this aeronautical concept to warn pilots of a potential stall. In GA,

on the other hand, the use of AOA indicators is almost nonexistent and most GA aircraft

lack such an indication (Jimenez, 2013). In 2014, the FAA approved the design

requirements for installation of AOA indicators on small aircraft by simplifying design

approval requirements (News, 2014), causing a surge in the use of AOA indicators in the

GA sector (Bertorelli, 2016).

In this thesis, the importance of AOA is recognized along with a need for a reliable

method to obtain an accurate AOA signal. The limitation of a recent, innovative technology

for obtaining such an accurate signal is established and attempted to be resolved. The

technology obtains the signal using an air mast, which vulnerable to producing noisy data

in severe atmospheric turbulence. The problem is dealt with effectively by using the

popular technique of complementary filtering by combining the inertial signal with air data

signal to obtain an overall smooth AOA signal.

2

Further, there have been more changes in regulations to encourage technologies

previously only limited to military and commercial sectors, to enter into the GA sector

(Dorr, 2016). In light of these changes, this thesis aims to conduct research to develop and

test the usability of a wearable HUD (or simply head-mounted display) using commercially

off-the-shelf products to improve a pilot’s ability to fly by making flying more intuitive

and effective.

In seeking a suitable commercially available HUD System, smart AR glasses were

an attractive option due to their inexpensive price point and ready accessibility due to the

ever-growing demand in the consumer market (Global Industry Analysts, Inc., 2015). Such

a system can be designed with a minimal footprint on the aircraft in terms of having a

permanent interference with existing systems on the aircraft (Thales, 2015). In addition,

the system only provides advisory information, not replacing any information provided by

the existing systems; therefore, the incurring certification costs would be minimal.

(Bertorelli, 2013)

Among the different smart AR glasses, the Epson BT-200 seemed like a viable

option based on factors such as size, compactness, functionality, and use of the device

(Epson, 2014). In this thesis, a fully functional Android application is developed, which

obtains information from an onboard Data Acquisition System (DAS) via a network

connection and appropriately displays the same information to the pilots. The effectiveness

of the system is measured through various flight-test points and the benefit is seen to be

very apparent, as an inexperienced subject pilot is able to perform flight maneuvers under

tight tolerances with assistance from the developed system.

3

A key challenge with developing a Head-Mounted Display (HMD) is the ability to

estimate the pilot’s head pose in order to correctly overlay information such as pitch

attitude and FPA with the outside world. Key concerns for the head-tracking system are

the accuracy, repeatability, and latency of the measurements (Newman & Haworth).

Several of the commercially available HMDs have used different techniques to achieve the

required qualities for the head-tracking system. For example, the AERO GLASS team

chose to use a tiny infrared camera on the glasses which estimates the head pose by using

a lightweight plate of retro-reflective markers attached to the cockpit frame above the

pilot’s seat. The measurement of the pilot’s head pose inside the cockpit is then combined

with the aircraft’s attitude to allow for the correct overlay of visuals under arbitrary viewing

and flying directions (Bimber, 2015).

In order to develop the HMD, a novel head-tracking solution is proposed to attain

the required accuracy, repeatability and latency. The solution relies on measuring the angle

between two vectors in different frames of reference. The first unit vector is aligned with

the body-axis of the aircraft while the second is aligned with the axis of the pilot’s head.

The vector along the body-axis of the aircraft comes from a Microelectromechanical

Systems (MEMS) accelerometer affixed with the aircraft. The vector along the axis of the

pilot’s head comes from the accelerometer build into the AR glasses. The computation of

the head pose occurs in the glasses, where the head pose is combined with the aircraft

attitude to correctly overlay the information with the outside world.

4

Once the accuracy, repeatability and latency of the head-tracking solution is

verified through various flight-test points, the effectiveness of HUD system is measured in

other areas of flight-test performance. The flight tests show positive results for the HUD in

all conditions and the system promises to be a potential safety device for the future pilots.

1.1 Motivating Factors

In 1990, the Flight Safety Foundation conducted a study on Head-Up Guidance

Technology (HGT) to improve aviation safety. The study concluded that the HGT could

have likely prevented a significant portion of LOC accidents that occurred between 1959

and 1989 in the civil jet transport category (Vandel & Weener, 2009), as shown in Figure

1.1 (only parameters relevant to this thesis are listed).

Figure 1.1 Relevant Parameters with Positive Impact on Accidents between 1959

and 1989 in the Civil Jet Transport Category (Vandel & Weener, 2009).

5

Unfortunately, the rate of GA accidents and fatalities is the highest of all aviation

categories, being nearly constant for the past decade. According to the National

Transportation and Safety Board (NTSB), in 2010 GA accidents accounted for 96 percent

of all aviation accidents, 97 percent of fatal aviation accidents, and 96 percent of all

fatalities for U.S. civil aviation. In contrast, GA accounted for an estimated 51 percent of

total flight time of all U.S. civil aviation in 2010. Other forms of aviation, such as transport

category aircraft, have seen an accident rate that has been decreasing to historically low

values. In these categories, the airplanes, pilots, equipment, training requirements,

maintenance procedures and financial means are, to a large extent, homogenous. In these

categories, safety improvements in the form of equipment or pilot training, once identified,

are typically mandated. On the other hand, it is the opposite in GA, with a vast diversity in

airplanes, pilots, aeronautical experience, training requirements, maintenance procedures

and financial abilities. It is also critical to note that additional pilot training, equipment,

and other known safety enhancing products historically are not mandated in a large portion

of GA. Based on the NTSB statistics, the GA Joint Steering Committee (GAJSC), and other

studies, a low cost HUD is recommended equipment to improve GA safety (NTSB, 2015).

6

Furthermore, in 2016 the Federal Aviation Administration (FAA) overhauled the

airworthiness standards for small GA airplanes. The FAA estimates that the overall

economic impact would be cost beneficial, as the new proposal attempts to streamline the

approval of advancements for small GA aircraft. With this overhaul, a number of

technologies previously available to the military and commercial markets are now

beginning to be appear in GA. Examples of such technologies include Fly-by-Wire,

Enhanced Vision, and HUD systems (Dorr, 2016).

Moreover, there is a growing trend of wearable AR, Mixed Reality (MR), and

Virtual Reality (VR) glasses with the advent of Google glass in 2014. Today, there are a

large number of sophisticated glasses available at an affordable price. Dramatic price

reductions and technology improvements have opened up the possibility of using such

technology in GA.

The following research suggests the design of a simple, effective, and affordable

wearable HUD system that will affect GA LOC safety by making flying more intuitive and

efficient. The HUD system is developed at the Eagle Flight Research Center (EFRC) and

will be referred to as the EFRC HUD. The primary focus is the GA retrofit market with

over 200,000 registered aircraft. Therefore, the basic premise of this research is twofold:

(1) to develop a simple, effective and affordable wearable HUD and (2) to develop a HUD

system that will make the owner/operator/pilot (OOP) want to incorporate the system into

their aircraft operation. The only way to make the OOP want to do this is to provide a clear

cost benefit that is specific to that person and airplane.

7

1.2 Technology Review

In this section, all the commercially available HUDs similar to that proposed in the

thesis are briefly discussed. For the purpose of comparison, all similar products regardless

of their target audience, are mentioned in Table 1.1 and discussed further along the section.

The EFRC HUD is developed for a light GA aircraft that is capable of transmitting (via

Wi-Fi or wired connection) the aircraft attitude, Flight-Path Angle (FPA) and AOA signals.

Table 1.1 List of the Currently Available COTS HMDs.

Product Company Target Audience Head-Tracking Price (USD)

Brilliant Eyes Aerocross Systems GA COTS Solution < 2,000

TopMax Thales Group Business/Commercial IR Camera 50,000

Aero Glass Aero Glass GA IR Camera 14,000

Skylens Elbit Systems Commercial IR Camera 50,000

EFRC HUD EFRC GA Accelerometer < 1,000

1.2.1 Brilliant Eyes

Brilliant Eyes is a HMD developed by a startup company named Aerocross

Systems, targeted towards the light GA market, shown in Figure 1.2. A prototype version

was displayed at EAA’s AirVenture in 2013 with a planned low-rate production by late

2014 for less than $2000. The initial design was proposed to only contain the “traditional

six-pack of information – altitude, heading, airspeed, vertical speed, horizontal direction

and a magnetic compass.” In order to ensure conformity of the data presentation to the

pilot’s head position during flight, there is ongoing research on an appropriate head-

tracking system. One method that is said to be potentially used is an inexpensive COTS

Attitude and Heading Reference System (AHRS), as an on-chip sensor attached to the

HMD (Croft, 2013).

8

Figure 1.2 Brilliant Eyes, Proposed by Aerocross Systems at EAA’s Air Venture in

2013 (Croft, 2013).

Upon considering all the features such as cost and target audience, Brilliant Eyes is

very similar to the EFRC HUD. The major difference however, is the head-tracking

solution employed – the off-the-shelf AHRS unit suggested for the product has been tested

in this project and found to inadequate.

1.2.2 TopMax

TopMax is a head-worn HUD developed by the Thales Group, with “a really light

footprint within the aircraft compared a [traditional] HUD.” The HUD consists of a main

module with a display in front of one of the pilot’s eyes showing all the flight symbology,

plus a camera for orientation purposes, as shown in Figure 1.3. Although TopMax was

developed as a solution to the business jets that cannot be equipped with HUD, there has

been a lot of enthusiasm from the high-end jet market as well. The product is planned on

being entered into production in 2019 (Thurber, 2015).

9

Figure 1.3 Thales Group is Offering Demonstrations of its Head-Worn TopMax

HUD on a Bose Noise-Cancelling Headset. (Thurber, 2015)

Upon comparing TopMax with the EFRC HUD, apart from the difference of the

target audience, TopMax uses a camera for orientation purposes while the EFRC HUD

uses a simple MEMS accelerometer. As the camera requires “stickers on the overhead

panel”, the solution seems more sophisticated and expensive than the head-tracking

solution presented in this thesis.

1.2.3 Aero Glass

The company Aero Glass used the Epson BT-200 glasses to design the initial

prototype of the Aero Glass wearable HUD. The company took an approach very similar

to that taken by the Thales Group for the head-tracking solution and used a tiny IR camera

on the HUD, in conjunction with a removable, lightweight plate of retro-reflective markers

attached to the cockpit frame above the pilot’s seat, as shown in Figure 1.4.

10

Figure 1.4 The Aero Glass Wearable HUD with an IR Camera to Estimate the Head

Orientation using a Lightweight Plate of Retro-Reflective Markers Attached to the

Cockpit Frame Above the Pilot’s Head (Bimber, 2015).

However, the solution is reported to have certain reliability issues when used with

the Epson BT-200. It is proposed that another pair of glasses such as the ODG R-7 are to

be used in the future as they come with much superior sensors, and can potentially track

the orientation simply using the onboard Inertial Measurement Unit (IMU) sensors

(Bimber, 2015).

The head-tracking solution proposed in this thesis uses the sensors on the Epson

BT-200 and is found to be adequately accurate and reliable for estimating the head pose in

various flight maneuvers and atmospheric conditions.

11

1.2.4 Skylens

Skylens is a wearable HUD developed by Elbit Systems for Enhanced Flight Vision

System (EFVS) applications, geared towards the business aviation market for retrofit and

forward-fit application (Szondy, 2014). While retrofit refers to adding “a component to

something that did not have it when manufactured” (Definition of retrofit in English:, n.d.),

forward-fit refers to adding the component while the product is still in production (Motta,

2004).

The HUD unit comes equipped with an IR sensor which tracks orientation with the

help of a tracker unit affixed to the roof of the cockpit. (Ebit Systems - Aerospace, 2014)

As seen from Figure 1.5, the entire unit is much more bulky and sophisticated than

any of the other HUDs seen previously. The differences between the Skylens and the EFRC

HUD are the target audience, head-tracking solution and the desired capabilities.

Figure 1.5 Elbit Systems Skylens on ATR flight (Elbit Systems, 2016).

12

In summary, there are currently several commercially available wearable HUDs in

all sectors of the aviation market. Majority of the products have used an IR camera with a

reflective marker board on the cockpit panel for orientation purposes, which has been

reported to have reliability issues by some producers. Through this thesis, an economical,

reliable and fully commercially-off-the-shelf solution is aimed to be developed, which

although is comparable to those currently available in the market, it is distinct in the head-

tracking solution employed. In other words, one of the goals of this project is to suggest a

simple wearable HUD that uses an economical and reliable algorithm for head-tracking

and effectively illustrates the benefit of the entire system for use in the light GA sector.

1.3 Research Hypothesis

Using FPA as the primary control aide, supplemented with AOA and traditional

cockpit information makes performing tasks that otherwise require significant effort rather

effortless, even under tight tolerances for inexperienced pilots.

In order to fly the tolerances outlined in the FAA’s Airman Certification Standards

(Federal Aviation Administration, 2017) using traditional cockpit instruments, a pilot must

develop an acquired sense of intuition (as opposed to a natural sense), which typically

requires consistent and disciplined flight training with a certified flight instructor.

However, as previously noted, there is a vast diversity in aeronautical experience, training

requirements, maintenance procedures and financial abilities in GA.

13

Consider a typical approach and landing scenario where the pilot is flying with

traditional cockpit instruments. To perform a successful landing the pilot must infer the

aircraft’s flight path from a synthesis of the optical flow, and the relative perspective

gradient or sight picture. On the other hand, a HUD with flight-path symbology can

explicitly show the pilot where the aircraft is going relative to the landing environment. In

this case, the pilot’s mental workload is vastly reduced, allowing him to fly the aircraft

with a sense of natural intuition (Goteman, Smith, & Dekker, 2007).

In fact, it is hypothesized that when a pilot closes the loop on FPA typical flight

maneuvers can be performed with tight tolerances, less flight training, and reduced pilot

workload. For example, climbing to a new altitude and trimming the aircraft with an

altitude tolerance of ±50 feet, landing at a specific spot on the runway with a target

tolerance of ±100 feet, or flying at a constant AOA in level flight with an AOA tolerance

of ±1o.

In order to test the hypothesis, a subject pilot without flying experience is chosen

to perform certain work intensive maneuvers, with and without assistance from the EFRC

HUD. Although the subject pilot lacked the required flight training to perform these tasks,

the subject pilot received sufficient ground school knowledge to properly interpret

traditional cockpit instruments and the EFRC HUD.

14

 THEORY AND BACKGROUND

In this section, the theory and algorithms required for the development of the EFRC

HUD are explained.

2.1 Head-Up Display

“HUDs are transparent displays that present data without requiring users to look

away from their usual viewpoints” (Stevenson, 2010). The origin of the name stems from

a pilot being able to view information from the head positioned “up” and looking forward,

instead of angled down at the instrument panel. Most HUDs are focused at optical infinity

eliminating the need for the pilot to refocus between the HUD information and real world

features viewed through the HUD (Rockwell Collins, January 2016).

Broadly speaking, HUDs can either be hard-mounted in an aircraft or worn by the

pilot. Conventional HUDs are hard mounted in commercial and executive sectors.

However, in light GA aircraft, a wearable HUD is more suitable. One difference between

a conventional HUD and a wearable HUD is that the former has a fixed reference frame

while the latter has a moving reference frame with respect to the airplane. The minimum

requirements stated in 14 CFR Part 91 required HUDs to display airspeed, altitude, a

horizon line, heading, and turn indicator (FAA, n.d.).

In this thesis, the coordinate system for the pilot’s head (in neutral position) is

selected so that it aligns with the body-axis of the aircraft, i.e. x-axis is positive along the

line-of-sight, y-axis is along the right side and z-axis in positive towards the feet of the

pilot, as shown in Figure 2.1.

15

Figure 2.1 Coordinate Axis Systems for the Aircraft and the Pilot’s Head, Held in

Neutral Position.

If the aircraft is assumed to have an orientation of AC (pitch), AC (roll), AC

(heading) and the head is assumed to be oriented at H (pitch), H (roll), H (heading); then,

the orientation of the aircraft is displayed on the HUD with respect to the head. A sample

wearable HUD (based on the F16 HUD design) is shown in Figure 2.2.

16

Figure 2.2 A Sample Wearable HUD Based on the F-16 HUD Design.

With such an axis system, if the pilot were to roll his head (rotation about the y-

axis) counter-clockwise at angle H and the aircraft is flying “wings-level” (i.e. AC = 0),

the zero-pitch line and the pitch ladder are drawn at an angle of (AC - H) on the HUD –

the sign convention of the rotation is shown in Figure 2.3. Note that AC is shown for

completeness.

17

 Figure 2.3 Actual Horizon on the HUD with Rotation of the Pilot’s Head.

The same idea is further illustrated in Figure 2.4, where the glasses represent the

pilot’s head, which is rotated counter-clockwise around the y-axis. Note that the outside

world is only shown for visualization purposes. Make note of how all the contents of the

HUD are titled with the rotation of the glasses; however, the zero-pitch line (and the pitch

ladder) are still aligned with the “real” horizon.

18

Figure 2.4 Shifting of the HUD Contents with Rotation of the Pilot’s Head.

2.2 Angular Units Calculation

In any pair of smart AR glasses, the display is projected at a specific distance from

the eyes. For use of such glasses as a wearable HUD, the following information is

appropriately displayed: airspeed, altitude, roll, pitch, heading, flight-path marker and

AOA. Among which, the pitch attitude and flight-path marker must conform to the outside

world; therefore, the pixels per degree for the AR glasses must be known to correctly

display graduations on the pitch ladder.

19

In order to understand what “conforming to the outside world” means, consider a

situation where the user is looking with “eyes-leveled” with the horizon and a bird is flying

above the user’s head, at 6o to the horizon, as shown in Figure 2.5.

Figure 2.5. Radius of Projection of the Epson BT-200 glasses.

The First-Person View (FPV) for the same situation is shown in Figure 2.6. Note

that, for illustration purposes, only the pitch ladder is shown on the HUD.

Figure 2.6 First Person View of the HUD, with a Bird at 6o above the Horizon.

20

In the above illustration, to ensure that the bird is at 6o to the zero-pitch line, the

angular resolution (𝜔𝐵𝑇200) must be known – the following procedure illustrates estimation

of the same parameter.

According to the user manual of the Epson BT-200, the screen resolution is 960 x

540 pixels (𝑤 𝑥 ℎ), the aspect ratio is 16:9 and the horizontal field-of-view, ℎ𝑓𝑜𝑣, is 23o.

The vertical field-of-view, 𝑣𝑓𝑜𝑣 (degrees), is calculated as follows.

𝑣𝑓𝑜𝑣 =
ℎ𝑓𝑜𝑣

𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜
=

23

16/9
= 12.9375𝑜

Next, the pixels per degree is calculated using the height of the screen (540 pixels)

and the vertical field-of-view.

𝜔𝐵𝑇200 =
ℎ

𝑣𝑓𝑜𝑣
=

540

12.9375
= 41.739 𝑝𝑖𝑥𝑒𝑙/𝑑𝑒𝑔𝑟𝑒𝑒

The calculated angular resolution is used on the EFRC HUD to draw graduations

on the pitch ladder and overlay the pitch cross-hair and the flight-path marker with respect

to the outside world.

21

2.3 Head-Tracking Algorithm

In order to estimate the absolute orientation of the wearable HUD, an accurate and

reliable sensor fusion algorithm is required for use on the built-in sensors such as

gyroscope, accelerometer and magnetometer. However, no such algorithm is identified

based on the required accuracy of ±2 degrees (of the orientation). Most of the available

algorithms use accelerometers to detect the tilt of the head and smooth the signal using

gyroscopic corrections, which works well in a quasi-static environment. However, in a

dynamic environment, the accelerometer sensor becomes practically useless due to the

distortion of the signal, resulting in an inaccurate attitude solution. (Ahmed & Tahir, 2016)

Therefore, most wearable HUD manufacturers resort to estimating relative orientation of

the pilot’s head (i.e. with respect to the aircraft) instead of the absolute orientation. Majority

of the manufacturers listed earlier in the document used an IR camera in conjunction with

a retro-reflective marker board to estimate the orientation of the pilot’s head. However,

such a head-tracking setup results in a high price point, clearly reflected in the difference

in the prices between the Aero Glass and the Brilliant Eyes – while Aero Glass used the IR

camera solution, Brilliant Eyes suggested using a COTS solution.

In this thesis, a slightly different approach is suggested for estimating the head

orientation with respect to the aircraft, using two MEMS accelerometers – one fixed with

the aircraft and another fixed with the head.

Consider two accelerations, aAC and aH, which have components in the aircraft-

body reference frame and pilot’s head reference frame respectively.

22

𝑎⃗𝐴𝐶 = 𝑎𝑥𝐴𝐶
𝑖𝐴̂𝐶 + 𝑎𝑦𝐴𝐶

𝑗𝐴̂𝐶 + 𝑎𝑧𝐴𝐶
𝑘̂𝐴𝐶 (1)

𝑎⃗𝐻 = 𝑎𝑥𝐻
𝑖̂𝐻 + 𝑎𝑦𝐻

𝑗𝐻̂ + 𝑎𝑧𝐻
𝑘̂𝐻 (2)

The procedure below is used to estimate the head orientation with respect to the

aircraft, from the two accelerations shown in Equations (1) and (2).

Normalize the accelerations using the corresponding Euclidean norm to obtain unit

vectors in the respective reference frames, as shown in Equations (3) and (4).

𝑎̂𝐴𝐶 =
𝑎𝑥𝐴𝐶

𝑖𝐴̂𝐶 + 𝑎𝑦𝐴𝐶
𝑗𝐴̂𝐶 + 𝑎𝑧𝐴𝐶

𝑘̂𝐴𝐶

√𝑎𝑥𝐴𝐶
2 + 𝑎𝑦𝐴𝐶

2 + 𝑎𝑧𝐴𝐶
2

(3)

𝑎̂𝐻 =
𝑎𝑥𝐻

𝑖̂𝐻 + 𝑎𝑦𝐻
𝑗𝐻̂ + 𝑎𝑧𝐻

𝑘̂𝐻

√𝑎𝑥𝐻
2 + 𝑎𝑦𝐻

2 + 𝑎𝑧𝐻
2

(4)

The acceleration in the aircraft body-fixed reference frame, 𝑎̂𝐴𝐶, can then be

converted to the inertial reference frame using the rotation matrix obtained from ZYX

rotation. The rotation matrix is shown in Eq. (6), where 𝜙𝐴𝐶 , 𝜃𝐴𝐶 , and 𝜓𝐴𝐶 are the aircraft’s

Euler angles about x, y and z-axes respectively (Stengel, 2004).

𝑎̂𝐼 = 𝑅−1𝑎̂𝐴𝐶 (5)

𝑅 = [

𝑐𝜃𝐴𝐶𝑐𝜓𝐴𝐶 𝑐𝜙𝐴𝐶𝑠𝜓𝐴𝐶 −𝑠𝜃𝐴𝐶

−𝑐𝜙𝐴𝐶𝑠𝜓𝐴𝐶 + 𝑠𝜙𝐴𝐶𝑐𝜓𝐴𝐶𝑠𝜃𝐴𝐶 𝑐𝜙𝐴𝐶𝑐𝜓𝐴𝐶 + 𝑠𝜙𝐴𝐶𝑠𝜃𝐴𝐶𝑠𝜓𝐴𝐶 𝑠𝜙𝐴𝐶𝑐𝜃𝐴𝐶

𝑠𝜙𝐴𝐶𝑠𝜓𝐴𝐶 + 𝑐𝜙𝐴𝐶𝑠𝜃𝐴𝐶𝑐𝜓𝐴𝐶 −𝑠𝜙𝐴𝐶𝑐𝜓𝐴𝐶 + 𝑐𝜙𝐴𝐶𝑠𝜃𝐴𝐶𝑠𝜓𝐴𝐶 𝑐𝜙𝐴𝐶𝑐𝜃𝐴𝐶

] (6)

Consider the 2D rotation of 𝑎̂𝐼 onto 𝑎̂𝐻 by an angle , on a plane with normal along

𝑎̂𝐼 x 𝑎̂𝐻, as shown in Figure 2.7.

23

Figure 2.7 2D Rotation of âI to âH by an Angle , on a plane with normal along âI x

âH.

The rotation matrix for the 2D rotation is shown in Eq. (7).

𝐺 = [
𝑐𝑜𝑠𝜃 −sinθ 0
sinθ 𝑐𝑜𝑠𝜃 0
0 0 1

] = [
𝑎̂𝐼 . 𝑎̂𝐻 −||𝑎̂𝐼 x 𝑎̂𝐻|| 0

||𝑎̂𝐼 x 𝑎̂𝐻|| 𝑎̂𝐼 . 𝑎̂𝐻 0
0 0 1

] (7)

The matrix G represents the rotation from 𝑎̂𝐼 to 𝑎̂𝐻 in the basis set (say Q) consisting

of the following vectors.

1. Normalized vector projection of 𝑎̂𝐻 onto 𝑎̂𝐼

𝑢̂ =
(𝑎̂𝐼 . 𝑎̂𝐻)𝑎̂𝐴𝐶

||(𝑎̂𝐼 . 𝑎̂𝐻)𝑎̂𝐼||
= 𝑎̂𝐼 = [

𝑎𝐼𝑥
𝑎𝐼𝑦

𝑎𝐼𝑧

] = [

𝑢1

𝑢2

𝑢3

] (8)

2. Normalized vector rejection of 𝑎̂𝐻 on 𝑎̂𝐼 (which is orthogonal to the vector

projection of 𝑎̂𝐻 onto 𝑎̂𝐼)

𝑣 =
𝑎̂𝐻 − (𝑎̂𝐼 . 𝑎̂𝐻)𝑎̂𝐼

||𝑎̂𝐻 − (𝑎̂𝐼 . 𝑎̂𝐻)𝑎̂𝐼||
=

[

𝑎𝐼𝑥 − (𝑎𝐼𝑥𝑎𝐻𝑥
)𝑎𝐻𝑥

‖𝑎𝐼𝑥 − (𝑎𝐼𝑥𝑎𝐻𝑥
)𝑎𝐻𝑥

‖

𝑎𝐼𝑦 − (𝑎𝐼𝑦𝑎𝐻𝑦
) 𝑎𝐻𝑦

‖𝑎𝐼𝑦 − (𝑎𝐼𝑦𝑎𝐻𝑦
) 𝑎𝐻𝑦

‖

𝑎𝐼𝑧 − (𝑎𝐼𝑧𝑎𝐻𝑧
)𝑎𝐻𝑧

‖𝑎𝐼𝑧 − (𝑎𝐼𝑧𝑎𝐻𝑧
)𝑎𝐻𝑧

‖]

= [

𝑣1

𝑣2

𝑣3

] (9)

24

3. The cross product of 𝑎̂𝐻 and 𝑎̂𝐼 (which is orthogonal to both, the vector projection

and the vector rejection of 𝑎̂𝐻 onto 𝑎̂𝐼)

𝑤̂ = 𝑎̂𝐻 𝑥 𝑎̂𝐼 = [

𝑎𝐻𝑦
𝑎𝐼𝑧

− 𝑎𝐻𝑧
𝑎𝐼𝑦

𝑎𝐻𝑧
𝑎𝐼𝑥

− 𝑎𝐻𝑥
𝑎𝐼𝑧

𝑎𝐻𝑥
𝑎𝐼𝑦

− 𝑎𝐻𝑦
𝑎𝐼𝑥

] = [

𝑤1

𝑤2

𝑤3

] (10)

The basis change matrix for the same basis is as follows. (Hefferon, 2017)

𝐹 = [𝑢 𝑣 𝑤]−1 = [

𝑢1 𝑣1 𝑤1

𝑢2 𝑣2 𝑤2

𝑢3 𝑣3 𝑤3

]

−1

=> 𝐹 = [

𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

]

Therefore, to rotate a vector in the inertial reference frame onto the head reference

frame, the vector must be right-multiplied by the rotation matrix U, shown in Eq. (11), to

change the basis set to Q, rotate the vector by the rotation matrix G and finally revert the

basis set to the original basis set (in that order).

𝑈 = 𝐹−1𝐺𝐹 = [

𝑢1 𝑣1 𝑤1

𝑢2 𝑣2 𝑤2

𝑢3 𝑣3 𝑤3

] [
𝑐𝑜𝑠𝜃 −sinθ 0
sinθ 𝑐𝑜𝑠𝜃 0
0 0 1

] [

𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

] (11)

However, to rotate 𝑎̂𝐼 onto 𝑎̂𝐻 using the ZYX rotation sequence, the same rotation

matrix shown in Eq. (6) can be re-written in terms of the Euler angles of the pilot’s head

as shown in Eq. (12), where 𝜙𝐻, 𝜃𝐻, and 𝜓𝐻 are angles about x, y and z-axes respectively.

𝑈 = [

𝑐𝜃𝐻𝑐𝜓𝐻 𝑐𝜙𝐻𝑠𝜓𝐻 −𝑠𝜃𝐻

−𝑐𝜙𝐻𝑠𝜓𝐻 + 𝑠𝜙𝐻𝑐𝜓𝐻𝑠𝜃𝐻 𝑐𝜙𝐻𝑐𝜓𝐻 + 𝑠𝜙𝐻𝑠𝜃𝐻𝑠𝜓𝐻 𝑠𝜙𝐻𝑐𝜃𝐻

𝑠𝜙𝐻𝑠𝜓𝐻 + 𝑐𝜙𝐻𝑠𝜃𝐻𝑐𝜓𝐻 −𝑠𝜙𝐻𝑐𝜓𝐻 + 𝑐𝜙𝐻𝑠𝜃𝐻𝑠𝜓𝐻 𝑐𝜙𝐻𝑐𝜃𝐻

] (12)

25

Comparing Eq. (11) and Eq. (12), Euler angles of the pilot’s head can be estimated

through the following equations.

𝜃𝐻 = sin−1(−𝑈13)

𝑈13 = 𝑢1(𝑢3𝑐𝑜𝑠𝜃 − 𝑣3𝑠𝑖𝑛𝜃) + 𝑣1(𝑢3𝑠𝑖𝑛𝜃 + 𝑣3𝑐𝑜𝑠𝜃) + 𝑤1𝑤3

(13)

𝜙𝐻 = sin−1(𝑈23/𝑐𝑜𝑠𝜃𝐻)

𝑈23 = 𝑢2(𝑢3𝑐𝑜𝑠𝜃 − 𝑣3𝑠𝑖𝑛𝜃) + 𝑣2(𝑢3𝑠𝑖𝑛𝜃 + 𝑣3𝑐𝑜𝑠𝜃) + 𝑤2𝑤3

(14)

𝜓𝐻 = sin−1(𝑈12/𝑐𝑜𝑠𝜙𝐻)

𝑈12 = 𝑢1(𝑢2𝑐𝑜𝑠𝜃 − 𝑣2𝑠𝑖𝑛𝜃) + 𝑣1(𝑢2𝑠𝑖𝑛𝜃 + 𝑣2𝑐𝑜𝑠𝜃) + 𝑤1𝑤2

(15)

Most of the parameters shown on the HUD are conventionally available on an

aircraft. The following two parameters however are not typically available on light GA

aircraft and need to be computed specially for the HUD.

i) AOA

ii) Flight-Path Marker (FPM)

2.4 Angle-of-Attack

By definition, absolute AOA is the angle between the oncoming air or relative wind

and the aircraft zero lift line. It is a direct measure of stall margin independent of aircraft

weight.

26

Reference (Rogers, Martos, & Rodrigues, 2015) demonstrated a low-cost design

for obtaining AOA using a COTS differential pressure probe with an accuracy between

0.25o – 0.50o. The signal from an air data source is the sum of the inertial component, 𝑖,

and the gust component, 𝑔, (due to wind gust or atmospheric turbulence), as shown in Eq.

(16) and (17).

𝛼𝑣 = 𝛼𝑖 + 𝛼𝑔 (16)

𝛽𝑣 = 𝛽𝑖 + 𝛽𝑔 (17)

In order to get a reliable AOA signal using a complementary filter, 𝛼𝑣 (air data

signal) is passed through a low-pass filter to suppress the high-frequency gust component.

Simultaneously 𝛼𝑖 (inertial signal) is passed through a complementary high-pass filter to

smooth the overall signal without introducing phase delay. (Knotts & Priest)

The AOA complementary filter is shown in Eq. (18), where 𝛼𝑓 represents the

filtered 𝛼, 𝑓𝑙 is the low-pass filter function with 𝛼𝑖 + 𝛼𝑔 being the input with the gust

component, 𝑓ℎ is the high-pass filter function with ∫ 𝛼̇𝑖 𝑑𝑡 being the input, and 𝛼̇𝑖 is the

inertial time-varying AOA obtained from the IMU data.

𝛼𝑓 = 𝑓𝑙(𝛼𝑖 + 𝛼𝑔) + 𝑓ℎ(∫ 𝛼̇𝑖 𝑑𝑡) (18)

27

The initial condition for the integral in Eq. (18) is obtained using Eq. (19), where 𝛾

is the inertial FPA, 𝜃 is the pitch angle, 𝜙 is the roll angle, and 𝛽𝑖 is the Angle-of-Sideslip

(AOS) from the inertial source (Knotts & Priest). For the initial condition, AOS from the

inertial source is approximated to be the AOS from the air-data source, i.e. βg ≈ 0 for the

initial condition.

𝛼𝑖 =
−𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝜃 − 𝛽𝑖𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜙
 (19)

𝛼̇𝑖 ≅
𝑔

𝑉
(𝑛𝑧 + 𝑐𝑜𝑠 𝜙) + 𝑞 − 𝑝𝛽𝑓 (20)

In Eq. (20), 𝑔 is the gravitational acceleration, 𝑉 is the freestream velocity, 𝑛𝑧 is

the normalized acceleration in z-direction, 𝑞 is the pitch rate, 𝑝 is the roll rate and 𝛽𝑓 is the

complementary filtered AOS, which is computed using Eq. (21), where 𝑓𝑙 is the low-pass

filter function with 𝛽𝑖 + 𝛽𝑔 being the input, 𝑓ℎ is the high-pass filter function with ∫𝛽𝑖̇ 𝑑𝑡

being the input, and 𝛽𝑖̇ is the time-varying inertial AOS obtained from the IMU data, as

shown in Eq. (22).

𝛽𝑓 = 𝑓𝑙(𝛽𝑖 + 𝛽𝑔) + 𝑓ℎ(∫𝛽𝑖̇ 𝑑𝑡) (21)

𝛽̇𝑖 ≅
𝑔

𝑉
(𝑛𝑦 + 𝑠𝑖𝑛 𝜙) − 𝑟 + 𝑝𝛼𝑓 (22)

In Eq. (22), 𝑛𝑦 is the normalized acceleration in the y-direction, and 𝑟 is the yaw rate.

Note that Eq. (20) and Eq. (22) assume that 𝜃 ≈ 0 (small angle assumption) and 𝑉̇ ≈ 0

(cruise flight assumption).

28

There are at least three values of AOA that are of particular interest to pilots, viz.,

maximum endurance, maximum range and Carson cruise which are used symbolically in

the approach and cruise modes of the EFRC HUD.

2.4.1 Maximum Endurance

The maximum endurance AOA represents the AOA where the aircraft consumes

the least amount of power. When holding for weather or traffic to clear, it is common to

fly at the best endurance condition. Also, at angles of attack beween stall and best

endurance, the aircraft is operating on the backside of the power required curve, where the

aircraft does not have speed stability. Providing accurate information of AOA that clearly

depicts this regime is useful in preventing departure from controlled flight.

2.4.2 Maximum Range

The AOA for maximum lift to drag ratio corresponds to maximum range for a

piston engine propeller aircraft. This AOA does not change with density altitude, weight,

load factor, etc. Hence, in a fuel critical situation and/or an engine failure situation it is

critical that the pilot have accurate access to this AOA.

2.4.3 Carson Cruise

The Carson cruise AOA represents the most efficient way to fly fast with the least

increase in fuel consumption. With today’s rising fuel costs, it certainly is of significant

interest.

29

2.5 Complementary Filter

As suggested previously, obtaining an accurate  signal can be challenging because

most GA COTS indicators do not have the required accuracy for use as a control aide.

Reference (Rogers, Martos, & Rodrigues, 2015) suggests a simple, low-cost design for

obtaining  using a COTS differential pressure probe with an accuracy between 0.25o –

0.50o. However, the accuray of an air data signal is degraded in the presence of

atmospheric turbulence.

A complementary filter is a filtering technique used to combine similar data from

different sensors. In this research, complementary filter will be used to account for

atmospheric turbulence, where information from air data sensors is combined with that

from inertial sensors. This technique has been successfully used in the United States Air

Force Total In-Flight Simulator (TIFS) aircraft to produce high quality α and β signals for

flight control systems (Knotts & Priest).

A typical complementary filter has a low-pass filter and a corresponding high-pass

filter, which combine data from two different sources to produce a blended signal with

little to no phase lag or amplitude change. The zero-phase lag and unity amplitude change

in the output signal is one the major advantages of a complementary filter, illustrated in

Figure 2.8.

30

Figure 2.8 Bode Plot Illustrating Zero Amplitude Change and Zero Phase Delay for

T = 1 sec using the Complementary Filter in Eq. (23) and Eq. (24).

The specific form of the complementary filter used in this thesis is shown in Eq.

(23) and (24), where 𝑓𝑙 is the low-pass filter function, 𝑓ℎ is the complementary high-pass

filter function, 𝑇 is the filter time-constant, and 𝑠 is the Laplace variable. The final output

of the complementary is the sum of that from the low-pass filter and the high-pass filter, as

shown in Eq. (25), where 𝑌 is the output signal. Additional information on the design of

this filter can be found in Ref. (Knotts & Priest).

𝑓𝑙 = 1/(𝑇𝑠 + 1)2 (23)

𝑓ℎ = 2𝑇𝑠 (
𝑇𝑠

2
+ 1) /(𝑇𝑠 + 1)2 (24)

𝑌𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦−𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑌𝐿𝑜𝑤−𝑃𝑎𝑠𝑠 + 𝑌𝐻𝑖𝑔ℎ−𝑃𝑎𝑠𝑠 (25)

31

In the implementation of the complementary filter, the AOA and AOS pressure

sensors provide a steady state and low frequency content. As the vane information is

degraded in the presence of wind gusts and turbulence, accelerometers and gyros, sensors

which are not affected by external gusts, provide the high frequency content.

2.5.1 Discrete Form

The complementary filter shown in Eq. (23) and (24), can be implemented in a

software such as MATLAB; however, in order to implement these on C++ code, the

continuous-time (CT) domain form must be converted to a discrete-time (DT) domain

form, as illustrated below using Tustin approximation.

Tustin Approximation: Low-Pass Filter

In order to convert a Laplace transfer function, in continuous-time domain, to the

DT domain, the Tustin approximation is a common method, as shown in Eq. (26), where 𝑧

the DT variable and 𝑇 is is the sampling period. (Starr, 2006)

𝑠 =
2

𝑇
∗

𝑧 − 1

𝑧 + 1
 (26)

The low-pass filter of the complementary filter from Eq. (23), is shown below.

𝐻(𝑠)𝐿𝑜𝑤−𝑃𝑎𝑠𝑠 =
1

(𝜏𝑠 + 1)2
 (27)

Substituting Eq. (26) into Eq. (28), the low-pass filter is converted to DT domain

as shown in (28), where 𝑌(𝑡) is the output signal and 𝑈(𝑡) is the input signal. For example,

for a low-pass filter on AOA, 𝑈(𝑡) is the input AOA (say, obtained either from an AOA

vane), and 𝑌(𝑡) is the filtered AOA.

32

𝐻(𝑧, 𝑇)𝐿𝑜𝑤−𝑃𝑎𝑠𝑠 =
𝑌(𝑡)

𝑈(𝑡)
=

1

(𝜏 ∗
2
𝑇 ∗

𝑧 − 1
𝑧 + 1 + 1)

2 =
(𝑧 + 1)2

(
2𝜏
𝑇

(𝑧 − 1) + 𝑧 + 1)2

=
(𝑧 + 1)2

(𝑧(
2𝜏
𝑇 + 1) + 1 −

2𝜏
𝑇)2

Then by cross-multiplying, Eq. (28) is obtained.

𝑌 ∗ 𝑧2 (
2𝜏

𝑇
+ 1)

2

+ 𝑌 ∗ 2𝑧 ∗ (
2𝜏

𝑇
+ 1) (1 −

2𝜏

𝑇
) + 𝑌 ∗ (1 −

2𝜏

𝑇
)
2

= 𝑈 ∗ 𝑧2 + 𝑈 ∗ 2 ∗ 𝑧 + 𝑈

(28)

Multiplying throughout by z-2, and letting 𝜁 =
2𝜏

𝑇
, the above equation can be re-

written as shown in Eq. (29).

𝑌 ∗ (𝜁 + 1)2 + 𝑌 ∗ 𝑧−1 ∗ 2(𝜁 + 1)(1 − 𝜁) + 𝑌 ∗ 𝑧−2 ∗ (1 − 𝜁)2

= 𝑈 + 𝑈 ∗ 2 ∗ 𝑧−1 + 𝑈 ∗ 𝑧−2
(29)

Equation (29) can be re-written as a difference equation, as shown in Eq. (31), using

the notation shown in Eq. (30).

𝑧−2 ∗ 𝑌(𝑡) ≡ 𝑌𝑛 𝑎𝑛𝑑 𝑧−2 ∗ 𝑈(𝑡) ≡ 𝑈𝑛

=> 𝑧−1 ∗ 𝑌(𝑡) ≡ 𝑌𝑛+1𝑎𝑛𝑑 𝑧−1 ∗ 𝑈(𝑡) ≡ 𝑈𝑛+1

=> 𝑌(𝑡) ≡ 𝑌𝑛+2 𝑎𝑛𝑑 𝑈(𝑡) ≡ 𝑈𝑛+2

(30)

𝑌𝑛+2 =
(𝑈𝑛+2 + 𝑈𝑛+1 ∗ 2 + 𝑈𝑛) − 2 ∗ 𝑌𝑛+1 ∗ (𝜁 + 1)(1 − 𝜁) − 𝑌𝑛 ∗ (1 − 𝜁)2

(𝜁 + 1)2
 (31)

In Eq. (31), the subscript 𝑛 stands for the curent time-step while 𝑛 + 1 and 𝑛 + 2

are one time-step and two time-steps ahead, respectively.

33

Tustin Approximation: High-Pass Filter

The same procedure shown above for low-pass filter is applied to the high-pass

filter, as shown below.

𝐻(𝑠)𝐻𝑖𝑔h−𝑃𝑎𝑠𝑠 =
2𝜏𝑠 (

𝜏𝑠
2 + 1)

(𝜏𝑠 + 1)2
 (32)

Substituting the Tustin approximation from Eq. (26) into Eq. (27), the high-pass

filter is converted to DT domain, as shown in Eq. (33).

𝐻(𝑧, 𝑇)𝐻𝑖𝑔ℎ−𝑃𝑎𝑠𝑠 =
𝑌(𝑡)

𝑈(𝑡)
=

2 ∗ 𝜏 ∗
2
𝑇 ∗ (

𝑧 − 1
𝑧 + 1) ∗ (

𝜏
2 ∗

2
𝑇 ∗

𝑧 − 1
𝑧 + 1 + 1)

(𝜏 ∗
2
𝑇 ∗

𝑧 − 1
𝑧 + 1 + 1)

2 (33)

Multiplying by 𝑧−2 and letting 𝜁 =
2𝜏

𝑇
, Eq. (33) can be re-written, as shown in Eq. (34).

𝑌(𝑡) ∗ (𝜁 + 1)2 + 𝑧−1 ∗ 𝑌(𝑡) ∗ 2 ∗ (𝜁 + 1) + 𝑧−2 ∗ 𝑌(𝑡) ∗ (1 − 𝜁)2

= 2𝜁 (𝑈(𝑡) ∗ (
1

2
𝜁 + 1) + 𝑧−1 ∗ 𝑈(𝑡) ∗ (−𝜁) + 𝑧−2 ∗ 𝑈(𝑡) ∗ (

1

2
𝜁 − 1))

(34)

Equation (34) can be re-written as a difference equation, as shown in Eq. (35), using

the notation shown in Eq. (30).

𝑌𝑛+2 =

2 ∗ 𝜁 ∗ (𝑈𝑛+2 ∗ (
1
2 𝜁 + 1) + 𝑈𝑛+1 ∗ (−𝜁) + 𝑈𝑛 ∗ (

1
2 𝜁 − 1))

(𝜁 + 1)2

+
−𝑌𝑛+1 ∗ 2 ∗ (𝜁 + 1) − 𝑌𝑛 ∗ (1 − 𝜁)2

(𝜁 + 1)2

(35)

34

2.6 Flight-Path Angle

The definition of FPA varies based on the reference frame. In the air-mass

referenced frame, it is defined as the angle between the flight-path vector (the velocity

vector) and the local atmosphere, as shown in Eq. (36), where  is the pitch attitude and 

is the AOA.

γa = 𝜃 − 𝛼 (36)

In the inertial-referenced frame, it is the angle between the flight-path vector and

the horizon, also known as the climb (or descent) angle. The two reference frames coincide

when there is no wind or vertical air movement. The wind triangle shown in Figure 2.9

illustrates the difference between the inertial FPA and the air-mass referenced FPA (Beard

& McLain, 2012).

Figure 2.9 The Wind Triangle Projected onto the Vertical Plane (Beard & McLain,

2012).

35

Typically, the inertial-referenced flight-path angle is displayed on a HUD.

Therefore, the inertial-referenced flight-path angle is used in the EFRC HUD. It is

calculated using Eq. (37), where VN, VE, VD are the north, east, and down velocity

components with respect to the earth.

γi = tan−1(−VD/√VE
2 + VN

2) (37)

One of the most important innovations that a HUD introduces to the traditional GA

cockpit is the concept of out the window flight-path flying. With Flight-Path Marker (FPM)

displayed on the HUD, the pilot is in direct control of the flight-path. Therefore, flight-path

flying automatically reflects the effects of cross winds, AOA, drag, thrust and other factors

which impact the dynamic state of the aircraft. For example,

 To maintain a constant altitude flight, the pilot can fix the FPM on the horizon line.

 To maintain a constant glide path, the pilot can hold the FPM at a fixed position with

respect to the horizon line.

 In the presence of wind, the pilot can align the FPM with a fixed spot on the runway.

 In cruise, the pilot can rely on the FPM to confirm that the aircraft can safely avoid

a thunderstorm.

2.7 Areas of Focus

In this section, the flight phase performance, certification costs, and atmospheric

turbulence issues related to the design of the EFRC HUD are discussed. In each area,

relevant problems are identified and practical solutions are proposed. These include post-

takeoff, cruise, and landing phases.

36

2.7.1 Flight Phase Performance

A major benefit of a HUD over traditional cockpit instruments is the improvement

in flight phase performance. There are at least three phases of flight that would greatly

benefit from the use of a HUD.

2.7.2 Post-Takeoff Phase

One of the most common maneuvers performed inflight is acquiring straight and

level flight after a climb segment. Here, a pilot closes the loop on airspeed, altitude and

pitch, while trying to control the aircraft flight-path angle. However, with a HUD, the pilot

can directly close the loop on the flight-path angle, thereby requiring less workload and

training to perform the maneuver.

2.7.3 Cruise Phase

In 1971, NASA conducted a study to evaluate  as a primary flight parameter based

on two considerations: (1) AOA is a direct measure of stall margin independent of aircraft

weight (2) AOA responds quicker than airspeed to the pilot’s control stick and throttle

inputs. However, the expected advantages were negated by the inherent aerodynamic

characteristics of the airplane, such as the Phugoid dynamic mode and directional-control

stability. For example, “[t]he performance in low-speed maneuvers was roughly equivalent

whether angle-of-attack or airspeed information was used. Maneuvers are normally

performed primarily by using attitude control, with reference to airspeed or AOA as a

secondary control parameter.

37

Although AOA responds faster to the pilots’ pitch or throttle inputs, this expected

advantage is more or less negated by the necessity of compensating for any induced

Phugoid, or stated another way, AOA does not necessarily command the correct control

inputs” (Gee, Gaidsick, & Enevoldson, 1971). The following research aims to leverage the

expected advantages of  by combining it with FPA.

2.7.4 Landing Phase

The landing phase is difficult to master for student pilots because of the lack of

intuition. Without the knowledge of where the aircraft is going to, it is impossible to

precisely and consistently land at the desired spot on the runway. Additionally, landing at

the desired spot is especially important in safety critical situations where the runway is

short or there are equipment malfunctions.

2.7.5 Certification Cost

Traditional HUD systems such as those certified for commercial and business jets

are more expensive than the cost of a typical GA aircraft. The EFRC HUD is

complementary to existing GA aircraft cockpits and is intended to only provide advisory

information. In addition, the EFRC HUD is designed as a wearable device, it is not hard-

mounted, it is self-powered, and it receives data over Wi-Fi. Therefore, the EFRC HUD

does not need to be certified. One possible source of flight data is Avidyne’s IFD 550

(certified in March, 2017) with cockpit Wi-Fi capability (Avidyne Press Release, 2017).

Other manufacturers are also being considered.

38

2.8 HUD Modes

Most modern HUDs come in different modes, with varying symbology based on

the phase of the flight. The EFRC HUD is developed to affect three important phases of

the flight, namely, post-takeoff, cruise and landing.

2.8.1 Post-Takeoff Mode

The post-takeoff mode of the EFRC HUD is based on the F-16 HUD design, as

shown in Figure 2.10. The different parameters shown on the HUD can be obtained from

a certified COTS unit such as Avidyne’s IFD 550. In post-takeoff mode, information from

traditional cockpit instruments such as airspeed, altitude, and attitude is included. In

addition, FPM and  are shown.

Figure 2.10 EFRC HUD Post-Takeoff Mode.

39

2.8.2 Cruise Mode

In cruise mode, it is assumed that the pilot is primarily focused on achieving one of

three conditions: maximum range, maximum endurance, or Carson cruise, using AOA and

FPA. Therefore, the airspeed is removed along with the pitch-ladder creating a clutter-free

design. Note that the pitch attitude can be mentally calculated as the difference between

AOA and FPA. The cruise mode is illustrated in Figure 2.11.

Figure 2.11 EFRC HUD Cruise Mode.

2.8.3 Landing Mode

The major difference between the cruise and landing modes is the addition of

airspeed and the modified -gauge. In the landing mode, the pilot aims to land the aircraft

40

at a desired spot on the runway, without stalling the aircraft. Therefore, the -gauge is

modified with caution and stall regions, as shown in Figure 2.12.

Figure 2.12 EFRC HUD Landing Mode.

41

 METHODOLOGY

3.1 Experimental Hardware

In this section, the equipment used in this project will be discussed briefly. To help

better understand the entire setup, the overall schematic is shown below. In Figure 3.1, the

arrows represent the direction of data flow; in the case of a double-sided arrow, the data

flow occurs in both directions.

Figure 3.1 Overall schematic of the EFRC HUD.

The IMU helps obtain the attitude of the aircraft (roll, pitch, and heading) and

flight-path angle, while the pitot-static system helps estimate the indicated airspeed and

pressure altitude. The pitot-static system may not necessarily represent the aircraft’s

primary system, as any interference to the primary system will lead to increased

certification costs. As an alternative, a COTS unit such as Avidyne’s IFD550 can be used,

which is a full-featured flight management system or navigation system (Avidyne Press,

2017) can provide all the information required by the EFRC HUD. Similar products are

available with other manufacturers such as Garmin and Honeywell.

42

The Alpha/Beta probe represents an angle-of-attack/angle-of-sideslip system which

is required for the complementary filter. In the previous section, a reference is mentioned

for building a simple, effective and reliable angle-of-attack system, which can be used in

its place.

The flight-test computer hosts all the filtering and data processing software. In the

final product, the software can be installed directly on the data display device such as the

Epson-BT 200, which comes with an Android 4.0 system and is capable of performing all

the processing done by the flight-test computer. The only additional piece of equipment

required would be a USB hub to increase the number of communication ports.

The Epson BT-200 is the data display device worn by the pilot. The head-tracking

system may be a device attached either to the pilot’s head or in another form as suggested

in this thesis.

3.1.1 Experimental Aircraft

The experimental aircraft chosen for this research is a Cessna 182Q, equipped with

an air data probe, Inertial Measurement Unit (IMU), Global Position System (GPS),

Precision Differential and Static Pressure Transducers (PPTs), and a Data Acquisition

System (DAS).

The air data probe consists of AOA and AOS mechanical vanes and a swivel head

pitot-static system. The probe extends approximately one mean aerodynamic chord length

(≈ 60”) in front of the wing leading edge, as shown in Figure 3.2. The AOA and AOS vanes

are attached to separate potentiometers, Control Position Transducers (CPTs), which send

AOA and AOS measurements as changes in voltage.

43

Figure 3.2 Air Data Probe Mounted on the Experimental Aircraft (Cessna 182Q).

The IMU installed on the aircraft is a NovAtel UIMU-HG1700, shown in Figure

3.3. The IMU records aircraft attitude angles, rates, accelerations and velocities relative to

the ground. For position information, the IMU communicates with a ProPak-V3 GPS,

manufactured by NovAtel.

Category Description

Model NovAtel UIMU-HG1700

Component HG1700 IMU

Sensors Tactical Grade Gyro, Servo Accel

Solution Type Blended GNSS+INS position,
velocity and attitude

Output Data Rate 100 Hz

Figure 3.3 NovAtel UIMU-HG1700.

44

The Differential Pressure Transducer is used to measure total pressure, and the

Static Pressure Transducer is used to measure static pressure. These precision pressure

transducers (PPTs), manufactured by Honeywell, transform changes in pressure measured

on the air data boom into digital signals.

The aircraft DAS collects data from the IMU, GPS, PPTs, and CPTs. All sensor

signals are interpreted by a National Instruments (NI) Compact Reconfigurable Input

Output (cRIO) communications module in real time at 50 Hertz. The cRIO simultaneously

logs data in a raw format and outputs the data to the Flight Test Computer (FTC). The

reference frame of the DAS is chosen so that it aligns with the body-frame of the

experimental aircraft, i.e. x-axis is positive out the nose, y-axis is positive along the right

wing and z-axis is positive down.

Several in-flight calibrations are required for the air data probe. The probe pitot-

static system is calibrated using a GPS 4-leg maneuver. The probe AOA vane is calibrated

using steady trim shots during the GPS 4-leg maneuver. Details of inflight calibrations,

theory, practical considerations, and results are included in Ref. (Rogers, Martos, &

Rodrigues, 2015).

In this research, the DAS is meant to represent a generic sensor processing system

that may be replaced by any COTS system capable of providing accurate information of

AOA, FPA, ground-speed, altitude, and attitude.

45

It must be noted that typical COTS  indicators are merely stall indicators and do

not provide accurate information throughout the flight envelope. Therefore, the simple,

effective COTS design suggested in Ref. (Rogers, Martos, & Rodrigues, 2015) may

be used to obtain an accurate signal throughout the entire flight envelope.

3.1.2 Display Device

The Display Device is the Moverio BT-200 made by Epson. It has the specifications

shown in Table 3.1. The glasses can be worn even if the pilot has corrective lenses. The

glasses are also shipped with optional sunlight shades.

The Epson BT-200 is meant to represent a pair of generic wearable AR glasses and

can be replaced with a specific manufacturers glasses, based on the needs and demands of

the final HUD design. Specification of the Epson BT-200 glasses are listed in Table 3.1.

Table 3.1 Epson BT-200 Specifications.

Category Description

Model MOVERIO BT-200

Resolution 960x540 (QHD） / 16：9

Virtual Screen Size 80” (at virtual distance of 5m)

Field of View 23o

Color 24bit full color (16770K color)

Sensors Gyro / Accelerometer / Compass

System Software Android 4.0.4 / Linux 3.0.21

The device reference frame is chosen so that it aligns with that chosen on the

aircraft, i.e. x-axis is positive along the line-of-sight, y-axis is positive to the right and z-

axis is positive down, as shown in Figure 3.4.

46

Figure 3.4 Epson Moverio BT-200 and Assumed Reference Frame on the

Experimental Aircraft.

3.1.3 Flight Test Computer (FTC)

The FTC is a Windows 10 Notebook made by Asus, with 8 GB SDRAM, 1 TB

hard drive and 56 Wh battery capacity. It serves as the master control for the DAS and the

HUD, as well as a data processing and logging device. It saves the processed data into a

Comma Separated Value (CSV) file that is then reduced and interpreted post-flight. In a

real-world application, the FTC can be completely avoided, by deploying the HUD

software on the AR glasses and modifying the software to read the DAS data via Wi-Fi or

Bluetooth.

3.1.4 Head-Tracking System

For the purpose of tracking the head-motion of the pilot, different COTS units are

tested. The 6 degree-of-freedom Bosch BNO055 IMU is shown in Figure 3.5, which is

tested under the conditions described in Section ‘Experimental Setup’. The unit comes with

a built-in extended Kalman filter that computes the attitude solution at 100 Hz. The Bosch

BNO055 is fit on an Arduino Uno board so that the sensory information can be obtained

using the serial connection from the Arduino Uno board.

47

Figure 3.5 COTS Bosch Unit Connected to Arduino for Head-Tracking Purposes.

In addition, a PixHawk Mini, shown in Figure 3.6, is also tested for the head-

tracking purposes. The PixHawk Mini also comes with a 24-state open-source Kalman

filter, which computes the attitude solution at approximately 30 Hz.

Figure 3.6. PixHawk Mini for Head-Tracking Purposes.

In addition, the Epson BT-200’s built-in accelerometer sensor is used to test the

accelerometer method mentioned in the ‘Theory and Background’ section. All the systems

are tested against a NovAtel IMU, which comes with a laser ring gyroscope. Assuming the

NovAtel unit is the truth source, the three other algorithms are tested against it.

48

3.2 Experimental Software

The software is an integral portion of the project; therefore, it is necessary to

elaborate upon the different features of the software for a better understanding of the

suggested product.

3.2.1 Software Overview

The entire software is written in Java, which is the default language on the Android

Framework. The Epson BT-200 device itself comes with an Android 4.0.4 Operating

System. Using the Android Studio application, an application is designed and deployed on

the BT-200. However, the device is always connected to the laptop even during flight-tests

as the laptop acts as a central controlling unit. The overall architecture of the software is

shown below in Figure 3.7.

Figure 3.7. Overall Architecture of the EFRC HUD Software.

49

The Main Activity is where the entire application is started – all the different parts

of the application are controlled form here. The different modes (Post-Takeoff, Cruise, and

Landing) are mutually exclusive modules, i.e. only one can be selected at a time. The

different modes correctly select the right type of gauges from the gauges “bucket” and

draw, them at a specified frame rate the instant dictated by the Main Activity.

A ‘Gauge’ in this application is a public interface that encapsulates all the common

properties of the different gauges such as the airspeed indicator, the pitch ladder, the

altitude indicator, roll indicator etc. All the different gauges implement this interface and

add the appropriate properties and modifications. Such a data abstraction helps ease any

future modifications.

The Communication Manager is the main component responsible for

communicating with the outside world and saving data for processing and use on the

glasses.

The Head-Tracker module implements the ‘Accelerometer’ methodology discussed

previously to estimate the relative pitch attitude of the glasses with respect to the aircraft

body axis. It does so by accessing the built-in accelerometer on the Epson BT-200 glasses

and comparing it with the acceleration from the Bosch BNO055 unit. The accelerations

from the Bosch unit are read via a TCP channel that the head-tracker module is responsible

for.

50

The data in this application only comes from the Data Acquisition System in the

format shown below, where ‘START_DATA’ is the header that ensures the floating point

data is intact, ‘airspeed’ is airspeed in knots, ‘altitude’ is altitude in feet, ‘roll’ is roll in

degrees, ‘heading’ is heading in degrees, ‘flightpath’ is the FPA in degrees, ‘aoa’ is the

AOA in degrees, ‘\n’ is the end-of-line character.

 In order to ensure integrity of the data, a simple check is performed at the

beginning of every read operation. If the incoming data has the proper ‘header’; then, each

of the subsequent floating point number is split and stored in a specific variable to be later

used on the appropriate gauge. For example, consider the following incoming message

shown below.

In such a case, the data would be considered valid and processed accordingly. An

airspeed of 95.7 knots is read and displayed on the airspeed gauge, the altitude of 800.84

feet is read and displayed on the altitude gauge and so on.

3.2.2 Gauges Description

A different number of vector notations is used to draw the different gauges in the

software, which are briefly discussed below. In each of the gauges below, the direction for

any parameter can be defined using any two 2D points in space, for example, (0, 1) and (0,

5) will specify a direction along the positive y-direction.

START_DATA:airspeed;altitude;roll;pitch;heading;flightpath;aoa;\n

START_DATA:95.7;800.84;0.15;2.56;090;0.15;2.41;\n

51

Linear Gauges

A linear gauge represents a simple tape with graduations that can be used for

showing Airspeed, Altitude or Heading. The linear gauges can be specified to be directed

‘Left’, ‘Right’ or ‘Down’, where the direction indicates the place the text is placed. The

Airspeed Indicator for example, would use the ‘Right’ linear gauge, the Altitude Indicator

on the other hand, would use the ‘Left’ linear gauge and the Heading Indicator the ‘Down’

linear gauge. A sample linear gauge is shown below.

Figure 3.8 Altitude Indicator Implementing the Abstract Linear Gauge.

In order to draw the entire gauge, the current value is read first. If the current value

is a multiple of the large graduation value, a large graduation mark is drawn or if the current

value is a multiple of the small graduation value, a small graduation mark is drawn, else,

the nearest “valid” value is estimated in either direction from the center. A valid value is

one that is either a multiple of the small graduation value or the large graduation value.

Once the “valid” value is estimated, each graduation mark is drawn at appropriate

increments until the maximum height of the gauge is reached in either direction.

52

For example, let’s assume that the small graduation mark on the Altitude Indicator

is 100 feet and the large graduation mark 500 feet. If the current altitude is 0 feet, then a

large graduation mark is drawn at the center, as it is a multiple of the large graduation mark

value. Next, going in the up direction, each small graduation mark is drawn at increments

of 100 feet. As soon as a multiple of 500 feet is encountered, a large graduation mark is

drawn. The process is repeated in the other direction until the maximum height of the gauge

is reached.

Symmetric Gauges

A symmetric gauge is one that has two linear gauges with a mirror in the center so

that the two are a mirror image of the other. The pitch ladder is constructed using the

symmetric gauge abstract class. Since the pitch indicator is the only gauge that uses this

kind of gauge, the direction of the text and the gauge is fixed to a hard-coded value. The

direction of the gauge is vertical and the text is both right and left. A sample symmetric

gauge is shown below.

Figure 3.9. The Pitch Indicator has implemented the Abstract Symmetric Gauge

Class.

53

The symmetric gauge follows the same algorithm described under linear gauge for

drawing the different graduation lines on the gauge. The horizon line however, cannot

rotate with the entire gauge, as the horizon does not rotate with the aircraft, when the head

is held fixed in space.

Curvilinear Gauges

A curvilinear gauge is one that has a non-linear shape, typically circular to convey

the information to the user. The Roll Indicator implements the abstract curvilinear gauge

class. The current value on the gauge is displayed on the curvilinear using the same

algorithm described under the linear gauge; the difference being that the direction of the

graduation in this case is described using sine and cosine, i.e. the points are described in

polar coordinates instead of rectangular coordinates, as done previously. The current value

however, unlike the linear or symmetric gauges is not necessarily displayed at the center

of the gauge. An isosceles triangle is used to represent the current value, which is

constructed using the height and base length specified in the code. A sample curvilinear

gauge is shown below.

Figure 3.10 The Roll Indicator has implemented the Abstract Curvilinear Gauge

Class.

54

Angle of Attack

The AOA is implemented in an innovative fashion, different from any of the gauges

described above. For this reason, it is implemented as a separate abstract class. As

mentioned previously, the EFRC HUD software is designed to accommodate different

modes in flight, namely takeoff, cruise and approach. Each of the different modes can

display the AOA in different fashion. The takeoff and approach modes display the AOA

as a vertical bar with different symbols representing different pieces of information to the

pilot. A sample AOA gauge is shown below.

Figure 3.11 AOA in Post-Takeoff and Landing Modes of the EFRC HUD.

The current value of the AOA is represented at the center of the gauge. In order to

draw the gauge, the same algorithm as that for a linear gauge is used.

55

3.2.3 Key Software Features

The HUD software is programmed on the Android platform using Object-Oriented

Programming principles – some of the software characteristics are listed below.

Abstraction

Abstraction in the software lies in the design of the different gauges. To ensure a

flexible design, a common interface is created, from which the different gauges are derived.

This leaves room for future expansion.

Multi-Threaded

The HUD software requires multiple tasks to occur simultaneously; therefore, to

avoid any bottlenecks, the software is designed in a multi-threaded fashion. For example,

the Communication Manager is run in a different thread than Head Motion Tracking.

Thread-Safe

Multi-threaded design requires thread-safety measures to ensure the software does

not misbehave due to thread calls to an inaccessible object. The safety measure

incorporated into the design of the EFRC HUD is the Singleton design pattern, which

ensures only one instance of the object (such as the Communication Manager) exists in the

entire application.

Low-Coupling

The HUD software is made robust and flexible through low-coupling, so that

changes in one class do not have a cascading effect on other classes.

56

High-Cohesion

The software is designed to have a high level of cohesion, i.e. each class is made

responsible for a single logic, so that any logical changes can be implemented with ease.

3.3 Experimental Setup

In this section, the ground and flight tests performed to validate the effectiveness

of head-motion tracking module, EFRC HUD, and complementary filter are discussed.

3.3.1 Pitch Ladder Calibration

One of the advantages of a HUD is the presence of the flight-path angle which (if

presented accurately) tells the pilot where the aircraft is going. In order to position the FPA

correctly on the HUD with the outside world, the pitch ladder must be calibrated. Once

calibrated, the zero-pitch line will correspond to the horizon, as shown in Figure 3.12, when

the pilot’s head is level and the pilot’s eyes are directly looking forward at the horizon.

Figure 3.12 Properly Calibrated Pitch Ladder (Illustration is Shown when the

Pilot’s Line-of-Sight is Parallel to the “Real” Horizon).

57

The pitch ladder if not properly calibrated, i.e. the zero pitch line is not positioned

at the proper location when the pilot’s line-of-sight is parallel to the “real” horizon, will

result in an apparent offset between the “real” horizon and the zero-pitch line, as shown in

Figure 3.13. Note that the apparent offset in Figure 3.13 is positive as the horizon line on

the glasses is above the “real” horizon.

Figure 3.13 Uncalibrated (or Misaligned) Pitch Ladder (Illustration is Shown when

the Pilot’s Line-of-Sight is Parallel to the “Real” Horizon).

The Android framework provides a module to estimate the attitude of the android

device. The solution of the methodology works very well in a quasi-static environment and

the same methodology will be used to calibrate the pitch ladder for the EFRC HUD before

taxi. In order to properly calibrate the pitch ladder, the following steps were followed.

i) The Android attitude estimation is verified against the Bosch BNO055 solution. A

setup for such a procedure is shown below.

58

Figure 3.14 Rotating the Securely Fit Glasses and the Arduino Uno

about the Different Axes to Verify the Reliability of the Android’s

Attitude Estimation Scheme (assuming that the Bosch BNO055

Solution is True).

ii) Using the verified Android attitude estimation, the pilot’s “eyes level” position is

identified.

iii) The pilot’s “eyes level” position is used to draw the zero pitch line along the line

of sight of the pilot. The “real” horizon line is used to identify the “eyes level”

position as shown in Figure 3.15.

59

Figure 3.15 Looking at Different Angles from the “Real” Horizon to

Calibrate the Pitch Ladder.

iv) The process is repeated until the zero pitch line is drawn at the same position three

consecutive times. Repetition of the process is important to eliminate error due to

discrepancies in the way the glasses are worn each time.

In order to verify the accuracy of the Android solution, the glasses and the Bosch

BNO055 units are placed securely in a container so that neither unit can move. Once a

snug-fit is achieved, the entire container is rotated about the appropriate axes to verify the

reliability of the Android’s attitude estimation scheme. The pitch attitude is of primary

concern and therefore, only those results are shown later in the report.

3.3.2 Head-Tracking System Selection

To select the best head-tracking system based on the different systems and

algorithms available, the following setup is organized. Each of the different instruments

comes with a built-in attitude estimation scheme, which is compared to the truth source

(NovAtel).

60

Figure 3.16 Head-Tracking System Selection.

Each of the instruments is calibrated per the corresponding manual. With the

PixHawk module, the calibration is performed by placing the unit in different stable

positions and letting the unit record the offsets for each sensor. Following which, the offset

values are hard-coded into the system so that the unit stays calibrated through power cycles.

61

The Bosch BNO055 IMU is calibrated per the manual, which suggests moving the

device in a figure 8 pattern for calibrating the magnetometer, placing the device in different

stable positions for the accelerometer and leaving the device still for gyroscope calibration.

Once the device is calibrated, the various sensor offsets are stored in the system’s non-

erasable memory (EEPROM) so that on the next power cycle, the offsets can be restored

and the unit does not have to be recalibrated. The Bosch unit code for calibrating and

reading angles is placed in the Appendix section.

With the NovAtel IMU, calibration occurs automatically as soon as the device is

powered and the attitude solution is transmitted once the calibration process is complete.

A similar procedure occurs on the Android OS, where the accelerometer is automatically

calibrated as soon as the device is powered and the accelerometer values are transmitted

once the calibration process is complete. The following table summarizes the test matrix

of the different methodologies used for computing the attitude of the aircraft. Note that the

accelerometer method does not compute the absolute attitude and is therefore not capable

of estimating the attitude of the aircraft; it only computes attitude of a moving device with

respect to the attitude of a device fixed to the aircraft. The results from the test are shown

in the next section. The table below summarizes the different solutions used for head-

tracking in the EFRC HUD.

62

Table 3.2 Summary of the Different Attitude Estimation Methodologies Being

Compared.

Attitude Estimation Method Source Relative/Absolute

Sensor Fusion (Ring-Laser Gyro, Accelerometer,

Magnetometer)

NovAtel Absolute

Sensor Fusion (MEMS Gyro, Accelerometer,

Magnetometer)

PixHawk Absolute

Sensor Fusion (MEMS Gyro, Accelerometer,

Magnetometer)

BNO055 Absolute

Accelerometer Data Compilation BNO055 & BT-200 Relative

3.3.3 Overall Effectiveness

To test the overall effectiveness of the HUD, the following test matrix is proposed.

Table 3.3 Flight Test Matrix

Task Description Assistance Acceptable Tolerance

Climb and Level-Off NO Assistance +/- 50ft in final altitude

Climb and Level-Off EFRC HUD (takeoff) +/- 50ft in final altitude

Fly Constant  EFC HUD (cruise) +/- ½deg in ; +/-  50ft in altitude

Touch Target on Runway No Assistance +/- 50ft from selected target

Touch Target on Runway EFRC HUD (landing) +/- 50ft from selected target

A subject pilot with zero flight experience is chosen to perform these tasks. This

will allow the effectiveness of flying with a HUD to be more easily identified. In each task,

a professional pilot first stabilizes the aircraft and then transfers the flight controls to the

inexperienced subject pilot.

i) Climb and level-off

In this task, the professional pilot levels off at an arbitrary test altitude and transfers

control to the inexperienced pilot, who first performs the task without any assistance and

then performs the same task with the assistance of the EFRC HUD.

63

ii) Fly constant 

In this task, the professional pilot levels off the aircraft at an arbitrary energy state

at an arbitrary altitude. After stabilizing the aircraft, the same pilot begins adjusting the

power setting and levels altitude to maintain the aircraft at a constant AOA using the cruise

mode of the EFRC HUD.

iii) Spot Landing

In order to land the aircraft, the professional pilot aligns the aircraft with the runway

on a long final and 1000 feet above ground level and transfers the flight controls to the

inexperienced subject pilot. The subject pilot then attempts to land the aircraft with the

assistance of the EFRC HUD. In another attempt, the inexperienced pilot attempts to land

the aircraft without any assistance. The professional pilot marks each task as successful or

a failure based on the distance from selected target 50 feet above the runway. If the subject

pilot is able to land within 100 feet of the selected target, the task is successful, else it is

marked as a failure.

In order to test the overall effectiveness of the EFRC HUD, the head-tracking

module is required. Based on the results, the accelerometer method seemed to be the most

reliable method, which is used by placing the accelerometer (Bosch BNO055) on the fuel

selector pane of the aircraft. The glasses are worn by the pilot and the accelerometer

algorithm is used to estimate the attitude of the head with respect to the aircraft. In the

figure below, the entire setup with the head-tracking module is shown for a test with the

assistance of the EFRC HUD.

64

Figure 3.17 Experimental Setup for the Head-Tracking Module to be Functional In-

Flight.

3.3.4 Complementary Filter Testing

To test the effectiveness of the complementary filter, the alpha-beta probe shown

in Figure 3.2 is used. The alpha-beta probe is put through the FAA code to obtain the angle-

of-attack and angle-of-sideslip, which are then post processed using a code developed

based on the discrete form of the complementary filter shown in the ‘Theory and

Background’ section.

65

 RESULTS AND ANALYSIS

4.1 Calibration of the Pitch Ladder

As mentioned previously, Android has a sensor fusion algorithm in store, which

estimates Euler angles of the Epson BT-200. In order to verify the reliability of the

Android’s sensor fusion algorithm, the device is placed in a secure snug-fit container and

both devices are rotated about the different axes to verify the accuracy of the Android’s

solution. The results are plotted in Figure 4.1. From the results, it can be concluded that the

BT-200 glasses are in a close agreement with the Bosch unit.

Figure 4.1 Rotating the Epson BT-200 and BNO055 Simultaneously about the X-

Axis to Get Pitch.

66

Table 4.1 shows the location of the horizon line on the Epson BT-200’s screen

when the pilot’s eyes are “leveled”. As seen in the table, the initial location of the horizon

line is arbitrarily chosen to be 50% of the screen height. However, upon inspection, it is

learned that there is a negative offset; therefore the location of the horizon is reduced to

40%. Note that the glasses are taken off and re-worn at every attempt to ensure that the

result is not affected by the way the glasses are worn. In addition, the same person that

calibrated the glasses is selected to test the glasses in flight.

Table 4.1 Iterative Calibration of the Epson BT-200’s Pitch Ladder using the “Real”

Horizon.

Attempts Location (in percentage of the screen height)

Attempt 1 50%

Attempt 2 40%

Attempt 3 45%

Attempt 4 42%

Attempt 5 42.5%

Attempt 6 42.5%

Attempt 7 42.5%

4.2 Head-Tracking System Selection

The results of the test of the COTS solutions such as the PixHawk Mini Autopilot

and the Bosch BNO055 units are shown below. As seen in Figure 4.2 and Figure 4.3,

neither the PixHawk nor the Bosch unit can be used to produce an attitude solution of

required accuracy and reliability. The peak to peak error is around 15 degrees for both

units. In order to use the solution reliably, an accuracy of at least 2 degrees is required,

which could not be achieved from either of the commercially available solutions.

67

Figure 4.2 PixHawk Mini Autopilot Solution Compared to the NovAtel Solution

(with ± 2 Degree Tolerance Lines).

Figure 4.3 Bosch BNO055 Solution Compared to the NovAtel Solution (with ± 2

Degree Tolerance Lines).

68

The proposed solution of the Accelerometer method is much more accurate than

either of the commercial solutions, as shown in Figure 4.4. However, it must be noted that

the accelerometer method relies on the accuracy of the NovAtel solution for the final

solution to be accurate. In other words, the accelerometer method only computes attitudes

relative to the aircraft; therefore, if a self-contained methodology is required for computing

the absolute orientation of the head, the accelerometer method is not viable. It is only

applicable for aircraft that have the capability to supply information via Wifi or other

means. For that matter, the entire EFRC HUD, suggested in this thesis, is only applicable

for aircraft with such a capability.

Figure 4.4 Accelerometer Method Solution Compared to the NovAtel Solution (with

± 2 Degree Tolerance Lines).

Flight path angle of the aircraft during the approach is shown in Figure 4.5.

69

Figure 4.5 Flight Path Angle of the Test-Aircraft during Approach from the

NovAtel Unit.

Flight path angle of the aircraft during the approach is shown in Figure 4.6.

Figure 4.6 Acceleration of the Test-Aircraft during the Approach from the NovAtel

Unit.

The angular rates of the aircraft are shown in Figure 4.7 through Figure 4.9.

70

Figure 4.7 Roll Rate of the Aircraft during the Test Maneuver from the NovAtel

Unit.

Figure 4.8 Pitch Rate of the Aircraft during the Test Maneuver from the NovAtel

Unit.

Figure 4.9 Yaw Rate of the Aircraft during the Test Maneuver from the NovAtel

Unit.

71

In order to test the accuracy of the method in straight and level flight, a setup similar

to that previously tested is used to obtain the results shown in Figure 4.10.

Figure 4.10 Accelerometer Method Solution compared to the NovAtel Solution in

Straight-and-Level Flight.

4.3 Overall Effectiveness

The climb test results demonstrate the benefit of the EFRC HUD. While the

inexperienced subject pilot could not achieve the desired tolerance when not wearing the

EFRC HUD, the subject pilot was able to achieve the task within the specified tolerances

with the EFRC HUD. This phase of flight suggests a clear advantage of using the EFRC

HUD, as seen in Figure 4.11 and Figure 4.12.

Figure 4.11 Climbing from 5500 feet to 6000 feet Without Any Assistance.

72

Figure 4.12 Climbing from 5500 feet to 6000 feet Using the EFRC HUD.

Figure 4.13 shows the inexperienced pilot performing a climb task using the

assistance of the EFRC HUD.

Figure 4.13 Inexperienced Pilot Performing Climb Task Using the Glasses.

In testing the EFRC HUD in approach mode, the inexperienced pilot was able to

show that the glasses are beneficial in providing the much needed confidence that the glide

slope is correct and that the aircraft is indeed headed to the right target spot on the runway.

Nonetheless, the atmospheric turbulence is a major disturbance that needs to be properly

dealt with. With heavy turbulence, the aircraft becomes very bouncy and the glasses cannot

be used effectively as the display becomes difficult to follow.

73

A sample of the approach where the inexperienced pilot uses the assistance from

the EFRC HUD is shown Figure 4.14.

Figure 4.14 Inexperienced Pilot Performing Approach Task with the Head-Tracking

Module in Session.

4.4 Complementary Filter Testing

Flight-test data are used to measure the effectiveness of the complementary filter

in different scenarios, as shown in Figure 4.15 through Figure 4.18. Flight test results using

a complementary filter demonstrate the effectiveness of the filter in different scenarios with

light, moderate, and heavy atmospheric turbulence.

During the Short-Period mode excitation, shown in Figure 4.15, the atmospheric

turbulence was light, as evident from the scatter in the vane output. The output from the

complementary filter aligned well with the vane data.

74

During the Dutch Roll mode, shown in Figure 4.16, the complementary filter

worked well in the absence of atmospheric turbulence. However, in such a condition, the

complementary filter essentially weighed the vane data much higher than the inertial data

to avoid drift. This is the same as if the vane data alone was used.

Figure 4.15 Flight test data for Short Period excitation in Light Atmospheric Turbulence.

75

In straight-and-level flight, moderate atmospheric turbulence was present, as shown

in Figure 4.17. The complementary filter in this case essentially averaged the vane data. If

a “moving” average filter were used in this case, there is a potential for a phase lag in the

output, which cannot be used in a real-time application with the EFRC HUD. The results

show that the complementary filter works in a straight and level flight with moderate

atmospheric turbulence.

Figure 4.16 Flight Test Data for Dutch Roll Excitation in a Calm Atmosphere.

76

Another straight-and-level test point is performed in high atmospheric turbulence,

as shown in Figure 4.18. Again, the complementary filter tracked the vane data quite well

and avoided the drift in the inertial data, proving that the complementary filter avoids the

drift from the inertial data and the noise from the air data vanes.

Figure 4.18 Flight Test Data for Straight-and-Level Flight in High Atmospheric Turbulence.

Figure 4.17 Flight Test Data for Straight-and-Level Flight in Moderate Atmospheric Turbulence.

77

 CONCLUSIONS

In summary, a low-cost wearable COTS AR HUD system is designed, successfully

reduced to practice, and flight tested. A complementary filter on air data flow angles is

proposed and successfully flight tested for straight and level flight, dynamic maneuvering,

and atmospheric turbulence, provided that a reasonably accurate lift curve is determined.

A novel accelerometer method is proposed for estimating the relative pitch attitude

estimation of the pilot’s head. The method is evaluated on the ground and in flight. The

HUD system is tested, through various test points, to make flying more intuitive and

efficient, thereby affecting the GA LOC.

Based on the flight-test results, the EFRC HUD provided a clear advantage in the

climb. An inexperienced subject pilot was asked to trim the aircraft to straight and level

flight after climbing to a different altitude. The difficulty of the task is proven through the

first test point where the inexperienced pilot climbed to a new altitude and trimmed the

aircraft without any assistance from the EFRC HUD. In the second task the difference in

performing the task and obtaining the desired altitude tolerances was very apparent. In the

first task, the pilot was unable to achieve the desired tolerances while in the second task

with the EFRC HUD, the subject pilot was able to achieve the altitude tolerances with ease.

78

The problem of atmospheric turbulence was especially evident throughout flight

tests. The results from the complementary filter demonstrate a methodology for dealing

with the problem of atmospheric turbulence. In all cases tested, including dynamic mode

excitation, the complementary filter calculated the air flow angles correctly. The

performance of the filter can be further improved by tuning the filter coefficient in a more

extensive flight test program.

While the entire test matrix could not be tested due to funding constraints, the work

presented is compelling enough to provide a clear cost benefit to the OOP of the GA sector.

5.1 Future Work

Although the experiment demonstrated the benefit of HUD technology for a GA

pilot, several improvements are suggested for future experiments.

 Further flight testing must be conducted to complete the suggested test matrix and

fully identify the benefit of the HUD.

 An important phase of flight that would benefit from using the HUD is the takeoff

phase. Further research must be conducted to evaluate the possibility of using 

and AOS parameters to perform takeoff instead of relying on airspeed.

 The landing and cruise modes of the HUD must be combined using a logarithmic

scale for the -gauge. This results in a finer AOA resolution at the center of the

display versus at the ends. This change will allow the pilot to fly at a constant AOA

in cruise and use the same instrument to ensure the aircraft does not stall in the

landing phase.

79

REFERENCES

Ahmed, H., & Tahir, M. (2016). Accurate Attitude Estimation of a Moving Land Vehicle

Using Low-Cost MEMS IMU Sensors. IEEE.

Avidyne Press. (2017, March 13). Avidyne Press Release. Retrieved from Avidyne

Website: http://www.avidyne.com/news/press.asp?release=342

Avidyne Press Release. (2017, March 13). AEA 2017: 356. Retrieved from Avidyne:

http://wwww.avidyne.com/news/press.asp?release=342

Beard, R. W., & McLain, T. W. (2012). Small Unmanned Aircraft : Theory and Practice.

Princeton University Press.

Bertorelli, P. (2013, August 06). AirVenture Tech Bits. Retrieved from AeroCross:

http://www.aerocross.com/pdfs/News/AVWEB_20130806.pdf

Bertorelli, P. (2016). What AoA Indicators Don't Do That They Should. AVWeb.

Bimber, O. (2015, December 21). Head tracking progress. Retrieved from

https://glass.aero/news/2015/12/head-tracking-progress/

Croft, J. (2013). Finding Focus. Aviation Week & Space Technology, 47-48.

Definition of retrofit in English:. (n.d.). Retrieved from Oxford Dictionary:

https://en.oxforddictionaries.com/definition/retrofit

Dorr, A. D. (2016, March 09). Press Release - FAA Proposes Rule to Overhaul Safety

Certification Standards. Retrieved from

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20054

Ebit Systems - Aerospace. (2014). SKYLENS. Haifa: Eblit Systems.

Elbit Systems. (2016, October 27). Elbit Systems SKYLENS™ Wearable HUD Begins

Flying in Final Configuration Onboard ATR-72/42 Aircraft. Retrieved from

http://elbitsystems.com/pr-new/elbit-systems-skylens-wearable-hud-begins-

flying-final-configuration-onboard-atr-7242-aircraft/

Epson. (2014). Moverio BT-200 Smart Glasses (Developer Version Only). Retrieved from

https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-200-Smart-

Glasses-%28Developer-Version-Only%29/p/V11H560020

FAA. (n.d.). 14 CFR Part 91. Retrieved from CFR: www.airweb.faa.gov

80

Federal Aviation Administration. (2017). Private Pilot - Airplane Airman Certification

Standards. Washington, DC: US Department of Transportation.

Gee, S. W., Gaidsick, H. G., & Enevoldson, E. K. (1971). Flight Evaluation of Angle of

Attack as a Control Parameter in General-Aviation Aircraft. Washington DC:

National Aeronautics and Space Administration.

Global Industry Analysts, Inc. (2015, September 11). Smart Augmented Reality (AR)

Glasses Market Trends. Retrieved from

http://www.strategyr.com/MarketResearch/Smart_Augmented_Reality_AR_Glass

es_Market_Trends.asp

Goteman, O., Smith, K., & Dekker, S. (2007). HUD With a Velocity Vector Reduces

Lateral Error Duing Landing in Restricted Visibility. Stockholm: Lawrence

Erlbaum Associates, Inc.

Hefferon, J. (2017). Linear Algebra. Vermont: Saint Michael's College.

Jimenez, C. (2013). COMPARISON OF THREE ANGLE OF ATTACK (AOA)

INDICATORS: A. Daytona Beach: Embry-Riddle Aeronautical University.

Knotts, L. H., & Priest, J. E. (n.d.). Turbulence Response Matching in the NT-33A In-Flight

Simulator. AIAA.

Motors, C. (2013). General Aviation Challenges And Opportunities. AVIC

INTERNATIONAL.

Motta, M. (2004). Competition policy: theory and practice. Cambridge University Press.

Newman, R. L., & Haworth, L. A. (n.d.). Flight Displays II: Head-Up and Helmet-

Mounted Displays. AIAA.

News, F. (2014). FAA Approved the Installation of Angle of Attack Indicator (AOA) in

Small Airplanes. Online: FAA.

NTSB. (2015). Prevent Loss of Control In Flight In General Aviation. Washington DC:

National Transportation Safety Board.

Rockwell Collins. (January 2016). Head-Up Guidance System (HGS) for Midsize and Light

Business Aircraft. Cedar Rapids: Rockwell Collins.

Rogers, D. F., Martos, B., & Rodrigues, F. (2015). Low-Cost Accurate Angle of Attack

System. Renton: US Department of Transportation.

Starr, G. P. (2006). Introduction to Applied Digital Control. New Mexico: The University

of New Mexico.

81

Stengel, R. F. (2004). Flight Dynamics. New Jersey: Princeton University Press.

Stevenson, A. (2010). Head-Up Display. Oxford University Press.

Szondy, D. (2014, May 11). Skylens wearable HUD gives pilots augmented vision.

Retrieved from http://newatlas.com/skylens-hud-elbit/31945/

Thales. (2015, June 16). TOPMAX: THE LIGHTEST ALL-IN-ONE EYES-OUT

SOLUTION. Retrieved from http://onboard.thalesgroup.com/2015/06/16/topmax-

lightest-one-eyes-solution/

Thurber, M. (2015, November 12). TopMax Places Head-worn HUD on Headsets.

Retrieved from http://www.ainonline.com/aviation-news/business-aviation/2015-

11-12/topmax-places-head-worn-hud-headsets

Vandel, R., & Weener, E. F. (2009). Head-Up Guidance System Technology - A Clear Path

to Increasing Flight Safety. Flight Safety Foundation.

82

APPENDIX A

Bosch BNO055 Calibration

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BNO055.h>
#include <utility/imumaths.h>
#include <EEPROM.h> // to save the calibration data

/* Set the delay between fresh samples */
#define BNO055_CALIBRATION_DELAY_MS (1000)

/* The following program fetches different parameters of the IMU */
/* Create the object with address corresponding to a high ADR Pin */
Adafruit_BNO055 bno = Adafruit_BNO055(-1, BNO055_ADDRESS_B);

/* Create an offset struct to store all the calibration offsets */
adafruit_bno055_offsets_t bno_offsets;

/* Read/write addresses */
int write_addr = 0;

/**/
/*
 Arduino setup function (automatically called at startup)
*/
/**/
void setup(void)
{

 Serial.begin(9600);

 /* Initialize the unit in NDOF mode */
 if (!bno.begin(Adafruit_BNO055::OPERATION_MODE_NDOF))
 {
 /* There was a problem detecting the BNO055 ... check your connections */
 Serial.println("CONNECTION_ERROR");
 }

 // Create variables to store calibration statuses
 uint8_t calib_sys(0), calib_accel(0), calib_gyro(0), calib_mag(0);

 // 0x03 identifies a fully calibrated sensor
 while(calib_sys < 0x03 || calib_accel < 0x03 || calib_gyro < 0x03 || calib_mag < 0x03)
 {
 bno.getCalibration(&calib_sys, &calib_gyro, &calib_accel, &calib_mag);
 Serial.print("CALIBRATION_STATUS:");
 Serial.print("s:"); Serial.print(calib_sys); Serial.print(";");
 Serial.print("g:"); Serial.print(calib_gyro); Serial.print(";");
 Serial.print("a:"); Serial.print(calib_accel); Serial.print(";");
 Serial.print("m:"); Serial.print(calib_mag); Serial.println(";");
 delay(BNO055_CALIBRATION_DELAY_MS);
 }

 Serial.println("CALIBRATION_COMPLETE");

 // Get calibration offsets
 bool valid_offset = bno.getSensorOffsets(bno_offsets);

 if(valid_offset) {

83

 Serial.println("OBTAINED_CALIBRATION_OFFSETS");

 // Convert offsets to lsb and msb
 EEPROM.write(write_addr, bno_offsets.accel_offset_x);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.accel_offset_x >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.accel_offset_y);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.accel_offset_y >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.accel_offset_z);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.accel_offset_z >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.gyro_offset_x);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.gyro_offset_x >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.gyro_offset_y);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.gyro_offset_y >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.gyro_offset_z);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.gyro_offset_z >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.mag_offset_x);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.mag_offset_x >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.mag_offset_y);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.mag_offset_y >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.mag_offset_z);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.mag_offset_z >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.accel_radius);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.accel_radius >> 8);
 write_addr++;

 EEPROM.write(write_addr, bno_offsets.mag_radius);
 write_addr++;
 EEPROM.write(write_addr, bno_offsets.mag_radius >> 8);
 write_addr++;

 Serial.println("WROTE_CALIBRATION_OFFSETS");
 }
 else
 Serial.println("Failed to get calibration offsets");

84

 delay(1000);
}

/**/
/*
 Arduino loop function, called once 'setup' is complete
*/
/**/
void loop(void)
{
}

85

APPENDIX B

Accelerometer Data from Bosch BNO055

 #include <Wire.h>
 #include <Adafruit_Sensor.h>
 #include <Adafruit_BNO055.h>
 #include <utility/imumaths.h>
 #include <EEPROM.h> // to obtain the calibration offsets

 /* The following program estimates the acceleration of the IMU when placed in the P6
configuration, shown in the BNO055 manual */

/* Set the delay between fresh samples */
#define BNO055_CALIBRATION_DELAY_MS (1000)
#define BNO055_SAMPLERATE_DELAY_MS (0)

/* Create the object with address corresponding to a high ADR Pin */
Adafruit_BNO055 bno = Adafruit_BNO055(-1, BNO055_ADDRESS_B);

/* Create a vector to store acceleration and euler angle values */
imu::Vector<3> accel;

/* Create an offset struct to store all the calibration offsets */
adafruit_bno055_offsets_t bno_offsets;

int read_addr = 0;

/* Create a string object to store the data to be sent over serial port */
String str = "";

/**/
/*
 Arduino setup function (automatically called at startup)
*/
/**/
void setup(void)
{
 Serial.begin(9600);

 /* Initialise the unit in NDOF mode */
 if (!bno.begin(Adafruit_BNO055::OPERATION_MODE_NDOF))
 {
 /* There was a problem detecting the BNO055 ... check your connections */
 Serial.println("CONNECTION_ERROR");
 }

 uint16_t value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.accel_offset_x = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.accel_offset_y = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.accel_offset_z = value;

86

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.gyro_offset_x = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.gyro_offset_y = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.gyro_offset_z = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.mag_offset_x = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.mag_offset_y = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.mag_offset_z = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.accel_radius = value;

 value = EEPROM.read(read_addr + 1) << 8 | EEPROM.read(read_addr);
 read_addr = read_addr + 2;
 bno_offsets.mag_radius = value;

 /* READ_CALIBRATION_OFFSETS */

 delay(1000);
}

/**/
/*
 Arduino loop function, called once 'setup' is complete
*/
/**/
void loop(void)
{
 accel = bno.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);

 /* Print the different accelerations */
 str = "";
 str = str + accel.x() + " " + accel.y() + " " + accel.z() + "\n";

 Serial.print(str);

 delay(BNO055_SAMPLERATE_DELAY_MS);
}

87

APPENDIX C

EFRC HUD Source Code

In this section, the entire source code of the EFRC HUD is provided. Note that the

application is developed on Android Studio using the Java programming language. While

the following source code is an integral part of the application, it is not alone enough to

form the application, it requires the corresponding resource files. If you need assistance

with compiling the software, please feel free to reach out to the author at

cpavankumar993@gmail.com. Each of the file is separated by a solid line, as an alternative

to “page breaks”.

package erau.efrc.getOrientation;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Environment;
import android.os.StrictMode;
import android.view.KeyEvent;
import android.view.Window;
import android.view.WindowManager;

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.Calendar;
import java.util.Date;

import erau.efrc.getOrientation.Gauges.Modes.Cruise;
import erau.efrc.getOrientation.Gauges.Modes.Approach;
import erau.efrc.getOrientation.Gauges.Modes.Takeoff;

import static android.os.Environment.getExternalStorageState;

public class MainActivity extends Activity {

 public static volatile Params hudParams = new Params();

 public static volatile float headPitch = 0.0f;

 // Based on a measured estimate of the pitch attitude of the FRL of 5 deg and 4.32 deg of
Bosch
 public static final float headPitchBias = 0f; // degrees
 // public static final float headPitchBias = 2.16f; // degrees

 private float[] CoeffArray = new float[] {0.003f, 0.01f, 0.05f};

88

 private int indCoeff = 1;

 public static volatile float FILTER_COEFFICIENT = 0.1f;

 // Different modes
 private Takeoff takeoff = null;
 private Cruise cruise = null;
 private Approach approach = null;

 // Toggle between hud modes
 public static volatile Modes mode = Modes.takeoff;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Creating a File object to store data
 try {

 File file = new File(Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_DCIM), "/" + Calendar.getInstance().getTimeInMillis() +
".txt");

 System.setOut(new PrintStream(new FileOutputStream(file)));

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 StrictMode.ThreadPolicy policy = new
StrictMode.ThreadPolicy.Builder().permitAll().build();
 StrictMode.setThreadPolicy(policy);

 // Set full-screen
 Window win = getWindow();
 WindowManager.LayoutParams winParams = win.getAttributes();
 winParams.flags |= 0x80000000; // FLAG_SMARTFULLSCREEN = 0x80000000

 switch (mode) {
 case takeoff:
 takeoff = new Takeoff(this);
 setContentView(takeoff);
 break;

 case cruise:
 cruise = new Cruise(this);
 setContentView(cruise);
 break;

 case approach:
 approach = new Approach(this);
 setContentView(approach);
 break;
 }

 // Start the HeadTracker
 Intent i = new Intent(this, HeadTracker.class);
 startService(i);

 // Start the CommChannel
 Intent j = new Intent(this, CommChannel.class);
 startService(j);
 }

89

 @Override
 public boolean dispatchKeyEvent(KeyEvent event) {
 int action = event.getAction();
 int keyCode = event.getKeyCode();
 switch (keyCode) {
 case KeyEvent.KEYCODE_VOLUME_UP:
 if (action == KeyEvent.ACTION_DOWN) {
 // Ensure the index is bound within the upper limit
 if(indCoeff < CoeffArray.length - 1) {
 indCoeff = indCoeff + 1;
 FILTER_COEFFICIENT = CoeffArray[indCoeff];
 }
 }
 return true;
 case KeyEvent.KEYCODE_VOLUME_DOWN:
 if (action == KeyEvent.ACTION_DOWN) {
 // Ensure the index is bound within the lower limit
 if (indCoeff > 0)
 {
 indCoeff = indCoeff - 1;
 FILTER_COEFFICIENT = CoeffArray[indCoeff];
 }
 }
 return true;
 default:
 return super.dispatchKeyEvent(event);
 }
 }

 @Override
 public void onPause() {

 super.onPause();

 switch (mode) {
 case takeoff:
 takeoff.pause();
 break;

 case cruise:
 cruise.pause();
 break;

 case approach:
 approach.pause();
 break;
 }
 }

 @Override
 public void onResume() {

 super.onResume();

 switch (mode) {
 case takeoff:
 takeoff.resume();
 break;

 case cruise:
 cruise.resume();
 break;

 case approach:

90

 approach.resume();
 break;
 }
 }
}

package erau.efrc.getOrientation;

import android.app.Service;
import android.content.Intent;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.IBinder;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.net.Socket;

import static erau.efrc.getOrientation.MainActivity.FILTER_COEFFICIENT;
import static erau.efrc.getOrientation.MainActivity.headPitch;
import static erau.efrc.getOrientation.MainActivity.headPitchBias;
import static java.lang.Float.NaN;

public class HeadTracker extends Service {

 Thread listenThread = null;

 private static final int TCP_SERVER_PORT = 55000;

 @Override
 public void onCreate() {

 super.onCreate();

 listenThread = new Thread(new listenTCP());

 listenThread.start();
 }

 private class listenTCP implements Runnable {

 public void run() {
 ServerSocket serverSocket = null;
 try {

 // If the port has already been used, try re-using
 serverSocket = new ServerSocket();
 serverSocket.setReuseAddress(true);
 serverSocket.bind(new InetSocketAddress(TCP_SERVER_PORT));

 // Look for incoming connections
 Socket socket = serverSocket.accept();

 // Spin a new thread for the incoming connection
 new Thread(new CommTCP(socket)).start();

91

 // Close the serverSocket so it can be re-used without any issues
 serverSocket.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private class CommTCP implements Runnable {

 // Sensor Manager
 private SensorManager mSensorManager = null;

 Sensor accel = null;
 Sensor rotate = null;

 // Define SENSOR_DELAY: ensure the data-rate is high enough to ensure a quick convergence
 private int SENSOR_DELAY = 30000;

 private Socket socket;

 private BufferedWriter output;
 private BufferedReader input;

 private sensorEventListener sensorListener;

 CommTCP(Socket socket) {

 this.socket = socket;

 try {
 output = new BufferedWriter(new
OutputStreamWriter(this.socket.getOutputStream()));
 input = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 // Sensor Manager
 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 accel = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 rotate = mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

 sensorListener = new sensorEventListener();
 }

 public void run() {

 // Use the TYPE_ROTATION_VECTOR to calibrate the TYPE_ACCELEROMETER vector
 //mSensorManager.registerListener(sensorListener, accel, SENSOR_DELAY);
 mSensorManager.registerListener(sensorListener, rotate,
SensorManager.SENSOR_DELAY_FASTEST);
 }

 class sensorEventListener implements SensorEventListener {

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }

 public void onSensorChanged(SensorEvent event) {

 if(event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

92

 // remap event.values
 float[] android = new float[3];

 android[0] = -event.values[2];
 android[1] = event.values[0];
 android[2] = -event.values[1];

 try {
 // Epson BT-200 requires the following sign convention mapping
 output.write(' ');
 output.flush();

 String Str = input.readLine();

 estimatePitch(android, Str);

 } catch (IOException e) {

 e.printStackTrace();

 // If an error has occurred, unregister the sensor and start the listening
thread
 mSensorManager.unregisterListener(sensorListener);
 listenThread = new Thread(new listenTCP());
 listenThread.start();
 }
 }
 else if(event.sensor.getType() == Sensor.TYPE_ROTATION_VECTOR) {

 float q1 = event.values[0];
 float q2 = event.values[1];
 float q3 = event.values[2];
 float q0 = (float) Math.sqrt(1 - q1*q1 - q2*q2 - q3*q3); // Its a unit
quaternion

 // Formulas are obtained from
https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
 float pitch = (float) (Math.toDegrees(Math.atan2(2f * (q0*q1 + q2*q3), 1f - 2f
* (q1*q1 + q2*q2))) - 90);

 if(!Float.isNaN(pitch)) {
 headPitch = headPitch + (pitch - headPitch) * FILTER_COEFFICIENT;
 //System.out.println(headPitch + " " + FILTER_COEFFICIENT);
 }

 //System.out.println(pitch);

 }
 }
 }
 }

 private void estimatePitch(float[] android, String boschStr) {

 // Convert the given string to integers
 String[] valuesArray = boschStr.split(" ");
 float[] bosch = new float[3];

 for(int i = 0; i <= 2; i++) {

 try {

 bosch[i] = Float.parseFloat(valuesArray[i]);

93

 } catch (Exception e) {

 return;
 }
 }

 float boschMag = (float) Math.sqrt(bosch[0] * bosch[0] + bosch[1] * bosch[1] + bosch[2] *
bosch[2]);
 float androidMag = (float) Math.sqrt(android[0] * android[0] + android[1] * android[1] +
android[2] * android[2]);

 for(int i = 0; i<= 2; i++) {

 bosch[i] = bosch[i] / boschMag;
 android[i] = android[i] / androidMag;
 }

 float c = bosch[0] * android[0] + bosch[1] * android[1] + bosch[2] * android[2];

 float v1 = bosch[1] * android[2] - bosch[2] * android[1];
 float v2 = bosch[2] * android[0] - bosch[0] * android[2];
 float v3 = bosch[0] * android[1] - bosch[1] * android[0];

 float R32 = v1 + v2 * v3 / (1 + c);
 float R31 = -v2 + v1 * v3 / (1 + c);

 float theta = (float) Math.toDegrees(Math.asin(R31 / Math.cos(Math.asin(-R32)))) +
headPitchBias;

 if(!Float.isNaN(theta)) {
 headPitch = headPitch + (theta - headPitch) * FILTER_COEFFICIENT;
 //System.out.println(headPitch + " " + FILTER_COEFFICIENT);
 }

 return;
 }

 // Ensure CommChannel service is always started using startService() and not bindService()
 @Override
 public IBinder onBind(Intent intent) {

 return null;
 }
}

package erau.efrc.getOrientation;

import android.app.Service;
import android.content.Intent;
import android.os.Binder;
import android.os.IBinder;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Calendar;

import static erau.efrc.getOrientation.MainActivity.FILTER_COEFFICIENT;
import static erau.efrc.getOrientation.MainActivity.headPitch;
import static erau.efrc.getOrientation.MainActivity.hudParams;

94

// Format of incoming messages: START_DATA:airspeed;altitude;roll;pitch;heading;flightpath;aoa;\n
public class CommChannel extends Service {

 Thread listenThread = null;
 private static final int TCP_SERVER_PORT = 50000;
 private final String HEADER = "START_DATA:";

 private final float AIRSPEED_MIN = 0;
 private final float AIRSPEED_MAX = 500;
 private final float ALTITUDE_MIN = -2000;
 private final float ALTITUDE_MAX = 40000;
 private final float ROLL_MIN = -30;
 private final float ROLL_MAX = 30;
 private final float PITCH_MIN = -50;
 private final float PITCH_MAX = 50;
 private final float HEADING_MIN = 0;
 private final float HEADING_MAX = 360;
 private final float FLIGHT_PATH_MIN = -45;
 private final float FLIGHT_PATH_MAX = 45;
 private final float AOA_MIN = -15;
 private final float AOA_MAX = 30;

 @Override
 public void onCreate() {

 super.onCreate();

 listenThread = new Thread(new listenTCP());
 listenThread.start();
 }

 private class listenTCP implements Runnable {

 public void run() {
 ServerSocket serverSocket = null;
 try {

 // If the port has already been used, try re-using
 serverSocket = new ServerSocket();
 serverSocket.setReuseAddress(true);
 serverSocket.bind(new InetSocketAddress(TCP_SERVER_PORT));

 // Look for incoming connections
 Socket socket = serverSocket.accept();

 // Spin a new thread for the incoming connection
 new Thread(new CommTCP(socket)).start();

 // Close the serverSocket so it can be re-used without any issues
 serverSocket.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private class CommTCP implements Runnable {

 private Socket socket;

 private BufferedReader input;

 CommTCP(Socket socket) {

95

 this.socket = socket;
 try {
 this.input = new BufferedReader(new
InputStreamReader(this.socket.getInputStream()));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void run() {
 while(!Thread.currentThread().isInterrupted()) {
 try {
 String read = input.readLine(); // readLine returns null only when the
connection is closed

 if(read != null) {
 updateHudParams(read, hudParams);
 System.out.println(Calendar.getInstance().getTimeInMillis() + " " +
headPitch + " " + hudParams.pitch + " " + hudParams.flightPath
 + " " + FILTER_COEFFICIENT);
 }
 else {
 listenThread = new Thread(new listenTCP());
 listenThread.start();
 return;
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }

 private void updateHudParams(String packet, Params hudParams) {

 int lastIndex = findLastIndex(packet, HEADER);

 if(lastIndex == -1) {
 return;
 }

 // Remove HEADER from the string
 packet = packet.substring(lastIndex);

 int counter = 0;

 while (packet.length() > 0 && counter <= 6)
 {
 lastIndex = packet.indexOf(";");

 float currData;

 try {
 currData = Float.valueOf(packet.substring(0, lastIndex));
 } catch (Exception e) {

 currData = 0;
 }

 packet = packet.substring(lastIndex + 1);

 counter++;

 switch (counter) {
 case 1: {

96

 if (currData >= AIRSPEED_MIN && currData <= AIRSPEED_MAX) {
 hudParams.airspeed = currData;
 }
 break;
 }
 case 2: {
 if (currData >= ALTITUDE_MIN && currData <= ALTITUDE_MAX) {
 hudParams.altitude = currData;
 }
 break;
 }
 case 3: {
 if (currData >= ROLL_MIN && currData <= ROLL_MAX) {
 hudParams.roll = currData;
 }
 break;
 }
 case 4: {
 if (currData >= PITCH_MIN && currData <= PITCH_MAX) {
 hudParams.pitch = currData;
 }
 break;
 }
 case 5: {
 if (currData >= HEADING_MIN && currData <= HEADING_MAX) {
 hudParams.heading = currData;
 }
 break;
 }
 case 6: {
 if (currData >= FLIGHT_PATH_MIN && currData <= FLIGHT_PATH_MAX) {
 hudParams.flightPath = currData;
 }
 break;
 }
 case 7: {
 if(currData >= AOA_MIN && currData <= AOA_MAX) {
 hudParams.angleOfAttack = currData;
 }
 break;
 }
 }
 }
 }

 // Find the position after a substring in a string
 private int findLastIndex(String str, String pattern) {

 if(str.contains(pattern)) {
 return str.indexOf(pattern) + pattern.length();
 }
 else {
 return -1;
 }
 }

 // Ensure CommChannel service is always started using startService() and not bindService()
 @Override
 public IBinder onBind(Intent intent) {

 return new Binder();
 }
}

97

package erau.efrc.getOrientation;

public enum Modes {
 takeoff,
 cruise,
 approach
}

package erau.efrc.getOrientation;

public class Params {
 public float airspeed = 0,
 altitude = 0,
 roll = 0,
 pitch = 0,
 heading = 0,
 angleOfAttack = 0,
 flightPath = 0;
}

package erau.efrc.getOrientation.Gauges;

import android.graphics.Canvas;
import android.graphics.PointF;

public interface Gauge {

 void draw(Canvas canvas, PointF currLocation, float... currVals);
}

package erau.efrc.getOrientation.Gauges;

public enum Directions {
 LEFT,
 RIGHT,
 DOWN,
 HORIZONTAL
}

package erau.efrc.getOrientation.Gauges.Symmteric;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.DashPathEffect;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.graphics.Rect;

import erau.efrc.getOrientation.Gauges.Gauge;

abstract class SymmetricGauge implements Gauge {

 float UNITS_PER_GRADUATION = 3;
 float OVERALL_VALUE; // Overall value the gauge can
display in one frame
 float LARGER_MARGIN_VAL = 3; // Larger graduation value

 float GAUGE_HEIGHT; // Overall gauge height (px)

98

 float LARGER_MARGIN_LEN = 75; // Larger graduation length,
(px)
 float HORIZON_LEN = 200; // Horizon length (px)
 float CENTER_GAP = 20;
 float DASH_FILL_LEN = 10; // Dash length in dashed line,
for negative value (px)
 float DASH_GAP_LEN = 20; // Gap in dashed line, for
nagative value (px)
 float CROSS_HAIR_LEN = 10;
 float FLIGHT_PATH_RAD = 5;

 String MAX_TEXT = "XXX"; // Maximum number of digits the
gauge can represent
 int STROKE_WIDTH = 1;
 int TEXT_SIZE = 20;

 private PointF GRAD_DIR = new PointF();
 private PointF HORIZON_DIR = new PointF();
 private PointF LADDER_DIR = new PointF();

 private final float UNITS_PER_PIXEL;
 private final float MARGIN_SPACING; // Spacing between any two adjacent graduations on
the gauge (px)
 private final Paint pathPaint;
 private final Paint textPaint;
 private final Paint negativePaint;
 private final float textHeight;
 private final float textWidth;

 SymmetricGauge() {

 // Define all the characteristics of the derived classes
 // NOTE: Ensure this is done right at the beginning of the constructor method, to
 // get a correct customization of the gauge
 defineGaugeChars();

 /* Initialize paint brushes */
 pathPaint = new Paint();
 pathPaint.setColor(Color.GREEN);
 pathPaint.setStrokeWidth(STROKE_WIDTH);
 pathPaint.setStyle(Paint.Style.STROKE);

 textPaint = new Paint();
 textPaint.setColor(Color.GREEN);
 textPaint.setStyle(Paint.Style.FILL);
 textPaint.setTextSize(TEXT_SIZE);
 textPaint.setTextAlign(Paint.Align.CENTER);

 negativePaint = new Paint();
 negativePaint.setColor(Color.GREEN);
 negativePaint.setStrokeWidth(STROKE_WIDTH);
 negativePaint.setStyle(Paint.Style.STROKE);

 float[] intervals = new float[]{DASH_FILL_LEN, DASH_GAP_LEN};
 float phase = 0;

 DashPathEffect dashPathEffect =
 new DashPathEffect(intervals, phase);

 negativePaint.setPathEffect(dashPathEffect);

 // Get height of a generic text
 Rect rect = new Rect();
 textPaint.getTextBounds("0123456789", 0, 10, rect);
 textHeight = rect.height();

99

 // Assume the value never goes higher than MAX_TEXT
 textWidth = textPaint.measureText(MAX_TEXT);

 // Initialize all the dependent variables
 UNITS_PER_PIXEL = OVERALL_VALUE / GAUGE_HEIGHT;

 // MARGIN_SPACING must be an integer, else, there will be round-off error in the final
calculations
 MARGIN_SPACING = GAUGE_HEIGHT / (OVERALL_VALUE/UNITS_PER_GRADUATION);

 // The horizon direction is always leveled
 HORIZON_DIR = new PointF((float) Math.cos(0),
 (float) Math.sin(0));
 }

 // Must be implemented by the derived class to customize the gauge
 abstract void defineGaugeChars();

 public void draw(Canvas canvas, PointF drawLocation, float... currVals) {

 float theta = currVals[0];

 // Estimate GRAD_DIR and LADDER_DIR
 GRAD_DIR = new PointF((float) Math.cos(Math.toRadians(theta)),
 (float) Math.sin(Math.toRadians(theta)));

 LADDER_DIR = new PointF((float) Math.cos(Math.toRadians(theta + 90)),
 (float) Math.sin(Math.toRadians(theta + 90)));

 float centerVal = currVals[1];

 // Estimate the number of units to the nearest valid value (HIGHER than or equal to the
current value)
 // NOTE: A valid value is one that can be represented on a graduation
 float unitsAway = centerVal % UNITS_PER_GRADUATION == 0 ? 0 : UNITS_PER_GRADUATION -
centerVal % UNITS_PER_GRADUATION;

 // Estimate the nearest valid value (HIGHER than or equal to the current value)
 float tempVal = centerVal + unitsAway;

 // Estimate the number of pixels to the nearest valid value, e.g. 3 units is 3 units /
UNITS_PER_PIXEL away
 float pixelsAway = unitsAway / UNITS_PER_PIXEL;

 // Estimate location of the nearest valid value
 PointF i = new PointF();
 i.x = drawLocation.x - LADDER_DIR.x * pixelsAway;
 i.y = drawLocation.y - LADDER_DIR.y * pixelsAway;

 // Calculate length of the gauge sketched so far
 float gaugeLen = calcDistance(i, drawLocation);

 Path positivePath = new Path();
 Path negativePath = new Path();

 // Draw the first portion of the gauge
 while (gaugeLen <= GAUGE_HEIGHT / 2)
 {
 if(tempVal >= 0) {

 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(canvas, positivePath, i, tempVal);

 }

100

 else {

 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(canvas, negativePath, i, -tempVal);
 }

 tempVal = updateCounter(i, tempVal, -1);

 gaugeLen = calcDistance(i, drawLocation);
 }

 // Estimate the nearest valid value (LOWER than or equal to the current value)
 unitsAway = centerVal % UNITS_PER_GRADUATION == 0 ? 0 : centerVal % UNITS_PER_GRADUATION;

 pixelsAway = unitsAway / UNITS_PER_PIXEL;

 tempVal = centerVal - unitsAway;

 // Reset the value of i
 i.x = drawLocation.x + LADDER_DIR.x * pixelsAway;
 i.y = drawLocation.y + LADDER_DIR.y * pixelsAway;

 // Ensure the center graduation is NOT drawn twice
 if(pixelsAway == 0) {

 tempVal = updateCounter(i, tempVal, +1);
 }

 gaugeLen = calcDistance(i, drawLocation);

 // Draw the second portion of the gauge
 while (gaugeLen <= GAUGE_HEIGHT / 2) {
 if(tempVal >= 0) {

 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(canvas, positivePath, i, tempVal);

 }
 else {

 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(canvas, negativePath, i, -tempVal);
 }

 // Update the counter
 tempVal = updateCounter(i, tempVal, +1);

 // Calculate length of the gauge sketched so far
 gaugeLen = calcDistance(i, drawLocation);
 }

 // Draw cross-hairs at the appropriate location
 float pitch = currVals[2];
 pixelsAway = (pitch - centerVal) / UNITS_PER_PIXEL;

 if(Math.abs(pixelsAway) <= GAUGE_HEIGHT / 2) {

 drawCrossHairs(positivePath, new PointF(drawLocation.x - LADDER_DIR.x * pixelsAway,
 drawLocation.y - LADDER_DIR.y * pixelsAway));
 }

 // Draw flight-path marker at the appropriate location
 float flightPath = currVals[3];
 pixelsAway = (flightPath - centerVal) / UNITS_PER_PIXEL;

101

 if(Math.abs(pixelsAway) <= GAUGE_HEIGHT / 2) {

 drawFlightPath(positivePath, new PointF(drawLocation.x - LADDER_DIR.x * pixelsAway,
 drawLocation.y - LADDER_DIR.y * pixelsAway));
 }

 canvas.drawPath(positivePath, pathPaint);

 canvas.drawPath(negativePath, negativePaint);
 }

 private void drawCrossHairs(Path path, PointF i) {

 // In positive GRAD direction
 path.moveTo(i.x, i.y);
 path.lineTo(i.x + GRAD_DIR.x * CROSS_HAIR_LEN,
 i.y + GRAD_DIR.y * CROSS_HAIR_LEN);

 // In negative GRAD direction
 path.moveTo(i.x, i.y);
 path.lineTo(i.x - GRAD_DIR.x * CROSS_HAIR_LEN,
 i.y - GRAD_DIR.y * CROSS_HAIR_LEN);

 // In positive LADDER direction
 path.moveTo(i.x, i.y);
 path.lineTo(i.x + LADDER_DIR.x * CROSS_HAIR_LEN,
 i.y + LADDER_DIR.y * CROSS_HAIR_LEN);

 // In negative LADDER direction
 path.moveTo(i.x, i.y);
 path.lineTo(i.x - LADDER_DIR.x * CROSS_HAIR_LEN,
 i.y - LADDER_DIR.y * CROSS_HAIR_LEN);
 }

 private void drawFlightPath(Path path, PointF i) {

 // In positive GRAD direction
 path.moveTo(i.x + GRAD_DIR.x * FLIGHT_PATH_RAD,
 i.y + GRAD_DIR.y * FLIGHT_PATH_RAD);
 path.lineTo(i.x + GRAD_DIR.x * (FLIGHT_PATH_RAD + CROSS_HAIR_LEN),
 i.y + GRAD_DIR.y * (FLIGHT_PATH_RAD + CROSS_HAIR_LEN));

 // In negative GRAD direction
 path.moveTo(i.x - GRAD_DIR.x * FLIGHT_PATH_RAD,
 i.y - GRAD_DIR.y * FLIGHT_PATH_RAD);
 path.lineTo(i.x - GRAD_DIR.x * (FLIGHT_PATH_RAD + CROSS_HAIR_LEN),
 i.y - GRAD_DIR.y * (FLIGHT_PATH_RAD + CROSS_HAIR_LEN));

 // In negative LADDER direction
 path.moveTo(i.x - LADDER_DIR.x * FLIGHT_PATH_RAD,
 i.y - LADDER_DIR.y * FLIGHT_PATH_RAD);
 path.lineTo(i.x - LADDER_DIR.x * (FLIGHT_PATH_RAD + CROSS_HAIR_LEN),
 i.y - LADDER_DIR.y * (FLIGHT_PATH_RAD + CROSS_HAIR_LEN));

 // Center circle
 path.addCircle(i.x, i.y, FLIGHT_PATH_RAD, Path.Direction.CCW);
 }

 private void drawMargins(Canvas canvas, Path path, PointF i, float tempVal) {

 // Prevent any loss in precision upto 3 decimal places
 tempVal = Math.round(tempVal * 1000)/1000;

 // Draw horizon line, if the current value is 0
 if(tempVal == 0) {

102

 // Draw on positive side
 path.moveTo(i.x + HORIZON_DIR.x * CENTER_GAP, i.y + HORIZON_DIR.y * CENTER_GAP);
 path.lineTo(i.x + HORIZON_DIR.x * (CENTER_GAP + HORIZON_LEN),
 i.y + HORIZON_DIR.y * (CENTER_GAP + HORIZON_LEN));

 // Draw on negative side
 path.moveTo(i.x - HORIZON_DIR.x * CENTER_GAP, i.y - HORIZON_DIR.y * CENTER_GAP);
 path.lineTo(i.x - HORIZON_DIR.x * (CENTER_GAP + HORIZON_LEN),
 i.y - HORIZON_DIR.y * (CENTER_GAP + HORIZON_LEN));
 }
 // Draw larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 else if (tempVal % LARGER_MARGIN_VAL == 0)
 {
 // Draw on positive side
 path.moveTo(i.x + GRAD_DIR.x * CENTER_GAP, i.y + GRAD_DIR.y * CENTER_GAP);
 path.lineTo(i.x + GRAD_DIR.x * (CENTER_GAP + LARGER_MARGIN_LEN),
 i.y + GRAD_DIR.y * (CENTER_GAP + LARGER_MARGIN_LEN));

 // Draw on negative side
 path.moveTo(i.x - GRAD_DIR.x * CENTER_GAP, i.y - GRAD_DIR.y * CENTER_GAP);
 path.lineTo(i.x - GRAD_DIR.x * (CENTER_GAP + LARGER_MARGIN_LEN),
 i.y - GRAD_DIR.y * (CENTER_GAP + LARGER_MARGIN_LEN));

 // Draw a new line to properly place the text
 placeText(canvas, i, Integer.toString((int) tempVal));
 }
 }

 private void placeText(Canvas canvas, PointF i, String str) {

 Path textPath = new Path();

 textPath.moveTo(i.x + GRAD_DIR.x * (CENTER_GAP + LARGER_MARGIN_LEN) + LADDER_DIR.x *
textHeight / 2,
 i.y + GRAD_DIR.y * (CENTER_GAP + LARGER_MARGIN_LEN) + LADDER_DIR.y * textHeight /
2);

 textPath.lineTo(i.x + GRAD_DIR.x * (CENTER_GAP + LARGER_MARGIN_LEN + textWidth) +
LADDER_DIR.x * textHeight / 2,
 i.y + GRAD_DIR.y * (CENTER_GAP + LARGER_MARGIN_LEN + textWidth) + LADDER_DIR.y *
textHeight / 2);

 canvas.drawTextOnPath(str, textPath, 0, 0, textPaint);

 textPath.rewind();

 textPath.moveTo(i.x - GRAD_DIR.x * (CENTER_GAP + LARGER_MARGIN_LEN + textWidth) +
LADDER_DIR.x * textHeight / 2,
 i.y - GRAD_DIR.y * (CENTER_GAP + LARGER_MARGIN_LEN + textWidth) + LADDER_DIR.y *
textHeight / 2);

 textPath.lineTo(i.x - GRAD_DIR.x * (CENTER_GAP + LARGER_MARGIN_LEN) + LADDER_DIR.x *
textHeight / 2,
 i.y - GRAD_DIR.y * (CENTER_GAP + LARGER_MARGIN_LEN) + LADDER_DIR.y * textHeight /
2);

 canvas.drawTextOnPath(str, textPath, 0, 0, textPaint);
 }

 // Update the counter location variable and return the current value
 private float updateCounter(PointF i, float tempVal, int sign) {

 i.x = i.x + sign * LADDER_DIR.x * MARGIN_SPACING;
 i.y = i.y + sign * LADDER_DIR.y * MARGIN_SPACING;

103

 return(tempVal - sign * (MARGIN_SPACING * UNITS_PER_PIXEL));
 }

 // Calculate distance between two points using distance formula
 private float calcDistance(PointF start, PointF end) {
 return (float) Math.hypot(start.x - end.x, start.y - end.y);
 }
}

package erau.efrc.getOrientation.Gauges.Symmteric;

public class Pitch extends SymmetricGauge {

 public Pitch() { super(); }

 void defineGaugeChars() {

 float PIXELS_PER_DEGREE = 540 / (23 * 9 /16); // pixels / field_of_view -> vertical

 OVERALL_VALUE = 12.f;
 GAUGE_HEIGHT = OVERALL_VALUE * PIXELS_PER_DEGREE;
 }
}

package erau.efrc.getOrientation.Gauges.Modes;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.PointF;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

import erau.efrc.getOrientation.Gauges.Curvelinear.Roll;
import erau.efrc.getOrientation.Gauges.FlightPathMarker.FlightPathMarkerGauge;
import erau.efrc.getOrientation.Gauges.Gauge;
import erau.efrc.getOrientation.Gauges.Linear.Airspeed;
import erau.efrc.getOrientation.Gauges.Linear.Altitude;
import erau.efrc.getOrientation.Gauges.Linear.Heading;

import static erau.efrc.getOrientation.MainActivity.headPitch;
import static erau.efrc.getOrientation.MainActivity.hudParams;

public class Approach extends SurfaceView implements Runnable {

 Thread thread = null;
 boolean canDraw = false;

 Canvas canvas;
 SurfaceHolder surfaceHolder;

 private Gauge airspeed;
 private Gauge altitude;
 private Gauge heading;
 private Gauge fpm;
 private Gauge roll;

 public Approach(Context context) {

 super(context);

 surfaceHolder = getHolder();

104

 airspeed = new Airspeed();

 altitude = new Altitude();

 roll = new Roll();

 heading = new Heading();

 fpm = new FlightPathMarkerGauge(context);
 }

 @Override
 public void run() {

 while(canDraw) {
 // Carry out some drawing
 if(surfaceHolder.getSurface().isValid()) {

 canvas = surfaceHolder.lockCanvas();

 canvas.drawColor(Color.BLACK);

 // Add head-tracker - calibrated for head position of -3.5f degrees
 this.drawGauges(hudParams.airspeed, hudParams.altitude, hudParams.roll,
hudParams.heading,
 headPitch + hudParams.pitch, hudParams.flightPath,
hudParams.angleOfAttack);

 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }
 }

 private void drawGauges(float speedV, float altitudeV, float rollV, float headingV, float
headV, float flightPathV,
 float angleOfAttackV) {

 airspeed.draw(canvas, new PointF(getWidth() * 0.15f, getHeight() * 0.5f), speedV);

 altitude.draw(canvas, new PointF(getWidth() * 0.85f, getHeight() * 0.5f), altitudeV);

 heading.draw(canvas, new PointF(getWidth() * 0.5f, 0), headingV);

 roll.draw(canvas, new PointF(getWidth() * 0.5f, getHeight() * 0.8f), rollV);

 fpm.draw(canvas, new PointF(getWidth() * 0.5f, getHeight() * 0.425f), rollV, headV,
flightPathV, angleOfAttackV);
 }

 public void pause() {

 canDraw = false;

 while(thread != null) {
 try {
 thread.join();
 thread = null;
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public void resume() {

105

 canDraw = true;
 thread = new Thread(this);
 thread.start();
 }
}

package erau.efrc.getOrientation.Gauges.Modes;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.PointF;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

import erau.efrc.getOrientation.Gauges.Curvelinear.Roll;
import erau.efrc.getOrientation.Gauges.FlightPathMarker.FlightPathMarkerGauge;
import erau.efrc.getOrientation.Gauges.Gauge;
import erau.efrc.getOrientation.Gauges.Linear.Altitude;
import erau.efrc.getOrientation.Gauges.Linear.Heading;

import static erau.efrc.getOrientation.MainActivity.headPitch;
import static erau.efrc.getOrientation.MainActivity.hudParams;

public class Cruise extends SurfaceView implements Runnable {

 Thread thread = null;
 boolean canDraw = false;

 Canvas canvas;
 SurfaceHolder surfaceHolder;

 private Gauge altitude;
 private Gauge heading;
 private Gauge fpm;
 private Gauge roll;

 public Cruise(Context context) {

 super(context);

 surfaceHolder = getHolder();

 altitude = new Altitude();

 roll = new Roll();

 heading = new Heading();

 fpm = new FlightPathMarkerGauge(context);
 }

 @Override
 public void run() {

 while(canDraw) {
 // Carry out some drawing
 if(surfaceHolder.getSurface().isValid()) {

 canvas = surfaceHolder.lockCanvas();

 canvas.drawColor(Color.BLACK);

106

 // Add head-tracker
 this.drawGauges(hudParams.altitude, hudParams.roll, hudParams.heading,
 headPitch + hudParams.pitch, hudParams.flightPath,
hudParams.angleOfAttack);

 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }
 }

 private void drawGauges(float altitudeV, float rollV, float headingV, float headV, float
flightPathV,
 float angleOfAttackV) {

 altitude.draw(canvas, new PointF(getWidth() * 0.85f, getHeight() * 0.5f), altitudeV);

 heading.draw(canvas, new PointF(getWidth() * 0.5f, 0), headingV);

 roll.draw(canvas, new PointF(getWidth() * 0.5f, getHeight() * 0.8f), rollV);

 fpm.draw(canvas, new PointF(getWidth() * 0.5f, getHeight() * 0.425f), rollV, headV,
 flightPathV, angleOfAttackV);
 }

 public void pause() {

 canDraw = false;

 while(thread != null) {
 try {
 thread.join();
 thread = null;
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public void resume() {

 canDraw = true;
 thread = new Thread(this);
 thread.start();
 }
}

package erau.efrc.getOrientation.Gauges.Modes;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.PointF;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

import erau.efrc.getOrientation.Gauges.Curvelinear.Roll;
import erau.efrc.getOrientation.Gauges.Gauge;
import erau.efrc.getOrientation.Gauges.Linear.Airspeed;
import erau.efrc.getOrientation.Gauges.Linear.Altitude;
import erau.efrc.getOrientation.Gauges.Linear.Heading;
import erau.efrc.getOrientation.Gauges.Symmteric.Pitch;
import erau.efrc.getOrientation.Gauges.AngleOfAttack.NormalAoA;

107

import static erau.efrc.getOrientation.MainActivity.headPitch;
import static erau.efrc.getOrientation.MainActivity.hudParams;

public class Takeoff extends SurfaceView implements Runnable {

 Thread thread = null;
 boolean canDraw = false;

 Canvas canvas;
 SurfaceHolder surfaceHolder;

 private Gauge airspeed;
 private Gauge altitude;
 private Gauge heading;
 private Gauge roll;
 private Gauge pitch;
 private Gauge aoa;

 public Takeoff(Context context) {
 super(context);

 surfaceHolder = getHolder();

 airspeed = new Airspeed();

 altitude = new Altitude();

 heading = new Heading();

 roll = new Roll();

 pitch = new Pitch();

 aoa = new NormalAoA(context);
 }

 @Override
 public void run() {

 while(canDraw) {
 // Carry out some drawing
 if(surfaceHolder.getSurface().isValid()) {

 canvas = surfaceHolder.lockCanvas();
 canvas.drawColor(Color.BLACK);

 // Add head-tracker - calibrated for head position of -3.5f degrees
 this.drawGauges(hudParams.airspeed, hudParams.altitude, hudParams.roll,
 hudParams.heading, headPitch + hudParams.pitch, hudParams.pitch,
hudParams.flightPath,
 hudParams.angleOfAttack);

 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }
 }

 private void drawGauges(float speedV, float altitudeV, float rollV, float headingV, float
headV,
 float pitchV, float flightPathV, float angleOfAttackV) {

 airspeed.draw(canvas, new PointF(getWidth() * 0.15f, getHeight() * 0.5f), speedV);

 altitude.draw(canvas, new PointF(getWidth() * 0.85f, getHeight() * 0.5f), altitudeV);

108

 //roll.draw(canvas, new PointF(getWidth() * 0.5f, getHeight() * 0.8f), rollV);

 //heading.draw(canvas, new PointF(getWidth() * 0.5f, 0), headingV);

 pitch.draw(canvas, new PointF(getWidth() * 0.5f, getHeight() * 0.425f), rollV, headV,
pitchV, flightPathV);

 aoa.draw(canvas, new PointF(getWidth() * 0.15f, getHeight() * 0.85f), angleOfAttackV);
 }

 public void resume() {

 canDraw = true;
 thread = new Thread(this);
 thread.start();
 }

 public void pause() {

 canDraw = false;

 while(thread != null) {
 try {
 thread.join();
 thread = null;
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

package erau.efrc.getOrientation.Gauges.Linear;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.Point;
import android.graphics.PointF;
import android.graphics.Rect;

import erau.efrc.getOrientation.Gauges.Directions;
import erau.efrc.getOrientation.Gauges.Gauge;

abstract class LinearGauge implements Gauge {

 float UNITS_PER_GRADUATION = 1;
 float OVERALL_VALUE = 10; // Overall value the gauge can
display in one frame
 float MIN_VAL = 0; // Minimum value shown on the
gauge
 float MAX_VAL = 99999; // Maximum value shown on the
gauge
 float LARGER_MARGIN_VAL = 5; // Larger graduation value

 float GAUGE_HEIGHT = 200; // Overall gauge height (px)
 float LARGER_MARGIN_LEN = 20; // Larger graduation length,
(px)
 float SMALLER_MARGIN_LEN = 10; // Smaller graduation length,
(px)

109

 Directions GRADUATIONS_DIRECTION = Directions.LEFT; // Graduations direction
 String MAX_TEXT = "XXX"; // Maximum number of digits the
gauge can represent
 int STROKE_WIDTH = 1;
 int TEXT_SIZE = 20;

 private final Point LADDER_DIR; // Convert Ladder Direction (left, right, up,
down) to a unit vector
 private final Point GRAD_DIR; // Convert Graduations Direction (left,
right, up, down) to a unit vector
 private final float UNITS_PER_PIXEL;
 private final float MARGIN_SPACING; // Spacing between any two adjacent
graduations on the gauge (px)
 private final Paint pathPaint;
 private final Paint textPaint;
 private final Paint centerPaint;
 private final float textHeight;
 private final float textWidth;

 LinearGauge() {

 // Define all the characteristics of the derived classes
 // NOTE: Ensure this is done right at the beginning of the constructor method, to
 // get a correct customization of the gauge
 defineGaugeChars();

 /* Initialize paint brushes */
 pathPaint = new Paint();
 pathPaint.setColor(Color.GREEN);
 pathPaint.setStrokeWidth(STROKE_WIDTH);
 pathPaint.setStyle(Paint.Style.STROKE);

 textPaint = new Paint();
 textPaint.setColor(Color.GREEN);
 textPaint.setStyle(Paint.Style.FILL);
 textPaint.setTextSize(TEXT_SIZE);
 textPaint.setTextAlign(Paint.Align.CENTER);

 // Create a new paintbrush for filling center rectangles
 centerPaint = new Paint();
 centerPaint.setColor(Color.BLACK);
 centerPaint.setStyle(Paint.Style.FILL);

 // Get height of a generic text
 Rect rect = new Rect();
 textPaint.getTextBounds("0123456789", 0, 10, rect);
 textHeight = rect.height();

 // Assume the value never goes higher than MAX_TEXT
 textWidth = textPaint.measureText(MAX_TEXT);

 // Initialize all the dependent variables
 LADDER_DIR = getVector(getLADDER_DIRECTION(GRADUATIONS_DIRECTION));
 GRAD_DIR = getVector(GRADUATIONS_DIRECTION);
 UNITS_PER_PIXEL = OVERALL_VALUE / GAUGE_HEIGHT;
 MARGIN_SPACING = GAUGE_HEIGHT / (OVERALL_VALUE/UNITS_PER_GRADUATION);
 }

 // Must be implemented by the derived class to customize the gauge
 abstract void defineGaugeChars();

 public void draw(Canvas canvas, PointF drawLocation, float... currVals) {

 // Get the first value
 float currVal = currVals[0];

110

 // Estimate the number of units to the nearest valid value (HIGHER than or equal to the
current value)
 // NOTE: A valid value is one that can be represented on a graduation
 float unitsAway = currVal % UNITS_PER_GRADUATION == 0 ? 0 : UNITS_PER_GRADUATION - currVal
% UNITS_PER_GRADUATION;

 // Estimate the nearest valid value (HIGHER than or equal to the current value)
 float tempVal = currVal + unitsAway;

 // Estimate the number of pixels to the nearest valid value, e.g. 3 units is 3 units /
UNITS_PER_PIXEL away
 float pixelsAway = unitsAway / UNITS_PER_PIXEL;

 // Estimate location of the nearest valid value
 PointF i = new PointF();
 i.x = drawLocation.x - LADDER_DIR.x * pixelsAway;
 i.y = drawLocation.y - LADDER_DIR.y * pixelsAway;

 // Calculate length of the gauge sketched so far
 float gaugeLen = calcDistance(i, drawLocation);

 Path path = new Path();

 // Draw the first portion of the gauge
 while (gaugeLen <= GAUGE_HEIGHT / 2 && tempVal <= MAX_VAL)
 {
 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(canvas, path, i, tempVal);

 tempVal = updateCounter(i, tempVal, -1);

 gaugeLen = calcDistance(i, drawLocation);
 }

 // Estimate the nearest valid value (LOWER than or equal to the current value)
 unitsAway = currVal % UNITS_PER_GRADUATION == 0 ? 0 : currVal % UNITS_PER_GRADUATION;

 pixelsAway = unitsAway / UNITS_PER_PIXEL;

 tempVal = currVal - unitsAway;

 // Reset the value of i
 i.x = drawLocation.x + LADDER_DIR.x * pixelsAway;
 i.y = drawLocation.y + LADDER_DIR.y * pixelsAway;

 // Ensure the center graduation is NOT drawn twice
 if(pixelsAway == 0) {

 tempVal = updateCounter(i, tempVal, +1);
 }

 gaugeLen = calcDistance(i, drawLocation);

 // Draw the second portion of the gauge, ensure all values are greater than the MIN_VAL
 while (gaugeLen <= GAUGE_HEIGHT / 2 && tempVal >= MIN_VAL) {
 // Draw larger/smaller margins
 drawMargins(canvas, path, i, tempVal);

 // Update the counter
 tempVal = updateCounter(i, tempVal, +1);

 // Calculate length of the gauge sketched so far
 gaugeLen = calcDistance(i, drawLocation);
 }

111

 canvas.drawPath(path, pathPaint);

 // Draw the current value bordered with a rectangle
 drawCenterRect(canvas, drawLocation);

 // Draw a new line to properly place the center text
 placeText(canvas, drawLocation, Integer.toString((int) currVal));
 }

 // Draw larger/smaller margins based on the current value
 private void drawMargins(Canvas canvas, Path path, PointF i, float tempVal) {

 // Prevent any loss in precision upto 3 decimal places
 tempVal = Math.round(tempVal * 1000)/1000;

 // Draw larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 if (tempVal % LARGER_MARGIN_VAL == 0)
 {
 path.moveTo(i.x, i.y);
 path.lineTo(i.x + GRAD_DIR.x * LARGER_MARGIN_LEN, i.y + GRAD_DIR.y *
LARGER_MARGIN_LEN);

 // Draw a new line to properly place the text
 placeText(canvas, i, Integer.toString((int) tempVal));
 }
 // Draw the smaller margin, for all other cases
 else
 {
 path.moveTo(i.x, i.y);
 path.lineTo(i.x + GRAD_DIR.x * SMALLER_MARGIN_LEN, i.y + GRAD_DIR.y *
SMALLER_MARGIN_LEN);
 }
 }

 // Place text at the specified location
 void placeText(Canvas canvas, PointF i, String str) {

 Path textPath = new Path();

 switch(GRADUATIONS_DIRECTION) {

 case LEFT:
 textPath.moveTo(i.x + GRAD_DIR.x * (LARGER_MARGIN_LEN + textWidth),
 i.y + LADDER_DIR.y * textHeight / 2);

 textPath.lineTo(i.x + GRAD_DIR.x * LARGER_MARGIN_LEN,
 i.y + LADDER_DIR.y * textHeight / 2);
 break;

 case RIGHT:
 textPath.moveTo(i.x + GRAD_DIR.x * LARGER_MARGIN_LEN,
 i.y + LADDER_DIR.y * textHeight / 2);

 textPath.lineTo(i.x + GRAD_DIR.x * (LARGER_MARGIN_LEN + textWidth),
 i.y + LADDER_DIR.y * textHeight / 2);

 case DOWN:
 textPath.moveTo(i.x + LADDER_DIR.x * textWidth / 2,
 i.y + GRAD_DIR.y * (LARGER_MARGIN_LEN + textHeight));

 textPath.lineTo(i.x - LADDER_DIR.x * textWidth / 2 ,
 i.y + GRAD_DIR.y * (LARGER_MARGIN_LEN + textHeight));
 break;

112

 default:
 return;
 }

 canvas.drawTextOnPath(str, textPath, 0, 0, textPaint);
 }

 // Draw rectangle at the specified location, fill is ALWAYS black_fill_paintbrush
 private void drawCenterRect(Canvas canvas, PointF i) {

 float left = 0, top = 0, right = 0, bottom = 0;

 switch(GRADUATIONS_DIRECTION) {

 case LEFT:
 case RIGHT:
 left = i.x + GRAD_DIR.x * LARGER_MARGIN_LEN;
 top = i.y - LADDER_DIR.y * textHeight/2;
 right = i.x + GRAD_DIR.x * LARGER_MARGIN_LEN + GRAD_DIR.x * textWidth;
 bottom = i.y + LADDER_DIR.y * textHeight/2;
 break;

 case DOWN:
 left = i.x - LADDER_DIR.x * textWidth / 2;
 top = i.y + GRAD_DIR.y * LARGER_MARGIN_LEN;
 right = i.x + LADDER_DIR.x * textWidth / 2;
 bottom = i.y + GRAD_DIR.y * LARGER_MARGIN_LEN + GRAD_DIR.y * textHeight;
 break;

 default:
 return;
 }

 canvas.drawRect(left, top, right, bottom, centerPaint);
 canvas.drawRect(left, top, right, bottom, pathPaint);
 }

 // Update the counter location variable and return the current value
 private float updateCounter(PointF i, float tempVal, int sign) {

 i.x = i.x + sign * LADDER_DIR.x * MARGIN_SPACING;
 i.y = i.y + sign * LADDER_DIR.y * MARGIN_SPACING;
 return(tempVal - sign * (MARGIN_SPACING * UNITS_PER_PIXEL));
 }

 // Calculate distance between two points using distance formula
 private float calcDistance(PointF start, PointF end) {
 return (float) Math.hypot(start.x - end.x, start.y - end.y);
 }

 // Get LADDER_DIRECTION based on the Graduations direction
 private Directions getLADDER_DIRECTION(Directions gradDirection) {
 switch (gradDirection) {
 case LEFT:
 case RIGHT:
 case HORIZONTAL:
 return Directions.DOWN;

 case DOWN:
 return Directions.LEFT;

 default:
 return Directions.DOWN;
 }
 }

113

 // Convert direction (left, right, up, down) to a unit vector
 private Point getVector(Directions direction) {

 switch (direction) {
 case LEFT:
 case HORIZONTAL:
 return new Point(-1, 0);

 case RIGHT:
 return new Point(1, 0);

 case DOWN:
 return new Point(0, 1);

 default:
 return new Point();
 }
 }
}

package erau.efrc.getOrientation.Gauges.Linear;

import erau.efrc.getOrientation.Gauges.Directions;

public class Heading extends LinearGauge {

 public Heading() { super(); }

 void defineGaugeChars() {

 float PIXELS_PER_DEGREE = 960 / 23; // pixels / field_of_view -> horizontal

 GRADUATIONS_DIRECTION = Directions.DOWN;
 OVERALL_VALUE = 15;
 GAUGE_HEIGHT = OVERALL_VALUE * PIXELS_PER_DEGREE;
 }
}

114

package erau.efrc.getOrientation.Gauges.Linear;

import erau.efrc.getOrientation.Gauges.Directions;

public class Altitude extends LinearGauge {

 public Altitude() { super(); }

 protected void defineGaugeChars() {

 UNITS_PER_GRADUATION = 100;
 OVERALL_VALUE = 1000;
 MIN_VAL = -500;
 MAX_VAL = 10000;
 LARGER_MARGIN_VAL = 500;

 GAUGE_HEIGHT = 200;
 LARGER_MARGIN_LEN = 20;
 SMALLER_MARGIN_LEN = 10;

 GRADUATIONS_DIRECTION = Directions.LEFT;

 MAX_TEXT = "XXXXX";
 STROKE_WIDTH = 1;
 TEXT_SIZE = 20;
 }
}

package erau.efrc.getOrientation.Gauges.Linear;

import erau.efrc.getOrientation.Gauges.Directions;

public class Airspeed extends LinearGauge {

 public Airspeed() { super(); }

 protected void defineGaugeChars() {

 UNITS_PER_GRADUATION = 1;
 OVERALL_VALUE = 10;
 MIN_VAL = 0;
 MAX_VAL = 200;
 LARGER_MARGIN_VAL = 5;

 GAUGE_HEIGHT = 200;
 LARGER_MARGIN_LEN = 20;
 SMALLER_MARGIN_LEN = 10;

 GRADUATIONS_DIRECTION = Directions.RIGHT;

 MAX_TEXT = "XXX";
 STROKE_WIDTH = 1;
 TEXT_SIZE = 20;
 }
}

package erau.efrc.getOrientation.Gauges.FlightPathMarker;

import erau.efrc.getOrientation.Gauges.AngleOfAttack.AngleOfAttack;
import erau.efrc.getOrientation.Gauges.AngleOfAttack.ApproachAoA;
import erau.efrc.getOrientation.Gauges.AngleOfAttack.CruiseAoA;
import erau.efrc.getOrientation.Gauges.AngleOfAttack.NormalAoA;

115

import erau.efrc.getOrientation.Gauges.Gauge;
import erau.efrc.getOrientation.MainActivity;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;

public class FlightPathMarkerGauge implements Gauge {

 float UNITS_PER_GRADUATION = 3;
 float OVERALL_VALUE = 8.f; // Overall value the gauge can
display in one frame

 float GAUGE_HEIGHT; // Overall gauge height (px)
 float HORIZON_LEN = 200; // Horizon length (px)
 float CENTER_GAP = 20; // Gap in horizon line (px)
 float AOA_GAP = 15; // Gap between flight-path
marker and AoA gauge
 float FPM_LINE_LEN = 25;
 float FPM_CIRCLE_RAD = 5;

 int STROKE_WIDTH = 1;

 private PointF GRAD_DIR = new PointF();
 private PointF LADDER_DIR = new PointF();

 private AngleOfAttack aoa;

 private final float UNITS_PER_PIXEL;
 private final float MARGIN_SPACING; // Spacing between any two
adjacent graduations on the gauge (px)
 private final Paint pathPaint;

 public FlightPathMarkerGauge(Context context) {

 /* Initialize paint brushes */
 pathPaint = new Paint();
 pathPaint.setColor(Color.GREEN);
 pathPaint.setStrokeWidth(STROKE_WIDTH);
 pathPaint.setStyle(Paint.Style.STROKE);

 switch (MainActivity.mode) {
 case takeoff:
 aoa = new NormalAoA(context);
 break;

 case cruise:
 aoa = new CruiseAoA(context);
 break;

 case approach:
 aoa = new ApproachAoA(context);
 break;
 }

 float PIXELS_PER_DEGREE = 540 / (23 * 9 /16); // pixels / field_of_view -> vertical; fov:
23 deg

 GAUGE_HEIGHT = OVERALL_VALUE * PIXELS_PER_DEGREE;

 // Initialize all the dependent variables
 UNITS_PER_PIXEL = OVERALL_VALUE / GAUGE_HEIGHT;

116

 // MARGIN_SPACING must be an integer, else, there will be round-off error in the final
calculations
 MARGIN_SPACING = GAUGE_HEIGHT / (OVERALL_VALUE/UNITS_PER_GRADUATION);
 }

 // Need currVals to be an array of 4 elements: theta, center-value, flight path angle, angle
of attack
 public void draw(Canvas canvas, PointF drawLocation, float... currVals) {

 float theta = currVals[0];

 // Estimate GRAD_DIR and LADDER_DIR
 GRAD_DIR = new PointF((float) Math.cos(Math.toRadians(theta)),
 (float) Math.sin(Math.toRadians(theta)));

 LADDER_DIR = new PointF((float) Math.cos(Math.toRadians(theta + 90)),
 (float) Math.sin(Math.toRadians(theta + 90)));

 float centerVal = currVals[1];

 // Estimate the number of units to the nearest valid value (HIGHER than or equal to the
current value)
 // NOTE: A valid value is one that can be represented on a graduation
 float unitsAway = centerVal % UNITS_PER_GRADUATION == 0 ? 0 : UNITS_PER_GRADUATION -
centerVal % UNITS_PER_GRADUATION;

 // Estimate the nearest valid value (HIGHER than or equal to the current value)
 float tempVal = centerVal + unitsAway;

 // Estimate the number of pixels to the nearest valid value, e.g. 3 units is 3 units /
UNITS_PER_PIXEL away
 float pixelsAway = unitsAway / UNITS_PER_PIXEL;

 // Estimate location of the nearest valid value
 PointF i = new PointF();
 i.x = drawLocation.x - LADDER_DIR.x * pixelsAway;
 i.y = drawLocation.y - LADDER_DIR.y * pixelsAway;

 Path path = new Path();

 // Calculate length of the gauge sketched so far
 float gaugeLen = calcDistance(i, drawLocation);

 boolean horizonDrawn = false;

 // Draw the first portion of the gauge
 while (gaugeLen <= GAUGE_HEIGHT / 2 && !horizonDrawn)
 {
 if(tempVal == 0) {

 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(path, i, tempVal);
 horizonDrawn = true;
 }

 tempVal = updateCounter(i, tempVal, -1);
 gaugeLen = calcDistance(i, drawLocation);
 }

 // Estimate the nearest valid value (LOWER than or equal to the current value)
 unitsAway = centerVal % UNITS_PER_GRADUATION == 0 ? 0 : centerVal % UNITS_PER_GRADUATION;

 pixelsAway = unitsAway / UNITS_PER_PIXEL;

117

 tempVal = centerVal - unitsAway;

 // Reset the value of i
 i.x = drawLocation.x + LADDER_DIR.x * pixelsAway;
 i.y = drawLocation.y + LADDER_DIR.y * pixelsAway;

 gaugeLen = calcDistance(i, drawLocation);

 // Draw the second portion of the gauge
 while (gaugeLen <= GAUGE_HEIGHT / 2 && !horizonDrawn) {
 if(tempVal == 0) {

 // Draw the larger margin, if the current value is a multiple of LARGER_MARGIN_VAL
 drawMargins(path, i, tempVal);
 horizonDrawn = true;
 }

 // Update the counter
 tempVal = updateCounter(i, tempVal, +1);

 // Calculate length of the gauge sketched so far
 gaugeLen = calcDistance(i, drawLocation);
 }

 // Draw flight-path marker at the appropriate location
 float flightPath = currVals[2];
 pixelsAway = (flightPath - centerVal) / UNITS_PER_PIXEL;

 if(Math.abs(pixelsAway) <= GAUGE_HEIGHT / 2) {

 drawFlightPath(path, new PointF(drawLocation.x - LADDER_DIR.x * pixelsAway,
 drawLocation.y - LADDER_DIR.y * pixelsAway));

 PointF aoaLocation = new PointF(drawLocation.x - LADDER_DIR.x * pixelsAway -
GRAD_DIR.x * AOA_GAP,
 drawLocation.y - LADDER_DIR.y * pixelsAway - GRAD_DIR.y * AOA_GAP);

 // Update theta for aoa; and, draw aoa
 float aoaV = currVals[3];
 aoa.setTheta(90 + theta, theta);
 aoa.draw(canvas, aoaLocation, aoaV);
 }

 canvas.drawPath(path, pathPaint);
 }

 private void drawFlightPath(Path path, PointF i) {

 // In positive GRAD direction
 path.moveTo(i.x + GRAD_DIR.x * FPM_CIRCLE_RAD,
 i.y + GRAD_DIR.y * FPM_CIRCLE_RAD);
 path.lineTo(i.x + GRAD_DIR.x * (FPM_CIRCLE_RAD + FPM_LINE_LEN),
 i.y + GRAD_DIR.y * (FPM_CIRCLE_RAD + FPM_LINE_LEN));

 // In negative GRAD direction
 path.moveTo(i.x - GRAD_DIR.x * FPM_CIRCLE_RAD,
 i.y - GRAD_DIR.y * FPM_CIRCLE_RAD);
 path.lineTo(i.x - GRAD_DIR.x * (FPM_CIRCLE_RAD + FPM_LINE_LEN),
 i.y - GRAD_DIR.y * (FPM_CIRCLE_RAD + FPM_LINE_LEN));

 // In negative LADDER direction
 path.moveTo(i.x - LADDER_DIR.x * FPM_CIRCLE_RAD,
 i.y - LADDER_DIR.y * FPM_CIRCLE_RAD);
 path.lineTo(i.x - LADDER_DIR.x * (FPM_CIRCLE_RAD + FPM_LINE_LEN),
 i.y - LADDER_DIR.y * (FPM_CIRCLE_RAD + FPM_LINE_LEN));

118

 // Center circle
 path.addCircle(i.x, i.y, FPM_CIRCLE_RAD, Path.Direction.CCW);
 }

 private void drawMargins(Path path, PointF i, float tempVal) {

 // Prevent any loss in precision upto 3 decimal places
 tempVal = Math.round(tempVal * 1000)/1000;

 // Draw horizon line, if the current value is 0
 if(tempVal == 0) {
 // Draw on positive side
 path.moveTo(i.x + GRAD_DIR.x * CENTER_GAP, i.y + GRAD_DIR.y * CENTER_GAP);
 path.lineTo(i.x + GRAD_DIR.x * (CENTER_GAP + HORIZON_LEN),
 i.y + GRAD_DIR.y * (CENTER_GAP + HORIZON_LEN));

 // Draw on negative side
 path.moveTo(i.x - GRAD_DIR.x * CENTER_GAP, i.y - GRAD_DIR.y * CENTER_GAP);
 path.lineTo(i.x - GRAD_DIR.x * (CENTER_GAP + HORIZON_LEN),
 i.y - GRAD_DIR.y * (CENTER_GAP + HORIZON_LEN));
 }
 }

 // Update the counter location variable and return the current value
 private float updateCounter(PointF i, float tempVal, int sign) {

 i.x = i.x + sign * LADDER_DIR.x * MARGIN_SPACING;
 i.y = i.y + sign * LADDER_DIR.y * MARGIN_SPACING;

 return(tempVal - sign * (MARGIN_SPACING * UNITS_PER_PIXEL));
 }

 // Calculate distance between two points using distance formula
 private float calcDistance(PointF start, PointF end) {
 return (float) Math.hypot(start.x - end.x, start.y - end.y);
 }
}

package erau.efrc.getOrientation.Gauges.Curvelinear;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;

import erau.efrc.getOrientation.Gauges.Directions;
import erau.efrc.getOrientation.Gauges.Gauge;

import static java.lang.Math.abs;

abstract class CurvelinearGauge implements Gauge {

 float UNITS_PER_GRADUATION = 5;
 float LARGE_MARGIN_VAL = 10;
 float MIN_VAL = 0; // Absolute units
 float MAX_VAL = 30; // Absolute units

 Directions GAUGE_DIR = Directions.DOWN; // Gauge direction

 float GAUGE_WIDTH = 150;
 float LARGE_MARGIN_LENGTH = 20; // Larger graduation length, (px)

119

 float SMALL_MARGIN_LENGTH = 10; // Smaller graduation length, (px)
 float TRIANGLE_HEIGHT = 5; // Triangle height, to indicate current
value (px)
 float TRIANGLE_THETA = 6; // Triangle apex angle, to indicate
current values (px)
 int STROKE_WIDTH = 1;

 private final float[] THETA_LIMITS;

 private final Paint pathPaint;

 CurvelinearGauge() {

 // Ensure this is the first statement always
 defineChars();

 /* Initialize paint brushes */
 pathPaint = new Paint();
 pathPaint.setColor(Color.GREEN);
 pathPaint.setStrokeWidth(STROKE_WIDTH);
 pathPaint.setStyle(Paint.Style.STROKE);

 THETA_LIMITS = getMIN_MAX_VAL(GAUGE_DIR);
 }

 protected abstract void defineChars();

 public void draw(Canvas canvas, PointF drawLocation, float... currVals) {

 // Get the first value
 float currVal = currVals[0];

 // arc_length = pi * r
 float gaugeR = GAUGE_WIDTH / 2;
 float largeMarginR = gaugeR - LARGE_MARGIN_LENGTH;
 float smallMarginR = gaugeR - SMALL_MARGIN_LENGTH;

 // Keep track of the angle being drawn
 float positiveTheta = 0;
 float negativeTheta = 0;

 Path path = new Path();

 // sketchR = largeMarginR or smallMarginR, depending on the currnt angle
 float sketchR;

 // Define the line constants: a and b (y = ax + b)
 float a = (THETA_LIMITS[1] - THETA_LIMITS[0]) / (MAX_VAL - MIN_VAL);
 float b = THETA_LIMITS[0] - a * MIN_VAL;

 // Draw the entire gauge
 while(positiveTheta <= MAX_VAL) {

 if(positiveTheta % LARGE_MARGIN_VAL == 0) {
 sketchR = largeMarginR;
 }
 else {
 sketchR = smallMarginR;
 }

 PointF positiveVector = new PointF((float) Math.cos(Math.toRadians(a * positiveTheta +
b)),
 (float) Math.sin(Math.toRadians(a * positiveTheta + b)));

 path.moveTo(drawLocation.x + positiveVector.x * sketchR,

120

 drawLocation.y + positiveVector.y * sketchR);

 path.lineTo(drawLocation.x + positiveVector.x * gaugeR,
 drawLocation.y + positiveVector.y * gaugeR);

 if(positiveTheta != negativeTheta) {
 PointF negativeVector = new PointF((float) Math.cos(Math.toRadians(a *
negativeTheta + b)),
 (float) Math.sin(Math.toRadians(a * negativeTheta + b)));

 path.moveTo(drawLocation.x + negativeVector.x * sketchR,
 drawLocation.y + negativeVector.y * sketchR);

 path.lineTo(drawLocation.x + negativeVector.x * gaugeR,
 drawLocation.y + negativeVector.y * gaugeR);
 }

 positiveTheta += UNITS_PER_GRADUATION;
 negativeTheta -= UNITS_PER_GRADUATION;
 }

 // Draw the triangular pointer, iff the current roll angle is legally bounded
 if(abs(currVal) <= MAX_VAL) {

 // Scale the current value to the gauge coordinate system
 float theta = a * currVal + b;

 // Calculate the unit vector along the current value
 PointF unitVector = new PointF((float) Math.cos(Math.toRadians(theta)),
 (float) Math.sin(Math.toRadians(theta)));

 PointF apex = new PointF(drawLocation.x + unitVector.x * gaugeR, drawLocation.y +
unitVector.y * gaugeR);

 // Get the angular value at the left vertex of the triangle
 theta -= TRIANGLE_THETA / 2;

 unitVector = new PointF((float) Math.cos(Math.toRadians(theta)),
 (float) Math.sin(Math.toRadians(theta)));

 PointF left = new PointF(drawLocation.x + unitVector.x * (gaugeR + TRIANGLE_HEIGHT),
 drawLocation.y + unitVector.y * (gaugeR + TRIANGLE_HEIGHT));

 // Get the angular value at the right vertex of the triangle
 theta += TRIANGLE_THETA;

 unitVector = new PointF((float) Math.cos(Math.toRadians(theta)),
 (float) Math.sin(Math.toRadians(theta)));

 PointF right = new PointF(drawLocation.x + unitVector.x * (gaugeR + TRIANGLE_HEIGHT),
 drawLocation.y + unitVector.y * (gaugeR + TRIANGLE_HEIGHT));

 // Draw the pointer triangle, if the current theta is bounded
 path.moveTo(apex.x, apex.y);
 path.lineTo(left.x, left.y);
 path.lineTo(right.x, right.y);
 path.lineTo(apex.x, apex.y);
 }

 canvas.drawPath(path, pathPaint);
 }

 private float[] getMIN_MAX_VAL(Directions direction) {

 float[] array = new float[2];

121

 switch (direction) {

 // Values along the left half are positive and right half are negative
 default:
 case DOWN:
 array[0] = 90;
 array[1] = 180;
 }

 return array;
 }

}

package erau.efrc.getOrientation.Gauges.Curvelinear;

public class Roll extends CurvelinearGauge {

 public Roll() { super(); }

 protected void defineChars() {
 }
}

package erau.efrc.getOrientation.Gauges.AngleOfAttack;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;

import erau.efrc.getOrientation.Gauges.Gauge;
import erau.efrc.getOrientation.R;

public abstract class AngleOfAttack implements Gauge {

 float POSITIVE_STALL_END;
 float POSITIVE_STALL_START;

 float NEGATIVE_STALL_START;
 float NEGATIVE_STALL_END;

 float OVERALL_VALUE; // Overall value the gauge can display in one frame

 float POSITIVE_CAUTION;
 float NEGATIVE_CAUTION;

 float GAUGE_HEIGHT; // Overall gauge height (px)
 float LARGER_MARGIN_LEN; // Larger graduation length, (px)

 int STROKE_WIDTH;
 int TEXT_SIZE;

 float LADDER_THETA = 90; // degrees
 float GRADUATION_THETA = 0; // degrees

 float BOLT_ANGLE = 7;

122

 float GLIDER_ANGLE = 10;
 float LEAF_ANGLE = 12;

 private PointF LADDER_DIRECTION;
 private PointF GRADUATION_DIRECTION;

 private final Paint regularPaint;
 private final Paint cautionPaint;
 private final Paint stallPaint;
 final Paint textPaint;

 private final float UNITS_PER_PIXEL;

 private final Bitmap bolt;
 private final Bitmap glider;
 private final Bitmap leaf;

 AngleOfAttack(Context context) {

 // Ensure all values are initialized
 defineChars();

 /* Initialize paint brushes */
 regularPaint = new Paint();
 regularPaint.setColor(Color.GREEN);
 regularPaint.setStrokeWidth(STROKE_WIDTH);
 regularPaint.setStyle(Paint.Style.STROKE);

 cautionPaint = new Paint();
 cautionPaint.setColor(Color.YELLOW);
 cautionPaint.setStrokeWidth(STROKE_WIDTH);
 cautionPaint.setStyle(Paint.Style.STROKE);

 stallPaint = new Paint();
 stallPaint.setColor(Color.RED);
 stallPaint.setStrokeWidth(STROKE_WIDTH);
 stallPaint.setStyle(Paint.Style.STROKE);

 textPaint = new Paint();
 textPaint.setColor(Color.GREEN);
 textPaint.setStyle(Paint.Style.FILL);
 textPaint.setTextSize(TEXT_SIZE);
 textPaint.setTextAlign(Paint.Align.LEFT);

 // Initialize all the dependent variables
 UNITS_PER_PIXEL = OVERALL_VALUE / GAUGE_HEIGHT;

 LADDER_DIRECTION = new PointF((float) Math.cos(Math.toRadians(LADDER_THETA)),
 (float) Math.sin(Math.toRadians(LADDER_THETA)));

 GRADUATION_DIRECTION = new PointF((float) Math.cos(Math.toRadians(GRADUATION_THETA)),
 (float) Math.sin(Math.toRadians(GRADUATION_THETA)));

 // Load the images, adjusting the target density as per the image
 BitmapFactory.Options bmpOptions = new BitmapFactory.Options();
 bmpOptions.inScaled = true;
 bmpOptions.inTargetDensity = 15;
 bolt = BitmapFactory.decodeResource(context.getResources(), R.drawable.bolt, bmpOptions);

 bmpOptions.inTargetDensity = 7;
 glider = BitmapFactory.decodeResource(context.getResources(), R.drawable.glider,
bmpOptions);

 bmpOptions.inTargetDensity = 5;
 leaf = BitmapFactory.decodeResource(context.getResources(), R.drawable.leaf, bmpOptions);

123

 }

 protected abstract void defineChars();

 @Override
 public void draw(Canvas canvas, PointF currLocation, float... currVals) {

 float currVal = currVals[0];

 LADDER_DIRECTION.x = (float) Math.cos(Math.toRadians(LADDER_THETA));
 LADDER_DIRECTION.y = (float) Math.sin(Math.toRadians(LADDER_THETA));

 GRADUATION_DIRECTION.x = (float) Math.cos(Math.toRadians(GRADUATION_THETA));
 GRADUATION_DIRECTION.y = (float) Math.sin(Math.toRadians(GRADUATION_THETA));

 // Ensure the aoa value is bounded
 if(currVal > POSITIVE_STALL_END) {
 currVal = POSITIVE_STALL_END;
 }
 else if(currVal < NEGATIVE_STALL_END) {
 currVal = NEGATIVE_STALL_END;
 }

 // Create all path objects
 Path regularPath = new Path();
 Path cautionPath = new Path();
 Path stallPath = new Path();

 // Estimate the start and end positions of the regular region
 float startLen = (currVal - POSITIVE_CAUTION) * 1 / UNITS_PER_PIXEL;
 float endLen = (currVal - NEGATIVE_CAUTION) * 1 / UNITS_PER_PIXEL;
 moveTolineTo(regularPath, currLocation, startLen, endLen);

 // Estimate the start and end positions of the positive caution region
 startLen = (currVal - POSITIVE_STALL_START) * 1 / UNITS_PER_PIXEL;
 endLen = (currVal - POSITIVE_CAUTION) * 1 / UNITS_PER_PIXEL;
 moveTolineTo(cautionPath, currLocation, startLen, endLen);

 // Estimate the start and end positions of the negative caution region
 startLen = (currVal - NEGATIVE_CAUTION) * 1 / UNITS_PER_PIXEL;
 endLen = (currVal - NEGATIVE_STALL_START) * 1 / UNITS_PER_PIXEL;
 moveTolineTo(cautionPath, currLocation, startLen, endLen);

 // Estimate the start and end positions of the positive stall region
 startLen = (currVal - POSITIVE_STALL_START) * 1 / UNITS_PER_PIXEL;
 endLen = (currVal - POSITIVE_STALL_END) * 1 / UNITS_PER_PIXEL;
 moveTolineTo(stallPath, currLocation, startLen, endLen);

 // Draw the end points of the positive stall region
 float xLocation = currLocation.x + LADDER_DIRECTION.x * endLen + GRADUATION_DIRECTION.x *
LARGER_MARGIN_LEN;
 float yLocation = currLocation.y + LADDER_DIRECTION.y * endLen + GRADUATION_DIRECTION.y *
LARGER_MARGIN_LEN;

 if(xLocation > 0 && yLocation > 0) {
 stallPath.lineTo(xLocation, yLocation);
 }

 // Estimate the start and end positions of the negative stall region
 startLen = (currVal - NEGATIVE_STALL_START) * 1 / UNITS_PER_PIXEL;
 endLen = (currVal - NEGATIVE_STALL_END) * 1 / UNITS_PER_PIXEL;

 moveTolineTo(stallPath, currLocation, startLen, endLen);

 // Draw the end points of the negative stall region

124

 xLocation = currLocation.x + LADDER_DIRECTION.x * endLen + GRADUATION_DIRECTION.x *
LARGER_MARGIN_LEN;
 yLocation = currLocation.y + LADDER_DIRECTION.y * endLen + GRADUATION_DIRECTION.y *
LARGER_MARGIN_LEN;

 if(xLocation > 0 && yLocation > 0) {
 stallPath.lineTo(xLocation, yLocation);
 }

 canvas.drawPath(regularPath, regularPaint);
 canvas.drawPath(cautionPath, cautionPaint);
 canvas.drawPath(stallPath, stallPaint);

 // Estimate the location of the bolt - ensure the location is calculated to the center of
the bolt
 float len = (currVal - BOLT_ANGLE) * 1 / UNITS_PER_PIXEL;
 xLocation = currLocation.x + LADDER_DIRECTION.x * (len - bolt.getHeight() / 2)
 + GRADUATION_DIRECTION.x * (- bolt.getWidth() / 2);
 yLocation = currLocation.y + LADDER_DIRECTION.y * (len - bolt.getHeight() / 2)
 + GRADUATION_DIRECTION.y * (- bolt.getWidth() / 2);
 // Draw the bolt
 canvas.drawBitmap(bolt, xLocation, yLocation, null);

 // Repeat for other bitmaps
 len = (currVal - GLIDER_ANGLE) * 1 / UNITS_PER_PIXEL;
 xLocation = currLocation.x + LADDER_DIRECTION.x * (len - glider.getHeight() / 2)
 + GRADUATION_DIRECTION.x * (- glider.getWidth() / 2);
 yLocation = currLocation.y + LADDER_DIRECTION.y * (len - glider.getHeight() / 2)
 + GRADUATION_DIRECTION.y * (- glider.getWidth() / 2);
 canvas.drawBitmap(glider, xLocation, yLocation, null);

 len = (currVal - LEAF_ANGLE) * 1 / UNITS_PER_PIXEL;
 xLocation = currLocation.x + LADDER_DIRECTION.x * (len - leaf.getHeight() / 2)
 + GRADUATION_DIRECTION.x * (- leaf.getWidth() / 2);
 yLocation = currLocation.y + LADDER_DIRECTION.y * (len - leaf.getHeight() / 2)
 + GRADUATION_DIRECTION.y * (- leaf.getWidth() / 2);
 canvas.drawBitmap(leaf, xLocation, yLocation, null);
 }

 void moveTolineTo(Path path, PointF location, float startLen, float endLen) {

 float xLocation = location.x + LADDER_DIRECTION.x * startLen;

 if(xLocation < 0) {
 xLocation = 0;
 }

 float yLocation = location.y + LADDER_DIRECTION.y * startLen;

 if(yLocation < 0) {
 yLocation = 0;
 }

 path.moveTo(xLocation, yLocation);

 xLocation = location.x + LADDER_DIRECTION.x * endLen;

 if(xLocation < 0) {
 xLocation = 0;
 }

 yLocation = location.y + LADDER_DIRECTION.y * endLen;

 if(yLocation < 0) {
 yLocation = 0;

125

 }

 path.lineTo(xLocation, yLocation);
 }

 public void setTheta(float ladderTheta, float gradTheta) {
 LADDER_THETA = ladderTheta;
 GRADUATION_THETA = gradTheta;
 }
}

package erau.efrc.getOrientation.Gauges.AngleOfAttack;

import android.content.Context;

public class ApproachAoA extends AngleOfAttack {

 public ApproachAoA(Context context) {
 super(context);
 }

 protected void defineChars() {
 POSITIVE_STALL_END = 20;
 POSITIVE_STALL_START = 17;

 NEGATIVE_STALL_START = -12;
 NEGATIVE_STALL_END = -15;

 OVERALL_VALUE = POSITIVE_STALL_END - NEGATIVE_STALL_END;

 POSITIVE_CAUTION = 15;
 NEGATIVE_CAUTION = -10;

 GAUGE_HEIGHT = 200;
 LARGER_MARGIN_LEN = 25;

 STROKE_WIDTH = 4;
 }

}

package erau.efrc.getOrientation.Gauges.AngleOfAttack;

import android.content.Context;

public class CruiseAoA extends AngleOfAttack {

 public CruiseAoA(Context context) {
 super(context);
 }

 protected void defineChars() {
 POSITIVE_STALL_END = 15;
 POSITIVE_STALL_START = 15;

 NEGATIVE_STALL_START = 0;
 NEGATIVE_STALL_END = 0;

 OVERALL_VALUE = POSITIVE_STALL_END - NEGATIVE_STALL_END;

 POSITIVE_CAUTION = 15;
 NEGATIVE_CAUTION = 0;

126

 GAUGE_HEIGHT = 250;
 LARGER_MARGIN_LEN = 0;

 STROKE_WIDTH = 3;
 }
}

package erau.efrc.getOrientation.Gauges.AngleOfAttack;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.PointF;

public class NormalAoA extends AngleOfAttack {

 public NormalAoA(Context context) {
 super(context);
 }

 protected void defineChars() {

 TEXT_SIZE = 20;
 }

 @Override
 public void draw(Canvas canvas, PointF drawLocation, float... currVals) {

 canvas.drawText(Float.toString(currVals[0]), drawLocation.x, drawLocation.y, textPaint);
 }
}

	Low-Cost Wearable Head-Up Display for Flight General Aviation
	Scholarly Commons Citation

	Dissertation

