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ABSTRACT

This paper is a case study of a forensic investigation of a Network Investigative Technique (NIT)
used by the FBI to deanonymize users of a The Onion Router (Tor) Hidden Service. The forensic
investigators were hired by the defense to determine how the NIT worked. The defendant was ac-
cused of using a browser to access illegal information. The authors analyzed the source code, binary
�les and logs that were used by the NIT. The analysis was used to validate that the NIT collected
only necessary and legally authorized information. This paper outlines the publicly available case
details, how the NIT logged data, and how the NIT utilized a capability in �ash to deanonymize a
Tor user. The challenges with the investigation and concerns of the NIT will also be discussed.

Keywords: Tor, NIT, deanonymization, Tor Hidden Services, �ash

1. INTRODUCTION

The FBI was given access to a group of comput-
ers that were running a The Onion Router (Tor)
Hidden Service that hosted illegal content. The
FBI then requested and received a warrant to
investigate the individuals whom accessed the
illegal content on those servers. When content is
accessed via the Tor network [1], the IP address
of the computer requesting the content is hid-
den. The FBI developed a Network Investiga-
tive Technique (NIT) that would deanonymize
the users of the Tor Hidden Service. For a short
period of time, the FBI ran a server that sup-
plied a �ash object (NIT) to a users browser,
which in turn would deanonymize those users.
The data gathered from the NIT was used as
probable cause to acquire search warrants. This
story was reported in many outlets [2] [5] [6] [9]
[10]. Our team was retained to investigate the
NIT to ensure that it only collected the infor-
mation speci�ed in the original warrant. Our
team's original report has been published for
public viewing [8].

This investigation is one of the �rst where law

enforcement have actively modi�ed Tor hidden
service website to deanonymize the users. In a
traditional website, the Internet Protocol (IP)
address of a client is used as a component of
the IP networking layer. Thus an IP address
is required for a website to operate properly.
To thwart authorities, users of illegal content
moved to using proxy addresses to access web-
sites. The poxy service will make the connection
for the client and mask the identity of the user.
To deanonymize proxy users, law enforcement
can get a court order to seize and modify the
proxy servers. With the advent of Tor, users can
bounce their encrypted tra�c through the Tor
network to achieve anonymity. The movement
to Tor has pushed law enforcement to use more
technically advanced methods of deanonymiza-
tion.

2. NIT FRAMEWORK

The NIT consisted of several di�erent systems
that worked in concert to deanonymize users
of the Tor Hidden Service. This section is
broken down into separate sections based the
di�erent systems that were analyzed. A high

c© 2016 ADFSL Page 195



CDFSL Proceedings 2016 Reverse Engineering a NIT that unmasks TOR users

Users Browser

hidden service request

TOR Hidden Service 
Server (FBI Controlled)

FBI DNS and Logging 
Server

hidden service response

Flash

TOR 
Network

socket connection

Cookie 
Logger

1 2

3

Figure 1. NIT High Level Overview

level overview of the NIT is shown in Figure
1. Section 2.1 describes how a Session Identi�er
(SessionID) was generated and logged. Section
2.2 describes the �ash application that makes
socket connections. Section 2.3 describes how
the FBI decrypted and logged data gathered
from DNS queries. Section 2.4 describes how
the socket connection was logged. Section 2.5
discusses how the data from the logs on di�er-
ent servers were correlated. Section 2.6 discusses
our testing of the reliability and reproducibility
of the NIT. Section 2.7 discusses some of the
issues related to the log correlation and data va-
lidity.

2.1 Server Side Code

The main goal of the NIT was to deanonymize
users of a Tor Hidden Service by revealing their
public IP address. To accomplish this the FBI
generated an identi�er for users of the Tor Hid-
den Service. This code needed to be dynamic
and change for each user of the webpage, and
thus the FBI used php for the server side script-
ing. When the user would visit one of the
pages that was being tracked, a page named
gallery.php would be executed. Figure 3 shows
one of these pages that included gallery.php.
The gallery.php page is included in an iframe
and it has a size of 1 pixel by 1 pixel.

gallery.php

Line 15: generate random SID

Lines 18-38: determine method of 
decloaking

Lines 1680-1692: use GALLERY_API_KEY 
to encrypt (server, SID, type) which 
creates the ECID 

Line 73: include ECID as id in gallery.swf

gallery.swf

Lines 46-48: resolve domain that 
includes ECID

Line 49: make a socket connection 
to cornhusker

Lines 29-34: send operating 
system, architecture, and ECID to 
cornhusker

cornhusker
Server

Figure 2. NIT Source Code Overview

The server side code in gallery.php created
a unique SessionID each time a tracked web-
page was loaded. The data �ow is shown
in Figure 2. This SessionID is a random
number generated using the mcrypt_create_iv

and MCRYPT_DEV_URANDOM functions,
which are both standard mcrypt encryption
functions. The random number generation is
shown in Figure 4 on Line 15. After the
SessionID was generated, the FBI would log the
data which included IDs for the uri, discussion
board, the thread and if the user was a modera-
tor (mod). This is done on line 16 and is shown
in Figure 4. The code for the logging is shown
in Figure 5. This code simply logs to a table
named 'visitors' in a SQL database.

After the SessionID was created, the FBI's
code would determine which decloaking method
to use. This is shown in Figure 6. The browser
that we tested was the Rekonq browser (as per
the logs and FBI report). The Rekonq browser
would cause the 3rd case (Lines 33-36) to be
executed. The code then delivers the correct
method of decloaking based on the variables
with a pre�x display. For the Rekonq browser,
gallery.php �le would include a �ash �le named
gallery.swf and it would pass an id to the �ash
object. This id is created using the FBI's gen-
erate_cookie function. The result of the gener-
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Figure 3. Tracked Webpage 1481.html

Figure 4. PHP Variables in gallery.php

ate_cookie function will be known as the En-
crypted Session Identi�er (ECID). The gener-
ate_cookie function uses the shared key named
GALLERY_API_KEY , sets method to 'swf'
and uses the random SessionID that was gener-
ated above.

Figure 8 shows the code that was used to gen-
erate the ECID. The data stored in the ECID
is a commercial at (@) delimited data structure,
and data is terminated with a $. The num-
ber 2 at the beginning represents which server
generated the cookie. There were three di�er-
ent servers, each one had a di�erent hardcoded
value. The method is 'swf' and the $session_id
is the SessionID from above. This data is en-
crypted with a random initialization vector (iv)
and using the GALLERY_API_KEY . This
key is only readable on the server and not in
the client's browser. To decrypt the data, the
shared key and the iv are required. At the end
of the function, the randomly generated iv is
prepended to the result, so that the FBI can
decrypt the encoded data.

All of the above occurs when the user requests
a page that included gallery.php. In Figure 1
this is step 1. While this data is processed, the
response is also sent back to the anonymous Tor
user. This process is step 2 in Figure 1. When
the user's Rekonq browser processes the page, it
will load and execute the the �ash object that
is embedded (as shown in Figure 7).

2.2 Flash Application and Socket

Server

The above section describes how the SessionID
and ECID are generated. The ECID is passed to
the �ash object through the parameter named
id. The FBI did not provide the source
code for the �ash application for our analy-
sis. This will be discussed in Section 4. To
understand the functionality of the applica-
tion, we reverse engineered the source code
for the �ash application using the JPEXS de-
compiler [7]. The reverse engineered source
is shown in Figure 9. In this �ash code
the function loadGallery is called shortly after
the �ash application is loaded by the browser.
This function loads the ECID on Line 42. If
that value is not null, the �ash application
will make a socket connection to the domain
96.126.124.96.ECID.cpimagegallery.com, where
the ECID is replaced by the value of the ECID.
The domain cpimagegallery.com was controlled
by the FBI. When cpimagegallery.com was re-
solved by a DNS resolver it returned the address
of an FBI controlled server (known hereafter as
cornhusker) and the use of this domain is dis-
cussed in Section 2.3. Flash will make a DNS
request to resolve the IP address of the domain
above. After the IP address is resolved, the
�ash application will call the onConnect func-
tion (Line 27 of Figure 9). The onConnect func-
tion builds a string that contains the operating
system, cpu architechure and the id that was
passed to the �ash app (ECID). This string is
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Figure 5. Request Log Function in functions.php

Figure 6. Browser Check in gallery.php

Figure 7. �ash �le inclusion in gallery.php
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Figure 8. ECID Generation in fuctions.php

Figure 9. Reverse Engineered NIT source code from gallery.swf
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sent to the cornhusker server via a TCP socket
connection. These are the parameters that the
FBI was allowed to collect via the search war-
rant that they were issued. Another key point
here is that �ash will ignore the proxy settings
for the Rekonq browser. This means that the
connection will not traverse the Tor network,
but go over the users normal internet connec-
tion. This lack of proxy usage will allow the Tor
user's public IP address to be revealed and their
anonymous TOR activity to be deanonymized.
The socket connection will be made using the
public IP address of the Tor user.

2.3 DNS parsing and logging

Section 2.2 described how the �ash appli-
cation would make a request to connect to
a server with a domain name of the form
96.126.124.96.ECID.cpimagegallery.com. Fig-
ure 10 gives a high level overview of the DNS
parsing code on cornhusker. The FBI provided
us with the code that ran on the cornhusker
server along with the logs from that server.
This server was destroyed after the operation
had completed, so we were unable to analyze
the actual server that ran the code. The corn-
husker server was running the Twisted Python
server [4]. Twisted is "an event-driven network-
ing engine written in Python" that allowed the
FBI to perform the resolution of the domains
in a �exible manner. This �exibility allowed
the FBI to resolve the domains to their IP ad-
dress, as well as parse ECID that was embedded
within those DNS queries. The parsing code is
shown in Figure 14. On Line 136 the parsing
code will decrypt the cookie. In the call to de-
crypt_cookie, the value of self.key is the shared
secret key and the cookie is the ECID. The code
used to decrypt the ECID is shown in Figure 15.
Lines 50 and 51 extract the iv and then decrypt
the stored information. Line 55 checks to see
that the text contains a $ and Line 60 splits up
the decrypted text based on the @ delimiter. If
there are no errors, the decrypt_cookie function
returns the board_id, method of decloaking and
the session_id (SessionID). Returning to Figure
14, we can see that the code from Lines 137-138
logs the board_id,method and session_ID to a

log �le. Lines 140-159 log data to a database.
Lines 161-168 create a DNS response with the
correct IP address of the cornhusker server and
Line 177 sends that response back to the �ash
application.

cornhusker.py

decrypt_cookie

Lines 50-51: extract iv and decrypt

Line 55: check for $

Line 60: tokenize using the @ delimiter 

board_id method session_IDReturn

handleQuery

Line 136: decrypt cookie

Lines 137-138: Log to logfile

Lines 140-159: Log to database 

Figure 10. Cornhusker Code Overview

2.4 Flash TCP Logging

The �ash application that we reverse engineered
would make a socket connection after the DNS
query returned the IP address of the cornhusker
server. Figure 16 shows the code used to log
the data acquired from that socket connection.
Lines 294-303 show the server providing a policy
�le if that is requested. Line 317 decrypts the
ECID using the same decrypt_cookie function
described in Section 2.3. Lines 318 and 319 log
the data to a log �le and Lines 321-337 log the
data to a database.

2.5 Log correlation

The FBI needed to correlate the tra�c on the
Tor Hidden Service website with the data that
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Client’s Browser

TOR Hidden Service
FBI DNS Server 

(cornhusker)

 

1481.html FBI DNS and Logging 
Server

gallery.php

generate SID

gallery.swf

generate ECID

ECID

Log SID to visitors table Visitors 
Table

ECID

cornhusker.log

decrypt ECID and log SID 

Figure 11. SID Data movement overview

was gathered via the cornhusker server. The
method for this correlation was to log the same
unique SessionID on both servers. Figure 11 il-
lustrates how the SessionID was logged in both
locations. Figure 3 shows a page on the Tor Hid-
den Service website, which loads gallery.php and
logs the generated SessionID. That SessionID
is encrypted and stored in the ECID (Fig-
ure 8), which is passed as an argument(id) to
gallery.swf (Figure 7). The ECID is sent to
the cornhusker server as a substring in the do-
main. Section 2.3 describes how the ECID is
decrypted and logged. Figure 12 shows the
logged data in the visitors table and Figure 13
shows the SessionID and the IP address logged
on cornhusker. The FBI used the fact that the
SessionID is the same in both logs to correlate
the activity on the two di�erent servers.

2.6 Reliability and Reproducibility

We were able to create an environment that was
similar to the environment that was used for the
Tor Hidden Service, cornhusker server and our
clients operating system. When we connected to
the Tor Hidden Service server with an Ubuntu
12.04 computer using the Rekonq browser, the
logs generated on the Tor Hidden Service and
cornhusker were consistent with the logs we re-
ceived from the FBI. The DNS requests go over
UDP and thus they can be spoofed. However,
the cornhusker log indicates that DNS request
was made via the the proxy server and thus that
data was not logged in this case. The socket con-
nection in the �ash application uses TCP and
the SessionID is encrypted. Therefore, we be-
lieve that the data received from the NIT is re-
producible. The TCP connection is not easily

spoofed, but the ability to spoof a request is
elaborated in the next section.

2.7 Data Validity

This section describes scenarios where the data
gathered from the NIT could be faulty.

1 Section 2.5 showed how the FBI correlated the
logs from the two servers. There is no guar-
antee that the request made from gallery.swf
was made by the same client that requested
the Tor Hidden Service. Outbound connec-
tion monitoring would make it trivial to de-
duce that something unusual was happening.
Suppose that gallery.swf were to be placed on
another website and given the same id pa-
rameter. Then the connection to cornhusker
would have logged an inaccurate IP address.

2 Another scenario is one which an actor that
knew that the Tor Hidden Service site was
deanonymizing users. The requests for the
pages 1481.html and index.html could have
been placed inside of hidden iframes within
other legitimate Tor websites. We found no
evidence to suggest that this occurred.

3 The cornhusker server was unavailable for our
analysis. Therefore we were unable to analyze
any access controls that were in place for that
server.

We could not �nd any evidence that any ex-
ternal actor planted links on additional websites
that would have allowed (scenarios 1 or 2 from
above) the creation of faulty data. Additionally,
we were not given access by our client to decrypt
and analyze his encrypted computer hard drives.

3. LAB SETUP

For the analysis, we used an Ubuntu 12.04 vir-
tual machine to simulate the activity that our
client used (Client). This was the browser that
our client stated he used; it was logged in corn-
husker log �les and it was included in the FBI
reports. We also used Ubuntu 12.04 virtual ma-
chine to simulate running Tor website as well as
cornhusker logging server(Server). We were not
provided with the details of the server running
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the cornhusker logging software, but we looked
at the software requirements to select an ap-
propriate operating system. The requirements
for this server were a MySQL database, a web-
server(Apache), Haxe [3] �ash compiler and the
Twisted framework. We installed all of these
packages as well as their dependancies. We con-
nected the Client and Server together via an iso-
lated Ethernet network.

To reverse engineer the NIT software, we uti-
lized the JPEXS [7] �ash decompiler. We down-
loaded the native binaries for our native oper-
ating system (Mac OS X) and decompiled the
swf �le. We used the free Haxe �ash compiler
to compile our own �ash swf �les.

3.1 Testing Methodology

The initial goal for our team was to verify the
information that was sent to the FBI's server.
Some of this information was located in plain
text source �les (gallery.php, functions.php, in-
dex.html) and some of it was located in a
compiled swf �le (gallery.swf). To determine
the functionality of gallery.swf, we utilized the
JPEXS decompiler. The decompiler will take
the swf byte code and return �ash action script
code. We then used the Haxe complier to com-
pile the reverse engineered source code to cre-
ate galleryRE.swf. We used galleryRE.swf to
verify that both the reverse engineered �ash
�le (galleryRE.swf) and the original �ash �le
(gallery.swf) send the same information to the
cornhusker server.

We followed the Twisted documentation and
read the cornhusker.py �le to learn the con-
�guration options for the cornhusker server.
To ensure that the domain name for cpimage-
gallery.com worked, we added the correct IP ad-
dress for the cornhusker server in the resolv.conf
�le of the client machine.

A second goal set forth by our client was
to verify that the data in the FBI report was
correctly correlated. We veri�ed that the ses-
sion_ids in the visitors table matched the ses-
sion session ids in the cornhusker logs (Figures
12 and 13).

4. CHALLENGES

Reverse engineering a Tor unmasking framework
starts with understanding how the framework is
set up. The �rst challenge was that it was dif-
�cult to ascertain the details of the unmasking
framework. When we arrived for our �rst visit,
they handed us the original three hard drives
that were used to host the Tor Hidden Services.
The FBI did notify us that php �les and a swf
�le were used for the NIT to generate the data
for the reports. We were not given any direc-
tion as to how the framework was set up and
the cornhusker server was not provided at that
time. We were given copies of the reports that
summarized the data that was collected by the
FBI. We asked the FBI for a copy of the source
code for the NIT, but the FBI was unable to
provide us with that source code and they be-
lieved that they could produce it at a later date.
During the Daubert Hearing, the FBI admitted
that they were not able to locate the source code
to the swf (�ash) application. Thus, we had to
reverse engineer the �ash application to investi-
gate its functionality.

5. CONCLUSIONS

Our team investigated the FBI's NIT that was
used to deanonymize users of a Tor Hidden Ser-
vice that was hosting illegal content. We found
that the NIT would deanonymize Tor users. We
found that the FBI logged data that was consis-
tent with the search warrant. We found that the
NIT produced repeatable results that were con-
sistent with the data we found in the server logs.
There are scenarios that could render the data
invalid (Section 2.7) , but we found no evidence
that any of these scenarios occurred.
The loss of the source code in this case sets a

troubling precedent. We believe that due to the
small size of the �ash application, our analysis
in this case is correct. However, if this trend
continues, the likelihood that additional func-
tionality (accidental or covert) will increase as
the size of the code increases.
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Figure 12. Visitors Table

Figure 13. Cornhusker Log
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Figure 14. Handle DNS Query in cornhusker.py
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Figure 15. decrypt_cookie in cornhusker.py
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Figure 16. �ash Socket Connection on cornhusker.py
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