
Doctoral Dissertations and Master's Theses 

Summer 7-2017 

Design of Variable Stiffness Composite Panels for Maximum Design of Variable Stiffness Composite Panels for Maximum 

Strength Strength 

Joel P. Hurley 
Embry-Riddle Aeronautical University 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Structures and Materials Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Hurley, Joel P., "Design of Variable Stiffness Composite Panels for Maximum Strength" (2017). Doctoral 
Dissertations and Master's Theses. 366. 
https://commons.erau.edu/edt/366 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/224?utm_source=commons.erau.edu%2Fedt%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/366?utm_source=commons.erau.edu%2Fedt%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


 

 

 

 

DESIGN OF VARIABLE STIFFNESS COMPOSITE PANELS  

FOR MAXIMUM STRENGTH 

 

A Thesis  

Submitted to the Faculty  

of  

Embry-Riddle Aeronautical University  

by  

Joel P. Hurley 

 

In Partial Fulfillment of the  

Requirements for the Degree  

of  

Master of Science in Aerospace Engineering  

 

July 2017  

Embry-Riddle Aeronautical University  

Daytona Beach, Florida 

  





  

iii  

ACKNOWLEDGMENTS 

 
I would like to thank my advisor, Dr. Ali Y. Tamijani, for his careful advice, 

guidance, and dedication throughout the past 18 months. I believe the work he has 

asked of me, though difficult and rigorous, has prepared me for the engineering 

challenges I face ahead. I hope to carry his lessons into my future career.   

I must thank Prof. Glenn Greiner for all he has done for me (and for letting 

me steer his boat). Your friendship and advice throughout my time at Embry-Riddle 

is greatly appreciated.      

I must acknowledge Ms. Pam Daniels and my friend Kimber McDaniel for 

their assistance editing this manuscript. 

Finally, I would like to thank the colleagues from my research group for all 

their assistance in helping me reach my goals. I genuinely enjoyed working with you 

all and I am grateful to call you friends.  

 

       



  

iv  

DEDICATION 

 
 

To my parents and my brother, Sean. This manuscript is a product of your love 

and support.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

v  

 
 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ................................................................................................. iii 

DEDICATION ................................................................................................................... iv 

TABLE OF CONTENTS .................................................................................................... v 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ........................................................................................................ viii 

SYMBOLS ......................................................................................................................... xi 

ABBREVIATIONS ......................................................................................................... xiii 

ABSTRACT ..................................................................................................................... xiv 

1. INTRODUCTION ................................................................................................ 1 

1.1. Load Path Determination ........................................................................................... 1 

1.2. Variable Stiffness Composites ................................................................................... 4 
1.3. 3D Printed Carbon Fiber Reinforced Polymer Composites .................................... 7 

2. DETERMINATION OF STRUCTURAL LOAD PATHS ................................ 10 

2.1. Methodology ............................................................................................................. 10 

2.2. Results ....................................................................................................................... 17 

2.2.1. Plate under uniform pressure ................................................................. 17 
2.2.2. Roof structure subjected to body load ................................................... 20 
2.2.3. Skin panel subjected to aerodynamic loading ....................................... 23 

2.2.4. Palazzetto dello Sport upper dome structure ......................................... 27 
2.3. Discussion ................................................................................................................. 30 

3. VARIABLE STIFFNESS COMPOSITES .............................................. 30 

3.1. Methodology ............................................................................................................. 31 
3.1.1. Strain method ......................................................................................... 32 
3.1.2. Stress method ......................................................................................... 33 
3.1.3. Energy method ....................................................................................... 34 

3.1.4. Dominant Load path method ................................................................. 36 
3.1.5. Weighted load path method ................................................................... 37 

3.1.6. Fiber filtering ......................................................................................... 38 
3.2. Results ....................................................................................................................... 39 
3.2.1. Plate loaded in shear .............................................................................. 39 
3.2.2. Pin-loaded plate ..................................................................................... 48 
3.2.3. Fighter wing under aerodynamic load ................................................... 55 

3.3. Discussion ................................................................................................................. 62 

4. CONSIDERATIONS FOR 3D PRINTED COMPOSITES ............................... 63 



  

vi  

4.1. Modeling ................................................................................................................... 64 

4.2. Results ....................................................................................................................... 66 
4.3. Discussion ................................................................................................................. 73 

5. CONCLUSION .................................................................................................. 75 

6. SUGGESTIONS FOR FUTURE WORK .......................................................... 77 

REFERENCES ................................................................................................................. 78 

APPENDIX A: MICHELL TRUSS STRUCTURES ....................................................... 80 

a. Introduction ................................................................................................................... 80 
b. Analytical solution to the ground structure ................................................................. 80 
c. Structural solution and sizing optimization ................................................................ 85 

 

 

  



  

vii  

LIST OF TABLES 

 

Table 3.1 Comparison of the overall compliance of the converged solutions. ................. 44 

Table 3.2 Comparison of the overall compliance of each solution using fiber filtering. . 48 

Table 3.3 Comparison of the overall compliance of the converged solutions. ................. 55 

Table 3.4 Comparing the compliance between the initial and final design. ..................... 62 

Table 4.1 Material data for the carbon fiber reinforced and nylon regions ...................... 67 

Table 4.2 FEA failure stresses for the Type 4 model ....................................................... 69 

Table 4.3. Relationship between number of concentric rings and total fiber volume 

fraction. ............................................................................................................................. 70 

Table A1 Comparison of primal volumes for each layout order. ..................................... 87 

 

  



  

viii  

LIST OF FIGURES 

 

Fig. 2.1 The change in   between two consecutive level sets is equivalent to the change 

in force between them. ...................................................................................................... 13 

Fig. 2.2 The projection of shell forces onto the x-y plane................................................. 15 

Fig. 2.3 A plate subjected to a uniform pressure,   , with (a) simply-supported edges and 

(b) clamped edges. ............................................................................................................ 19 

Fig. 2.4 The (a) potential function contours and (b) the iso-lines of total moment for a 

simply-supported plate under uniform pressure,    ......................................................... 19 

Fig. 2.5 The (a) potential function contours and (b) the iso-lines of total moment for a 

clamped plate under uniform pressure,   . ....................................................................... 20 

Fig. 2.6 The geometry of (a) a quarter-panel and (b) the full surface of a hyperbolic-

paraboloid roof structure. .................................................................................................. 21 

Fig. 2.7 The projected shell forces from Eq. (23)  showing (a)   , (b)   , and (c)     21 

Fig. 2.8 Load paths in (a) x-direction and (b) y-direction for the membrane forces of a 

hyperbolic-paraboloid roof under its own weight. ............................................................ 22 

Fig. 2.9 Potential function contours for (a) x-direction and (b) y-direction membrane 

forces of a hyperbolic-paraboloid roof under its own weight. .......................................... 22 

Fig. 2.10 Arbitrary wing skin panel subjected to aerodynamic loading. .......................... 24 

Fig. 2.11 Demonstrating the decomposition of the stress field, (a) the total force, (b) the 

self-equilibrated component, (c) the irrotational component, (d) the verification that they 

add to zero. ........................................................................................................................ 25 

Fig. 2.12 Verifying that the self-equilibrated components are divergence-free and that 

irrotational components are curl-free for (a) x-direction, (b) y-direction, and (c) z-dir 

forces. ................................................................................................................................ 26 

Fig. 2.13 Load paths in (a) x-direction, (b) y-direction, and (c) z-direction for a skin panel 

subjected to aerodynamic loading. .................................................................................... 26 

Fig. 2.14 Potential function contours in (a) x-direction, (b) y-direction, and (c) z-direction 

for a skin panel subjected to aerodynamic loading. .......................................................... 27 

Fig. 2.15 Side view of the Palazzetto dello Sport (Cutrì, 2015). ...................................... 28 

Fig. 2.16 Geometry of the dome of the Palazzetto dello Sport arena. .............................. 28 

Fig. 2.17 Load paths in (a) x-direction, (b) y-direction, and (c) z-direction for the dome of 

the Palazzetto dello Sport arena under its own weight. .................................................... 28 

Fig. 2.18 Potential function contours in (a) x-direction, (b) y-direction, and (c) z-direction 

for the dome of the Palazzetto dello Sport arena under its own weight. .......................... 29 

Fig. 3.1 Arbitrary domain,  , showing a design cell and its rotation angle,   . .............. 31 

Fig. 3.2 Rectangular plate subjected to a shear load. ........................................................ 40 



  

ix  

Fig. 3.3 A 20x40 element FEM mesh. .............................................................................. 40 

Fig. 3.4 Converged solution using the strain method. ...................................................... 41 

Fig. 3.5 Converged solution using the stress method. ...................................................... 42 

Fig. 3.6 Converged solution using the energy method. .................................................... 42 

Fig. 3.7 Converged solution using the dominant load path method. ................................ 43 

Fig. 3.8 Converged solution using the weighted load path method. ................................. 43 

Fig. 3.9 Convergence history of each method through 200 design iterations................... 44 

Fig. 3.10 Converged solution of the strain method using fiber filtering........................... 45 

Fig. 3.11 Converged solution of the stress method using fiber filtering........................... 46 

Fig. 3.12 Converged solution of the energy method using fiber filtering......................... 46 

Fig. 3.13 Converged solution of the dominant load path method using fiber filtering..... 46 

Fig. 3.14 Converged solution of the weighted load path method using fiber filtering. .... 47 

Fig. 3.15 Convergence history of the five methods using a filtering scheme. .................. 48 

Fig. 3.16 Pin-loaded plate subjected to a bearing load on the interior edge of the hole. .. 49 

Fig. 3.17. FEM mesh consisting of 2,128 elements. ......................................................... 50 

Fig. 3.18 Converged solution using the strain method. .................................................... 51 

Fig. 3.19 Converged solution using the stress method. .................................................... 51 

Fig. 3.20 Converged solution using the energy method. .................................................. 51 

Fig. 3.21 Converged solution using the dominant load path method. .............................. 52 

Fig. 3.22 Converged solution using the weighted load path method. ............................... 52 

Fig. 3.23 Stable solution using the strain method showing the fiber trajectories. ............ 53 

Fig. 3.24 Stable solution using the stress method showing the fiber trajectories. ............ 53 

Fig. 3.25 Stable solution using the dominant load path method showing the fiber 

trajectories. ........................................................................................................................ 53 

Fig. 3.26 Convergence history of the five solution methods. ........................................... 54 

Fig. 3.27 Wing planform geometry and dimensions......................................................... 56 

Fig. 3.28 Aerodynamic pressure distribution at     deg and Mach 0.8. ...................... 57 

Fig. 3.29 FEM mesh comprised of 2,194 elements. ......................................................... 58 

Fig. 3.30 Initial fiber design showing elemental fiber angles (red) and load function 

contours (blue). ................................................................................................................. 59 

Fig. 3.31 Converged fiber design showing elemental fiber angles (red) and load function 

contours (blue). ................................................................................................................. 60 

Fig. 3.32 Convergence history of the solution method showing marginal stability after 10 

iterations. ........................................................................................................................... 61 



  

x  

Fig. 4.1 Part printed at ASTM D638-14 Type 4 standard used for tensile testing. .......... 63 

Fig. 4.2 a) Geometry and fiber layout of an ASTM D638-14/Type 4 3D printed part, b) 

Finite element mesh using CQUAD4 shell elements, c) The regions depicted in red 

specify areas of the part with only nylon filler material. .................................................. 65 

Fig. 4.3 The fiber orientation angles mapped onto the centroids of each element. .......... 66 

Fig. 4.4    normal stress [MPa] at failure load ................................................................ 68 

Fig. 4.5     shear stress [MPa] at failure load ................................................................. 68 

Fig. 4.6  Tsai-Wu failure indices for the Type 4 model at failure load. ........................... 68 

Fig. 4.7 Fractured sample exhibiting matrix failure. Box contains longitudinal matrix 

crack and arrows point to crack initiation points. ............................................................. 69 

Fig. 4.8    normal stress [MPa] at failure load for with 6 concentric rings (Vf = 0.3) .... 70 

Fig. 4.9     shear stress [MPa] at failure load for with 6 concentric rings (Vf = 0.3) ..... 70 

Fig. 4.10 Tsai-Wu failure indices for the Type 1 model at failure load. .......................... 70 

Fig. 4.11 Tensile elastic modulus and strength of specimens as a function of total carbon 

fiber volume fraction......................................................................................................... 71 

Fig. 4.12 Comparison of failure stresses at different fiber volume fraction, a)    [MPa] 

for Vf = 0.3, b)    [MPa] for Vf = 0.15, c)     [MPa] for Vf = 0.3, d)     [MPa] for Vf = 

0.15.................................................................................................................................... 72 

Fig. 4.13 The relationship between the maximum stresses at failure and the total fiber 

volume fraction. ................................................................................................................ 73 

Fig. A1 Design domain of a cantilever structure. ............................................................. 82 

Fig. A2 Ground structures for a cantilever beam generated analytically using Michell's 

optimality criteria. ............................................................................................................. 85 

Fig. A3 FEA model of the ground structure (black) showing deflections (red) of the 

trusses after sizing optimization........................................................................................ 86 

Fig. A4 Results of the sizing optimization........................................................................ 87 

 

  



  

xi  

SYMBOLS 

 

   energy factor or angle-of-attack 

 ,   curvilinear coordinate system 

 ,  ,  ,   solution coefficients for sensitivity equations  

 ,   length and width dimensions or composite material parameters  

   unrotated stiffness matrix 

 ̅  rotated stiffness matrix 

    pressure coefficient 

 ,   composite material parameters 

   plate stiffness constant 

    elemental strain vector 

  ,   ,     strains in the Cartesian coordinate frame 

  ,   ,     strains in the material coordinate frame 

  ,    elastic moduli in the material coordinate frame.  

    force in the radial direction 

     shear moduli in the material coordinate frame 

   gravitational acceleration 

   length of the truss member 

  ,    moment resultants 

   total moment sum 

 ,   Fourier series indices 

   unit vector normal to the boundary or number of elements 

  ,  ,     in-plane force resultants 

 ̅ ,  ̅ ,  ̅   in-plane shell forces projected onto the xy-plane 

   axial force in the truss member 

   design domain or weight function 

    Poisson’s ratio 

px,py,pz surface tractions in the Cartesian coordinate frame 

 ̅ ,  ̅ ,  ̅  surface tractions projected onto the xy-plane 

   potential function associated with the body-force components 

  ,   ,    potential functions in the Cartesian coordinate frame 

   shell rotation angle 

   load function associated with the self-equilibrated components.  

  ,   ,    load functions in the Cartesian coordinate frame 

  ,   transverse shear force resultants 

 ̅ ,  ̅  transverse shear force resultants projected onto the xy-plane 

    free-stream  

   search radius 

    distance to query element 

    body-force components of the stress field 

    self-equillibrated components of the stress field 



  

xii  

R1, R2, R3 load vectors associated with the x, y, and z equilibrium equations 

   density 

   unrotated compliance matrix 

 ̅  rotated compliance matrix 

   ,    ,      composite material constants 

 ̅  fictitious traction force  

    elemental stress vector 

  ,   ,     stresses in the material coordinate frame 

  ,   ,     stresses in the Cartesian coordinate frame 

   plate, shell or lamina thickness 

   transformation matrix 

   fiber orientation angle or shell rotation angle 

    elemental fiber orientation 

    elemental strain energy 

    primal volume 

   volume of the truss design 

    total fiber volume fraction of the structure 

  ,    traction forces in the Cartesian coordinate frame.  

   plate transverse deflection 

  ,    weight functions 

  

  

  

  

  

  

  

  

  

  

  

  

  



  

xiii  

ABBREVIATIONS 

 

ABS acrylonitrile butadiene styrene 

AFP automated fiber placement  

ASEMlab Advanced Stuctural and Energy Materials Laboratory 

CFRP carbon fiber reinforced polymer  

ERAU Embry-Riddle Aeronautical University 

FEM finite element method 

NACA  National Advisory Committee for Aeronautics 

QUAD4 four node quadrilateral shell element 

RBE2 rigid body element 

RTM resin transfer molding 

SAnD Structural Analysis and Design Laboratory 

UNM University of New Mexico 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  

xiv  

ABSTRACT 

 

Hurley, Joel P. MSAE, Embry-Riddle Aeronautical University, July 2017. Design of 

Variable Stiffness Composite Panels for Maximum Strength 

 
The purpose of this research is to explore the design of variable stiffness composites and 

develop an automated framework to model, analyze and optimize these structures. 

Variable stiffness composites have been shown to exhibit increased strength and stiffness 

over traditional constant stiffness composites by tailoring fiber orientations for specific 

load conditions. This is achieved by allowing the fiber orientation to vary spatially across 

the design domain. Motivation for new design methods is driven by the recent 

advancements in composite additive manufacturing, such as automated fiber placement 

machines, which allow fiber reinforcements to be placed along prescribed trajectories 

during manufacturing. Through this research the problem of optimized orthotropic 

material orientation will be investigated. A new methodology is proposed that uses the 

concept of structural load flow to determine fiber trajectories. Fiber designs using the 

load path method are compared to the classical approaches such as the strain, stress, and 

energy methods. The load path function method is also expanded upon to solve the 

problem of non-homogenous equilibrium equations. This method allows load paths to be 

determined for more complicated loads such as aerodynamic pressures, thermal and 

inertial loads. Additionally, the design considerations for 3D printed composites are 

addressed. Experimental validation of the finite element codes used to model 3D printed 

composite structures is presented.     
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1. INTRODUCTION 

Implementation of variable stiffness composites has been shown to increase the 

performance of structures subjected to a known load case. The purpose of this research is to 

explore methods for finding optimized fiber orientation using the concept of structural load 

paths. This work is organized into three topics which draw upon each other. The first topic 

on the load path determination expands previous theory to plate and shell bending and 

includes a method to address the presence of non-conservative body loads in equilibrium 

equations. The second topic investigates the design of optimized variable stiffness 

composites and compares classical methods with solutions found using the load path 

function method. The third and last section discusses the design considerations of 3D 

printed composite structures. A finite element framework to model additively manufactured 

composites with curvilinear (steered) fibers is presented along with experimental 

validation. 

1.1. Load Path Determination 

Understanding how load flows through a structure may provide valuable 

knowledge as to the performance and efficiency of the structure and could provide the 

engineer with an additional tool to measure the functionality of a design. Various 

proposed methods in literature have their own definitions and characterizations as to the 

exact definition of a  “load path” . For the purpose of this research, load paths are defined 

as curves that bound regions of constant load flow. 

Initial work on the theory of load paths sought to utilize major and minor 

principle stress angles as a means to describe the direction of load flow through the 

structure (Marhadi & Venkataraman, 2009). Principle stress angles are easily calculated 
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and can be readily found using standard finite element method (FEM) software. 

However, load paths and principle stress angles vary in definitions. Firstly, principle 

stress angles describe the angle at which no shear exists on an element. For an area of the 

structure with high shear stresses, the difference between a vector tangent to the load path 

and the principle stress angle could be as much as 45 degrees (Waldman, Heller, Kaye, & 

Rose, 2002). Secondly, principle stress angles could not be used to describe a path of 

constant load flow because they only represent direction at localized points and give no 

information on the amount of load carried in a particular region.  

Kelly et al. introduced load path pointing vectors in the dominant and 

complementary directions using stress resultants (1995). Load paths are defined as tubes 

of constant force bounded by contours with variable lateral spacing. In the case of the x-

direction load paths, the equilibrium condition implies that the normal and shear stresses 

tangent to the boundary of the path do not contribute to the overall equilibrium in the x-

direction.  Using the Runge-Kutta method to determine the load path contours by solving 

an ODE using the traction vectors defined at nodal locations expanded on this method (D. 

W. Kelly, Reidsema, & Lee, 2011). Further work presented examples of the application 

of load paths to topology optimization in the initial design phase of various projects (D. 

Kelly, Reidsema, Bassandeh, Pearce, & Lee, 2011). 

Takahashi presented a method to determine internal load transfer by finding the 

change of compliance energy inside a structure (Takahashi, 2001). The initial strain 

energy at each node is found using the displacement method. By sequentially 

constraining individual nodes then enforcing the same displacements that were found 

initially, new strain energies can be found at those specific locations. The change in 
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compliance energy at a point is the difference between the new strain energy and the 

original strain energy found at that location. The load path can be found by taking the 

gradient of the compliance energy scalar field then finding the resulting contour with the 

smallest gradient. Sakurai et al. expanded on the compliance energy method by 

introducing methods to reduce the computation time (Sakurai, Takahashi, Kawakami, & 

Abe, 2007). 

Harasaki and Arora introduced the concept of load transfer and potential load 

transfer to determine load flow through a structure (Harasaki & Arora, 2001). For any 

system of connected elements subjected to applied loads, the load transfer through any 

element can be found. This is done by first finding the displacements and corresponding 

reaction forces for the structure. Then by setting the stiffness of the element in question to 

zero and applying the same displacements found initially, a new set of reaction forces can 

be found. By taking the difference in reaction forces the load transfer through the 

unstiffened element can be found. This process is repeated for each element until the load 

transfer in all the elements is found. Potential load transfer is a similar concept, except it 

is used to measure the effectiveness of applying additional stiffness to the structure. 

Experimental tests have been undertaken that use load path visualization to map 

continuous fiber reinforcements onto composite laminates. Li et al. used this 

methodology to align individual fibers along the load path trajectories of a bolted 

composite joint (Li, Kelly, Crosky, Schoen, & Smollich, 2006). Experimental testing 

showed a 33% increase in ultimate failure strength and twofold increase in joint 

efficiency. Tosh and Kelly performed tests on open-hole and pin-loaded laminates 

manufactured with trajectorial fiber steering (Tosh & Kelly, 2000). Fibers were mapped 
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based on principle stress angles, load path trajectories and a hybrid method that combined 

both aforementioned methods. Using load path trajectories resulted in an increase in 

specific failure loads and outperformed the laminates mapped using principle stress 

angles.  

In recent years, physical descriptions of load paths have been defined and used to 

synthesize optimal compliant mechanisms (Santer & Pellegrino, 2009). The load paths in 

compliant mechanisms are defined using geometric descriptions for the connectivity of 

the point of application and point of support. Optimization of the compliant mechanism 

uses binary variables to indicate the presence or absence of a load path. This method may 

have a limited range of applications due to the difficulties in presenting the load paths by 

connectivity for continuum structures (Venkataraman, Marhadi, & Haney, 2009).  

The research introduced by Tamijani et al. uses the load path function method to 

determine load flow in plane elasticity (2016). The orthogonal load path functions are 

derived from 2D equilibrium equations. The Galerkin method is used to solve the 

equilibrium equations and load path functions are found from the resulting Galerkin 

linear system. The load paths can be visualized by taking contours of the load path 

functions. 

1.2. Variable Stiffness Composites 

The growth and proliferation of automated fiber placement (AFP) machines has 

generated a renewed interest into the problem of optimal fiber layout for composite 

structures. AFP machines can place composite tapes or tows along prescribed trajectories 

which introduces the possibility of designing structures with varying fiber angles. 

Incorporating steered fibers into laminates has been shown to increase stiffness, strength, 
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and buckling stability for specific load cases (Wu, 2008). There is great emphasis on 

methods to determine optimized fiber paths to take advantage of this technology. 

A number of methods have been proposed to solve the problem of optimized 

orientation for orthotropic materials when using compliance as the objective function. 

Focus will be made on the classical methods, such as the strain, stress, and energy 

methods. These methods use FEM to discretize the structure into individual design cells 

and the optimal orientation angle is determined by finding the angle which produces the 

lowest strain energy for each element.   

The strain based method uses the existing strain field to determine the orientation 

in which the strain energy is minimized (Pedersen, 1989). The stress based method uses a 

similar approach, except with the stress field (Diaz & Bendsøe, 1992). These methods 

tend to converge to the orientations of the dominant principle strain and stress, 

respectfully, and both have been shown to produce acceptable results. Both methods 

assume the orientation angle has no effect on the resultant stress and strain field which 

could potentially lead to two different orientations representing the global minima (Gea 

& Luo, 2004). An energy based method was offered as an implicit approximation to 

model the effect of how varying the orientation angle affects the existing stress and strain 

field (Luo & Gea, 1998). The energy method has been shown to produce better results 

than the strain and stress based methods.  

However, these methods have drawbacks. The compliance is minimized on each 

element not on the whole structure; this leads to local convergence, not global 

convergence. There is no way to take into account how varying the angle on one element 

affects the compliance of adjacent elements or the structure as a whole. This limits how 
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much an element can change its orientation during each iteration for fear of the solution 

becoming unstable. Second, the converged solution may not be manufacturable because 

fibers may be discontinuous between elements, or the curvature of the fiber paths may 

exceed the limits of what the AFP machine can create (Setoodeh, Abdalla, IJsselmuiden, 

& Gürdal, 2009). Frameworks have been proposed to filter the fiber angles by averaging 

fiber orientations in subdomains, but this approach is associated with a drop in 

compliance (Kiyono, Silva, & Reddy, 2017). The converged solutions for the strain, 

stress, and energy method are sensitive to the initial design. The possibility of entire 

structure converging to a local minima increases if a poor initial design is selected, or if 

the change in orientation angle between two iterations is too large (Thomsen, 1991). 

Recently, other methods have been proposed as well. Brampton et al. introduced a 

level set method to determine optimized fiber lay outs (Brampton, Wu, & Kim, 2015). 

Implementation of the level set method is advantageous because it can generate constant 

level set contours of continuous and equally spaced fiber trajectories. This helps address 

the concerns with implementing manufacturing constraints into orthotropic optimization 

schemes. Legrand et al. used a genetic algorithm framework in conjunction with FEM to 

determine optimum orientation of material by using the primary material axis of each 

element as the design variable (Legrand, Kelly, Crosky, & Crépin, 2006). This method 

was determined to be computationally intensive and was improved by Bardy et al. (2012) 

by adjusting  the genetic algorithm parameters and by replacing the stress-based fitness 

criterion with a strain-based criterion.  
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1.3. 3D Printed Carbon Fiber Reinforced Polymer Composites 

The structural advantages of using carbon fiber reinforced polymers (CFRP) is the 

primary reason for their increased usage in aerospace and performance applications 

(Park, Choi, & Lee, 1995). Many manufacturing methods exist for producing CFRP 

parts. The method chosen can be based off of cost, final quality of the part, production 

run, and size of the structure (Ning, Cong, Qiu, Wei, & Wang, 2015). The open layup 

method, where the resin is applied to dry fibers in a mold, is a low-cost and low-tech 

fabrication practice for small production runs but generally leads to poorer structural 

properties. Pre-preg fabrics, where the optimal resin content is preimpregnated into the 

fabric, is cured under heat and pressure using either a vacuum bag/oven or autoclave. The 

structural properties of pre-preg composites are superior, but are labor intensive, produce 

excess waste, and lead to high cost. Closed mold methods, like injection, infusion, and 

resin transfer molding (RTM), are appropriate for large production runs and lead to very 

consistent parts (Mazumdar, 2001). Automated fiber placement (AFP) machines have 

been used for open mold applications where specific fiber placement is desired.  

Recently, a new class of CFRP 3D printers has entered in the market. These 

printers utilize a thermoplastic, normally nylon, which is reinforced with carbon fiber 

tows. One of the most common CFRP 3D printers is the MarkForged desktop printer 

which was commercialized in 2015. The printer builds composites using a layering 

scheme, starting with the bottom layer and progressing building to the top. From a 

performance standpoint, the printer can produce parts that fall between metals and 

traditional polymers, and when divided by weight, are comparable to 3D printed metals. 

The printer uses dual nozzles to print nylon and carbon reinforcement simultaneously. A 
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layer of nylon matrix is placed on all the exterior edges of the part. These exterior layers 

are called the floor, wall, and ceiling layers. This ensures the carbon reinforcement is 

completely encased inside the nylon matrix. The MarkForged software suite allows only 

limited design when determining the fiber orientation inside the printed part. The most 

common design method is the automatic concentric fill option, which places fibers 

concentrically around the periphery of the part. For areas where the software cannot find 

a solution for fiber placement, pure nylon material can be placed instead. The biggest 

drawback from a design standpoint is that the software does not allow full customization 

of fiber orientation. 

There are structural limitations to 3D printing technology. Most 3D printers, 

regardless of material, produce structures with anisotropy and contain thermal residual 

stresses due to the layered buildup of the part. The concerns with material anisotropy 

increase when continuous carbon tows are introduced into the structure. Other 

mechanical factors that contribute to the performance of 3D printed composites include 

the distribution of continuous fiber within the thermoplastic matrix, consistency of fiber 

volume fraction, and the chemical cohesion between the nylon matrix and carbon fiber. 

Part geometry and fiber orientation angle heavily influence the structural properties and 

must be taken into consideration during design. 

In this research, FEM is utilized to predict the failure load and determine the 

mode of failure of 3D printed continuous CFRPs. To account for the orientation of the 

fibers, each element was given its own independent material property that corresponds to 

the local fiber orientation at the element position. The innovative variable orientation 

continuous fiber design requires the construction of hundreds to thousands of elements 
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with various material properties, which is not practical unless an automated modeling 

process is applied. Thus, an automated modeling framework is developed using an 

object-oriented script written in Matlab/Python that interfaces MSC.PATRAN and 

NASTRAN to model a 3D printed continuous CFRP and perform finite element analysis 

and return the weight, displacements, stresses, and local failure.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

10  

2. DETERMINATION OF STRUCTURAL LOAD PATHS 

In this section, the load path function method will be extended to include plate 

and shell structures subjected to out-of-plane loads and non-conservative body loads. A 

concept will be introduced to decompose the stress field into a self-equilibrated 

component and an auxiliary body-force component. The purpose of this research is to use 

the contours of the load path function, which represent regions of constant load flow, as 

trajectories for fiber steered composites. The methodology to determine the load path 

function will be presented followed by a set of examples showing possible applications.      

2.1. Methodology 

The load path function method has the potential to be a powerful tool for the 

design engineer and could be used as a basis for topology optimization and fiber 

placement.  Previous research on the load function formulation assumed two-dimensional 

structures loaded in a state of plane stress and was derived from the equilibrium equations 

in terms of stresses. The stresses were written in terms of the load functions and the load 

flow was calculated using the load function contours. The load functions were defined 

using Gurtin’s representation. However, in several industrial applications the loads are 

out-of-plane, which creates varying stresses through the thickness of the structure due to 

bending moments. A problem is raised; if the stress varies with thickness so would the 

load paths, i.e. multiple load paths through the thickness would exist. Therefore, it would 

be challenging to utilize the Gurtin’s decomposition directly to thin-walled structures. 

This problem is remedied by writing the equilibrium equations based on the stress 

resultant equilibrium equations, introduced in Eq.(1).  
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Next, the load field with respect to a rectangular frame is defined as,  

            

(2)             
   

         
 

Using this definition, the equilibrium equations can be written as, 

          (3) 

 

where             , and              . The load vector field is decomposed 

into divergence-free and curl-free components using the Helmholtz-Hodge 

decomposition, 

           (4) 

 

In Eq.(4) the first component (   ) is the irrotational component    
  , and the 

second component (   ) is self-equilibrated or solenoidal component    
  . The 

solenoidal vector field admits a load function (            ) and accompanying load 

paths. The changes in   between their two constant paths equals to the constant load flow 

of the totally self-equilibrated stress resultants     that is transferred between those two 

paths. Using the Helmholtz-Hodge decomposition first the divergence-free component 

(  
 ) is solved for the given boundary conditions and then the curl-free component is 

determined as the residual (  
    

    
 ).  Given a stress resultant field, Eq.(4) can be 
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written as, 

                (5) 

 

By using the weighted residual method, Eq.(5) can be written as, 

 ∫      
 

 

 ∫      
 

 

 (6) 

 

where   is the weight function, and the boundary condition associated with Eq.(6) 

is, 

  

  
      (7) 

 

Using the boundary conditions, and integration by parts, Eq.(6) can be written as, 

∫       
 

 

 ∫      
 

 

 (8) 

 

The field lines of solenoidal components      are the level sets of  . After 

obtaining  , then solenoidal components can be written as, 

        (9) 

 

by using the irrotational components     ,   can be found,  

            (10) 

 

The integration of total differential of each load function         between two 

consecutive paths (paths 1 and 2) give, 
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If the differential of load function is evaluated on its constant lines, then    
  

   which means the solenoidal component of a load vector field in a Helmholtz-Hodge 

representation does not pass through the level sets of load function (Fig. 2.1). 

 

Fig. 2.1 The change in   between two consecutive level sets is equivalent to the 

change in force between them. 

 

Next, this theory is extended to 3D thin-shell structures, such as the wing or 

fuselage skin of an aircraft, where the normal stress through the thickness is negligible. 

The goal is to find a function,  , that represents a constant flow of in-plane and 

transverse load from application to support. For general shell structures, where the shell 

mid-surface is         , the method to find load function follows the presented load 

function procedure. In order to satisfy the equilibrium in the x and y directions, first the 

resultant loads per unit length (i.e.                  and applied tractions (        ) 

must be projected to the x-y plane (i.e.                  ̅   ̅   ̅  ), as shown in Fig. 

2.2. For a general shell of form         , the angles of   and   can be written as 

follows,  
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 (12) 

 

Next, the projected forces on x-y plane are found,  

 ̅                              

(13) 

 ̅                               
 ̅                             
 ̅                            

 ̅                                      

 ̅                                      
 

The equilibrium equations based on the projected forces on the x-y plane are, 
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Fig. 2.2 The projection of shell forces onto the x-y plane. 

 

By using the projected forces in Eq.(13), the load field can be defined as  

            

(15)             

   
         

 

Then, similar to Eq.(4), the irrotational and solenoidal components as well as load 

function can be obtained. For the special case of a flat plate, where the surface         

 , the shear force field (       ) decomposed as,  

 ⃗               (16) 
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By comparing Eq.(4), the shear force components can be written as   

   (
   

  
 

   

  
) 

(17) 

   (
   

  
 

   

  
) 

 

When Eq.(17) is inserted into the equilibrium equation Eq.(1), the following 

expression is yielded, 

    

   
 

    

   
       (18) 

 

It can be seen that above equation is similar to the plate moment equilibrium 

equation 

    

   
 

    

   
                   

     

   
 (19) 

 

By comparing Eqs. (18)  and (19) it can be shown that the potential function,   , 

is mathematically equivalent to the moment. Therefore, the values of    and    can be 

used as boundary conditions for solving Eq.(18). In this situation, the contours of    are 

similar to the iso-lines of moment. 
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2.2. Results  

A series of examples are presented to demonstrate the load path methodology 

including the decomposition procedure to solve for the load paths of the self-equilibrated 

force field. The first two examples use analytical force fields for classical structures. The 

last two examples use force fields found using FEM.  

2.2.1. Plate under uniform pressure 

Assume two isotropic plates subjected to a uniform pressure,   , one with simply-

supported edges and the other with clamped edges (Fig. 2.3). Edges lengths   and   are 

set equal to 1. By assuming Kirchoff-Love plate theory, we can utilize Navier’s plate 

solution for the lateral deflection,  , of the simply-supported plate as, 
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Where  , the plate stiffness constant, is nondimensionalized to a value of 1. The 

solution terms are summed up to         terms. The transverse shear resultants can 

be found as, 
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Additionally, the total moment sum,  , can be found as, 
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(22) 

 

By using the transverse shear resultants of Eq.(21), we can see that       , 

which means the load function    is also zero. It can then be concluded that the stress 

field,   , only has an irrotational component,   .  The potential function can be found by 

solving Eq.(10) by allowing       , and     . Fig. 2.4(a) shows the potential 

functions contours compared to Fig. 2.4(b), the isolines of moment. The change in    

between two contours, (   ), is          , and the    is          .       

Again, by utilizing Eq.(10), the potential function for plate with clamped 

boundary conditions can be determined. Fig. 2.5(a) shows the potential function contours 

compared to Fig. 2.5(b), the iso-lines of moment. The contours of    represent lines of 

constant curl-free force. The     between consecutive sets of contours is           and 

the    is          .    
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(a) (b) 

Fig. 2.3 A plate subjected to a uniform pressure,   , with (a) simply-supported edges and 

(b) clamped edges. 

 

  
(a) (b) 

Fig. 2.4 The (a) potential function contours and (b) the iso-lines of total moment for a 

simply-supported plate under uniform pressure,    
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(a) (b) 

Fig. 2.5 The (a) potential function contours and (b) the iso-lines of total moment for a 

clamped plate under uniform pressure,   . 

 

This example shows that the body force component of the transverse shear 

resultants is related to the total moment of the structure.  

 

2.2.2. Roof structure subjected to body load 

A set of panels following the form of a hyperbolic-paraboloid are pieced together 

to form a membrane roof structure. Fig. 2.6 shows the geometry of stitched roof panel. 

The roof is subjected to its own weight,      .  The projected membrane forces can be 

described using a nondimensionalized stress function as (Ugural, 2009), 
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Where   
  

 
. The projected forces are plotted onto the geometry in Fig. 2.7. 

Using Eq.(8), the load functions for the divergence-free membrane forces can be found. 

Fig. 2.8 shows the load paths for the load functions     and    respectively. Fig. 2.9 

shows the contours of the potential functions    and    representing lines of constant 

curl-free membrane force.  

 

 

 

(a) (b) 

Fig. 2.6 The geometry of (a) a quarter-panel and (b) the full surface of a hyperbolic-

paraboloid roof structure. 

 

   
(a) (b) (c) 

Fig. 2.7 The projected shell forces from Eq. (23)  showing (a)  ̅ , (b)  ̅ , and (c)  ̅   
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(a) (b) 

Fig. 2.8 Load paths in (a) x-direction and (b) y-direction for the membrane forces of a 

hyperbolic-paraboloid roof under its own weight. 

 

  
(a) (b) 

Fig. 2.9 Potential function contours for (a) x-direction and (b) y-direction membrane 

forces of a hyperbolic-paraboloid roof under its own weight. 

 

The contours of the two load functions show the transfer, or flow, of the load in 

the   and   directions, respectively. The nature of the body load requires load paths to arc 

over the entire frame of the structure. 
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2.2.3. Skin panel subjected to aerodynamic loading 

Assume an arbitrary isotropic wing skin panel, capable of supporting bending and 

membrane loads, subjected to an aerodynamic pressure load acting normal to the surface. 

The geometry and pressure distribution are shown in Fig. 2.10. This numerical example, 

and those that follow, also show how the present formulation can be incorporated into 

numerical structural methods, such as finite element methods. Furthermore, it 

demonstrates that the formulation can be used regardless of the specific loading or 

boundary conditions which include the possibility of internal and external loads from 

thermal, mechanical, and aerodynamic loads. This example will also be a used as a 

validation to show that the stress field has been decomposed into curl-free and 

divergence-free components. The structural solution was solved using FEM 

(MSC.Nastran) using a pressure distribution found from vortex-lattice codes. The 

material selected has an elastic modulus of        Psi and a Poisson’s ratio of 0.3. 

The load functions   ,   , and    can be found by solving equation Eq.(8) using 

the stress field   from FEM. The derivatives of load functions represent the solenoidal 

component of the stress field   . Helmholtz-Hodge decomposition implies that the curl-

free forces can be found by subtraction (  
    

    
 ). Fig. 2.11 shows the 

decomposition of the (a) stress field ( ) into the (b) solenoidal (  ) and (c) curl-free (  ) 

components. Futhermore, it can be shown in Fig. 2.11(d) that the decomposed stress field 

is equivalent to the total stress field   
     

    
    . An additional validation of the 

decomposition is to take the curl of curl-free forces (    
 ) and the divergence of the 

divergence-free forces (    
 ) to ensure they are zero (Fig. 2.12). The load paths of   , 

  , and    are presented in Fig. 2.13 and the potential function contours of   ,   , and 
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   are presented in Fig. 2.14. 

 
Fig. 2.10 Arbitrary wing skin panel subjected to aerodynamic loading. 
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(a) (b) (c) (d) 

Fig. 2.11 Demonstrating the decomposition of the stress field, (a) the total force, (b) the 

self-equilibrated component, (c) the irrotational component, (d) the verification that they 

add to zero. 
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(a) (b) (c) 

Fig. 2.12 Verifying that the self-equilibrated components are divergence-free and that 

irrotational components are curl-free for (a) x-direction, (b) y-direction, and (c) z-dir 

forces. 

 

   
(a) (b) (c)  

Fig. 2.13 Load paths in (a) x-direction, (b) y-direction, and (c) z-direction for a skin panel 

subjected to aerodynamic loading. 
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(a) (b) (c) 

Fig. 2.14 Potential function contours in (a) x-direction, (b) y-direction, and (c) z-direction 

for a skin panel subjected to aerodynamic loading. 

 

The load functions describe the membrane loads in   and   directions and also the 

transfer of load of the transverse shear resultants. The membrane load paths show how 

the forces from the x and  -direction equilibrium equations are being transferred from 

application to support. The potential functions are also presented for the   and  -

direction equilibrium forces but their meaning is unclear. The potential function for the  -

direction equilibrium equation is similar mathematically to the contours of moment.  

 

2.2.4. Palazzetto dello Sport upper dome structure 

The Palazzetto dello Sport, shown in (Fig. 2.15), was designed as an indoor 

sporting arena by Pier Luigi Nervi for the 1960 Olympic games in Rome, Italy 

(Hoogenboom). The upper dome structure was engineered as a thin-shell made of 

reinforced concrete with the inner surface overlaid with a lattice of concrete stiffeners in 

a radial pattern (Hoogenboom). The structure is modeled as a thin shell dome of constant 

thickness, omitting the stiffeners, and supporting its own weight (Fig. 2.16). A tensile 

modulus of       psi and a Poisson’s ratio of 0.15 were used as material properties to 

model the concrete. The load paths of the functions of   are shown in Fig. 2.17 and the 
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contours of the potential functions   are shown in Fig. 2.18.  

 

 

Fig. 2.15 Side view of the Palazzetto dello Sport (Cutrì, 2015). 

 

 

Fig. 2.16 Geometry of the dome of the Palazzetto dello Sport arena. 

 

   
(a) (b) (c) 

Fig. 2.17 Load paths in (a) x-direction, (b) y-direction, and (c) z-direction for the dome of 

the Palazzetto dello Sport arena under its own weight. 
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(a) (b) (c) 

Fig. 2.18 Potential function contours in (a) x-direction, (b) y-direction, and (c) z-direction 

for the dome of the Palazzetto dello Sport arena under its own weight. 

 

The contours of the   and  -direction load functions show the transfer of the 

membrane forces. The contours of the load function for the transverse shear resultants 

show the transfer of the bending loads from application to support. Inspection of Fig. 

2.17(c) shows that the contours of the load function are similar to the stiffner 

reinforcement scheme selected by Nervi during design (Cutrì, 2015).  
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2.3. Discussion 

By expanding on the load path functions for 2D elasticity, the load path functions 

for load flow in shells is derived and the potential function method is introduced for the 

special case of a flat plate. The load path functions were proven to represent the load flow 

in the plate and shell structures. The formulations to determine the directional load paths 

from force equilibrium have been derived, and the numerical procedure to solve the 

resulting Poisson’s equation has been discussed. Load paths were determined in examples 

with plates and shells subjected to different boundary conditions, loadings, and material 

properties, including structures with orthotropic materials. The results verify the 

assumptions of the load path function method, which is based on the relationship between 

derivative of load path function and resultant forces. Since the majority of structural parts 

used in the aerospace industry are composed of plates and shells, such as wings and 

fuselages, understanding and optimizing these structures are of utmost importance to 

increase performance. Analysis and interpretation of the load paths has the potential to be 

an important tool for determination of reinforcements in any structure. Additionally, the 

load path function method increases the possibility of using load paths for layout and 

topology optimization as well as trajectories for fiber-steered composites. 

 

3. VARIABLE STIFFNESS COMPOSITES 

The determination of optimized fiber orientations for variable stiffness 

composites will now be investigated. Classical methods of optimized design will be 

compared against methods proposed that utilize structural load paths. The methodology 

of each process will be explained; then examples showing comparisons between global 
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compliance, convergence history, solution stability, and fiber continuity will be 

presented. Additionally, a method for fiber filtering is included as a possible remedy to 

fix discontinuous and unstable fiber solutions. 

3.1. Methodology   

The goal is to minimize the compliance for the structure by minimizing the strain 

energy on each design cell, e. The objective function is written as, 

   
  

     
  ̅         

          (24) 

Where:   
 

 
    

 

 
 (25) 

 

Where C is the unrotated stiffness matrix, T is the transformation matrix,    is the 

strain vector, and    is the design variable representing the fiber orientation angle. Using 

the elements of FEM as each design cell, we can solve Eq.(24) on each element to 

determine to the least compliant structure. Fig. 3.1 shows the rotation of a design cell 

within the design domain.  

 

 

Fig. 3.1 Arbitrary domain,  , showing a design cell and its rotation angle,   . 
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3.1.1. Strain method 

The strain method, as documented by (Pedersen, 1989), assumes the strain field is 

fixed for each element and altering the material orientation has no residual effect on the 

strain. The sensitivity of the objective function with respect to design variable is, 
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     (26) 

 

Where it is assumed the strain is invariant with respect to the orientation, leaving 

the sensitivity a function of the rotated stiffness matrix,  ̅.  The strain vector    is 

comprised of   ,    and    . Expansion of transformation matrices embedded inside of 

Eq.(26) leads to the expression, 
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Where the coefficients A, B, D, and E are, 
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The terms   and   are determined by the material properties as, 
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The values of    
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  correspond to entries in the unrotated stiffness 
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matrix  ,   
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] (30) 

 

Solutions for Eq.(27) can be found by solving the polynomial, 

                                          (31) 

 

Where   is expressed as      . Solving Eq.(31) should yield 4 roots between 

  
 

 
   

 

 
 . The root, or roots, corresponding with minimum strain energy can be 

found by inserting the roots into,  

                                 (32) 

 

3.1.2. Stress method 

The stress based method (Diaz & Bendsøe, 1992) is analogous to the strain 

method but instead rotates the compliance matrix with respect to a fixed strain field. The 

sensitivity equation for the strain method, Eq.(26), can be rewritten in terms of stresses 

as,  
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     (33) 

 

Just like the strain method, the stress method also assumes the stress field of the 

element is invariant with respect to the change of orientation. The stress vector,   , is 

comprised of   ,   , and    , and  ̅ is the rotated compliance matrix.  Solving Eq.(33) on 

each element follows the same procedure as the strain based method. For the stress based 

method, the coefficients A, B, D, and E from Eq.(27) can be written as,    
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Where   and   are material property parameters determined by, 
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The values of    
 ,    

 ,    
 , and    

  correspond to entries in the unrotated 

compliance matrix  ,   
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] (36) 

 

 

3.1.3. Energy method 

The energy method (Luo & Gea, 1998) is a first-order approximation of the stress 

and strain based methods. The stress and strain field is no longer assumed to be fixed and 

the change in stress and strain due to the rotation of compliance matrix is implicitly 

quantified. This is done by carefully studying what happens when a design cells 

orientation changes. 

Assume a design cell in the domain  . The current strain and stress in the 

unrotated design cell is       and        . When the cell is rotated by the angle    

the stress will change, but the cell’s strain must be the same so that the displacements are 

continuous with the adjacent structure. Therefore, the cell’s strain remains       and 

the stress becomes      ̅  . The strains are continuous between the design cell and the 
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adjacent structure; however, the stresses are now discontinuous. To correct this, a 

fictitious surface traction,  ̅, is applied on the design cell that is equal and opposite to the 

change in stress caused by the cell’s rotation, 

 ̅    ̅       (37) 

 

Application of this surface traction will produce new strains and stresses of 

unknown quantity. The stress and strain of the element now becomes, 

         
(38) 

    ̅      
 

Where the values of    and    caused by the applied stress  ̅ are unknown,  they 

can be approximated using energy factor,  . The energy factor is defined as a ratio that 

describes how much work the stress  ̅ performs on the design cell vs. how much work it 

performs on the surrounding structure. Therefore,     and    can be approximated as, 

     ̅   ̅  
(39) 

       ̅  
 

Now Eq.(38) can be rewritten as, 

          ̅ ̅        ̅(    ̅)   
(40) 

        ̅           ̅    
 

By substituting Eq.(40) into Eq.(26), the sensitivity of the strain energy with 

respect to orientation can be found, 
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Solutions to Eq.(41) can be found by using Eq.(27) with the following coefficients 

for A, B, D, and E, 
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The additional material constants    ,     and     are defined as, 
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3.1.4. Dominant Load path method 

The dominant load path method uses the concept of load paths to determine 

optimal orientation for the orthotropic material to achieve minimum compliance. This is 

contrary to the strain, stress, and energy methods for many reasons. Most importantly, it 

does not solve Eq.(24) directly and instead aligns the orientation tangent to the physical 

load flow of the structure using the load path function method.  
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For each design cell, or FEM element, the dominant load path pointing vector is 

selected as the materials orientation angle. The dominant load path pointing vector is the 

load path angle associated with the larger of the two traction forces. The load path 

pointing vector can be found by taking the curl of the load path function at centroid of 

each element. The corresponding orientation angle,   , can be found by taking the inverse 

tangent of the resulting vector.  
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Where the traction forces    and    are defined as, 
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If fiber reinforcement is being designed to resist bending loads, the z-dir load path 

function,    can be used to determine optimal fiber orientations, 
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3.1.5. Weighted load path method 

The dominant load path method is a binary approach that selects the angle based 

off the largest traction forces. The weighted load path method considers the 

proportionality of each traction force to generate a weighted orientation angle. The 

weighting coefficients are introduced as,     
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The process to determine the orientation angle from Eq.(44) is rewritten as a 

weighted average as, 

          
   

 

  
          

  
 

   
  (48) 

 

3.1.6. Fiber filtering 

The stress, strain, and energy methods, as well the load path methods, can all 

produce issues with fiber smoothness and discontinuity and sometimes, the solution 

methods produce unstable results. To address these issues, two methods of filtering have 

been proposed. The filter sacrifices overall compliance to achieve better fiber continuity, 

solution stability, and faster convergence. The two filter schemes average the orientations 

of the elements within a prescribed search radius,  . The first method is a direct average, 

   
∑   

 
   

 
 (49) 

 

Where   is the  th element within the search radius and   is the number of 

elements that fall into that search radius. The radius is measured from the centroid of the 

element   and searches for all other element centroids. The second approach uses a 

linearly weighted average described by, 
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Where    is the distance from the centroid of element   to the centroid of the 

query element  . In effect, it grants greater proportionality to the orientation angles closer 

to element  .  

3.2. Results  

A set of examples will be presented showing the implementation of these 

methods. The optimal fiber orientations will be found and the methods will be compared 

based off their speed of convergence, converged compliance, and fiber continuity. The 

first example will be a plate clamped at one end with a shear load at the other. The 

second example will be a pin loaded plate with a bearing load. The last example will be a 

fighter jet wing loaded and bending due to aerodynamic pressure.  

3.2.1. Plate loaded in shear 

For this example, assume a rectangular plate in a state of plane-stress, clamped on 

one end and loaded in shear on the other, as shown in Fig. 3.2. This problem is presented 

as a benchmark example comparable to other results commonly found in the literature. 

The width of the plate is 200mm and the height is 100mm. The plate has a 20x40 element 

QUAD4 mesh shown in Fig. 3.3. The material is a single-ply laminate with          

GPa,          GPa,          GPa, and the Poisson’s ratio is 0.29. The orientation 

of the lamina is open to design on each element. The lamina thickness is 0.002 mm and 

the applied force is 10 kN. The initialized structure has all the fiber orientations set 0 deg. 
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The initial compliance is 34.24 N∙mm.    

 

Fig. 3.2 Rectangular plate subjected to a shear load. 

 

 

Fig. 3.3 A 20x40 element FEM mesh. 

 
The five methods discussed (strain, stress, energy, dominant load path, and 

weighted) will be run for this problem. All solutions are run for 200 iterations with a 

maximum    set to 3 deg. That limits the amount or orientation change for each element 

to aid in solution stability. Larger    values can lead to unstable solutions that do not 

converge. Fig. 3.4 through Fig. 3.8 show the converged orientation solution with the fiber 
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angle mapped onto the centroid of each element of the structure. All  methods produce 

fiber discontinuity in the top and bottom corners on the right-hand side of the plate; 

however, this is a lightly loaded area of the structure where fiber discontinuity is not a 

structural concern. The strain, stress, and weighted load path methods all produce similar 

fiber distributions. The energy method solution Fig. 3.6 produces a cross-thatched pattern 

in the interior of the plate, but it should be noted that for a single ply laminatethe solution 

could not be manufactured. The cross-thatched pattern appears in areas where the shear 

stress is dominating the stress field and is reminiscent to the checkerboard instability 

found in topology optimization problems. The dominant load path method also produces 

a unique fiber distribution compared to the other solutions. Close inspection of Fig. 3.7 

shows a distinct transition boundary from    load paths to the    load paths which can 

be attributed to the binary nature of Eq.(44). 

 

 

Fig. 3.4 Converged solution using the strain method. 
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Fig. 3.5 Converged solution using the stress method. 

 

 

 

Fig. 3.6 Converged solution using the energy method. 
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Fig. 3.7 Converged solution using the dominant load path method. 

 

 

 

Fig. 3.8 Converged solution using the weighted load path method. 

 
 

Fig. 3.9 shows the convergence history over 200 design iterations. The energy, 

stress, and weighted load path method converge to the lowest compliance, comparable to 

the optimized designs found in the literature (Brampton et al., 2015). The strain and 

dominant load path method do converge, but their converged compliance does not rank as 

well as the other methods. Table 3.1 shows the comparisons of the final converged 

compliance solution determined by each method which is compared to the initial, 
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straight-fiber design. For this structure and load, the energy method achieves a 53.55% 

reduction in compliance over the initial design. The stress method and weighted load path 

method record a 52.25% and 51.05% drop in compliance, respectfully. Even though the 

stress and weighted load path methods do not score as well as the energy method, it is 

evident that the formers’ fiber orientations are more desirable from a manufacturing point 

of view which must be taken into consideration during design.  

 
 

 
Fig. 3.9 Convergence history of each method through 200 design iterations 

. 

 
 
 

Table 3.1 Comparison of the overall compliance of the converged solutions. 

Method Compliance Percent difference 

Initial design (0 deg fiber) 34.24  

Strain  21.08 -38.41 
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Stress  16.35 -52.25 

Energy  15.90 -53.55 

Dominant load path  20.14 -41.16 

Weighted load path  16.75 -51.05 

 
 
 

Now, the fiber filtering methods will be demonstrated  to produce fiber 

orientations more adequate for manufacturing and to aid in solution stability. The five 

solution methods were run again with direct averaging scheme described in Eq.(49) with 

a search radius of 10mm. The filtering was performed at the end of each design iteration. 

Fig. 3.10 through Fig. 3.14 show the converged fiber distributions after filtering. 

 

 
Fig. 3.10 Converged solution of the strain method using fiber filtering. 
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Fig. 3.11 Converged solution of the stress method using fiber filtering. 

 
 

 
Fig. 3.12 Converged solution of the energy method using fiber filtering. 

 
 
 

 
Fig. 3.13 Converged solution of the dominant load path method using fiber filtering. 
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Fig. 3.14 Converged solution of the weighted load path method using fiber filtering. 

 
 

The filtering scheme successfully dealt with fiber discontinuities in the corners. 

Additionally, problems with the previous designs, such as the cross-thatched pattern for 

the energy method and the transition boundary for the dominant load path method, are 

eliminated.  The convergence history for the five methods, with fiber filtering applied, are 

shown in Fig. 3.15. The solutions all converge and stabilize much faster than the 

unfiltered designs. Table 3.2 compares the converged compliance for the filtered designs 

with the initial 0-deg fiber layout. The filtered designs of the strain and dominant load 

path method achieve overall compliances similar to their unfiltered designs (21.08 and 

21.55 for the strain method, 20.14 and 20.89 for the dominant load path method), but 

with faster convergence and improved fiber smoothness and continuity. The stress, 

energy, and dominant load path methods all see improved convergence speed and 

smoothness but their overall compliance increases to 27.5%, 30.5%, and 32.2% 

respectively, compared to the initial baseline design.   
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Fig. 3.15 Convergence history of the five methods using a filtering scheme. 

 
 

Table 3.2 Comparison of the overall compliance of each solution using fiber filtering. 

Method Compliance Percent Difference 

Initial design (0 deg fiber) 34.24 
 

Strain (filtered) 21.55 -37.05 

Stress (filtered) 20.84 -39.13 

Energy (filtered) 20.76 -39.35 

Dominant load path (filtered) 20.89 -38.97 

Weighted load path (filtered) 22.15 -35.30 

 
 

3.2.2. Pin-loaded plate 

The next example is a pin loaded plate supporting a bearing load in plane-stress. 

Assume a rectangular plate with a hole, constrained on one end, and loaded on the 

interior edge of the hole in the opposite direction of the constraint (Fig. 3.16). The 

loading simulates the contact forces generated during a bearing load. The radial force 
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acting normal to the inside edge of the wall is represented as          . The 

corresponding mesh is constructed manually using 2,128 QUAD4 elements (Fig. 3.17). 

The bearing load is applied to the nodes along the interior of the hole. The applied force, 

  , is set at 100lb which produces a total x-dir load of 2,000 lb. The structure is modeled 

as a single lamina with the fiber angle open to design for each element. The orthotropic 

material selected has properties of           psi,            psi,         

    psi, and a Poisson’s ratio of 0.28. The lamina has a thickness of 0.125 in. The 

initialized design has all the fibers orientations aligned with the global x-dir. The initial 

compliance is measured at 8.694 lb∙in. 

 
Fig. 3.16 Pin-loaded plate subjected to a bearing load on the interior edge of the hole. 
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Fig. 3.17. FEM mesh consisting of 2,128 elements. 

This example produces an interesting stress field that requires the structure to 

convert the applied force from compressive stress, to shear, then to tensile stress in order 

to support the loading. The elements adjacent to the bearing load (along the right side of 

the hole) experience large compressive stresses from the applied load. As the load 

transfers away from the hole, it transforms into shear stresses which allow the load flow 

to be turned back towards the constrained edge on the left-hand side. Once the load has 

been turned up and back over the hole, the stress field becomes tensile dominant as the 

load transits back to the constrained edge.    

The five methods to determine fiber orientation are applied to this problem. The 

methods will be scored on their overall compliance, fiber smoothness, stability, and speed 

of convergence. Each method is run for 50 design iterations. Fig. 3.18 through Fig. 3.22 

show the converged fiber orientations of the five methods.  
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Fig. 3.18 Converged solution using the strain method. 

 

 

Fig. 3.19 Converged solution using the stress method. 

 

 

Fig. 3.20 Converged solution using the energy method. 
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Fig. 3.21 Converged solution using the dominant load path method. 

 

 

Fig. 3.22 Converged solution using the weighted load path method. 

 

The examination of the fiber distributions of each method shows that the strain, 

stress, and dominant load path methods all produce stable solutions. The energy and 

weighted load path method show marginal convergence and their fiber distributions are 

unstable. Multiple attempts were made to stabilize the solution by adding fiber filters and 

by lowering the   , but the instability remained. The solutions for the strain, stress, and 

dominant load path methods were smooth and stable enough that the fiber trajectories 

could be plotted. Fig. 3.23 through Fig. 3.25 show the fiber paths of the three stable 

solutions. Fibers paths are initialized at the constrained edge on the left side of the plate.  



  

53  

 

 

Fig. 3.23 Stable solution using the strain method showing the fiber trajectories. 

 

Fig. 3.24 Stable solution using the stress method showing the fiber trajectories. 

 

 

Fig. 3.25 Stable solution using the dominant load path method showing the fiber 

trajectories. 
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The convergence history for each method is presented in Fig. 3.26. The stress and 

dominant load path methods follow a similar convergence even though their converged 

orientations are different. The strain method converges at a slightly slower rate because 

the    required for stability was smaller than the previous two methods. Table 3.3 shows 

the overall compliances of the converged solutions compared to the initial design. The 

stress and dominant load path methods record the highest reduction in compliance at 

39.19% and 39.21%, respectively. The strain, stress, and dominant load path solutions all 

produce smooth and continuous fiber orientations without any filtering required.   

 

Fig. 3.26 Convergence history of the five solution methods. 
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Table 3.3 Comparison of the overall compliance of the converged solutions. 

Method Compliance Percent Difference 

Initial design 8.694 
 

Strain 5.503 -36.69 

Stress 5.286 -39.19 

Energy 6.465 -25.64 

Dominant load path 5.286 -39.21 

Weighted load path 6.706 -22.86 

 

 

3.2.3. Fighter wing under aerodynamic load 

The last example shows the application of Eq.(46) to a bending problem. The 

previous methods discussed cannot be applied to bending because the stress varies with 

thickness. However, by using the transverse shear force resultants, and solving for the z-

direction load path function,   , the fiber orientations can be determined. This requires 

solving Eq.(6) during each iteration.  

Assume a generic low-aspect ratio fighter jet wing planform subjected to an 

aerodynamic pressure,   . Fig. 3.27 shows the dimensions on the wing planform which 

are consistent with an F-16 fighter aircraft. The wing root is assumed to be fully clamped 

to the aircraft’s fuselage. Fig. 3.28 shows the aerodynamic pressure distribution found 

using the commercial vortex-lattice software, VLAERO. The aerodynamic solution is at 

an angle of attack,  , of 1 degree and at Mach number of 0.8. The airfoil used for 

analysis is a NACA 64A204 (Entsminger, Gallagher, & Graf, 2004). 
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Fig. 3.27 Wing planform geometry and dimensions. 
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Fig. 3.28 Aerodynamic pressure distribution at     deg and Mach 0.8.  

 
Structurally, the wing is modeled as a flat plate, comprised of a single lamina of 

orthotropic material with a thickness of 0.5 in. Fig. 3.29 shows the FEM mesh using 

2,194 QUAD4 elements. The orthotropic material selected has           psi, 

           psi,             psi, and a Poisson’s ratio of 0.28. The initialized 

design has all the fibers orientations aligned with the global y-dir. The compliance of the 

initial design is 30488 lb∙in. Optimized fiber orientations are found using Eq.(46). Fig. 

3.30 shows the initial fiber design, with all the fiber orientations in the global y-dir, and 

the contours of the corresponding load path function   . Fig. 3.31 shows the fiber 

orientations after 50 design iterations with the corresponding load path function contours. 

A    of 1 degree was selected and a fiber filter of 15in was applied to attempt solution 
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stability and convergence. 

 
Fig. 3.29 FEM mesh comprised of 2,194 elements.  
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Fig. 3.30 Initial fiber design showing elemental fiber angles (red) and load function 

contours (blue). 
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Fig. 3.31 Converged fiber design showing elemental fiber angles (red) and load function 

contours (blue). 
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The convergence history is shown in Fig. 3.32. A small    and fiber filtering 

were implemented to aid stability and convergence due to the implicit nature between the 

load paths and the fiber orientations. Even with  the mentioned implementations the 

convergence history demonstrates marginal solution stability. The converged design in 

Fig. 3.31 demonstrates how the fibers attempt to follow the z-dir load function contours. 

This is so that the stiffest direction of the orthotropic material is aligned with the 

direction of load transfer of the transverse shear forces. Table 3.4 shows the comparison 

between the initial design compliance and the optimized solution. Application of Eq.(46) 

to this design problem produces a 2.68% reduction (occurs at iteration 29) in overall 

compliance compared to using a constant-stiffness design. 

 

 

Fig. 3.32 Convergence history of the solution method showing marginal stability after 10 

iterations. 
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Table 3.4 Comparing the compliance between the initial and final design. 

Method Compliance Percent Difference 

Initial design  30448  

Load path function method 29629 -2.68 

 

 
 

3.3. Discussion 

The purpose of this section is to investigate the problem of optimized orientations 

for orthotropic material. The strain method, stress method, and energy method are 

compared to the proposed load path methods to determine optimized orientations. 

Numerical analysis shows that for a plane-stress problem, no single method consistently 

produces superior results. The best designs for the shear-loaded plate were found using 

the energy, stress, and weighted load path method, in that order. The best designs for the 

pin-loaded plate were found using the stress method and the dominant load path method.   

The classical methods use the stress and strains of each element to determine 

orientation. They are not applicable to bending problems where the stress and strain vary 

with thickness. Application of the load path function method to a bending problem 

successfully produces a reduction in overall compliance of the structure. However, this 

method can be unstable without proper fiber filtering. The minimal reduction in 

compliance for the bending example suggests that variable stiffness composites are more 

suitable for plane-stress applications where the reductions in compliance tend to be 

larger.    



  

63  

4. CONSIDERATIONS FOR 3D PRINTED COMPOSITES 

Off-the-shelf CFRP printers, such as the MarkForged MKII printer, can combine 

the rapid prototyping capabilities of standard ABS plastic printers with the structural 

performance of CFRP composites. The printer can produce parts with a nylon matrix 

reinforced with either carbon, Kevlar®, or fiberglass fiber tows (MarkForged, 2016). The 

machine allows for continuous tows of fiber to be laid down along prescribed trajectories 

and geometries. In collaboration with University of New Mexico’s (UNM) Advanced 

Structural and Energy Materials Lab (ASEMlab), the structural limitations of 3D printed 

composite parts were investigated. This includes material and failure testing (performed 

by ASEMlab) and FEM modeling performed at Embry-Riddle Aeronautical University’s 

(ERAU) Structural Analysis and Design Laboratory (SAnD). The parts analyzed were 

standard ASTM D638-14/Type 1 and Type 4 printed specimens using concentric rings of 

fiber (Fig. 4.1). The findings were compared to the data published by the MarkForged 

company. This section will present the FEM framework used to model these structures 

and the failure comparisons to material testing.  

 

 

Fig. 4.1 Part printed at ASTM D638-14 Type 4 standard used for tensile testing. 
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4.1. Modeling 

The FEA model was based off the geometry and fiber layout given by the 

MarkForged software suite, shown in Fig. 4.2(a). In contrast to traditional, constant 

stiffness composites, where fibers are aligned in one direction, fibers in 3D printed parts 

can be curved. The MarkForged software, in particular, tends to print fibers in concentric 

rings, starting from the center and working to the perimeter of the part. Composites with 

curvilinear fibers can be difficult to model because the fiber angle varies from element to 

element; therefore, the material properties vary as function of position in the structure. 

Generating individual material and laminate properties for each element would be a 

laborious and time-consuming task for an individual to perform manually in a FEM 

graphical user interface. This led to the development of an automated modeling system 

using Matlab/Python and Patran.   

A Matlab/Python script was written to model, mesh, and generate laminate 

properties for different sets of ASTM D638-14/Type 1 and Type 4 printed parts.  Fig. 

4.2(b) shows the finite element mesh used to describe the geometry of a Type 4 printed 

part. It was found from previous design iterations that variable stiffness composites are 

extremely sensitive to mesh smoothness. Therefore, the bands of curved fibers along the 

part’s perimeter are meshed with their own smooth bands of elements. Two different 

material properties are introduced: the first describes the carbon reinforced composite 

used throughout the majority of the structure; the second is an isotropic material that 

describes the small pockets of nylon which are used by the 3D printer to fill in areas 

where the carbon fiber filaments cannot be easily placed.  Fig. 4.2(c) depicts in red the 

regions of the model that use the nylon filler material.  
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(a) 

 

(b) 

 

(c) 

 
Fig. 4.2 a) Geometry and fiber layout of an ASTM D638-14/Type 4 3D printed part, b) 

Finite element mesh using CQUAD4 shell elements, c) The regions depicted in red 

specify areas of the part with only nylon filler material. 

 

The printed specimens were tested in tension with grips attached to the wide 

flanges at the ends. Rigid Body Elements (RBE2) were used in FEM to simulate this load 

scenario by “clamping” the tabs at each end. Material properties for each element are 

derived from the local fiber angle of the printed part at each element’s location. By 

overlaying the element centroids over the digitized fiber data, the local material 

orientations for each element can be determined from interpolation. Fig. 4.3 shows the 

local fiber orientations mapped onto the centroid of each element. Additionally, the 

elements of the model that are located in the regions of the nylon filler material were 

assigned separate material properties and represented in the figure with black circles. 
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Fig. 4.3 The fiber orientation angles mapped onto the centroids of each element. 

 

4.2. Results 

 
The material stiffness and failure values were taken from the Markforged data 

sheet and are presented in Table 4.1. The material properties selected for the nylon filler 

regions follow the standard Nylon-6 material properties.  
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Table 4.1 Material data for the carbon fiber reinforced and nylon regions 

 Carbon fiber composite Nylon 

   50.0 GPa 0.94 GPa 

   4.0 GPa 0.94 GPa 

    2.0 GPa 0.34 GPa 

    0.33 0.4 

  
  700.0 MPa 53.8 MPa 

  
  -320.0 MPa -53.8 MPa 

  
  48.0 MPa 53.8 MPa 

  
  -100.0 MPa -53.8 MPa 

    73.0 MPa 68.9 MPa 

 

The fiber direction normal stress for the ASTM D638-14/Type 4 sample at the 

failure load are shown in Fig. 4.4. Using Fig. 4.2(a) as a reference, it can be seen that the 

maximum normal stress occurs in the single band of fiber that runs through the center of 

part. Because the nylon is experiencing little stress at the neck, we can conclude that the 

load is being transferred solely through the fibers and bypassing the filler regions 

altogether. Fig. 4.5 shows the fiber direction shear stresses. The maximum shear stresses 

occur in the neck along the boundary between the nylon and composite regions. 

The failure is predicted using Tsai-Wu failure theory. Fig. 4.6 shows the indices at 

failure for the part. The failure location is predicted in the neck region along the seam 

between the composite and nylon regions.  

Table 4.2 shows the corresponding stresses at the failure location. The stresses at 

the failure location suggest failure due to a combination of high stresses perpendicular to 

the fiber direction and high shear stresses. This agrees with the tensile test results in Fig. 

4.7 which shows failure in the same location. We can conclude from FEM that matrix 

failure was likely initiated due to an overload of shear stresses. Additionally, the    
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stresses in the same location led to disbonding of the composite from the nylon filler 

triggering a longitudinal crack along the axis of the part. At this failure load, the average 

normal stress at the gage is 223 MPa.   

 

 

Fig. 4.4    normal stress [MPa] at failure load 

 

 

Fig. 4.5     shear stress [MPa] at failure load 

 

 

Fig. 4.6  Tsai-Wu failure indices for the Type 4 model at failure load. 
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Fig. 4.7 Fractured sample exhibiting matrix failure. Box contains longitudinal matrix 

crack and arrows point to crack initiation points.  

 

Table 4.2 FEA failure stresses for the Type 4 model 

Gage normal stress [MPa] Failure location FEA stresses [MPa] 

FEA Experimental % Difference           

226 223±9 1.3 ± 2.0 % 222 34.6 -37.8 

 

Models of the ASTM D638 – 14 Type 1 specimens, with varying numbers of 

concentric rings, were also analyzed and compared with tensile testing. The total number 

of printed layers for all samples was 24 layers. All layers were reinforced with either 2, 3, 

4, 5 or 6 rings of concentric fiber. Table 4.3 shows the relationship between the number 

of concentric rings and the total fiber volume fraction. The fiber direction normal stresses 

and shear stresses for the Type 1 model are shown in Fig. 4.8 and Fig. 4.9 at the resulting 

failure load. The largest normal stresses occur in the interior of the part at the transition 

between the neck and flange. The largest shear stresses occur in the same region, except 

slightly further inwards from the boundary between nylon and composite. The resulting 

Tsai-Wu failure indices are shown in Fig. 4.10. Inspection of the failure indices shows 

that failure is occurring within the structure, at the location of peak shear stress. The 

tensile strength in comparison with experimental testing is reported in Fig. 4.11. 
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Table 4.3. Relationship between number of concentric rings and total fiber volume 

fraction. 

Number of 

concentric rings 

Total fiber volume 

fraction 

2 10 

3 15 

4 20 

5 25 

6 30 

 

 

 

 
Fig. 4.8    normal stress [MPa] at failure load for with 6 concentric rings (Vf = 0.3) 

 

 

Fig. 4.9     shear stress [MPa] at failure load for with 6 concentric rings (Vf = 0.3) 

 

 
Fig. 4.10 Tsai-Wu failure indices for the Type 1 model at failure load. 
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Fig. 4.11 Tensile elastic modulus and strength of specimens as a function of total carbon 

fiber volume fraction. 

 

Individual analyses were performed for each set of concentric rings, which varied 

from two to six. The strength improved linearly as the amount of fiber increased. 

However, the normal and shear stresses varied. As the amount of fiber increased, the 

maximum shear stresses increased and the maximum normal stresses decreased, as 

described in Fig. 4.13. Models with five and six rings (corresponding to Vf = 0.25 and 

0.3) have a much larger component of shear stress at the failure location than parts with 

less rings, which have a larger component of normal stress at the same location. A 

comparison of stress distributions between Vf = 0.15 and 0.3, for the    normal stress and 
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the     shear stress, is presented in Fig. 4.12. During tensile testing it was reported that 

all parts exhibited fiber failure, with the five and six ring parts showing a combination of 

fiber and matrix failure. The FEM partially confirms this result.  

  
(a) (b) 

  
(c) (d) 

Fig. 4.12 Comparison of failure stresses at different fiber volume fraction, a)    [MPa] 

for Vf = 0.3, b)    [MPa] for Vf = 0.15, c)     [MPa] for Vf = 0.3, d)     [MPa] for Vf = 

0.15. 
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Fig. 4.13 The relationship between the maximum stresses at failure and the total fiber 

volume fraction. 

4.3. Discussion 

Regardless of the number of fiber rings, the failure location for all the Type 1 

models occurred in the composite at the transition between the neck and flange, near the 

boundary between the nylon filler and the composite. This contrasts with the Type 4 

model in three notable ways. First, the failure occurs far from the gage and closer to the 

point of load application at the grips where the part has a larger cross-sectional area. 

Second, the failure is occurring approximately 0.75mm outwards from the boundary 

between the composite and nylon, which suggests fiber failure. The Type 4 model failed 

directly along the seam between the two materials which resulted from matrix failure. 

52

54

56

58

60

62

490

500

510

520

530

540

5 10 15 20 25 30 35

M
ax

im
u

m
 τ

1
2
 [

M
P

a]
 

M
ax

im
u

m
 σ

1
 [

M
P

a]
 

Vf 



  

74  

Third, for the Type 1 model, the    stress is minimal and contained inside the nylon filler 

regions. Therefore, the failure is dictated solely by the    and     stress in the composite. 

This contrasts with the Type 4 model, which saw large multiaxial stresses in the 

composite at the failure location.  

The FEA of the ASTM D638 – 14 Type 1 and Type 4 models exhibit  the 

sensitive nature of 3D-printed, variable stiffness composites. With a constant stiffness 

composite, or an isotropic material, the geometry of the structure solely governs the 

location of the failure, which usually occurs at the outer edge of a geometric feature. It is 

shown from FEA that implementing variable stiffness composites, while using the same 

geometry, can lead to counter intuitive failure locations, including failures from within 

the part that propagate outward. This demonstrates the importance of including FEA in 

the design of any 3D printed composite that is being designed as a structural component. 

The observations from different tests and the numerical simulations confirmed that it is 

not possible to prepare sufficiently strong parts using the MarkForged 3D printer without 

prior knowledge of the effect of geometry over the failure modes which could only be 

obtained using FEM simulations. 
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5. CONCLUSION 

The design, optimization, and analysis of variable stiffness composites were 

investigated. A new method to determine optimized fiber orientation of orthotropic 

material was derived based upon the theory of structural load paths. This methodology 

was compared against other classic methods using a set of bench mark examples.   

The load path function method was expanded upon to include the capability to 

determine load paths when non-conservative body loads are acting on the structure. This 

was done by decomposing the stress field into two components, a self-equilibrated 

component and a body force component. The load path function was assumed to be a 

function of the self-equilibrated stress components only.  Additionally, the load path 

function method was also expanded to shell and membrane structures using stress 

functions and shell projections. Examples of the method showed its possible applications.   

Next, structural load path determination was used as a basis for variable stiffness 

composite design where the curl of the load path function is used to determine local fiber 

orientation. Optimized designs for plane-stress problems using the load path function 

methods were compared with classical methods found in the literature. While no 

particular method proved superior for any given problem, the load path function methods 

did exhibit the capability to reduce the overall compliance by as much as 35% to 50%. 

An example showing the application of the load path function to a bending problem 

produced a slight improvement in overall compliance, but only marginal solution 

stability. 

Lastly, the design considerations and limitations of 3D printed composite parts 

were explored. Finite element analyses, in conjunction with material testing perform at 
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the University of New Mexico’s ASEMlab, showed how sensitive the strength of 3D 

printed composites can be to changes in orientation and geometry. The importance of 

utilizing the finite element method for analysis is demonstrated by the counterintuitive 

stress concentrations and internal failure that can occur in a variable stiffness composite 

design.  

This research demonstrated the performance increases that can be achieved by 

using variable stiffness composites; however, no clear design methodology has proven to 

be superior for determining the minimum compliant design. The two primary hindrances 

were solution stability and fiber smoothness to facilitate manufacturing. Additionally, the 

strength of additively manufactured composite parts is difficult predict and requires a 

detailed stress analysis to ensure the structure is performing as intended.  
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6. SUGGESTIONS FOR FUTURE WORK 

The next phase in the design of optimized orthotropic materials should explore an 

extension to three-dimensional membrane problems. Three-dimensional shell problems 

could also be addressed, but optimizing variable stiffness designs subjected to bending 

needs further investigation and understanding. Buckling stability of composite panels is a 

critical criterion in aerospace design; therefore, optimizing for buckling performance is  

the next logical step. However, the underlying problems with solution stability and fiber 

smoothness will linger and the implicit nature of the solution method must be addressed. 

Using load paths as a basis for fiber trajectories and topology optimization shows 

promise and needs continued investigation. Hamiltonian load paths, which are 

determined using the concept of minimum potential energy, also need to be explored 

further.  

Discovering a method to bypass the MarkForged software suite so that custom G-

code commands could be given to the MKII printer must be discussed for future research. 

This would allow the manufacture of low-cost, self-tailored, 3D printed composites in a 

desktop platform.    
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APPENDIX A: MICHELL TRUSS STRUCTURES 

a. Introduction 

 The goal of this research is to gain a competent understanding of Michell’s 

theory for optimum truss layout. This began with a review of Michell’s original paper 

published in 1904, a groundbreaking publication in the subject of structural optimization 

and layout theory. Michell’s truss designs were exact solutions of least-volume truss 

structures. An example structure is created using an analytical solution to Michell’s 

optimality criteria. 

b. Analytical solution to the ground structure 

 
Michell’s theory states that for a given design domain,  , and a given set of 

external forces, a truss structure that satisfies Michell’s optimality criteria will have a 

volume,   ,  which is less than or equal to any other truss design, V.  

     (a) 

 

Michell’s presented the criteria that must be satisfied for a layout to be considered 

optimized to its least-volume design. First, the stress constraint must be applied to all 

members of the framework such that: 

         (b) 
 

Where    and    are the maximum permissible stresses in compression and 

tension respectfully. Through sizing optimization, it is assumed that all truss members 

will be stressed to the maximum permissible amount. Once all members are stressed to 

their maximum limits, the total truss volume can be expressed using the primal formula 
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presented by Maxwell (1864).   

   ∑
    

  
 

  ∑
    

  
 

 (c) 

 

Where   is the length of the member and   is the internal force carried by the 

member. More importantly, the Michell optimality criteria states that if an infinitesimally 

small test deformation is applied, all members (tension and compression) should have a 

constant strain value,  .   

 ̅    (d) 
 

Where the sign of   is equal to the sign of the internal force of the member. These 

criteria can be satisfied two different ways. Solution one:  all members are loaded in 

either tension or compression, such as a system of solely struts or ties. However, for a 

framework to support more complicate loads a structure would need to be a combination 

of both. If a framework of both tension and compression members is needed to carry the 

load, the members must meet at nodal locations with equal but opposite virtual strains. 

This is only satisfied if members meet orthogonally to each other along lines of lines of 

constant major and minor principle strain.  

The greatest difficulty in designing Michell structures is determining a system of 

curves that define the lines of constant principle strain. Three approaches can be taken: 

analytical solutions, numerical solutions, and graphical solutions. Once the ground 

structure is defined, the structure is discretized into elements and a sizing optimization is 

performed on the cross-sectional areas to create a least-volume structure. These truss 

structures are all called Michell structures.   

An example problem was performed using an analytical solution to Michell’s 
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strain criteria. Assume a cantilever design domain that carries a concentrated bending 

load, as shown in Fig. A1.   

 

 

Fig. A1 Design domain of a cantilever structure. 

 

Assume a new curvilinear coordinate system defined as:  

         (e) 
         (f) 

 

For a curvilinear plane stress element, the equation of compatibility of the first 

order of strain is (Hemp, 1958), 
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Where   and   are functions that are introduced that will satisfy the compatibility 

equation. By applying Michell’s optimality criteria, the strains become, 

      (h) 
       (i) 
      (j) 

  

This simplifies the compatibility equation to, 

 

  
(
 

 

  

  
)  

 

  
(
 

 

  

  
)    (k) 

 
 

Functions          and          must be selected to satisfy the previous 

equation. The design domain and the type of problem dictate the type of functions that 

must be used. Once a set of functions has been found, they must be transformed into 

curves in Cartesian coordinates. Many sets of functions can be found to satisfy the 

compatibility equation but few can be converted into the Cartesian (x,y) system of 

coordinates. Many authors have presented solutions to solve for the curves numerically. 

Following the work of (Ghista & Resnikoff, 1968), the functions of   and   are selected 

as, 

            (l) 
            (m) 
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Using the following relationships and identities, 

         
 

 

  

  
 (n) 

         
 

 

  

  
 (o) 

         
 

 

  

  
 (p) 

         
 

 

  

  
 (q) 

 
The following two equations determine which denote lines of constant α and β. 

They represent a field of principle strains that satisfy Michell’s optimality criterion. 

Every intersection of the two curves occurs orthogonally.  

                 √     (r) 

                  √     (s) 

 
 

The following sets of curves (Fig. A2)  can be generated and used as a ground 

structure by assuming the design domain is bounded by α=
 

 
 , β=0, and x=0. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. A2 Ground structures for a cantilever beam generated analytically using Michell's 

optimality criteria. 

 

 

c. Structural solution and sizing optimization 

The ground structure is discretized into individual bar elements. Nodes along the 

wall are pinned. A transverse load of 100 is applied at the tip. The maximum permissible 

stress in tension and compression is ±100. A code was written to perform the FEA and 

implement the sizing optimization of the individual elements. Fig. A3 shows the 

discretized structure and the resulting deformations. Fig. A4 shows the results of the 

sizing optimization such that ever member is stressed to their maximum permissible 



  

86  

stress. Table A1 shows the percent change of the volume as the number of members is 

increased.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. A3 FEA model of the ground structure (black) showing deflections (red) of the 

trusses after sizing optimization. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. A4 Results of the sizing optimization.  

 

 

Table A1 Comparison of primal volumes for each layout order. 

Layout Order V (primal formula) % difference 

1 23.67 
 

2 22.89 -3.29 

4 22.83 -3.54 

8 22.81 -3.63 

 

Michell truss structures are characterized as truss-like continua because the 

structure is assumed to have an infinite amount of trusses. However, we can see in Table 

A1 that the primal volume is rapidly converging at an order 8 structure (64 truss 
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members), showing that increasing the number of members past 64 would have a 

minimal effect on dropping the primal volume of the structure.  
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