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ABSTRACT

Kopper, Patrick MSc, Embry-Riddle Aeronautical University, December 2017. Im-

plementation and Verification of a Synthetic Eddy Method (SEM) in the Eagle3D

Compressible Flow Solver.

The objective of this thesis is to implement and evaluate a Synthetic Eddy Method

(SEM) into the Eagle3D compressible flow solver. Both the ability of Eagle3D to

resolve unsteady turbulent flow field and capability of the SEM to reproduce given

Reynolds stress profiles to start realistic turbulent behavior are verified using common

academic cases. Eagle3D is a Computional Fluid Dynamics (CFD) solver using a novel

combination of a Bounded Central Differencing (BCD) scheme with Weighted Essen-

tially Non-Oscillatory (WENO) approximation to reduce numerical dissipation. SEM

is a modern synthetic turbulence method able to reproduce an arbitrary Reynolds

stresses specification on discretionary geometries while keeping computational costs

low. The Large-Eddy Simulation (LES) capability of Eagle3D is evaluated using the

flow over a cylinder and compared to results by ANSYS Fluent. The SEM is used to

reproduce unsteady inlet conditions for channel and flat plate cases and relayed into

Eagle3D. Common flow parameters such as skin friction, Reynolds stresses and veloc-

ity components are compared against analytic, Direct Numerical Simulation (DNS)



xiv

and periodic LES to estimate the performance of this solver combination in accuracy

and development length. Parametric studies of grid dependence, varying upstream

Reynolds-Averaged Navier-Stokes (RANS) data and prescribed eddy length scale are

performed. Modifications to the SEM are prescribed and tested where suitable. Fur-

ther studies and modifications to the SEM based on the obtained data are suggested.
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1. Introduction

The application of eddy resolving methods in Computational Fluid Dynamics

(CFD) for research and development of propulsive flow paths is of considerable interest

in the aerospace community. Although the aerospace industry largely depends on the

Reynolds-Averaged Navier-Stokes (RANS) equations, eddy resolving methods offer

the potential of higher fidelity treatment of the turbulence effects crucial in propulsive

flows. Unfortunately, eddy resolving methods, like Large-Eddy Simulation (LES),

often pose excessive computational cost. Accurate simulation of propulsion systems

also often involve a wide range of flow regimes from very low subsonic (e.g., film

cooling of turbine blades) to highly compressible (e.g., transonic flow over turbine

blades), which further complicates the use and cost effectiveness of eddy resolving

methods.

It has been shown in numerous publications during the last quarter century, that

LES results show a large dependence on the accurate reproduction of the time-

accurate inflow turbulent fluctuations (Druault et al., 2005; Rynell, Efraimsson,

Chevalier, & Abom, 2016; Wu, 2017). Various methods for modeling of time-varying

inflow turbulence have been suggested over the last decades which depend on avail-

able steady-state (e.g., RANS generated) data. The focus of the current effort focuses

on the Synthetic Eddy Method (SEM) as first proposed by Jarrin et al. (Jarrin, Ben-
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hamadouche, Laurence, & Prosser, 2006) due to the main advantage of being able

to reproduce an arbitrary Reynolds Stress distribution over an inflow plane while

keeping computational requirements low, with typically under 5 % of total calcula-

tion time. Despite these promising prospects on the suitability of the SEM for a wide

range of applications (e.g., film cooling of turbine blades), implementations in com-

monly used codes is rare with incomplete or deficient realization in Code Saturne and

OpenFOAM and completely unavailable in commercial codes such as ANSYS Fluent.

The Eagle3D flow solver has been under development at ERAU with the long-

term goal of offering a practical, high-fidelity tool for entire propulsive flowpaths

(from ”tip-to-tail”), including eddy resolving techniques. Originally developed as a

general purpose, chemically-reacting, RANS-based, structured, density-based finite-

volume flow solver (Engblom, Fletcher, & Georgiadis, 2007), this code is well validated

for steady-state, high-speed propulsive flows. During the course of this recent devel-

opment effort, which included collaboration with NASA Glenn Research Center, the

code was modified to offer high-fidelity treatment of the unsteady, low-speed subsonic

flows commonly examined in development of eddy-resolving techniques. More specifi-

cally, a novel Bounded Central Differencing (BCD) flux scheme, to be described later,

was implemented to ensure stability and low-dissipation results. This development

was completed to prepare the code to be effective for the present effort.

The primary purpose of the current effort is to implement the Jarrin style SEM ca-

pability into Eagle3D and evaluate and verify the SEM capability in combination with

Eagle3D’s BCD scheme. A related early goal was to verify that the aforementioned
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BCD implementation in Eagle3D appropriately resolves the unsteady turbulent eddy

field for the canonical case of 3-D flow over a cylinder (relative to ANSYS Fluent).

The SEM implementation, in combination with Eagle3D, is then evaluated using

two commonly used 3-D cases in the literature, the channel and the flat plate. The

sensitivity of results to various SEM model parameters and eddy-resolving settings is

evaluated. It is important to mention that no related literature has been published on

the accuracy of a BCD flux scheme within a density-based LES code, in combination

with a SEM for unsteady inflow turbulence.
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2. Methodology

This chapter gives an introduction to the computational methods used in this

thesis. It includes background and discussion of both the flow solver and synthetic

turbulence method utilized herein. All quantities in bold denote vector quantities.

2.1 Eagle3D Flow Solver

Eagle3D is a finite-volume, density-based, cell-centered flow solver. It solves the

Navier-Stokes equations in the integral form listed below, including the continuity

equation

∂

∂t

∫
Ω

ρdV = −
∫
δΩ

ρu · n dS (2.1)

the momentum equation (with body forces acting on the volume summarized as fV )

∂

∂t

∫
Ω

ρu dV +

∫
∂Ω

(ρuu) · n dS =

∫
∂Ω

σ · n dS +

∫
Ω

ρfV dV (2.2)

where σ = τ − pI denotes the viscous stress tensor including pressure terms and the

energy equation

∂

∂t

∫
Ω

ρ

(
e+

1

2
|u|2
)
dV =−

∫
∂Ω

ρ

(
e+

1

2
|u|2
)

u · ndS −
∫
∂Ω

pu · ndS

+

∫
∂Ω

(τu) · ndS +

∫
Ω

ρg · udV

+

∫
∂Ω

ρq · ndS +

∫
∂Ω

α∇T · ndS

(2.3)
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where g denotes gravitational force, τ the viscous stress tensor and q the sum of all

heat fluxes (Anderson, 1995; Ferziger, 2008).

2.1.1 Pressure-based and Density-based Solvers

In general, the Navier-Stokes equations form a coupled system of equations. How-

ever, especially for low-speed flows, the coupling of the continuity and momentum

equations with the energy equation becomes weak and completely decoupled for in-

compressible flow. As many applications deal with relatively low Mach number flows,

pressure-based solvers have evolved as a type of flow solvers that solves the continuity

and momentum equations separately from the energy equation and later connects this

equation through an outer loop iteration. These solvers can further be split into a

segregated (e.g., SIMPLE or PISO) approach which connects the continuity and mo-

mentum equation through a Poisson equation in an inner loop and a coupled approach

which solves both equations as a system. As the system of equations to solve for one

time step is smaller for pressure-based solvers, they tend to be generally faster per

iteration and the dominant choice for subsonic flows. For trans- and supersonic flows,

the mentioned decoupling poses challenges to these solvers (ANSYS, Inc., 2010).

In contrast, density-based solvers tend to be the solvers of choice for highly com-

pressible flows. These solvers are typically slower per iteration as they solve the

entire system of equations simultaneously, but do not struggle from compressible ef-

fects. However, in low-speed flows, the small convective velocity compared to the

acoustic speed leads to the equations becoming increasingly stiff (Roller & Munz,
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Figure 2.1 Schematics of pressure- and density-based solvers (with
material from Ansys Inc. (ANSYS, Inc., 2010))

2000). Historically, density-based solvers used high-dissipation upwind schemes to

compensate for the increasing stiffness of the Navier-Stokes equations when applied

to low-speed flows. However, this approach leads to sub-accurate results especially

when combined with Large-Eddy Simulations (LES, see sec. 2.2).

2.1.2 Eagle3D Bounded Central Differencing (BCD) scheme

Winkler et al. recently introduced a bounded central differencing approach to use

higher order central differencing schemes and their inherently low dissipation without

sacrificing stability (Winkler, Dorgan, & Mani, 2012). Winkler et al. followed the
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approach by Tajallipour et al. (Tajallipour, Owlam, & Paraschivoiu, 2009) to use

Roe’s method and define the convective flux as

Fconv · nij =
1

2
(1− γ) (Fconv(q+) + Fconv(q−)) · nij

− γ
[

1

2

∣∣∣Â(q̂,nij

∣∣∣ (q+ − q−)

] (2.4)

where q+ and q− represent the left and right Roe states and q̂ is the average value

at the boundary of the cell. The parameter γ then acts as a blending between full

central difference scheme for γ = 0 and the original scheme for γ = 1. Tajallipour

et al. proposed to set the value of γ depending on the presence of a wiggle which is

assumed to be present if any variable φ fulfills

(φi − φi−1)(φi+1 − φi) < 0 (2.5)

(φi+2 − φi+1)(φi+1 − φi) < 0 (2.6)

Eagle3D builds on the work by Winkler et al. to define γ as a blending parameter.

To achieve the required low-dissipation for LES, Eagle3D attempts to improve on the

accuracy of Winkler et al. by combining the central differencing scheme with a fifth-

order Weighted Essentially Non-Oscillatory Reconstruction (WENO) scheme.

WENO defines a stencil of required order and takes the weighted average of the

polynomials from the whole stencil as

qWENO
i (x) =

n∑
j=0

λjpn,j(x) (2.7)

with the adaptive weighting obtained via a oscillations (or smoothness) indicator

defined as defined by Jiang et al. (Jiang & Shu, 1996) as

Sn,k = S(pN,k) =
n∑
i=1

∫
qi

|qi|i−1

(
∂i

∂xi
pn,k(x)

)2

dx (2.8)
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where n is the desired polynomial degree. Defining γj with
∑N

i=j γj = 1 as the linear

weights obtained from literature, this gives

λj =
λ̃j∑N
j=1 λ̃j

with λ̃j =
γj

(ε+ Sn,k)2
(2.9)

Eagle3D uses a 5th order WENO to estimate the upwind-biased states qi for the

Riemann problem at the cell faces. Eqn. (2.4) is modified to combine a Harten, Lax

and van Leer with contact restoration (HLLC) solver (Toro, Spruce, & Speares, 1994)

with a 2nd order central differencing scheme, both using the cell face values provided

by WENO. The resulting formulation for the inviscid fluxes is then

Fconv · nij =
1

2
(1− γ) (Fconv(q+) + Fconv(q−)) · nij

+ γ
[
FHLLC(q+, q−)

] (2.10)

The value of γ in Eagle3D is restricted to the empirical range γ ∈ [0.8; 0.99]. Eagle3D

adaptively adjusts the value of γ using eqn. (2.5) and (2.6) with the change per time

step restricted to 0.0025. As the formulation of the 2nd order central differencing

scheme using the WENO approximations on the cell faces is rather unique, a classical

cell-center based 4th order central differencing scheme is also available at the user’s

discretion.

The viscous fluxes in Eagle3D are modeled using a combination of the thin-layer

gradient contribution plus the cross-derivative gradient contribution, as convention-

ally done in structured grid solvers. Eagle3D applies cell-based implicit Gauss-Seidel

time advancement scheem with 2nd order accurate temporal resolution.
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2.2 Large Eddy Simulation

Turbulence is compromised of random motion over a wide range of scales with the

large scales containing most of the energy and energy transfer mainly happening from

larger to smaller scales through the energy cascade. Given sufficient temporal and

spectral resolution, these turbulent scales can be completely described by the Navier-

Stokes equations in Direct Numerical Simulation (DNS) down to the Kolmogoroff

microscales where the energy is dissipated through viscous effects (see fig. 2.2).

Figure 2.2 Representation of the turbulent energy cascade (Lamanna
et al., 2015)

However, for all practical applications the requirements on memory and compu-

tational power of DNS remain too high to be usable which gave rise to Large-Eddy

simulations (LES). LES utilizes the fact that the large scales are the carry most of the

turbulent energy and therefore have the most influence on the mean flow. LES only
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resolves eddies down to a certain length scale with the velocity field either explicitly

filtered by convolution

ūi = G∆Cell
∗ ui (2.11)

where the convolution kernel G∆Cell
is used to eliminate scales smaller than ∆Cell

(Subgrid Scales (SGS), see Pope et al. (Pope, 2015) for a complete description) or

implicitly filtered due to the spatial resolution of the grid. The former method, the

explicit LES, usually relies on a subgrid model to simulate the effect of the filtered

eddies, the Smagorinsky model being the most well known. The latter method, the

implicit LES, leaves the dissipation of the underresolved kinetic energy purely to the

numerical dissipation of the used scheme (Meneveau, 2010).

2.2.1 Smagorinsky-Lilly model

In general, for explicit LES the effect of the unresolved eddy scales are modeled

with a Boussinesq approach, estimating the momentum flux to be proportional to the

rate of strain of the resolved scales. Unlike a RANS approach, where this approach

only relates to the mean flow, a subgrid model takes unsteady turbulent scales into

account. The most commonly used subgrid scale (SGS) model follows the approach

by Smagorinsky (Smagorinsky, 1963), who modeled the eddy-viscosity as

τij −
1

3
τkkδij = −2(Cs∆)|S̄|Sij (2.12)

From this, the eddy-viscosity of the unresolved scales is estimated by

νSGS = (Cs∆)|S̄| (2.13)
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with S̄ defined as

S̄ =
√

2SijSij (2.14)

and ∆ being the local cell dimension (Meneveau, 2010). The coefficient Cs was found

by Lilly to be Cs ≈ 0.16 (modern agreement is Cs = 0.1−0.2) which coined the term

Smagorinsky-Lilly model (Lilly, 1967). Effective local viscosity is then calculated as

the sum of laminar and eddy-viscosity as

νeff = νlam + νSGS (2.15)

2.2.2 Zonal RANS-LES simulation

Even with recent improvements in computing power, LES of complete aircraft

remains too computationally expensive to be practicable for industrial applications.

Zonal Large Eddy Simulation (ZLES, sometimes also called Embedded Large Eddy

Simulation [ELES]) is not a model per se, but a collective term for simulations re-

stricting the LES to the immediate area of interest and covering other areas with

Reynolds-averaged Navier-Stokes (RANS) simulations or a comparable method. De-

pending on the extent of said area of interest compared to the overall simulation

volume, ZLES allows for a signification reduction in computing power requirements

of or exceeding 50 % of total computational time (Zhang, Schröder, & Meinke, 2010;

Geurts, Meinke, & Schröder, 2013).
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Figure 2.3 Illustration of ZLES coupling via Synthetic turbulence forc-
ing (Francois, 2015)

While ZLES can reduce the overall computing power, it requires special treatment

at the zone boundary to ensure consistent behavior. Usually, a synthetic turbulence

method is chosen to reconstruct unsteady flow quantities from available steady-state

results. These methods come at an additional computational cost and with individual

weaknesses, so a careful balance must be found between a minimization of the LES

zone computational cost and the accuracy of the turbulent flow data reconstruction.

The following section 2.3, and especially subsection 2.3.2, aims to give a quick but

comprehensive overview of the most commonly used turbulence generation methods.

2.3 Turbulence Generation Methods

Turbulence generation method in the context of this thesis refers to any compu-

tational method generating unsteady data deemed suitable as an inflow condition for

a LES without having the actual time-dependent data to rely on. Special emphasis
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is put on the accuracy of each method, its computational cost and suitability to work

for an arbitrary upstream flow field.

2.3.1 Recycling Methods

Recycling methods differ from other methods of turbulence inlet generation since

they do not employ a specialized set of equations. Recycling relies solely on the

Navier-Stokes equations themselves. For fully developed turbulence, the mean flow

quantities remain constant, independent of the downstream distance. Recycling meth-

ods utilize this fact by running a precursor simulation with periodic boundary condi-

tions at the inlet and outlet, therefore ”recycling” its own inlet data. After turbulent

behavior is initially started by introducing arbitrarily shaped disturbances, a recycling

method is run on its own and the inflow data of the actual simulation is extracted

once realistic turbulence has been sustained. While recycling methods provide the

most accurate turbulent inflow data, their key limitations are their high demand on

computing power and their restriction to fully developed flows (Jarrin, 2008). A mod-

ification using a rescaling/recycling approach by separating the flow into mean and

fluctuation parts and scaling them according to the similarity laws of the correspond-

ing flow region has been shown by Lund et al. (Lund, Wu, & Squires, 1998), but is

still limited to equilibrium boundary layers (Jarrin, 2008).
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2.3.2 Synthetic Turbulence Methods

The following section focuses on approximate methods to generate a suitable in-

flow field for LES. It is assumed that mean statistical data at the inflow place is

available, either from upstream RANS simulations or experimental data. As these

methods inevitably contain some error, they generally require a certain ”development

section” to be added to the simulation. As more accurate synthetic turbulence meth-

ods generally come with higher computational cost, usually a trade-off has to be made

between minimizing the extent of the development section and reducing the cost of

the generation method (Lund et al., 1998).

Random Fluctuations

The simplest method of simulating turbulent inflow data is describing the instanta-

neous velocity as the sum of the mean velocity profile plus some random disturbances.

One-point, second-order statistics such as the Reynolds stress tensor can be matched

by an appropriate scaling of the random amplitudes (Lund et al., 1998). However,

the generated data lacks spatial and temporal coherence and the energy is spread

across all wave numbers. As such, the turbulence either dies out completely (Jarrin

et al., 2006) or takes a long development length to transform into realistic turbulent

behavior (Lund et al., 1998). Moreover, Klein et al. were able to prove that the

downstream behavior of the random fluctuations method is similar to imposing a

laminar profile at the inlet (Klein, Sadiki, & Janicka, 2003).
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Digital Filtering

An improvement to the random fluctuations approach, introduced by Klein et al.,

uses a digital linear non-recursive filtering or convolution approach to create spatial

and temporal coherence of the generated turbulence signal (Klein et al., 2003). In

the absence of the exact two-point autocorrelation tensor, Klein et al. proposed a

Gaussian filter depending on the length scale while other authors favored a proper-

orthogonal decomposition (Jarrin et al., 2006). In any case, the digital filtering ap-

proach requires extensive knowledge of the upstream flow and the filter coefficients

are computationally expensive to obtain (Jarrin, 2008).

Inverse Fourier Transform

Another approach to give some coherence to the generated data is the inverse

Fourier transform approach introduced by Lee et al.. It assumes previous knowledge

of the spectral densities at the inflow plane and extracts the corresponding Fourier

coefficients. The phase of the reconstructed signal is randomly shifted at given time

intervals for each wave number to eliminate some of the periodicity implicitly con-

tained in this method (Lee, Lele, & Moin, 1992). However, this approach still contains

signs of periodic behavior and becomes very expensive when used with unstructured

grids (Jarrin et al., 2006).



16

Mixed and additional methods

In addition to the previously described methods that act exclusively in physical

or spectral space, a variety of methods are available that act in both spaces or rely

on forcing terms (source terms) to accelerate transition instead of prescribing an

already turbulent inflow plane. These methods are generally not able to overcome

the restrictions of their underlying techniques and are limited to specific applications.

Therefore, these methods are not covered in this thesis and the reader is referred to

a recent paper by Wu (Wu, 2017) for an excellent overview.

2.3.3 Synthetic Eddy Method

The Synthetic Eddy Method (SEM) was initially proposed by Jarrin et al. (Jarrin

et al., 2006). It aims to solve to coherence problems of random methods by convect-

ing randomly generated turbulent eddies while keeping computational costs low and

remaining suitable for an arbitrary geometry and upstream flow field (Jarrin, 2008).

Numerical Procedure

The underlying principle of the SEM is to follow the classic idea of turbulence in

the sense that eddies are structures being convected by the mean flow. Jarrin uses

a superposition of these eddies to generate a temporal and spatial coherent signal

on the inflow plane which subsequently gets rescaled to match the desired turbulent

characteristics (Jarrin et al., 2006).
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The following section outlines the SEM on an arbitrary plane in 3-dimensional

space by following its description by Sagaut et al. (Sagaut, Deck, & Terracol, 2013).

For simplicity, it is assumed that the inlet plane is normal to the mean flow vector,

although this is not a requirement of the SEM per se.

The SEM is started by estimating the size of the turbulent structures σ. Jarrin

originally proposed σ to be determined by

σ = max

(
∆Cell,

k3/2

ε

)
(2.16)

where ε = Cµkω (Jarrin et al., 2006). However, this definition was later adjusted

to include the boundary layer thickness δ, to relax the eddy size in areas known to

be difficult to resolve in RANS simulations (Sagaut et al., 2013). Therefore, later

publications, e.g. (Jarrin, Prosser, Uribe, Benhamadouche, & Laurence, 2009), give

σ as

σ = max

(
min

[
k3/2

ε
, κδ

]
,∆Cell,max

)
(2.17)

where ∆cell,max corresponds to the maximum local grid size (Sagaut et al., 2013).

The maximum eddy size is subsequently used to create a box encompassing the inlet

plane and extending ±max(σ) beyond the plane in each direction. The total number

of eddies is then calculated as

N = max

(
VB
σ3

)
(2.18)
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Figure 2.4 Representation of the box encompassing the inlet plane
and the inital random distribution of eddies (Jarrin, 2008)

where VB is the box volume. Initially, the position of each eddy in the box is deter-

mined randomly. The contribution of each eddy to the turbulent signal is evaluated

by

fσ(x− xk) =
√
VBσ

−3f

(
x− xk
σ

)
f

(
y − yk
σ

)
f

(
z − zk
σ

)
(2.19)



19

where bold symbols denote vector property. The 1D shape function f is given by a

tent function defined as

f(x) =


√

3
2

(1− |x|) x < 1

0 otherwise

(2.20)

Using eqn. (2.20), the eddies have compact support in [−σ;σ] and the shape function

fulfills the normalization condition
∫
R f

2(x)dx = 1 (Sagaut et al., 2013). To find the

velocity fluctuation at each grid point x, the contributions from the individual eddies

are superpositioned as

u′i(x, t) =
3∑
j=1

aij
1√
N

N∑
k=1

εjkfσj(x− xk(t)) (2.21)

where i = 1, 2, 3 corresponds to the coordinate axes, aij is the Cholesky decomposition

of the Reynolds stress tensor and εjk is the sign of eddy k which is randomly chosen

between −1 or +1. While Jarrin et al. and Sagaut et al. stop here, it is revealing to

combine eqn. (2.19) and (2.21) to

u′i(x, t) =
3∑
j=1

aij
[min(σ)]3

σ3

N∑
k=1

εjkfσj(x− xk(t)) (2.22)

which shows that the velocity fluctuation strength is determined exclusively by the

Cholesky decomposition, the shape function and the ratio between the local and the

minimum eddy size. For any positive definite symmetric matrix A, including the

Reynolds stress tensor, the Cholesky factorization is fulfilled if the matrix R is an

upper triangular matrix and

A = RTR (2.23)
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It was shown by Lund et al. (Lund et al., 1998) that these conditions are fulfilled

if the components aij, the Lund coefficients (Poletto, Craft, & Revell, 2013), for the

Cholesky decomposition of the tensor R are chosen as

aij =


√
R11 0 0

R21/a11

√
R22 − a2

21 0

R31/a11 (R32 − a21a31)/a22

√
R33 − a2

31 − a2
32

 (2.24)

2.3.4 Modifications to the original Synthetic Eddy Method

Divergence-free Condition

The SEM as prescribed above is able to reproduce any desired (anistropic) Rey-

nolds stress field. However, because the velocity fluctuations are based on an isotropic

signal, the produced velocity field will in general not be divergence-free (Poletto et al.,

2013). Poletto et al. proposed a modification of Jarrin’s SEM which transforms the

Reynolds stress tensor into the local principal coordinate system where an anisotropic

length-scale for the eddies can be prescribed (Poletto, Revell, Craft, & Jarrin, 2011).

The original SEM was later modified by Poletto et al. (Poletto et al., 2013) to

incorporate the anistropic length-scale by expressing rk as

rkβ =
xβ − xkβ
σkβ

(2.25)

from which the turbulent fluctuations at any point of the plane can be derived as

u′βx =

√
1

N

N∑
k=1

qβ
(
x,xk, σk

)
εβjlr

k
jα

k
l (2.26)
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where εβjl denotes the Levi-Civita symbol. Setting dk =
√

(rkj )
2, the shape function

is given by

qi =


σi
[
1− (dk)2

]
dk < 1

0 otherwise

(2.27)

As this formulation describes the Reynolds stresses in the principal coordinate

system, the generated field is strictly diagonal and has to be rotated back to the

computational coordinate system via the local transformation matrix to recover shear

stresses. The reader is referred to the original paper for the complete formulation.

Poletto et al. claims this divergence-free formulation reduces pressure fluctuations

near the inlet and results in a shorter development length (Poletto, Revell, & Craft,

2012; Poletto et al., 2013). While his published results are impressive and OpenFOAM

Ltd announced the implementation of this method in the current OpenFOAM-plus

release (OpenCFD Ltd, 2016), Poletto’s results could not be reproduced using the

currently available versions of OpenFOAM-plus and Code Saturne. Furthermore, a

request for more information has been declined by the author of the DFSEM pa-

per. Given the density-based formulation of the Eagle3D solver, the benefit of a

divergence-free formulation would be uncertain, so the original formulation by Jarrin

was implemented in this thesis work.

Energy Equation

Previous implementations of the SEM were developed for pressure-based solvers,

most notable among them OpenFOAM and Code Saturne (Jarrin et al., 2006; Poletto
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et al., 2013) which connect the pressure-field to the reconstructed fluctuating velocity

field through a Poison equation and use the incompressibility assumption to neglect

the energy equation. Therefore, the entire turbulent kinetic energy can be expressed

by just the velocity fluctuations.

For a density-based solver such as Eagle3D, the system obtained from the Navier-

Stokes equations includes the energy equation. To ensure correct representation of the

turbulent fluctuations, the instantaneous field should be defined for the static temper-

ature in addition to velocity. A simple approach is to specify the static temperature

on the inlet by assuming stagnation temperate is held constant. This assumptions is

valid near the inlet plane of a low speed subsonic flow. Then, the static temperature

is given by

T =
T0 +

√
T 2

0 + 2u
2

cp

2
(2.28)

However, resulting changes in static temperature are on the order of 10−5K for the low

speed subsonic cases explored herein. While this effect will become more noticeable

for high speed flows, a constant static temperature was assumed in the inlet for all

test cases.

Mass Flow Fluctuations

Poletto et al. (Poletto et al., 2011) noted that instantaneous bulk flow rate through

the SEM inflow plane varies compared to the constant upstream RANS solution as the

sum of the fluctuations is usually non-zero. While the effect of this flow rate variation
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is usually negligible for free-stream cases, it leads to pressure waves propagating in

the streamwise direction for wall-bounded internal flows. His solution is a rescaling

of the bulk flow rate through the inlet with

crescale =

∑N
i=1(umean,i + u′i) · An∑N

i=1 umean,i · An
(2.29)

u =
umean,i + u′i
crescale

(2.30)

where N denotes the number of faces on the inlet plane. The maximum deviation of

crescale from uniform was observed to be less then 1% for all test cases, which matches

Poletto et al. results. Therefore, the overall influence of the rescaling on the turbulent

statistics can safely be neglected. This rescaling is utilized in the present work.

Multi-Layer SEM

Eagle3D as a high-order CFD solver relies on multiple upstream ghost cells at the

inlet, specifically 3 ghost cells are needed for the 5th order WENO scheme. The classic

SEM was derived with 2nd order accurate schemes in mind and does not account for

high-order schemes. It was speculated that a multi-layer formulation of the SEM

might be able to give more accurate values for the underrepresented streamwise and

wall-normal components of vorticity. The multi-layer formulation expands the eddy

box in negative x-direction and extracts values at x = −2∆cell,x and x = −∆cell,x

in addition to the standard plane at x = 0 to give approximations of the turbulent

fluctuations for all 3 ghost cells.
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3. Test Case Configurations

The flow over a cylinder was simulated and compared to ANSYS Fluent to confirm

the ability of Eagle3D to give accurate results for unsteady turbulent flows. Two test

cases, the fully turbulent channel flow and the flow over a flat plate, were chosen

to verify the ability of the implemented SEM to reproduce a given Reynolds stress

profile as well as to start a realistic turbulent behavior in the Eagle3D solver. Both

test cases employed only low-speed subsonic flow to demonstrate the performance

of this code combination in a flow regime usually occupied by pressure-based CFD

solvers. All simulations used air as medium with internal conditions given in tab. 3.1

unless explicitly stated otherwise.

Table 3.1. Used internal conditions for air as fluid medium

Quantity Symbol Magnitude Unit

Static Temperature T 300 K

Density ρ 1.18 kg
m3

Kinematic Viscosity ν 1.525 · 10−5 m2

s
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3.1 Flow over a Cylinder

Performance of the TBD solver which eventually turned into Eagle3D has already

been demonstrated by comparison against experimental data and NASA’s Wind CFD

solver for high-speed multi-specie RANS flow by Engblom et al. (Engblom et al.,

2007). To demonstrate Eagle3D’s ability to perform well in low-speed LES simula-

tions, the unsteady flow over a cylinder was chosen.

3.1.1 Mesh

The cylinder case used a 0.0165m cylinder in a 0.2286 × 0.08 × 0.07m domain,

simulated by a fully structured 3D mesh with 815 × 356 × 32 cells on the domain

boundaries. The region close to the cylinder was split into 4 equiangular quadrants

and refined with 1, 420, 064 cells each, resulting in a total of 13, 100, 896 cells.

3.1.2 Boundary Conditions

Mean flow boundary conditions are summarized in tab. 3.2 with the reference

pressure neglected for the pressure-based Fluent case. The wall of the cylinder was

set to be a fully adiabatic wall, the outflow and the top and bottom side a pressure-

outlet and the front and back to be periodic conditions.

These boundary conditions together with the geometric dimensions from sec. 3.1.1

result in a Reynolds number based on cylinder diameter as

Red =
U∞d

ν
= 9735 (3.1)
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Table 3.2. Boundary conditions for the cylinder flow case

Patch Quantity Symbol Magnitude Unit

Inlet
Velocity U 9 m

s

Temperature T 300 K

Outlet Static pressure p 106 Pa

Cylinder Wall Wall velocity Uwall 0 m
s

Flow past a cylinder with 300 < Red < 3 · 105 is expected to form a fully turbulent

vortex street (Blevins, 1990) with a Strouhal number of

St =
fd

U∞
≈ 0.20 (3.2)

for Red ' 10, 000. Vortex shedding frequency is then given as

f =
StU∞
d

= 109.1Hz (3.3)

and confirmed by an animation of the LES results.

3.1.3 Models, Interfaces and Settings

The density-based compressible Eagle3D code was run using the 2nd order BCD

scheme coupled with a 5th order WENO scheme (see sec. 2.1.2). ANSYS Fluent

was configured to utilize a 2nd order pressure-based, incompressible SIMPLEC solver

combined with bounced central differencing on the momentum flux terms.
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3.2 Fully Turbulent Channel Flow

The fully turbulent channel flow is one of best studied cases and often used as

a reference because the mean flow properties in the fully turbulent case do not de-

pend on downstream distance, therefore, the mean flow becomes self-similar. This

self-similarity allows for an reliable analysis of the SEM’s ability to reproduce the up-

stream profile and a measurement of the development length to recover the original

stresses.

3.2.1 Mesh

The mesh used originally for the channel flow case (hereinafter called CHAN1) is

a fully rectangular hexahedral mesh with 46 × 82 × 500 cells, resulting in a total of

1, 886, 000 cells. It was created in Pointwise with all dimensions and the geometric

growth rate identical to the mesh used in the OpenFOAM tutorial case for their

DFSEM method as well as by Poletto (Poletto et al., 2013) in Code Saturne.

In addition to this mesh, a refined version was tested with 100 × 100 × 500 cells

and a more traditional tanh growth rate, resulting in a mesh with 5, 000, 000 cells

and designated CHAN2. Both meshes share identical wall cell spacing corresponding

to a y+ = 1 and had the dimensions of 2× π × 20πm.
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3.2.2 Boundary Conditions

Data from Direct Numerical Simulation (DNS) at various friction Reynolds Reτ

numbers ranging from 180 to 590 based on friction velocity Reτ is provided by Moser

et al. (Moser, Kim, & Mansour, 1999). For this thesis, the profiles corresponding to

Reτ = 395 for channel half width δ = 1m were selected. Corresponding profiles by

Moser et al. are shown in fig. 3.1 and mean flow boundary conditions are summarized

in tab. 3.3.

(a) Axial velocity profile (b) Reynolds normal stresses profile

Figure 3.1 Profiles for axial velocity and Reynolds normal stresses at
the inlet corresponding to Reτ = 395 (Moser et al., 1999)

To ensure compatibility of the bulk flow velocity and wall velocity gradient δU
δy

∣∣∣
y=0

= 392.241
s

with the given friction Reynolds number, the kinematic viscosity ν had to

be adjusted by

τw ≡ ρν
∂U

∂y

∣∣∣∣
y=0

(3.4)

uτ ≡
√
τw
ρ

(3.5)

Reτ ≡
uτδ

ν
(3.6)
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Table 3.3. Boundary conditions for the channel flow case

Patch Quantity Symbol Magnitude Unit

Inlet
Bulk Velocity Ubulk 17.5474 m

s

Temperature T 300 K

Outlet Static pressure p 106 Pa

Walls Wall velocity Uwall 0 m
s

therefore

ν =
δ2 ∂U

∂y

∣∣∣
y=0

Reτ
2 = 2.51395 · 10−3 m

2

s
(3.7)

This viscosity is considerably higher than the expected value of air. The entire flow

field was initialized with the steady-state RANS solution given at the inlet. Given

their natures as LES meshes, both grids are unable to recover the exact DNS resolution

via LES. Instead, an approach similar to Poletto et al. was taken which uses the DNS

data as inflow conditions, but evaluates the SEM on the ability to recover values as

would be expected from a recycling (periodic) LES. Independent empirical and DNS

studies agree on a theoretical Cfb = 0.0064 − 0.0069 for Reτ ≈ 390 (Dean, 1978;

Moser et al., 1999; Alfonsi, Ciliberti, Mancini, & Primavera, 2016) with Cfb defined

as

Cfb =
τw

1
2
νU2

bulk

(3.8)

Using the proposed CHAN1 grid, Poletto et al. stated a Cfb = 0.0032 as the value to

be expected from periodic LES with 2nd order schemes in Code Saturne (Poletto et
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al., 2013) which matches with other LES publications such as Schiavo et al. (Schiavo,

de Jesus, Wolf, & Azevedo, 2013).

3.2.3 Models, Interfaces and Settings

Each simulation was assigned a unique identifier to differentiate the results. The

first potion of the identifier states the mesh (i.e., CHAN1 for the course grid, CHAN2 for

the fine grid). It is followed by the method used for subgrid treatment, either fully

implicit LES (i.e., ILES) or a LES utilizing the Smagorinsky subgrid model (i.e., SGM).

Subsequently, the simulations are distinguished by the number of upstream ghost cells

provided by the SEM (i.e., 1-3). Finally, the eddy length scale is given in percentage

of the channel half width δ (i.e., 15-40). The only exclusion is the CHAN1.ILES.1.6c

case which set the length scale grid dependent as 6 ·max(∆cell). Tab. 3.4 contains a

breakdown for all channel flow simulations performed for this thesis.

The Smagorinsky-Lilly model used a conservative approach, estimating the added

eddy viscosity on the low side by defining the local cell dimension ∆ as

∆ = V
1
3
cell (3.9)

and choosing the Smagorinsky constant to the minimal agreed value as Cs = 0.1.
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Table 3.4. Identifiers for fully turbulent channel flow

Identifier Channel Case SGS model Ghost Cells Length Scale

CHAN1.ILES.1.6c Channel 1 Implicit LES 1 6 ·max(∆Cell)

CHAN1.ILES.3.25 Channel 1 Implicit LES 3 25% δ

CHAN2.ILES.1.15 Channel 2 Implicit LES 1 15% δ

CHAN2.ILES.1.25 Channel 2 Implicit LES 1 25% δ

CHAN2.ILES.3.25 Channel 2 Implicit LES 3 25% δ

CHAN2.ILES.1.40 Channel 2 Implicit LES 1 40% δ

CHAN2.SGM.1.15 Channel 2 Smagorinsky 3 15% δ

CHAN2.SGM.1.25 Channel 2 Smagorinsky 3 25% δ

3.2.4 Time Step and Convergence Monitoring

All channel flow test cases were performed with a time step dt = 5 · 10−4 sec.

Residuals per subiteration were required to reduce by a minimum of 3 orders of

magnitude at the end of the subiteration loop compared to the first subiteration. A

maximum of 14 subiterations was permitted per time step and proofed sufficient for

the above requirement. Data collection and averaging started after 5.59 flow through

periods calculated with the average flow velocity and ended after 8.38 periods.
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3.3 Flow over a Flat Plate

The flow over a flat plate is another well studied case which produces a self-similar

solution for the mean boundary layer profile if scaled by the boundary layer thickness.

For this thesis, a ZLES setup with an upstream 2D RANS mesh followed by a 3D

LES grid was chosen.

3.3.1 Mesh

The upstream RANS solutions are produced using the same 208, 896 cell 2D mesh

in OpenFOAM-plus and ANSYS Fluent. The former approximated turbulent behav-

ior with an isotropic 2-equation Shear-Stress-Transport (SST) model while the lat-

ter utilized the anisotropic 5-equation Wilcox-Stress-Baseline (BSL). Both upstream

RANS profiles were extracted at x = 0.8m downstream distance from the inlet.

The mesh used for the LES simulations in Eagle3D discretized a 0.75×0.024×0.1m

domain with 2, 499×64×198 cells, resulting in a total of 31, 667, 328 cells. The mesh

was refined in the expected boundary layer region with 149 cells below y = 0.02735m

in wall-normal direction, y+ = 1, dx+ = 11 and dz+ = 15.

3.3.2 Boundary Conditions

The boundary conditions for both RANS cases were set according to tab. 3.5. The

flat plate was set to be a fully adiabatic wall, the top a pressure-outlet to eliminate
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pressure spikes from the growing turbulent boundary layer and the vertical sides using

periodic conditions.

Table 3.5. Boundary conditions for the flat plate RANS case

Patch Quantity Symbol Magnitude Unit

Inlet
Free-stream Velocity U∞ 10 m

s

Temperature T 300 K

Outlet Static pressure p 106 Pa

Walls Wall velocity Uwall 0 m
s

The extracted RANS profiles were used as input for the SEM to reconstruct the

turbulent fluctuations at the inflow plane of the LES mesh. Profiles for axial velocity

and Reynolds normal stresses are given in fig. 3.2 for the SST model and fig. 3.3 for

the BSL model while the remaining boundary conditions are summarized in tab. 3.6.

In order to save computational power and memory space, the SEM was restricted to

the approximated boundary layer height at y = 0.02735m. The entire flow field was

initialized with the steady-state RANS solution given at the inlet.
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(a) Axial velocity profile (b) Reynolds normal stresses profile

Figure 3.2 Profiles for axial velocity and Reynolds normal stresses
from the SST model at the SEM inlet plane of the flat plate LES
mesh

(a) Axial velocity profile (b) Reynolds normal stresses profile

Figure 3.3 Profiles for axial velocity and Reynolds normal stresses
from the BSL model at the SEM inlet plane of the flat plate LES
mesh

Skin friction coefficient was defined with the free-stream velocity as

Cff =
τw

1
2
νU2
∞

(3.10)

with the upstream solution giving an expected skin friction coefficient at the inlet

of Cff = 0.003718 for Reθ = 1450 (SST model) to Cff = 0.003885 for Reθ = 1410

(Schlatter & Örlü, 2011).
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Table 3.6. Boundary conditions for the flat plate LES case

Patch Quantity Symbol Magnitude Unit

Inlet

Free-stream Velocity U∞ 10 m
s

Bulk Velocity
SST Ubulk 8.9315 m

s

BSL Ubulk 9.0884 m
s

Temperature T 300 K

Outlet Static pressure p 106 Pa

Walls Wall velocity Uwall 0 m
s

3.3.3 Time Step and Convergence Monitoring

All flat plate test cases were performed with a time step dt = 5·10−6 sec. Residuals

per subiteration were required to reduce by a minimum of 3 orders of magnitude at

the end of the subiteration loop compared to the first subiteration. A maximum of

14 subiterations was permitted per time step and proofed sufficient for the above

requirement. Data collection and averaging started after 1.21 flow through periods

calculated with the average flow velocity and ended after 2.42 flow through periods.

3.4 Other CFD solvers

The focus of this thesis is to determine the ability of Eagle3D in conjunction with

the SEM to accurately simulate the given test cases. Other CFD codes were used



36

to provide data for comparison where no analytic or DNS data is available. These

solvers were also used to provide upstream RANS data for the flat plate test case.

3.4.1 OpenFOAM-plus

The Open Source Field Operation And Manipulation (OpenFOAM) is a free-to-

use toolbox and one of the most used CFD environments today. Its source is written

in C++ and released under the GNU General Public License by The OpenFOAM

Foundation. OpenFOAM provides complete functionality of the CFD process, in-

cluding meshing, pressure- and density-based simulation, pre- and post-processing.

Beginning with OpenFOAM 3.0, OpenCFD Ltd. (ESI Group) started publishing

their variant of OpenFOAM, named OpenFOAM-plus. OpenFOAM-plus is released

semi-annually and resynced to OpenFOAM at the beginning of a new development

cycle. This allows OpenFOAM-plus to stay mostly compatible with the upstream

code base while adding bleeding-edge features. For this thesis, OpenFOAM-plus was

used in v1606+.

3.4.2 ANSYS Fluent

ANSYS Fluent is a CFD toolbox developed and distributed by the US-based

company ANSYS, Inc. It has found wide acceptance throughout academia as well as

the industry for its highly optimization and reliable performance. However, because

its closed source the underlying numerical methods cannot be checked or modified
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with exception of user defined functions (UDF) for boundary conditions. For this

thesis, ANSYS Fluent was used in version 17.
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4. Results

Simulations were either performed on Embry-Riddle Aeronautical University’s

Vega cluster or on NASA’s Pleiades computer. Both systems utilize a distributed

resource manager to share and schedule resources. Channel flow simulations were

run on 200 CPU cores in parallel on Vega while the flat plate cases utilized 400 cores

on Pleiades.

4.1 Flow over a Cylinder

A common indicator of turbulent structures is the Q criterion, first defined by

Hunt et al. (Hunt, Wray, & Moin, 1988) as the second invariant of the velocity

gradient tensor

Q =
1

2

[
(tr (∇u))2 − tr (∇u · ∇u)

]
(4.1)

with tr denoting the trace. Eddies can be identified using Q isosurfaces. Comparisons

of streamwise velocity and Q criterion for the flow over a cylinder in ANSYS Fluent

and Eagle3D are shown in fig. 4.1 and fig. 4.2, respectively. The simulations were

run on with different time steps due to different time advancement schemes.

Despite ANSYS Fluent using a pressure-based, 2nd order bounded central differ-

encing approach and Eagle3D utilizing a density-based, high-order BCD method, both

figures show good qualitative, and to some extent quantitative, agreement. Overall
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(a) ANSYS Fluent (b) Eagle3D

Figure 4.1 Comparison of streamwise velocity of the cylinder flow case
in ANSYS Fluent and Eagle3D

flow pattern in the velocity plots match, with similar position and magnitude of ex-

tremas. The 5th-order Eagle3D solver shows higher fidelity in certain areas, most

noticeable in the forming vortex immediately after the cylinder and the second de-

tached vortex moving in positive y-direction.

(a) ANSYS Fluent (b) Eagle3D

Figure 4.2 Comparison of Q criterion of the cylinder flow case in
ANSYS Fluent and Eagle3D

Comparison of Q criterion emphasizes the ability of Eagle3D to produce reliable

LES results. Vortex position and movement in Eagle3D are comparable to results
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from ANSYS Fluent. Results from Eagle3D show higher overall resolution, most

obvious for the downward moving part of the vortex at x ≈ 0.05m. Average values of

Q criterion produced by Eagle3D are higher than ANSYS Fluent, resulting in ”fuller”

vortices, which is partly expected when considering the higher fidelity of Eagle3D.

Stronger oscillations of Eagle3D can be observed at the forward facing part of the

cylinder while these oscillations are more damped out by ANSYS Fluent.

4.2 Fully Turbulent Channel Flow

All simulations were performed in the Eagle3D CFD solver with the SEM running

separately as a precursor simulation. Plots marked as ”SEM” refer to this combination

if not mentioned otherwise. Wall shear stress coefficient Cfb , velocity components,

and Reynolds stresses, are spanwise averaged over 20, 000 iterations when reporting

statistics to smooth out the effects of unsteady turbulent fluctuations.

4.2.1 Convergence and Computation Time

Computational time for 10, 000 iterations in the CHAN2 simulation split into SEM

and Eagle3D is given in tab. 4.1. The SEM in single-layer formulation is able to

fulfill the requirement to produce turbulent fluctuations in less than 5 % of the com-

putational time needed for the main simulation while the multi-layer version (to be

described later) has higher computational demands and stays just under 10 % of total
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simulation time. However, both codes were partly limited in their performance by

I/O operations as tests with disabled output produced faster runtimes.

Table 4.1. Time requirements for 10, 000 iterations in SEM and Ea-
gle3D for the CHAN2 case with 200 CPU cores on Embry-Riddle’s Vega
cluster

Simulation # of Ghost Cells Real Time for 10, 000 Iterations

Single-Layer SEM 1 11min

Multi-Layer SEM 3 47min

Eagle3D − 581min

Figure 4.3 Residual curves for the fully turbulent channel flow

Residual curves for all fully turbulent channel flow simulations show satisfactory

behavior with an exemplary plot given in fig. 4.3. Residuals are normalized against
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the value of the first iteration which corresponds to the RANS initialization. There-

fore, residuals can converge at values higher than unity once the simulation becomes

fully unsteady LES.

4.2.2 Reproduction of Reynolds Stresses

A prominent feature of the SEM is the ability to reproduce an unsteady turbulent

velocity field from an arbitrary Reynolds stress distribution given by RANS or time-

averaged DNS data. Comparison of DNS data by Moser (Moser et al., 1999) and the

Reynolds normal stress profile generated by the SEM for the CHAN1.ILES.1.15 case

is given in fig. 4.4. The SEM shows excellent agreement with the DNS data despite

visible aliasing from the lower resolution of the inlet mesh.

Figure 4.4 Comparison of Reynolds normal stresses generated by the
SEM with DNS results by Moser (Moser et al., 1999)
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4.2.3 Initialization of Turbulent Behavior

Fig. 4.5 and fig. 4.6 show Cfb and axial velocity as well as Reynolds normal

stresses, respectively. Comparison of the wall shear stress coefficient Cfb with the

analytic solution confirms that the outlet is still within the development length of the

SEM for both cases. Earlier publications by Poletto et al. concur on the need for a

development length, but limit its extent to usually 30 δ (Poletto et al., 2013). Values

for Cfb at the outlet are lower than Cfb = 0.0032 reported by Poletto for periodic

LES (Poletto et al., 2013) despite the higher order of Eagle3D compared to 2nd order

schemes in Code Saturne.

(a) Wall shear stress coefficient Cfb (b) Axial velocity

Figure 4.5 Comparison of wall shear stress coefficient Cfb and axial ve-
locity in the CHAN1.ILES.1/3.6c/15 case with DNS results by Moser
(Moser et al., 1999) and LES results by Poletto (Poletto et al., 2013)

The wall velocity gradient in fig. 4.5b corresponds to a friction Reynolds number

Reτ = 258 for the CHAN1.ILES.1.6c case and Reτ = 277 for the CHAN1.ILES.3.25

case and confirms the ability of the SEM to start turbulent behavior in the turbulent

channel flow. However, both friction Reynolds numbers are significantly lower than

expected from the upstream solution with Reτ = 395.
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Figure 4.6 Comparison of Reynolds normal stresses of
CHAN1.ILES.1/3.6c/15 with DNS results by Moser (Moser et
al., 1999)

Comparison of Reynolds normal stresses of both cases in fig. 4.6 with DNS data

by Moser (Moser et al., 1999) shows individual components match the expected order

with 〈u′2〉 > 〈w′2〉 > 〈v′2〉. Quantitatively, streamwise turbulence in the near-wall

region is overpredicted while spanwise and wall-normal components are underesti-

mated. Qualitatively, the data appears underresolved with the effect most visible

in the 〈u′2〉 component where the grid is apparently unable to reproduce the steep

gradients near the wall.
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(a) z/δ = 0.05 slice

(b) z/δ = 1 slice

Figure 4.7 Streamwise component of instantaneous vorticity in the
CHAN1.3.ILES.25 case at wall parallel planes at z/δ = 0.05 and z/δ =
1

Qualitative analysis of the streamwise component of instantaneous vorticity at two

slices parallel to the wall in fig. 4.7 affirms the prolonged development length. Overall

magnitude of x-vorticity drops within 10 δ after the inlet and is not fully recovered

by the end of the channel. Additionally, turbulent structures near the wall appear

enlarged by orders of magnitude compared to expected pattern at this position. Due

to the insufficient resolution of the CHAN1 grid, all further turbulent channel flow

simulations were performed on the CHAN2 grid. Eddy length scale was fixed to a

percentage of the channel half width δ to provide a grid-independent specification.
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4.2.4 Influence of Eddy Length Scale Parameter

Mesh refinement from 1.886 million cells (CHAN1) to 5 million cells (CHAN2) resulted

in significant improvements. Fig. 4.8 gives a comparison of the wall shear stress

coefficient Cfb for a length scale ranging from 15% δ to 40% δ.

Figure 4.8 Comparison of wall shear stress coefficient Cf in the
CHAN2.ILES.1.15-40 cases with DNS results by Moser (Moser et al.,
1999) and LES results by Poletto (Poletto et al., 2013)

All cases tend to an value of Cfb ≈ 0.0038 which is slightly higher than the

Cfb = 0.0032 reported by Poletto’s periodic LES (Poletto et al., 2013), showing

Eagle3D’s ability to take benefit of both higher-order schemes and a finer mesh. The

smaller eddy length scale definition in the CHAN2.ILES.1.15 resulted in an extended

and increased drop of skin friction, indicating a increased development length, when

compared to cases with higher length scales.
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Near the end of the mesh, a slight drop of Cfb can be observed, coinciding with the

last 3 grid cells. Considering the stencil width of the 5th order WENO scheme, this

effect can be attributed to a standard non-reflective boundary condition implemented

in this version of Eagle3D, i.e., constant velocity downstream of the outflow and

prescribed back pressure.

(a) CHAN2.ILES.1.15 case

(b) CHAN2.ILES.1.40 case

Figure 4.9 Comparison of streamwise component of instantaneous vor-
ticity in the CHAN2.ILES.1.15/40 cases at wall parallel planes at
z/δ = 0.05

Fig. 4.9 illustrates the streamwise component of instantaneous vorticity at z/δ =

0.05, and reaffirms the assumption that for the CHAN2.ILES.1.15 case, the smaller

turbulent structures get dissipated and subsequently recreated. For the CHAN2.-

ILES.1.40 case, the larger structures can be fully sustained by the mesh. These

observations correspond to a general characteristic of a SEM in which structures

close to or under the minimal size supported by the grid tend to get dissipated out.
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Larger than physical structures get broken up by the Navier-Stokes equation until

reaching plausible size, preserving the majority of the turbulent kinetic energy. This

behavior with higher transport of energy from lower towards greater wave numbers

is consistent with observations by Jarrin (Jarrin et al., 2006) and a well documented

characteristic of general turbulence (Davidson, 2009; Pope, 2015). While users of a

SEM should always aim towards an accurate choice of length scale, structures should

always be defined above the minimum size sustainable by the mesh to avoid accidental

dissipation even if this means larger than real eddy sizes (Jarrin et al., 2006).

(a) CHAN2.ILES.1.15 case

(b) CHAN2.ILES.1.40 case

Figure 4.10 Comparison of streamwise component of instantaneous
vorticity in the CHAN2.ILES.1.15/40 cases at wall parallel planes at
z/δ = 1

Fig. 4.10 plotting the streamwise component of instantaneous vorticity at z/δ = 1

(centerline plane) gives similar behavior. Turbulent structures are noticeable smaller

in the CHAN2.ILES.1.15 case and largely dissipated by the time the flow reaches

the x = 20 δ. The increased turbulence downstream is generated by the the LES
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itself, thereby resembling a result from an incomplete recycling method, with the

SEM providing an initial disturbance. The larger structures of the CHAN2.ILES.1.40

case are fully sustained and result is a shorter development length. The prominent

decrease of eddy size between the inlet and x ≈ 15 δ indicates that the 40% δ initial

turbulent length scale is too large and the Navier-Stokes equations break up these

large structures and results in more physically sustainable values.

Figure 4.11 Comparison of Reynolds normal stresses in the
CHAN2.ILES.1.15/40 cases with DNS results by Moser (Moser et al.,
1999)

Comparison of the Reynolds normal stresses in fig. 4.11 for the CHAN2.ILES.1.15

case with DNS data shows a overrepresentation of streamwise turbulence compo-

nents while underpredicting spanwise and wall-normal components. However, spatial

resolution of the CHAN2.ILES.1.15 case is substantially improved by the higher res-

olution grid. The CHAN2.ILES.1.40 case reduces the overprediction of streamwise
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Figure 4.12 Comparison of Reynolds shear stresses in the
CHAN2.ILES.1.15/40 cases with DNS results by Moser (Moser et al.,
1999)

turbulence but also decreases the already underrepresented other two components

of the Reynolds normal stresses. All 15% δ cases show a distinctive ”nose” in the

streamwise component of the Reynolds normal stresses, manifesting in a drop of 〈u′2〉

when exceeding 50% δ but fully recovering on the centerline, with the cause remaining

unknown.

Plots of Reynolds shear stresses in fig. 4.12 indicate improved performance for the

15% δ eddy size case. While both cases, 15% δ and 40% δ, underestimate the overall

amount of stream-spanwise vorticity, the 15% δ case gives the correct centerline 〈u′v′〉

gradient and higher total values, as expected from the previously shown higher 〈u′2〉
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results. All data appears reasonably accurate for a comparison of LES results with

DNS data.

Figure 4.13 Comparison of axial velocity in the CHAN2.ILES.1.15-40

cases with DNS results by Moser (Moser et al., 1999)

Profiles for axial velocity in fig. 4.13 are too ”full” when compared to DNS data

despite a lower wall gradient. The best approximation is given by the 15% δ case,

again showing a drop in magnitude near the channel quarterlines. Calculated friction

Reynolds number Reτ at the outflow varies only slightly, ranging from 301.42 for the

CHAN2.ILES.1.15 case to 304.76 for the CHAN2.ILES.1.40 case. This is a substantial

improvement compared to the CHAN1 case but well below the upstream Reτ = 395

from DNS (Moser et al., 1999).
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4.2.5 Influence of Multiple SEM Layers

Plots for Cfb , axial velocity and Reynolds normal stresses for the multi-layer SEM

(i.e., CHAN2.ILES.3.25) case compared to the single-layer SEM (i.e., CHAN2.ILES.1.-

25) case are given in fig. 4.14 and fig. 4.15, respectively.

(a) Wall shear stress coefficient Cfb (b) Axial velocity

Figure 4.14 Comparison of wall shear stress coefficent Cfb and ax-
ial velocity in the CHAN4.ILES.1.25 case and CHAN4.ILES.3.25 case
with DNS results by Moser (Moser et al., 1999) and LES results by
Poletto (Poletto et al., 2013)

Skin friction coefficient Cfb and axial velocity in fig. 4.14 are virtually indistin-

guishable between both cases, thereby demonstrating the reproducibility of results

and precision of the performed averaging procedure, but giving no benefit to the

multi-layer SEM with 3 times the computational expense.

Reynolds normal stresses in fig. 4.15 confirm the difference between single- and

multi-layer SEM to be small. A slight benefit is found for the 〈u′2〉 component of

the multi-layer SEM. Given the fact the multi-layer formulation can increase SEM

run time by orders of magnitude because of the large spacing of cells in streamwise

direction, the overall benefit of the multi-layer SEM remains questionable.
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Figure 4.15 Comparison of Reynolds normal stresses in the
CHAN4.ILES.1.25 case and CHAN4.ILES.3.25 case with DNS results
by Moser (Moser et al., 1999)

4.2.6 Influence of Smagorinsky Subgrid Model

Comparisons of normal and shear components of the Reynolds stresses are given

in fig. 4.16 and fig. 4.17, respectively, to illustrate the effect of a subgrid model. The

Smagorinsky subgrid model improved the reproduction of turbulent stresses near the

middle of the channel, most notably for by lowering the streamwise component of

the normal stresses. Asymmetrical data in fig. 4.16a can most likely be attributed

to an insufficient averaging length of the unsteady data. A negative effect of the

increased dissipation through the Smagorinsky model is increased dampening of the

already underpredicted spanwise and wall-normal components of the Reynolds normal

stresses throughout the channel.
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(a) CHAN2.ILES/SMAG.3.15 case

(b) CHAN2.ILES/SMAG.3.25 case

Figure 4.16 Comparison of Reynolds normal stresses in the
CHAN2.ILES/SMAG.3.15/25 cases with DNS results by Moser (Moser
et al., 1999)
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(a) CHAN2.ILES/SMAG.3.15 case

(b) CHAN2.ILES/SMAG.3.25 case

Figure 4.17 Comparison of Reynolds shear stresses in the
CHAN2.ILES/SMAG.3.15/25 cases with DNS results by Moser (Moser
et al., 1999)
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Reynolds shear stresses show no large benefit for either explicit or implicit LES.

The SGS model overall reduces the shear stress gradient of the 〈u′v′〉 component near

the wall. This sensitivity benefits the CHAN2.ILES/SMAG.3.15 case where this gradi-

ent was overpredicted by ILES, but impairs the CHAN2.ILES/SMAG.3.25 case which

already had the correct gradient. Shear stresses in near-wall regions are generally

reduced through the added viscosity of the Smagorinsky model, thereby reducing the

accuracy of the results in these areas.

Figure 4.18 Comparison of wall shear stress coefficient Cfb in the
CHAN2.ILES.3.15/25 cases with DNS results by Moser (Moser et al.,
1999) and LES results by Poletto (Poletto et al., 2013)

Wall shear stress coefficient Cfb plotted in fig. 4.18 shows substantial improvement

using the Smagorinsky subgrid model, regardless of the chosen eddy length scale.

Average Cfb at the outlet is predicted as 13 % lower than DNS data by Moser (Moser

et al., 1999) with the Smagorinsky model, as opposed to 38 % lower with implicit
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LES. The reader should be aware that effective viscosity differs between implicit

and explicit LES cases according to eqn. (2.15) which accounts for much of this

improvement. Development length for both cases increased because of the additional

dissipation introduced through the SGS model. The 15% δ case produces the longest

development length, similar to the results with implicit LES.
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4.3 Flow over a Flat Plate

4.3.1 Convergence

All simulations were performed in the Eagle3D CFD solver with the SEM running

separately as a precursor simulation. Residual curves for all fully turbulent channel

flow simulations show satisfactory behavior with an exemplary plot given in fig. 4.19.

Residuals are normalized against the value of the first iteration which corresponds

to the RANS initialization. Therefore, residuals can converge at values higher than

unity once the simulation becomes fully unsteady LES. The higher residuals for the

continuity equation, relative to fig. 4.3, may be related to the SEM being applied to

the approximate boundary layer height , but abruptly omitted above.

Figure 4.19 Residual curves for the flow over a flat plate
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4.3.2 Influence of the Upstream RANS Model

Comparisons of axial velocity and Q criterion for the flat plate test with isotropic

Shear-Stress-Transport (SST) and anisotropic Wilcox-Stress-Baseline (BSL) up-

stream model are given in fig. 4.20 and fig. 4.21, respectively. It was speculated

that anisotropic Reynolds stresses at the SEM-generated inflow plane may results in

a shorter development length.

(a) Shear-Stress Transport (SST) Model

(b) Wilcox-Stress-Baseline (BSL) Model

Figure 4.20 Comparison of axial velocity of the SST and RSM up-
stream profiles for the flat plate case

Axial velocity contours for both simulations show turbulent behavior is sustained

throughout the domain with no noticeable breakdown after the inlet. Boundary layer

growth rate is visually comparable to the analytic solution by Schlichting (Schlichting,

2017) as

δ ≈ 0.37x

Re0.2
x

(4.2)
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when accounting for the sampling position of the upstream RANS simulations at x =

0.8m. Turbulence is limited to the boundary layer with no unexpected free-stream

disturbances. Despite the SST model producing an isotropic upstream solution, the

results are qualitative comparable to the anisotropic BSL model once the full Navier-

Stokes equations are applied.

(a) Shear-Stress Transport (SST) Model

(b) Wilcox-Stress-Baseline (BSL) Model

Figure 4.21 Comparison of Q criterion for the SST and RSM upstream
profiles for the flat plate case

Plots of Q criterion in fig. 4.21 show comparable patterns for both RANS models.

Turbulence in the boundary layer is stable on the entire plate. As the SEM creates

virtual eddies randomly on the inlet plane, a small percentage of eddies with high

wall-normal distance are noticeable in both cases which get dissipated by the full

Navier-Stokes equations within the first 0.25m ( ≈ 9.5 δ).
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Figure 4.22 Comparison of wall shear stress coefficent Cff for the SST
and BSL upstream profiles for the flat plate case with expected Cff
from DNS results by Schlatter et al. (Schlatter & Örlü, 2010)

Wall shear stress coefficients for both cases are plotted in fig. 4.22. According to

Schlichting (Schlichting, 2017), skin friction coefficient is expected as

Cff =
0.0594

Re0.2
x

(4.3)

Skin friction coefficient at the inlet has been determined by Schlatter et al. as

Cff = 0.003885 for Reθ = 1410 (Schlatter & Örlü, 2010) and is expected to de-

crease proportional to 1/x0.2, according to Schlichting, as the boundary layer grows.

SEM results show sharp decline of wall shear stress immediately after the inlet when

Navier-Stokes equations are applied. Stable magnitudes are achieved after approxi-

mately 0.15m or ≈ 6 δ with BSL case results overall slightly higher but within the

margin of sampling error. Skin friction of both SEM cases is constant after the de-
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velopment length with Cff error, compared to Schlatter, decreasing with the growing

boundary layer thickness.

(a) Shear-Stress Transport (SST) Model

(b) Wilcox-Stress-Baseline (BSL) Model

Figure 4.23 Comparison of Reynolds normal stresses for the SST and
BSL upstream profiles with their respective outlet data
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Plots of generated Reynolds normal stresses at the outlet compared with their

respective RANS profiles are provided in fig. 4.23 show comparable results between

both cases. The sharp drop to zero at z = 0.02735m in both cases marks the

end of the SEM inflow domain. The application of the unrealistic isotropic SST

solution at the inflow plane results in more turbulent fluctuations in the streamwise

direction compared to the BSL case but is within the margin of sampling error for the

unsteady LES simulation. Both simulations reproduce the correct order of magnitude

with 〈u′2〉 > 〈v′2〉 > 〈w′2〉 independent of the upstream solution, emphasizing the

robustness of the combination of SEM and Eagle3D to converge on plausible results.

Figure 4.24 Comparison of Reynolds normal stresses for the SST and
BSL upstream profiles for the flat plate case with DNS results by
Schlatter et al. (Schlatter & Örlü, 2010)

Reynolds normal stresses normalized by their respective friction velocity are plot-

ted in fig. 4.24 and compared with DNS data for Reθ = 1410 from Schlatter et
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al. (Schlatter & Örlü, 2010). Both simulations show overall good agreement. The

most prominent differences are a shift to higher wall-normal distances of the Eagle3D

results and higher streamwise Reynolds normal stresses at the expense of weaker

spanwise and wall-normal components. Overprediction of 〈u′+2〉 in Eagle3D results,

relative to Schlatter et al., is approximately 18 %, and remarkable for a comparison

of LES results with DNS data.
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5. Conclusion and Future Work

The Eagle3D flow solver with a novel Bounded Central Differencing (BCD) flux

scheme was combined with a Synthetic Eddy Method (SEM). Numerical simulations

were performed to verify the reproduction of an unsteady turbulent flow field and

evaluate the performance of a SEM combined with a density-based solver.

Comparison of the results for the flow over a cylinder simulated by Eagle3D with

data from ANSYS Fluent confirms the ability of Eagle3D to accurately resolve un-

steady turbulent eddy fields. Overall flow patterns and magnitudes match between

both solvers with Eagle3D’s high-order schemes resulting in higher fidelity.

The SEM was shown to have the ability to reproduce an unsteady turbulent ve-

locity field from an arbitrary Reynolds stress distribution given by RANS or averaged

DNS data. It has been demonstrated that the SEM provides a fast (in the meaning of

low computational effort) and reliable way to start turbulent behavior for the flow in

a channel or on a flat plate. Accuracy of the SEM was estimated using components

of the velocity vector, skin friction coefficient and Reynolds stresses. It has been con-

cluded that LES results of Eagle3D combined with an SEM show qualitative correct

result in all metrics given sufficient grid resolution but are quantitatively unable to

reach DNS-like quality.
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Parametric studies were performed on the influence of grid resolution, eddy length

scale, ghost cell treatment and SGS model on LES results. The moderate mesh

refinement from 1.886 million to 5 million cells resulted in substantial benefits for the

turbulent channel case. The SEM development length was significantly reduced and

flow statistics were more accurate than the periodic LES performed by Poletto et al.

on the coarse grid (Poletto et al., 2013).

The eddy length scale was shown to directly influence the development length. A

minimum length scale is required to sustain the coherent SEM perturbations and avoid

breakdown into a random function. Higher values resulted in shorter development

lengths. However, as eddy length scale increases, there is diminishing improvement

since the turbulent structures are already fully sustainable by the mesh. Turbulent

statistics taken after the development length were demonstrated to converge on similar

results.

It was speculated that a multi-layer SEM providing accurate reconstructions for

all ghost cells used by the high-order WENO scheme would result in better reproduc-

tion of spanwise and wall-normal turbulent statistics than the classical single-layer

formulation. This assumption could not be proven, with no clear benefit for any

version evident.

Implementation of the Smagorinsky subgrid model resulted in an overall reduc-

tion of turbulent statistics. This benefited cases with short prescribed eddy length

scale where values were overpredicted by ILES, but impaired results of cases with

higher eddy length scales where the Reynolds stresses were already correct or too
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low. Statistics of the wall shear stress coefficient showed substantial improvement

using the SGS model, with the error compared to DNS data by Moser et al. reduced

by more than 50% (Moser et al., 1999). Much of this improvement is attributed to

the higher effective viscosity of the SGS model case.

Recommended Future Work Further studies are required on the influence of the

utilized eddy shape function on LES results. Both Jarrin et al. and Poletto et al.

attempted various definitions (Jarrin et al., 2006, 2009; Poletto et al., 2011, 2013)

but no data has been published on performance using a density-based code.

The unique formulation of a Jarrin style SEM, relating a isotropic random func-

tion to anisotropic Reynolds stresses, allows for adjustments to the Lund coefficients

to enhance underestimated Reynolds stress components. Additional research is neces-

sary to ascertain if constant multiplication factors for these coefficients can be found

and how modifications influence other flow parameters.

Fluctuations in the energy field have been demonstrated to be negligible for the

low-speed cases covered in this thesis. Moving to trans- and supersonic flow regimes as

covered in proposed areas of application of the Eagle3D flow solver, thermal stresses

will require consideration to ensure correct representation of the complete turbulent

energy. Formulations to account for energy fluctuations might have to go beyond the

assumption of isotropic flow formulation depending on the given upstream data.
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Zhang, Q., Schröder, W., & Meinke, M. (2010, August). A zonal RANS-LES method
to determine the flow over a high-lift configuration. Computers & Fluids , 39 (7),
1241–1253. doi: 10.1016/j.compfluid.2010.02.006


	Implementation and Verification of a Synthetic Eddy Method (SEM) in the Eagle3d Compressible Flow Solver
	Scholarly Commons Citation

	tmp.1514919399.pdf.VsII2

