
Doctoral Dissertations and Master's Theses 

Fall 12-2017 

Design of Flight Control Laws for a Novel Stratospheric Dual-Design of Flight Control Laws for a Novel Stratospheric Dual-

Aircraft Platform Aircraft Platform 

Cindy Nshuti 
Embry-Riddle Aeronautical University 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Aerospace Engineering Commons, and the Automotive Engineering Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Nshuti, Cindy, "Design of Flight Control Laws for a Novel Stratospheric Dual-Aircraft Platform" (2017). 
Doctoral Dissertations and Master's Theses. 371. 
https://commons.erau.edu/edt/371 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fedt%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1319?utm_source=commons.erau.edu%2Fedt%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/371?utm_source=commons.erau.edu%2Fedt%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


  

 

 

 

 

DESIGN OF FLIGHT CONTROL LAWS FOR A NOVEL STRATOSPHERIC DUAL-

AIRCRAFT PLATFORM 

 

A Thesis  

Submitted to the Faculty  

of  

Embry-Riddle Aeronautical University  

by  

Cindy Nshuti 

 

In Partial Fulfillment of the  

Requirements for the Degree  

of  

Master of Science in Unmanned and Autonomous Systems Engineering  

 

December 2017  

Embry-Riddle Aeronautical University  

Daytona Beach, Florida 

  



  

 

 

DESIGN OF FLIGHT CONTROL LAWS FOR A NOVEL STRASTOSPHERIC 

DUAL-AIRCRAFT PLATFORM 

by  

 

Cindy Nshuti 

 

A Thesis prepared under the direction of the candidate’s committee chairman, Dr. Hever 

Moncayo, Department of Aerospace Engineering, and has been approved by the members 

of her thesis committee. It was submitted to the School of Graduate Studies and Research 

and was accepted in partial fulfillment of the requirements for the degree of Master of 

Science in Unmanned and Autonomous Systems Engineering. 

 



iii  

ACKNOWLEDGMENTS 

 
I would like thank my incredible team who without their endless efforts this work would 

have suffered. The Project Instructors: Dr. W. Engblom and Dr. H. Moncayo, who 

entrusted me with the leadership role of Control Systems Lead. The Mechanical Team: 

Thomas Stone (Team Lead), Jerald Thompson, Jessica Lown and Shaun Gooch. For their 

commitment to the project. Flight Operations: Trevor Perrott (Team Lead), Eric Frantz and 

Robert Moore. For going beyond their call of duty to further the project goals. My Controls 

Team: Diana Festa and Nolan Coulter, who spent an incredible amount of time by my side, 

always encouraging and hunting for solutions. 

I would also like to express my gratitude to Dr. Moncayo for believing in me, and for 

teaching me many life skills and engineering concepts through his leadership and guidance, 

I learnt that there can always be a solution. Finally, my colleagues at the Flight Dynamics 

and Control Research Lab and the Advanced Dynamics Control Lab, whose advice I sought 

on numerous occasions: Karina Rivera Lopez, Yomary Vesga Betancur, Sean O’Toole and 

Diego Garcia Herrera. 

My acknowledgement would be incomplete without thanking God Almighty for His favor 

and for giving me the ability to overcome numerous obstacles and the opportunity to 

undertake this research study. I would like to dedicate this work to my parents whose 

dreams for me have resulted in this achievement and without their loving upbringing and 

nurturing; I would not have been where I am today and who I am today. 

 
  



iv  

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES ......................................................................................................... vii 

SYMBOLS .......................................................................................................................... x 

ABBREVIATIONS ........................................................................................................... xi 

ABSTRACT ...................................................................................................................... xii 

CHAPTER 1: Introduction ........................................................................................... 1 

1.1. Background ................................................................................................................. 1 
1.2. Dual-Aircraft Platform ............................................................................................... 2 

1.3. Literature Review .................................................................................................... 4 
1.3.1. Controllers ............................................................................................................... 4 
1.3.2. Conventional Controllers ....................................................................................... 4 
1.3.3. Adaptive Controllers .............................................................................................. 5 

1.3.4. Wind Sensing Technologies .................................................................................. 8 
1.4. Research Objective ................................................................................................... 12 

CHAPTER 2: UAS Simulation Environment............................................................. 13 

2.1. DAP Visualization .................................................................................................... 14 
2.2. Cable Dynamics ........................................................................................................ 15 

2.3. Wind and Turbulence Model ................................................................................... 15 
2.4. Actuator Model and Configuration ......................................................................... 16 
2.5. Propulsion Study ...................................................................................................... 18 

CHAPTER 3: Control Laws Architecture .................................................................. 22 

3.1. Trajectory Calculation .............................................................................................. 22 

3.2. Outer Loop Controller .............................................................................................. 24 
3.3. Inner Loop Controller............................................................................................... 25 
3.3.1. Proportional Integral Derivative Controller ........................................................ 25 

3.3.2. L1 Adaptive Output Feedback Controller ........................................................... 26 

3.3.3. L1 Adaptive Control Law for DAP ..................................................................... 33 

3.4. Performance Analysis .............................................................................................. 35 
3.4.1. Trajectory Tracking Indices ................................................................................. 36 
3.4.2. Control Activity Indices ....................................................................................... 37 
3.5. Case Study 1: Simulation with Lateron Control Surface ....................................... 40 

3.6. Case Study 2: Comparison of L1 and PID under Turbulence Conditions ............ 41 

3.7. Case Study 3: Comparison of L1 and PID at different Initial Conditions ............ 47 

3.8. Case Study 4: Changing Wind Direction ................................................................ 50 
3.9. Case Study 5: Changing Wind Speeds .................................................................... 51 

CHAPTER 4: DAP UAS Research Test-Bed ............................................................. 55 

4.1. Airframe and Propulsion .......................................................................................... 55 

4.2. Cable .......................................................................................................................... 59 



v  

4.3. Avionic Systems ....................................................................................................... 59 

4.4. Flight Testing Software ............................................................................................ 66 
4.5. Ground Control Station ............................................................................................ 67 

4.6. Flight Testing Program ............................................................................................ 69 
4.6.1. Manual Flight Testing Truck/Glider ................................................................... 70 
4.6.2. Flight testing using a Formation Flight Controller without the Cable .............. 72 
4.7. Wind Measurement and Estimation ........................................................................ 75 
4.7.1. EKF to Estimate Wind Parameters ..................................................................... 76 

4.7.2. Angle of Attack and Sideslip Angle Measurement ............................................ 82 

CHAPTER 5: Conclusion & Recommendations ........................................................ 93 

REFERENCES ................................................................................................................. 95 

Appendix A: Propulsion Test Data ................................................................................. 100 

Appendix B: Sailing Conditions ..................................................................................... 105 

Appendix C: Skywalker 1880 ......................................................................................... 106 

 

 

  



vi  

LIST OF TABLES 

 

Table 1 Methods from (Rhudy, Gu, Gross, & Chao, 2017).............................................. 11 

Table 2 Turbulence Intensity Characterization ................................................................. 16 

Table 3 Thrust Map ........................................................................................................... 20 

Table 4 Initial Condition of Case #2 ................................................................................. 42 

Table 5 Performance Index under Different Turbulence Intensities ................................ 42 

Table 6 Initial Conditions Evaluated ................................................................................ 47 

Table 7 Performance Metrics for Controllers at Various Initial Conditions .................... 47 

Table 8 Difference Between PID with respect to L1 for Sail Performance ...................... 48 

Table 9 Performance Metrics for Controllers with Changing Wind Direction ................ 50 

Table 10 Performance Metrics for Controllers with Changing Wind Speed .................... 52 

Table 11 Performance Metrics for Controllers with Changing Wind Speed, Thrust Cut at 

5 sec .................................................................................................................................. 52 

Table 12 General Specifications for the MAXA Pro 4m .................................................. 56 

Table 13 Cable Specifications .......................................................................................... 59 

Table 14 EKF Formulations.............................................................................................. 77 

Table 15 ADB Test Components ...................................................................................... 87 

 

  



vii  

LIST OF FIGURES 

Figure 1 Dual-aircraft platform configuration (Engblom W. A., et al., 2016) ................... 3 

Figure 2 General Structure of L1 Controller (Mehdi, 2012) ............................................... 7 

Figure 3 Simulation Environment for DAP (Coulter, Moncayo, & Engblom, 2018a) ..... 13 

Figure 4 ERAU Simulation Environment – X-Plane Interface (left). Pilot-in-the-loop 

HUD (right). ...................................................................................................................... 15 

Figure 5 Stratospheric DAP aircraft configuration used for simulation ........................... 17 

Figure 6 “Iron-bird” for ground testing and thrust stand .................................................. 18 

Figure 7 Propulsion Test Hardware Configuration ........................................................... 19 

Figure 8 Thrust Map ......................................................................................................... 21 

Figure 9 General Architecture of Control Laws ............................................................... 22 

Figure 10 Trajectory Tracking Flight Geometry (Campa, Napolitano, Seanor, & 

Perhinschi, 2004) .............................................................................................................. 23 

Figure 11 Control System ................................................................................................. 25 

Figure 12 Block diagram of the closed-loop L1 adaptive controller ................................ 32 

Figure 13 No Lateron (left) and Lateron edition (right) ................................................... 41 

Figure 14  Positions and Thrust for PID (left) vs. L1 (right) controllers at level turbulence 

5 for 100s .......................................................................................................................... 43 

Figure 15 Control activity for PID (left) vs.  L1 (right) controllers at level turbulence 5 for 

100s ................................................................................................................................... 44 

Figure 16 Comparison of Sail Performance for L1 vs PID during different levels of 

turbulence .......................................................................................................................... 46 

Figure 17 Comparison of Control Activity Performance for L1 vs PID during different 

levels of turbulence ........................................................................................................... 46 

Figure 18 Comparison of Sail Performance for L1 vs PID at different initial conditions 49 

Figure 19 Comparison of Control Activity Performance for L1 vs PID at different initial 

conditions .......................................................................................................................... 49 

Figure 20 PID (left) vs. L1 (right) controllers for constantly changing wind direction .... 51 

Figure 21 Thrust plots for PID (left) vs. L1 (right) controllers with +6 knots additional 

wind................................................................................................................................... 52 

Figure 22 Thrust and forward distance plots for PID (left) vs. L1 (right) controllers with 

+6 knots, thrust cut-off at 5 seconds. ................................................................................ 53 

Figure 23 Comparison of Sail Performance for L1 vs PID at +6 knots of wind with and 

without thrust .................................................................................................................... 54 



viii  

Figure 24 Comparison of Control Activity Performance for L1 vs PID at +6 knots of 

wind with and without thrust ............................................................................................ 54 

Figure 25 MAXA Pro 4m Glider (photo taken at Daytona Beach RC Club) ................... 55 

Figure 26 Hacker Brushless Motor ................................................................................... 57 

Figure 27 Castle 50 Amp ESC .......................................................................................... 57 

Figure 28 Aeronaut Cam-Carbon Folding Prop................................................................ 58 

Figure 29 Multiplex Folding Prop: 3D model (left), final part (right).............................. 58 

Figure 30 4S LiPo battery ................................................................................................. 59 

Figure 31 Hardware Interface Scheme of the Prototype Autopilot. ................................. 60 

Figure 32 Pixhawk Autopilot Board ................................................................................. 61 

Figure 33 MPU 6000 ........................................................................................................ 61 

Figure 34 3DR GPS with compass module ...................................................................... 62 

Figure 35 3DR Telemetry ................................................................................................. 63 

Figure 36 Pitot-Static Tube and Pressure Sensor .............................................................. 63 

Figure 37 AR9320T 9 Channel Carbon Fuse Telemetry Receiver ................................... 64 

Figure 38 Spektrum DX8 Transmitter (TX) ..................................................................... 64 

Figure 39 DS6100 Servo ................................................................................................... 65 

Figure 40 NiMH 4.8V 1.6A .............................................................................................. 65 

Figure 41 Sample blocks from Pixhawk Support Package ............................................... 67 

Figure 42 Ground Control Station’s Weather Station ....................................................... 68 

Figure 43 Shuttle Landing Facility and Tower 313 .......................................................... 69 

Figure 44 Pilot harnessed in a truck bed with the glider cabled to a fishing pole (taken at 

SLF) .................................................................................................................................. 70 

Figure 45 Truck/Cable/Glider Combination ..................................................................... 70 

Figure 46 Flight Test: Fully Manual Truck/Cable/Glider................................................. 71 

Figure 47 Flight Test: Altitude Hold ................................................................................ 73 

Figure 48 Flight Test: Lateral Tracking ............................................................................ 73 

Figure 49 Flight Test: Forward Tracking in Tuning Phase............................................... 74 

Figure 50 Flight Test: Segment of Forward ...................................................................... 74 

Figure 51 Modified Skywalker ......................................................................................... 76 

Figure 52 Wind Triangle and Airspeed definition (Cho, Kim, Lee, & Kee, 2011) .......... 76 

Figure 53 Wind Parameters vs Weather Station Data ...................................................... 81 

Figure 54 Vanes and potentiometers on Skywalker ......................................................... 83 



ix  

Figure 55 Angle of attack (AoA) vs Pitch angle............................................................... 83 

Figure 56 Alpha-vane vs. Alpha-EKF (top) and Beta-vane vs Beta-EKF (bottom) ......... 84 

Figure 57 Stem of 7-hole probe ........................................................................................ 85 

Figure 58 ADB Placement Map ........................................................................................ 87 

Figure 59 ADB Wind Tunnel Setup ................................................................................. 88 

Figure 60 ADB Wind Tunnel Calibration at 20 m/s ......................................................... 89 

Figure 61 ADB mounted on Skywalker III....................................................................... 90 

Figure 62 ADB Flight Test Data ....................................................................................... 90 

  



x  

SYMBOLS 

α Angle of attack 

β Sideslip angle 

ϕ,θ,ψ Euler angles 

u,v,w Body frame velocities 

𝑎𝑥 𝑎𝑦 𝑎𝑧 Body frame accelerations 

p,q,r Roll rate, pitch rate, yaw rate 

𝛿𝑒𝛿𝑟𝛿𝑎𝛿𝑓 Elevator, Rudder, Aileron, Flaps 

𝜁 Scale factor 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



xi  

ABBREVIATIONS 

 

ADB Air Data Boom 

DAP Dual-Aircraft Platform 

DCM Direct Cosine Matrix 

EKF Extended Kalman Filter 

ERAU Embry-Riddle Aeronautical University 

FDCRL Flight Dynamics Control Research Lab 

GCS Ground Control Station 

GPS Global Positioning system 

IMU Inertial Measurement Unit 

KSC NASA Kennedy Space Center 

KF Kalman Filter 

NED North-East-Down reference frame 

PI Performance Index 

PID Proportional Integral Derivative 

PWM Pulse Width Modulation 

PX4 Pixhawk Autopilot 

RC Radio Control 

RX Receiver 

SLF NASA Shuttle Landing Facility 

SPR Strictly Positive Real 

TX Transmitter 

UAS/UAV Unmanned Autonomous Systems/Vehicle 

uORB micro-Object-Request-Broker application 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



xii  

ABSTRACT 

 

Dual-aircraft platform (DAP) is a novel concept that features two glider-like 

unmanned aerial systems (UAS) tethered via a thin adjustable cable allowing them to sail 

back-and-forth, without propulsion, using vertical wind shear. DAP offers the potential of 

a low-cost atmospheric satellite. This thesis presents the results of an initiative to 

demonstrate this novel flight concept through modeling, simulation, and flight testing at 

Embry-Riddle Aeronautical University (ERAU).   

A realistic simulation environment, described herein, was developed to support the 

development and testing of flight control systems.  This environment includes nonlinear 

aerodynamic models for the aircraft, a multi-element cable dynamics model, propeller-

motor thrust model, control surface actuator models, and permits time-varying wind 

profiles.  This simulator offers both pilot-in-the-loop control and autonomous sailing flight 

control, and X-Plane interface to provide visualization cues.  

An intensive flight test program, described herein, was conducted to support the 

validation of the DAP concept.  MAXA Pro 4m gliders were assembled, instrumented, and 

flight tested in an effort to physically demonstrate the sailing mode of flight.  The flight 

test program described here focuses on the capability to sail with one aircraft (i.e., fly 

without propulsion) while "towing" (i.e., pulling) a moving truck as an intermediate step 

towards the more complex scenario of sailing with two connected aircraft.  

Two vital elements of the flight software are implemented and analyzed herein. The 

accuracy of wind estimation techniques is evaluated using flight testing. The robustness of 

an L1 adaptive controller is evaluated within the flight simulation environment by 

comparing its performance with a conventional controller. 
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CHAPTER 1: Introduction 

1.1. Background 

Aircraft platforms that can station-keep in the stratosphere for years at a time are 

often referred to as Atmospheric Satellites because they can perform the same functions as 

satellites, including providing broadband service and capturing images from on high. 

However unlike stationary orbiters, these platforms can be retrieved, upgraded and reused. 

They could be operated and bought at a fraction of the cost of current orbital satellites, and 

therefore can be used in missions such as patrolling national borders, expanding cellular 

coverage or monitoring the ozone layer (Bleicher, 2013). 

Atmospheric Satellites are expected to make an enormous impact on society by 

diversifying and expanding surveillance capabilities, communication bandwidths and 

availability. They could potentially be integrated into the National Airspace System (NAS) 

to improve inter-aircraft communications and support navigation. Although atmospheric 

satellites have the potential for exceptional societal and economic impact the platforms 

present a long-standing challenge to the aeronautics community (Engblom & Decker, 

2016). 

Previous efforts include the various versions of Solara by Titan Aerospace which 

was acquired by Google in 2014. The Solara drones use solar-power for flight and to power 

to their payload, the solar panels also charge batteries for night flight. This means there are 

dependent on location and the time of year, and for longer daylight hours to support payload 

(Gallagher, 2013). Other solar powered attempts include Boeing and DARPA’s 

SolarEagle, Airbus’s Zephyr and NASA’s AeroVironment’s Helios which have not been 

entirely successful, the latter crashed during a climb to altitude when a cloud intercepted 



2  

the sun (Boyle, 2016). In order to improve the solar energy collected, the wing structures 

are very large and flexible which creates a limit to the aircraft’s structural integrity and 

system reliability. 

Northrop Grumman’s Global Hawk is a fueled aircraft so it is limited in range and 

endurance measured in days, and amount of payload requiring power. There is also 

Concordia Project a high-altitude balloon however they are not expected to station-keep 

and their flight paths are dependent on prevailing winds (Engblom W. , 2014).  

An alternative method for achieving long endurance flights is dynamic soaring, that 

is extracting energy from the available wind shear. Dynamic soaring is a specialized form 

of gliding flight that is revealed in nature by birds such as the albatross seabird which 

harnesses abundant energy during flight by flying through a boundary layer between two 

layers of air with different wind velocities (Sechrist, 2002). Research such as Selig 

(Sukamar & Selig, 2013) has demonstrated that it is possible to perform dynamic soaring 

in high-wind conditions at high altitudes in the atmospheric boundary layer with model-

scale unpowered sailplanes having both high lift-to-drag ratio and high wing loading. 

Dynamic soaring is also observed in remote-controlled sailplanes using wind gradients 

created by mountain ridges (Sechrist, 2002). 

1.2. Dual-Aircraft Platform 

  The Dual-Aircraft Platform (DAP) is fundamentally different from the 

aforementioned atmospheric satellite concepts. DAP, illustrated in Figure 1, is a patented 

concept which uses wind gradients as the primary energy source with the potential to 

station-keep for long periods of time and sail within the stratosphere (i.e. above 60,000ft) 

(Palm Coast, FL, US Patent No. 8,931,727 B2, 2015). This novel concept features two 
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glider-like unmanned aerial systems (UAS) tethered via a strong, thin adjustable cable 

allowing them to sail back-and-forth without propulsion using levels of natural wind shears 

at different altitudes (Engblom W. , 2014).  

 

 

Figure 1 Dual-aircraft platform configuration (Engblom W. A., et al., 2016) 

 

In principle, the UAS platforms operate similar to kite-surfing in which the upper 

glider described as the SAIL, provides lift and aerodynamic thrust, while the lower glider 

referred to as the BOARD, prevents the platform from drifting downwind by providing an 

upwind force displayed in Figure 1 (Engblom & Decker, 2016). The nonlinearities due to 

the combination of two UAS, cable dynamics and wind make this an unprecedented 

dynamic and control problem and require the development of simulation tools and 

advanced control architectures. This thesis study supports the proof of DAP through 

modeling, simulation and flight testing. 
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1.3. Literature Review 

1.3.1. Controllers 

An exact model is often unavailable when designing a controller for any plant, 

uncertainties such as external forces, dynamic friction or additional dynamics due to 

damaged parts can significantly affect the plant and can be hard to model and sense. A 

good controller needs to be capable to counteract those uncertainties (Mehdi S. B., 2012).  

1.3.2. Conventional Controllers 

Conventional controllers play a vital role in industries such as manufacturing, 

aerospace, robotics and other prominent industrial fields. Consequently, there is extensive 

theoretical examples and design methods. Advantages include their simplicity, transparent 

nature and adequate performance (Ting & Ayoubi, 2012). Some well-known approaches 

include: linear quadratic optimal regulator and proportional, integral and derivative (PID) 

(Pfeifer & Kassab, 2012). Apart from these, design techniques such as pole placement are 

also used to achieve desired system dynamics.  

In aerospace, linear quadratic control techniques have been used for both rotary 

UAVs (Franko, 2009) and fixed wing UAVs (Kinoshita & Imado, 2006). In (Masar & 

Stohr, 2011) gain-scheduled linear quadratic regulator (LQR) controller is developed for 

an autonomous airship. LQR has shown to be effective on a number of UAV applications 

(Oner, et al., 2009). To improve the overall effectiveness and disturbance rejection 

(Hajiyev & S., 2013) applied a Kalman Estimator to the LQR control system. 

Pole assignment or pole placement is a linear methodology employed to locate the 

poles of the closed-loop system ensuring the desired dynamic response. It is only applied 
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for systems that are fully controllable and observable. (Sung & Yoonsu, 2003) 

demonstrates a linear dynamic feedback controller utilizing pole placement and Kalman 

Filtering for a UAV’s control system. For numerous problems, it is unnecessary to have 

exact placement hence it is sufficient to place the poles in the left-half-plane of the closed-

loop system (Chilali & Gahinet, 1996). 

PID controllers widely used for UAV applications (Beard, et al., 2005) (Beard & 

McLain, 2012), such as fixed wing (Kada & Ghazzawi, 2011), rotary wings (Perhinschi, 

1997), quadrotors (Salih, Moghavvemi, Mohamed, & Gaeid, 2010) (Jun & Yuntang, 2011) 

and lighter-than-air aircrafts (Azinheira, Paivab, Ramos, & Bueno, April 2000). (Wilburn, 

Perhinschi, Moncayo, Karas, & Wilburn, 2013) shows that both outer and inner loop can 

be based on PID controller compensation. 

 (Ting & Ayoubi, 2012) points out that for nonlinear systems with unknown 

characteristics or unknown functions in high performance operating conditions, that these 

ranges may exceed the potential of conventional controllers.  

1.3.3. Adaptive Controllers 

An adaptive controller has the ability to control a plant with uncertainties. The main 

idea is to approximate the uncertainties by observing output or state of the system, then 

adapting to them appropriately. Contingent on current operational conditions, the adaptive 

controller is capable of modifying its own structure and/or parameters (gains). Although 

majority of design methods for adaptive control systems focus only on the variation of the 

gains rather than modifying the structure (Krishnamoorthy, 2015). The dynamics of an 

aircraft are non-linear and time varying and they operate over a wide range of speeds and 

altitudes which means they can profit from adaptive control laws. 
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Model Reference Adaptive Control (MRAC) is a traditional adaptive control 

architecture that is widely used and is shown to have good features in terms of performance 

such as the time-diminishing error on tracking the reference model and it provides the 

possibility for rigorous stability proofs  (Moncayo H. , et al., 2013). For MRAC, to ensure 

close to desired performance a fast adaption is usually required which unfortunately makes 

the system less robust (Mehdi, 2012) because increasing adaptation rate will excite an 

oscillatory high frequency response in the control input, so a limit has to be established on 

the rate of adaptation and therefore consequently limiting the speed of convergence  

(Moncayo H. , et al., 2013). A filtered version MRAC, known as L1 adaptive control has 

been proposed to mitigate these issues (Cao & Hovakimyan, 2006a) (Cao & Hovakimyan, 

2006b).  

L1 control first appeared in 2006 showing its results in (Cao & Hovakimyan, 2006a) 

and (Cao & Hovakimyan, 2006b), with further developments finalized in (Hovakimyan & 

Cao, 2010). The significant characteristic of L1 adaptive control theory is the decoupling 

of control (action) and adaptation (learning) loops, this guarantees robustness with fast 

adaptation. In this framework, fast adaptation means that the rate of adaptation can be 

chosen so that its time scale is faster than the underlying closed loop dynamics and the 

plant parameter variances. Robust adaptation means that regardless of fast adaption in L1’s 

architecture, the properties of robustness for the closed-loop adaptive system can 

independently be adjusted to the adaptation rate (Kharisov, 2013).  The transitory 

performance of the closed-loop L1 adaptive system is quantified for both the system input 

and output by performance bounds with respect to an L1 reference system which includes 

a low-pass filter (Kharisov, 2013). 
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L1 adaptive control theory has been successfully verified on various simulation 

environments and flight control systems. (Gregory, Xargay, Cao, & Hovakimyan, 2010) 

demonstrates that at Ft. Pickett, VA on 4th June 2010 NASA Langley’s AirSTAR GTM 

twin jet flight tests showed that an L1 adaptive controller significantly improved the 

pilot’s handling qualities at high angles of attack and reduced their workload. More so, 

the control law had robust performance with the set of desired dynamics and it was able 

to track the desired states in the presence of stability degradation.  

L1 Controller and Its Parameters 

 

Figure 2 General Structure of L1 Controller (Mehdi, 2012) 

 

As shown in Figure 2 an L1 has three components: Adaption Law, State Predictor 

and Control Law (Hovakimyan & Cao, 2010). The adaption law estimates uncertainties in 

the plant and updates estimation parameters (also known as controller states). The state 
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predictor models the plant’s desired performance. The control law calculates the 

controller’s output – the control signal and uses the low-pass filter to remove high 

frequency in the control channel.  

The control challenges associated with DAP and the potential of L1 control theory 

motivated its implementation in this study, principally in the simulation. This study 

explores the L1 adaptive output feedback control architecture to accomplish the tracking 

objective while guaranteeing robustness and stability in the aim to achieve predetermined 

sailing conditions. 

1.3.4. Wind Sensing Technologies  

The nature of the DAP problem requires that in order for the UAS to have full 

autonomy and sail, the flight computer must have the capability of performing online wind 

direction and speed. Although this study is not directly related to the development of 

control laws for DAP, it was performed as an integrative part for a comprehensive test 

vehicle. 

Several methodologies have been investigated in the literature for wind sensing 

using estimation methods and direct measurement. NASA F-18 High Alpha Research 

Vehicle implemented and flight tested a nonintrusive high-angle-of-attack flush airdata 

sensing (FADS) system by installing 9-25 pressure orifices organized in concentric circles 

on the cone of the vehicle to determine a few parameters including angles of attack and 

sideslip (Whitmore, 1991).  

FADS system is also currently being investigated for small unmanned aircraft 

systems (sUAS) in (Laurence, Argrow, & Frew, 2016) (Laurence & Argrow, 2017) where 

during the past 11 years the University of Colorado’s Research and Engineering Center for 
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Unmanned Vehicles (RECUV) has flown sUAS into severe storms such as tornadoes to 

investigate the capability of sUAS to collect thermodynamic data within the storm. Thus 

the research requires high-precision wind measurements at a relatively low-cost. Ports for 

FADS are placed in the inboard of the wings.  

Research by (Samy, Postlethwaite, Gu, & Green, 2010) applies neural-networks 

(NN) with FADS to model the aerodynamic relationship between the air data states and 

aircraft surface pressure for a mini air vehicle (MAV). (Quindlen & Langelaan, 2013) also 

applies NN to FADS for UAS sailplane. Neural network algorithms require training and in 

(Quindlen & Langelaan, 2013) they are trained in the wind tunnel. Or as (Samy, 

Postlethwaite, Gu, & Green, 2010) concludes that the neurons can be trained against a 

multi-hole probe. Both studies observe that the NN would require further training in-flight. 

A less popular method uses an optical air data system. This sends laser light beams 

several feet away which measures undisturbed air by the speed and direction of 

microscopic particles between beams. Famously, it was demonstrated in NASA SR-71 

"Blackbird" research aircraft in 1993 (Andersen & Haley).  

(Cho, Kang, Park, & Yoo, 2013) and (Rhudy, Larrabee, Chao, Gu, & Napolitano, 

2013) implemented wind vanes to complement and/or compare wind estimation methods. 

In (Rhudy, Larrabee, Chao, Gu, & Napolitano, 2013) two angle of attack vanes and one 

sideslip vane were attached to potentiometers and flight tested. According to their results 

the measurements were inaccurate due to susceptibility to wind gust disturbances, sensor 

noise and noisy data at low airspeed. This hypothesis was echoed in (Cho, Kang, Park, & 

Yoo, 2013). 
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Seven-hole Probe 

Multi-hole probes (MHP) have long been used in the aerospace field. These probes 

are an extension on the pitot-tube notion – i.e. the knowing the relative position of each 

pressure port allows calculation of both a flow magnitude and direction (Crawford, 2011). 

Three-hole probes are capable of measuring a 2-dimensional flow – i.e. a single flow angle. 

Five and seven-hole probes are capable of fully measuring a 3-dimensional velocity field 

– i.e. two flow angles. The two extra holes on the 7-hole probe allow it to measure higher 

angles of attack. (Bryer, 1971) presents a summary on different types of probes and their 

calibration.   

Literature such as (Zilliac, 1989) describe the calibration of a non-nulling, seven-

hole pressure probe. The procedure for calibration depends on the use of differential 

pressures to define the three components of velocity. 7-hole airdata probes have been 

shown to have an accuracy of within 1° for mean flow angles and within 1% for mean flow 

velocity (Crawford, 2011). 

Wind Estimation Technique 

An alternative approach to directly measuring wind properties is through 

estimation. There are currently two major wind estimation methodologies for determining 

the wind speed experienced by an aircraft. The first approach is demonstrated in (Lee, 

Sevil, Dogan, & Hullender, 2013) (Kumon, Mizumoto, & Iwai, 2005) where information 

from the aircraft dynamic model is used to predict the effect of wind. The predominant 

limitation with this wind estimation technique is they require a well-defined mathematical 

model of the aircraft which is limiting for a UAS where the model has not yet been 

established. It also introduces additional modeling errors and uncertainties into the system. 
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The second approach utilizes what is referred to as the “wind triangle relationship”. 

It represents the relationship between wind speed, ground speed and airspeed (Rhudy, Gu, 

Gross, & Chao, 2017). (McLaren, 2008) study presents a “two-vector method” which uses 

two successive heading and ground velocity measurements to create triangles for airspeed 

and wind speed estimation formulated on a constant assumption of wind. In (Arain & 

Kendoul, 2014) on online estimation on small unmanned rotorcraft (RUAS) is presented. 

However, the study is limited by the assumption of a known a priori wind direction and 

that the angle of attack and sideslip angle are always zero. (Lefas, 1987) derives a filter 

called the “velocity bias filter”, which is similar to a Kalman filter. It estimates wind using 

true airspeed, radar measurements and magnetic heading. (Rhudy, Gu, Gross, & Chao, 

2017) implements four different nonlinear state-space methods using an Unscented 

Kalman filter (UKF) as the nonlinear estimator. These methods were then flight tested on 

a UAS and compared to with wind measurements from a ground weather station. The 

methods are differentiated by what sensor information is available, as represented in Table 

1. This thesis considers formulations from (Rhudy, Gu, Gross, & Chao, 2017) as wind 

estimation technique. 

Table 1 Methods from (Rhudy, Gu, Gross, & Chao, 2017) 

 Pitot-static 

tube 

GPS velocity 

(north and east) 

GPS velocity 

(down) 

IMU Angle of attack 

and sideslip angle 

Method 1 X X    

Method 2 X X X   

Method 3 X X X X  

Method 4 X X X X X 
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1.4. Research Objective 

The objective of this research effort is to support the proof-of-concept of DAP, 

through designing novel control laws. These control laws are implemented and evaluated 

in a simulation environment. As well, a research test-bed is developed using subscale UAS 

devices of 4m wing span and flying below 500ft to test the control laws.  

This thesis document is organized as follows: Chapter 1 presents a literature review 

of the topics addressed in this thesis. A brief description of the DAP UAS simulation 

environment is provided in Chapter 2. Chapter 3 presents the architecture of the control 

laws, as well as simulation results in the form of case studies. Chapter 4 describes the UAS 

research platform along with results from the flight testing program and wind sensing 

methodologies. Finally, conclusions and recommendations for future work are provided in 

Chapter 5. 

The research effort presented in this thesis has resulted in the submission for 

publication: 

Nshuti C., Engblom W., Moncayo H., Festa D. (2018). Modeling, Simulation and Flight 

Testing to Support Proof of a Stratospheric Dual Aircraft Platform Concept. 

Accepted for presentation at AIAA SciTech Forum, Orlando. 

Willems J., Engblom W., Moncayo H., Nshuti C. (2018). Verification, Validation, and 

Application of Shear Stress Transport Transitional Model to a R/C Aircraft. 

Accepted for presentation at AIAA SciTech Forum, Orlando. 
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CHAPTER 2: UAS Simulation Environment 

The DAP UAS simulation was developed in MATLAB/Simulink environment to 

support pilot training, facilitate the development of control laws and provide hardware-in-

the-loop (HIL) architecture for further flight testing. In order to simplify the problem, this 

study replaces the BOARD UAS glider by a TRUCK model in both the simulation and flight 

testing. Hence, the dynamics are applied for a glider-truck control system configuration, as 

shown in Figure 3. For details regarding the establishment of the sailing conditions used 

for this simulation environment, refer to (Engblom W. , 2014). 

 

Figure 3 Simulation Environment for DAP (Coulter, Moncayo, & Engblom, 2018a) 

 

The ERAU Flight Simulation Environment provides flexibility and capability to 

design and test algorithms for DAP flight capabilities. The simulation includes the 

Visualization 

SAIL 

Model 
SAIL 

Controller 

TRUCK 

Model 

Cable 

Dynamics 

Engine 

Model 

Wind & 

Turbulence 

Model 
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following features:  

 Non-linear DAP aero model based on VLM-FOIL (details in (Willems, 

Engblom, Moncayo, & Nshuti, 2018)) 

 Multi-degree-of-freedom cable dynamics (section 2.2) 

 Wind and Turbulence model (section 2.3) 

 Actuator model (section 2.4) 

 Sail controller (Chapter 3): 

o Formation Flight Controller (FFC) 

o PID controller 

o L1 adaptive control 

 Visualization via X-Plane (section 2.1) 

The UAS equations of motion and multi-DOF cable dynamics combined with 

lookup tables for aerodynamics, are solved using MATLAB/Simulink functions (Engblom 

W. A., et al., 2016). The simulation is interfaced with X-Plane for a pilot’s heads-up display 

(HUD). This flight software can be used onboard a future flight demonstrator. 

2.1. DAP Visualization 

For visualization purposes, a plugin for X-Plane was developed. This plugin 

interfaces the DAP MATLAB/Simulink model with the flight simulator and allows UAS 

visualization in a high quality virtual environment.  

The MATLAB/Simulink model is combined with ERAU FDCRL Plugin for X-

Plane which visualizes 3-D motion of the UAS in high quality visual environment 

demonstration presented in Figure 4.  The pilot HUD is interfaced with Flight Gear 
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software, was implemented at ERAU’s FDCRL flight simulator.   

  

Figure 4 ERAU Simulation Environment – X-Plane Interface (left). Pilot-in-the-loop 

HUD (right). 

2.2. Cable Dynamics 

A major limitation to sailing performance are the aerodynamic forces on the cable. 

Because the tension in cable should grow steadily as the aircraft reaches the sailing flight 

conditions. These forces were modeled using Hoerner’s approach to a “cylinder in 

crossflow” (Engblom W. A., et al., 2016). Thus the dynamics of the cable is modeled as a 

multi-DOF segments and considers interactions between the two vehicles (Engblom W. 

A., et al., 2016). The cable is mainly simulated as twenty equal length segmentations. To 

model the cable dynamics between aircraft, wave speed propagation is determined for the 

disturbance initiated at one end of the cable and it is dependent on the tension level. High 

wave speeds are required for the aircraft to “relay” and efficiently operate.  

2.3. Wind and Turbulence Model 

Wind and turbulence were modeled based on the Dryden wind turbulence model, a 

mathematical representation accepted by the United States Department of Defense for 
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some aircraft designs and simulations (Engblom W. A., et al., 2016). The direction of the 

wind and its magnitude can be set in the simulation by adjusting the “Wind and Turbulence 

Model”, as shown in Figure 3. The turbulence is also adjusted in the same Simulink block.  

The turbulence has five levels of severity which can be characterized as shown in Table 2. 

Therefore, a severity of 20 would have semblance to a hurricane. 

Table 2 Turbulence Intensity Characterization 

Turbulence Severity Minimum [knots] Maximum [knots] Mean [knots] 

2 0.104 3.87 1.37 

5 0.260 9.72 3.44 

10 0.523 19.8 6.97 

15 0.789 30.4 10.6 

20 1.590 65.3 22.0 

2.4. Actuator Model and Configuration 

Sailing tethered flight is a highly coupled controls problem. To enter sailing mode, 

the two gliders must maintain a specific, a near exact attitude as well as the forward, lateral, 

and vertical spacing in relation to each other. The ailerons, elevators, and rudder must be 

used to maintain the roll, pitch, and yaw requirements respectively for sailing flight. 

However, since the lateral, vertical, and forward spacing must also be maintained, a unique 

solution and aircraft configuration was developed. 

Tests performed in flight simulation showed that a fixed “mast” on top the main 

wing with a maneuverable lateron will enable smoother transitions between sailing. These 

comparison results are presented in Section 3.5. In this context, sailing indicates that there 

is high cable tension (i.e. not slack) while standard cruise implies low cable tension and 

near level flight. Figure 5 displays the SAIL DAP aircraft utilized in flight simulations 
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including a “mast with lateron”, which is an unorthodox feature. For details of the size and 

specifications of the lateron refer to (Nshuti, Coulter, Festa, Engblom, & Moncayo, 2018). 

 

Figure 5 Stratospheric DAP aircraft configuration used for simulation 

 

Another unconventional characteristic of DAP is the function of the flaps. The 

elevator flight control surface usually controls an aircraft’s pitch and therefore the angle of 

attack. However, the DAP UAS is required to hold altitude and maintain the sailing 

condition. It was observed in simulation, that there was inadequate amount of elevator 

authority to accomplish both assignments. Therefore, in order to decouple the sailing 

condition required for pitch angle but still track the pitch angle required for altitude hold. 

The flaps are used for altitude hold and can subsequently have both a negative and positive 

pitching moment. The decoupling of the control law is described in CHAPTER 3.   

 

Ultrathin Cable (4-mm) 

“Mast” 

with “Lateron” 

Flaps 
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2.5. Propulsion Study 

The gliders do have an electric propulsion system. The propeller blades retract to 

prevent them from wind-milling when thrust is turned off. In a future study, unconventional 

system propulsion/turbine system that can extract wind power through varying pitch and 

twist could be developed for use in the stratosphere. Pipistrel’s WATTsUP Prototype is a 

propeller-driven sport aircraft that has demonstrated this concept. 

To initiate a proof-of-concept, for the prototype UAS a propulsion mechanism had 

to be identified. Three motors were chosen for this investigation: E-flite P25, Hacker A20, 

Hacker A30-12L, and two electronic speed controllers (ESC) at different amperage were 

investigated: 70 A and 50 A. Appendix A displays a portion of this investigation with the 

results of Hacker A30-12L and E-flite P25. Figure 6 shows the thrust stand used for this 

propulsion investigation, as well as a ground testing stand, nicknamed “iron-bird” was used 

for testing the UAS in conjunction with the propulsion system before setting up a flight 

test. 

 

Figure 6 “Iron-bird” for ground testing and thrust stand 

Thrust Stand 

Ground Testing “Iron-bird”  
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It was concluded that a Hacker A30-12L in combination with a 50 A provided 

sufficient propulsion and minimized engine cuts during flights. Thus the combination is 

used in subsequent studies.  

A dynamic thrust identification was performed to characterize dynamic thrust vs. 

throttle and airspeed using ERAU’s wind tunnel. This involved the propulsion system used 

in the DAP flight test hardware (described in CHAPTER 4).  

 

 

Figure 7 Propulsion Test Hardware Configuration 

 

The test hardware in Figure 7 includes a flight controller that acted as an 

incremental throttle control in 5% steps. This data will allow for the control subsystem to 

be refined and tune the cruise condition to the required sailing configuration in a 

subsequent study.  

Flight Controller 

Electric Motor 
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The results for the propulsion subsystem in the wind tunnel are discussed. Three 

airspeeds were investigated: 8 m/s, 10 m/s, and 12 m/s. Airspeed was measured using a 

pitot-static tube and digital pressure indicator attached to the wind tunnel. At each airspeed, 

the throttle was advanced in 5% increments from 5% up to 100%. To determine the 

longevity of the main batteries, a sample test was done at 0 m/s. It was found that no 

performance degradation occurred from 5% up to 70% throttle settings. 

The following assumptions were made: 1) ERAU’s force balance was functioning 

properly and providing accurate measurements throughout the duration of the tests. 2) The 

minor changes (<5%) in air density throughout the testing can be neglected. 

Table 3 Thrust Map 

 Airspeed 

 8 m/s 10 m/s 12 m/s 

Throttle Setting Thrust (N) 

5% 0.044077 0.090471 -0.181677 

10% 0.777222 0.698969 0.336738 

15% 1.526279 1.657872 0.942236 

20% 2.481146 2.386269 1.695570 

25% 3.669767 3.948056 3.009696 

30% 5.872451 5.888806 4.229759 

35% 7.670615 7.835521 6.372241 

40% 9.547777 9.686288 8.158593 

45% 11.182499 11.502313 9.816768 

50% 13.223281 13.337504 11.370721 

55% 15.074752 15.380448 13.478632 

60% 16.718749 16.593650 14.503518 

65% 17.617166 17.145903 15.429462 

70% 17.551094 17.193996 15.368132 

75% 17.752413 16.944363 15.580210 

80% 18.697698 17.688311 16.785732 

85% 18.640252 17.317051 16.363929 

90% 18.329143 17.174826 16.520168 

95% 17.905710 16.788212 16.022416 

100% 17.905710 15.107509 16.022416 

 



21  

 

Figure 8 Thrust Map 

These results can further be integrated into the simulation model to enhance the 

thrust model. 
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CHAPTER 3: Control Laws Architecture 

In this thesis, the proposed control laws for autonomous flight are based on inner-

outer loop control architecture as shown in Figure 9. There are three main components: 

formation geometry, outer loop and inner loop, which are subsequently described: 

 

Figure 9 General Architecture of Control Laws 

3.1. Trajectory Calculation 

A formation flight based controller is implemented on the SAIL to track the 

BOARD’s trajectory (i.e. guidance system in Figure 9). The trajectory geometry is based 

on a Formation Flight Controller (FFC) problem designed based on the analogy of leader-

wingman formation. It is developed utilizing the geometry in the reference frame of the 

follower aircraft and its location in inertial space with respect to the leader. The geometry 

of the trajectory problem can be separated into two components: a horizontal plane tracking 

problem and vertical plane tracking problem. 

For horizontal, the pre-determined formation geometric parameters are the lateral 

clearance 𝑙𝑐 and forward clearance 𝑓𝑐 (see Figure 10). The lateral distance error l and 

forward distance error f can be calculated from positions and velocities using the following 

relationships: 

𝑙 =  
𝑉𝑉𝑦(𝑥𝑉−𝑥)−𝑉𝑉𝑥(𝑦𝑉−𝑦)

𝑉𝑉𝑥𝑦
− 𝑙𝑐   (3.1) 
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𝑓 =
𝑉𝑉𝑦(𝑦𝑉−𝑦)−𝑉𝑉𝑥(𝑥𝑉−𝑥)

𝑉𝑉𝑥𝑦
− 𝑓𝑐   (3.2) 

where, 

l is the lateral error between the leader and follower 

f is the forward error between the leader and follower 

h is the vertical error between the leader and follower 

𝑉𝑉𝑛 is the velocity of the leader projected along the nth -axis 

𝑛𝑉 is the nth -axis position of the leader 

𝑛 is the nth -axis position of the follower 

 

Figure 10 Trajectory Tracking Flight Geometry (Campa, Napolitano, Seanor, & 

Perhinschi, 2004) 

 

In equations 3.1 and 3.2, 𝑉𝑉𝑥𝑦 = √𝑉𝑉𝑥
2 + 𝑉𝑉𝑦

2  is the projection of the leader’s 

velocity onto the 𝑥 − 𝑦 plane. Therefore, the wingman’s lateral and forward speed are 

defined as the time derivatives of the lateral and forward distance respectively and are 

required for the purpose formation control which can be calculated as: 
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𝑙̇ =
𝑉𝑉𝑥𝑉𝑦−𝑉𝑉𝑦𝑉𝑥

𝑉𝑉𝑥𝑦
+ Ω𝑉𝑓     (3.3) 

𝑓̇ = 𝑉𝑉𝑥𝑦 −
𝑉𝑉𝑥𝑉𝑥−𝑉𝑉𝑦𝑉𝑦

𝑉𝑉𝑥𝑦
+ Ω𝑉𝑙   (3.4) 

where Ω𝑉 =
𝑞𝑉 sin 𝜙𝑉+𝑟𝑉 cos 𝜙𝑉

cos 𝜙𝑉
 is the trajectory-induced angular velocity in the 𝑥 −

𝑦 plane (around the vertical axis). This parameter is considered zero in this study. 

Note that positions and velocities for both the leader and follower can be 

represented along the x and y axes of the earth-fixed reference frame and are measured by 

the GPS on-board the aircraft (Campa, Napolitano, Seanor, & Perhinschi, 2004). Thus, 

equation 3.5 represents a transformation matrix that rotates the error to a reference frame 

orientated as the leader’s velocity. 

[
𝑙
𝑓

] = [
sin(𝜒𝑉) − cos(𝜒𝑉)
cos(𝜒𝑉) sin(𝜒𝑉)

] [
𝑥𝑉 − 𝑥
𝑦𝑉 − 𝑦] − [

𝑙𝑐

𝑓𝑐
]   (3.5) 

where 𝜒𝑉 is the azimuth angle which is given by: 

cos(𝜒𝑉) =
𝑉𝑉𝑥

√𝑉𝑉𝑥
2 +𝑉𝑉𝑦

2
  and   sin(𝜒𝑉) =

𝑉𝑉𝑦

√𝑉𝑉𝑥
2 +𝑉𝑉𝑦

2
   (3.6) 

For the vertical geometry, the vertical distance error h, can be simply calculated as: 

ℎ =  𝑧𝑉 − 𝑧     (3.7) 

where the time derivative is given by: 

ℎ̇ = 𝑉𝑧𝑉 − 𝑉𝑧     (3.8) 

3.2. Outer Loop Controller 

The outer loop controller relates the formation tracking variables to attitude and 

throttle commands, that is the compensation for lateral, forward and vertical errors to 

produce bank angle, throttle and pitch angle, respectively using the following differential 

equations: 
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𝜙𝑑 =  𝐾𝑙̇𝑙̇ + 𝐾𝑙𝑙    (3.9) 

𝛿𝑇 =  𝐾𝑓̇𝑓̇ + 𝐾𝑓𝑓    (3.10) 

𝜃𝑑 =  𝐾ℎ̇ℎ̇ + 𝐾ℎℎ    (3.11) 

3.3. Inner Loop Controller 

In order to achieve the commanded bank angle and pitch angle produced by the 

outer loop, the inner controller generates control surface deflections required given by 

ailerons, elevator, flap, rudder and lateron commands (see Figure 11). As well as track 

sailing conditions which were previously generated by a sail optimization algorithm 

described in (Engblom W. , 2014). For development of control laws in the inner loop, two 

approaches were involved in this study: a linear controller (i.e. PID) and an adaptive 

controller (L1).  

 

Figure 11 Control System 

3.3.1. Proportional Integral Derivative Controller 

Proportional Integral Derivative (PID) controller is implemented to achieve the 

desired reference angles and to counter the effects of high rates. The longitudinal controller 

generates flap deflection tracks a desired pitch angle as commanded by the outer controller 

(as shown in equation 3.12 discrete form): 

 𝛿𝑓 = (𝑘𝑃𝜃 +
𝑘𝐼𝜃

𝑧−1
+𝑘𝐷𝜃

𝑧−1

𝑧
) (𝜃𝑑 − 𝜃)   (3.12) 
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while the elevator deflection equation uses pitch rate for stabilization and tracks a 

pre-determined sail/board pitch angle:  

𝛿𝑒 = (𝑘𝑃𝜃 +
𝑘𝐼𝜃

𝑧−1
+𝑘𝐷𝜃

𝑧−1

𝑧
) (𝜃𝑠𝑎𝑖𝑙 − 𝜃) − 𝑘𝑃𝑞𝑞  (3.13) 

the lateral controller generates aileron and rudder deflections: 

 𝛿𝑎 = (𝑘𝑃𝑎𝜙 +
𝑘𝐼𝑎𝜙

𝑧−1
+𝑘𝐷𝑎𝜙

𝑧−1

𝑧
) (𝜙𝑠𝑎𝑖𝑙 − 𝜙) − 𝑘𝑃𝑎𝑝𝑝 − 𝑘𝑃𝑎𝑟𝑟   (3.14) 

the rudder deflection equation uses a pre-determined sail/board yaw angle and yaw 

rate: 

𝛿𝑟 = (𝑘𝑃𝑟𝜓 +
𝑘𝐼𝑟𝜙

𝑧−1
+𝑘𝐷𝑟𝜓

𝑧−1

𝑧
) (𝜓𝑠𝑎𝑖𝑙 − 𝜓) − 𝑘𝑃𝑟𝑝𝑝 − 𝑘𝑃𝑟𝑟𝑟 (3.15) 

To obtain the lateron deflection command PID control is implemented on the lateral 

velocity error. 

𝛿𝑙 = (𝑘𝑃𝑙𝜙 +
𝑘𝐼𝑙𝜙

𝑧−1
+𝑘𝐷𝑙𝜙

𝑧−1

𝑧
) (𝑙̇) − 𝑘𝑃𝑙𝑝𝑝 − 𝑘𝑃𝑙𝑟𝑟       (3.16) 

Where, 

𝛿𝑛 is the nth control surface: flap, aileron and rudder. 

𝑘𝑃𝑚 is the mth proportional gain. 

𝑘𝐼𝑚 is the mth integral gain. 

𝑘𝐷𝑚 is the mth derivative gain. 

𝜃, 𝜙, 𝜓 Euler angles, subscript d and sail indicates the desired state and sail 

condition, respectively. 

3.3.2. L1 Adaptive Output Feedback Controller 

This section presents the L1 adaptive output feedback controller and its application 

to DAP. The L1 adaptive control architecture was first presented in (Cao & Hovakimyan, 

2007a) using a state feedback approach for systems in the presence of constant unknown 



27  

parameters. (Cao & Hovakimyan, 2008a) derived the guaranteed time-delay margin of L1 

adaptive control architecture. Later the scheme was extended to output feedback for a class 

of reference systems with strictly positive real (SPR) transfer function (Cao & 

Hovakimyan, 2008b). In (Cao & Hovakimyan, 2007b) and  (Cao & Hovakimyan, 2007c) 

both report an expansion to nonlinear time-varying systems in the presence of additive and 

multiplicative un-modeled dynamics. An output feedback extension is presented in (Cao 

& Hovakimyan, 2009) for systems of unknown relative dimension in the presence of time-

varying uncertainties without imposing an SPR-type requirement on the rate of their 

variation. (Cao & Hovakimyan, 2009) was also first to introduce a fast estimation technique 

based on a piecewise continuous adaptive law. It is accompanied with a low-pass-filtered 

control signal that permits the attainment of arbitrary close tracking of the output and input 

signals of the reference system. It is this particular architecture that is employed in this 

study to address the control challenge of DAP. Because the piecewise-constant adaptive 

law allows the obtainment of performance bounds between the L1 reference system and the 

closed-loop L1 adaptive system. Consequently, these bounds can be considered arbitrarily 

small by decreasing the sampling rate of the adaptation law, such that it can be set to the 

available sampling rate of the central processing unit (CPU). The L1 adaptive output 

feedback control architecture is presented in Figure 12 and a description is given based on 

formulations found in (Hovakimyan & Cao, 2010). 

Problem Formulation 

Consider the following single-input single-output (SISO) system:  

𝑦(𝑠) = 𝐴(𝑠)𝑢(𝑠) + 𝑑(𝑠)    (3.17) 
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where 𝑢(𝑡) ∈ ℝ is the input; 𝑦(𝑡) ∈ ℝ is the system output; 𝐴(𝑠) is a strictly-proper 

unknown transfer function of unknown relative degree 𝑛𝑟, for which only a known lower 

bound 1 < 𝑑𝑟 ≤ 𝑛𝑟 is available; 𝑑(𝑠) is the Laplace transform of the time-varying 

uncertainties and disturbances 𝑑(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), while 𝑓 ∶  ℝ × ℝ → ℝ is an unknown 

map, subject to the following assumption: 

Assumption 3.1 (Global Lipschitz continuity and boundedness). There exist 

constants 𝐿 > 0 and 𝐿0 > 0 such that 

|𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝐿|𝑦1 − 𝑦2| 

|𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑦| + 𝐿0 

hold uniformly in 𝑡 ≥ 0, where the numbers 𝐿 and 𝐿0 can be arbitrarily large. 

Let 𝑟(𝑡) ∈ ℝ  be a given bounded continuous reference input signal. The control 

objective is to design an adaptive output-feedback controller 𝑢(𝑡) such that the system 

output 𝑦(𝑡) tracks the reference input 𝑟(𝑡) following a desired reference model 𝑀(𝑠), 

where 𝑀(𝑠) is a minimum phase stable transfer function of relative degree 𝑑𝑟 > 1. 

𝑦𝑖𝑑(𝑠) = 𝑀(𝑠)𝑟(𝑠)     (3.18) 

Definitions and L1-norm Stability Conditions 

We start by rewriting the system in 3.17 as: 

𝑦(𝑠) = 𝑀(𝑠)(𝑢(𝑠) + 𝜎(𝑠)),  𝑦(0) = 0   (3.19) 

𝜎(𝑠) =
(𝐴(𝑠)−𝑀(𝑠))𝑢(𝑠)+𝐴(𝑠)𝑑(𝑠)

𝑀(𝑠)
    (3.20) 

Let (𝐴𝑚 ∈ ℝ𝑁×𝑁 , 𝑏𝑚 ∈ ℝ𝑁 , 𝑐𝑚
𝑇 ∈ ℝ𝑁) be a minimal realization of 𝑀(𝑠). Hence, 

(𝐴𝑚, 𝑏𝑚, 𝑐𝑚
𝑇 ) is controllable and observable. Thus the system in 3.19 can be written as: 

𝑥̇(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝑏𝑚(𝑢(𝑡) + 𝜎(𝑡))     
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𝑦(𝑡) = 𝑐𝑚
𝑇 𝑥(𝑡),    𝑥(0) = 𝑥0 = 0   (3.21) 

The design of the L1 adaptive controller proceeds by considering a stable low-pass 

filter 𝐶(𝑠) of relative degree greater or equal to 𝑑𝑟, with unit dc-gain 𝐶(0) = 1. Further 

the selection of 𝐶(𝑠) and 𝑀(𝑠) must ensure that 

𝐻(𝑠) ≜
𝐴(𝑠)𝑀(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)
    (3.22) 

is stable, and the following L1-norm condition holds:  

‖𝐺(𝑠)‖ ℒ1
𝐿 < 1    (3.23) 

where 𝐺(𝑠) ≜ 𝐻(𝑠)(1 − 𝐶(𝑠)). 

Further, since 𝐴𝑚 is Hurwitz, there exists 𝑃 = 𝑃𝑇 > 0 that satisfies the algebraic 

Lyapunov equation 

𝐴𝑚
𝑇 𝑃 + P𝐴𝑚 = −𝑄, for arbitrary 𝑄 = 𝑄𝑇 > 0. 

From the properties of 𝑃, it follows that there exists nonsingular √𝑃 such that  

𝑃 = (√𝑃)𝑇√𝑃. 

Given the vector 𝑐𝑚
𝑇 (√𝑃)−1, let 𝐷 ∈ ℝ(𝑛−1)×𝑛 be a matrix that contains the null-

space of 𝑐𝑚
𝑇 (√𝑃)−1, i.e., 

𝐷(𝑐𝑚
𝑇 (√𝑃)−1)𝑇 = 0    (3.24) 

and further let 

∧≜ [
𝑐𝑚

𝑇

𝐷√𝑃
]     (3.25) 

From the definition of the null space, it follows that 

∧ (√𝑃)−1 ≜ [𝑐𝑚
𝑇 (√𝑃)−1

𝐷
]   (3.26) 

is full rank, and hence ∧−1 exists. 
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Define 𝑇𝑠 ∈ ℝ+ as an arbitrary positive constant, which can be associated with the 

sampling rate of the available CPU. Further, let ϕ(𝑇𝑠) ∈ ℝ𝑛×𝑛 be given by 

ϕ(𝑇𝑠) ≜ ∫ 𝑒∧𝐴𝑚∧−1(𝑇𝑠−𝜏) ∧ 𝑑𝜏
𝑇𝑠

0
  (3.27) 

Next, let 

𝐻0(𝑠) ≜
𝐴(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)
,  𝐻1(𝑠) ≜

(𝐴(𝑠)−𝑀(𝑠))𝐹(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)
   

𝐻2(𝑠) ≜
𝐻(𝑠)𝐶(𝑠)

𝑀(𝑠)
,    𝐻3(𝑠) ≜

𝑀(𝑠)𝐶(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)
 (3.28) 

Also, let 

∆≜ ‖𝐻1(𝑠)‖ ℒ1
‖𝑟‖ ℒ∞

+ ‖𝐻0(𝑠)‖ ℒ1
(𝐿𝜌𝑟 +  𝐿0) 

+ (‖
𝐻1(𝑠)

𝑀(𝑠)
‖ + ‖𝐻0(𝑠)‖ ℒ1

‖𝐻2(𝑠)‖ ℒ1

1−‖𝐺(𝑠)‖ ℒ1
𝐿

𝐿) 𝛾̅0  (3.29) 

where 𝛾̅0 ∈ ℝ+ is an arbitrary constant. 

Let  

11
𝑇𝑒∧𝐴𝑚∧−1𝑡

= [𝜂1(𝑡), 𝜂2
𝑇(𝑡)]   (3.30) 

where 𝟏1 = [1, 0, … ,0]𝑇 ∈ ℝ𝑛, 𝜂1(𝑡) ∈ ℝ and 𝜂2(𝑡) ∈ ℝ𝑛−1 contain the first and 

the 2-to-n elements of the row vector 11
𝑇𝑒∧𝐴𝑚∧−1𝑡

. Then define 

𝜅(𝑇𝑠) ≜ ∫ |𝟏1
𝑇 ∧ 𝑒∧𝐴𝑚∧−1(𝑇𝑠−𝜏)𝑏𝑚| 𝑑𝜏

𝑇𝑠

0
  (3.31) 

Also, let 𝜍(𝑇𝑠) be defined as 

𝜍(𝑇𝑠) ≜ ‖𝜂2(𝑇𝑠)‖√
𝛼

𝜆𝑚𝑎𝑥(𝑃2)
+ 𝜅(𝑇𝑠)∆  (3.32) 

𝛼 ≜ 𝜆𝑚𝑎𝑥(∧−𝑇 𝑃 ∧−1) (
2∆‖∧−𝑇𝑃𝑏𝑚‖

𝜆𝑚𝑖𝑛(∧−𝑇𝑄∧−1)

2

  (3.33) 

Next, the following functions are introduced  
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𝛽1(𝑇𝑠) ≜ max
𝑡∈|0,   𝑇𝑠|

|𝜂1(𝑡)|,  𝛽2(𝑇𝑠) ≜ max
𝑡∈|0,   𝑇𝑠|

‖𝜂2(𝑡)‖ (3.34) 

and also 

𝛽3(𝑇𝑠) ≜ max
𝑡∈|0,   𝑇𝑠|

𝜂3(𝑡),  𝛽4(𝑇𝑠) ≜ max
𝑡∈|0,   𝑇𝑠|

𝜂4(𝑡) (3.35) 

where 

𝜂3(𝑡) ≜ ∫ |𝟏1
𝑇𝑒∧𝐴𝑚∧−1(𝑡−𝜏) ∧ ϕ−1(𝑇𝑠)𝑒∧𝐴𝑚∧−1𝑇𝑠𝟏1| 𝑑𝜏

𝑡

0
  (3.36) 

𝜂4(𝑡) ≜ ∫ |𝟏1
𝑇𝑒∧𝐴𝑚∧−1(𝑇𝑠−𝜏) ∧ 𝑏𝑚| 𝑑𝜏

𝑇𝑠

0
   (3.37) 

The following lemma introduces a positive definite matrix 𝑃2 and a positive 

constant 𝑝1, which can be computed from the detailed proof in (Hovakimyan & Cao, 2010). 

 

Lemma 3.1. For arbitrary 𝜉 ≜ [𝑦 𝑧𝑇]𝑇 ∈ ℝ𝑛, where 𝑧 ∈ ℝ𝑛−1, there exist 𝑝1 ∈ ℝ+ 

and positive definite 𝑃2 ∈ ℝ(𝑛−1)×(𝑛−1) such that  

𝜉𝑇(∧−1)𝑇𝑃 ∧−1 𝜉 = 𝑝1𝑦2 + 𝑧𝑇𝑃2𝑧   (3.38) 

Finally, define  

𝛾0(𝑇𝑠) ≜ 𝛽1(𝑇𝑠)𝜍(𝑇𝑠) + 𝛽2(𝑇𝑠)√
𝛼

𝜆𝑚𝑎𝑥(𝑃2)
+ 𝛽3(𝑇𝑠)𝜍(𝑇𝑠) + 𝛽4(𝑇𝑠)∆        (3.39) 

L1 Adaptive Control Architecture 

The L1 adaptive controller consists of an output predictor, an adaptation law and 

the control law, which includes a low-pass filter 𝐶(𝑠) that combined with the choice of 

𝑀(𝑠) needs to satisfy the L1-norm stability condition (3.23). The elements of L1 adaptive 

controller are introduced next.  

Output Predictor  

We consider the following output-predictor: 
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𝑥̇̂(𝑡) = 𝐴𝑚𝑥̂(𝑡) + 𝑏𝑚𝑢(𝑡) + 𝜎̂(𝑡),  𝑥̂(0) = 0     

𝑦̂(𝑡) = 𝑐𝑚
𝑇 𝑥̂(𝑡)         (3.40) 

where 𝜎̂(𝑡) ∈ ℝ𝑛 is the vector of adaptive parameters. Notice that while 𝜎(𝑡) ∈ ℝ 

in (3.21) is matched, the uncertainty estimation 𝜎̂(𝑡) ∈ ℝ𝑛 in (3.40) is unmatched. 

 

Figure 12 Block diagram of the closed-loop L1 adaptive controller 

Adaptation Laws 

Letting 𝑦̃(𝑡) ≜ 𝑦̂(𝑡) − 𝑦(𝑡), the update law for 𝜎̂(𝑡) is given by  

𝜎̂(𝑡) = 𝜎̂(𝑖𝑇𝑠),  𝑡 ∈ [𝑖𝑇𝑠, (𝑖 + 1)𝑇𝑠)    

𝜎̂(𝑖𝑇𝑠) = −ϕ−1(𝑇𝑠)𝜇(𝑖𝑇𝑠),  𝑖 = 0, 1, 2, …  (3.41) 

where ϕ(𝑇𝑠) was defined in (3.27) and  

𝜇(𝑖𝑇𝑠) = ϕ−1(𝑇𝑠)𝑒∧𝐴𝑚∧−1𝑇𝑠𝟏1 = (𝑒𝐴𝑚𝑇𝑠 − 𝕀)−1𝐴𝑚𝑒𝐴𝑚𝑇𝑠 ∧−1 𝟏1    (3.42) 
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Control Law 

The control signal is defined as follows: 

𝑢(𝑠) = 𝐶(𝑠)𝑟(𝑠) −
𝐶(𝑠)

𝑐𝑚
𝑇 (𝑠𝕀−𝐴𝑚)−1𝑏𝑚

𝑐𝑚
𝑇 (𝑠𝕀 − 𝐴𝑚)−1𝜎̂(𝑠)   (3.43) 

where 𝐶(𝑠) was first introduced in (3.22). The L1 adaptive controller consists of 

(3.40), (3.41) and (3.42), subject to the L1-norm condition in (3.23). The block diagram of 

the closed-loop L1 adaptive control system is given in Figure 12. 

Theorem 3.1 

lim
𝑇→0

(‖𝑦̃‖ ℒ∞ ) = 0 

lim
𝑇→0

(‖𝑦 − 𝑦𝑟𝑒𝑓‖
 ℒ∞ 

) = 0 

lim
𝑇→0

(‖𝑢 − 𝑢𝑟𝑒𝑓‖
 ℒ∞ 

) = 0 

The result in this theorem follows directly from [Theorem 1 (Cao & Hovakimyan, 

2008c)] and [Lemma 4.2.3 (Hovakimyan & Cao, 2010)]. 

3.3.3. L1 Adaptive Control Law for DAP 

In order to achieve the control objective for DAP, we need to design an adaptive 

output feedback controller 𝑢(𝑡) such that in the presence of disturbances and uncertainties 

the system output 𝑦(𝑡) tracks the reference input 𝑟(𝑡) with satisfactory performance. This 

can be done by choosing a minimum-phase, strictly proper and stable transfer function 

𝑀(𝑠) and designing an adaptive control law to achieve 𝑦(𝑠) ≈ 𝑀(𝑠)𝑟(𝑠). The first step is 

to guarantee stability of the closed-loop system. Because Theorem 1 infers that the output 

of the closed-loop system tracks that of the closed-loop reference system arbitrarily strictly 
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for all 𝑡 > 0. Therefore the first step in designing an L1 adaptive output feedback controller 

is to define 𝐶(𝑠) and 𝑀(𝑠) that satisfy the conditions given in equation (3.22) and (3.23). 

Note that longitudinal and lateral-dynamics are assumed to be decoupled in this 

study. Given a transfer function: 

𝑀𝑛(𝑠) =
𝜔𝑛

𝑠2+2𝜁𝑛𝜔𝑛𝑠+𝜔𝑛
2    (3.44) 

where 𝜔𝑛 is the natural frequency and 𝜁𝑛 damping ratio, i.e. subscript 𝑛 is 

subjective to the state. Given the transfer function in (3.44) the following equations can be 

derived: 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑠)

𝐼𝑛𝑝𝑢𝑡(𝑠)
=

𝑌(𝑠)

𝑈(𝑠)
=

𝜔𝑛

𝑠2+2𝜁𝑛𝜔𝑛𝑠+𝜔𝑛
2   (3.45) 

𝑌(𝑠)
𝜔𝑛

⁄

𝑈(𝑠)
=

1

𝑠2+2𝜁𝑛𝜔𝑛𝑠+𝜔𝑛
2    (3.46) 

If 
𝑌(𝑠)

𝜔𝑛
= 𝑋(𝑠) and 𝑦(𝑡) = 𝜔𝑛

2𝑥(𝑡) then:  

𝑋(𝑠)

𝑈(𝑠)
=

1

𝑠2+2𝜁𝑛𝜔𝑛𝑠+𝜔𝑛
2    (3.47) 

thus, 

𝑋(𝑠)[𝑠2 + 2𝜁𝑛𝜔𝑛𝑠 + 𝜔𝑛
2] = 𝑈(𝑠)   (3.48) 

Taking the inverse Laplace, generates: 

𝑥̈(𝑡) + 2𝜁𝑛𝜔𝑛𝑥̇(𝑡) + 𝑥(𝑡)𝜔𝑛
2 = 𝑢(𝑡)   (3.49) 

This provides the state space equation as: 

𝑥1 = 𝑥        

 𝑥̇1 = 𝑥2     

𝑥2 = 𝑥̇ = 𝑥̇1     
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 𝑥̇2 = 𝑥̈ = 𝑢(𝑡) − 2𝜁𝑛𝜔𝑛𝑥2 − 𝑥1𝜔𝑛
2  

[
𝑥̇1

𝑥̇2
] = [

0 1
−𝜔𝑛

2 −2𝜁𝑛𝜔𝑛
] [

𝑥1

𝑥2
] + [

0
1

] 𝑢(𝑡) 

and  

𝑦(𝑡) = 𝜔𝑛
2𝑥(𝑡) = 𝜔𝑛

2𝑥1(𝑡) = [𝜔𝑛
2 0] [

𝑥1(𝑡)
𝑥2(𝑡)

] 

𝑦(𝑡) = [𝜔𝑛
2 0] [

𝑥1

𝑥2
] 

Therefore; 

𝐶 = [𝜔𝑛
2 0] 

The low-pass filter can be expressed as: 

𝐶𝑛(𝑠) =
𝜔𝑙𝑝

2

𝑠2+2𝜁𝑙𝑝𝜔𝑙𝑝𝑠+𝜔𝑙𝑝
2     (3.50) 

where 𝜔𝑙𝑝 and 𝜁𝑙𝑝 are the natural frequency and damping ratio of the filter, 

respectively.  

The sample time was set to  

𝑇 =
1

600
𝑠 

3.4. Performance Analysis 

In order to assess the robustness of the designed adaptive controller and 

conventional PID controller, several case studies were investigated at nominal sailing 

conditions and different flight scenarios. The performance metrics used are inclusive of the 

sailing and formation flight tracking, control activity and actuation workload. In this 

context, sailing is achieved when there is no propulsion while holding altitude and ground 

speed, thus cruising. Additionally, sailing is demonstrated when the UAS is ahead of the 
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Truck (in x-direction), maintaining a lateral spacing between itself and the Truck, and 

holding specific distance above the Truck (which is the same as cable length). These 

combinations will ensure a taut cable. The sailing conditions established for the following 

case studies were retrieved from the sailing algorithm at a wind profile of 6 knots and 90°. 

These conditions are provided in Appendix B.   

The total performance index (PI) is based on the ability to maintain UAS sailing 

conditions with little to no thrust. Therefore, the performance of the controller can be 

defined by two main criteria: the first criterion is based on the UAS’ ability to maintain 

formation flight conditions. The second criterion, assesses the controller’s ability to 

maintain sailing conditions with minimum control surface actuation and minimal to no 

saturation. These can be formulated as in (Wilburn, Perhinschi, Moncayo, Karas, & 

Wilburn, 2013) using trajectory tracking indices and control activity indices. 

3.4.1. Trajectory Tracking Indices 

The SAIL UAS should track the BOARD (i.e. truck in this study) with as little error 

as possible. This performance is evaluated by the maximum and mean absolute error, and 

standard deviation of the tracking error in the XY-plane along the Z direction in 3D physical 

space. Thus there is a total of nine indices. The beginning 3 tracking errors are defined as: 

XY-plane tracking error: 

𝑒𝑋𝑌(𝑡) = √[𝑥𝑐(𝑡) − 𝑥(𝑡)]2 + [𝑦𝑐(𝑡) − 𝑦(𝑡)]2  (3.51) 

vertical Z direction tracking error: 

𝑒𝑍(𝑡) = |𝑧𝑐(𝑡) − 𝑧(𝑡)|   (3.52) 

combination of XYZ tracking error: 
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𝑒𝑋𝑌𝑍(𝑡) = √[𝑥𝑐(𝑡) − 𝑥(𝑡)]2 + [𝑦𝑐(𝑡) − 𝑦(𝑡)]2 + [𝑧𝑐(𝑡) − 𝑧(𝑡)]2       (3.53) 

where 𝑥, 𝑦 and 𝑧 are the actual positions of the SAIL UAS while the subscript c are 

the commanded positions from the trajectory or BOARD UAS. For a pre-determined time 

or total simulation time 𝑇, the 9 trajectory tracking-related indices are defined as: 

Average tracking error: 

𝑒̅𝑋𝑌 = 𝑚𝑒𝑎𝑛(|𝑒𝑋𝑌(𝑡)|)    (3.54) 

𝑒̅𝑍 = 𝑚𝑒𝑎𝑛(|𝑒𝑍(𝑡)|)     (3.55) 

𝑒̅𝑋𝑌𝑍 = 𝑚𝑒𝑎𝑛(|𝑒𝑋𝑌𝑍(𝑡)|)    (3.56) 

Maximum tracking error: 

𝑒𝑚𝑎𝑥𝑋𝑌 = 𝑚𝑎𝑥(|𝑒𝑋𝑌(𝑡)|)    (3.57) 

𝑒𝑚𝑎𝑥𝑍 = 𝑚𝑎𝑥(|𝑒𝑍(𝑡)|)    (3.58) 

𝑒𝑚𝑎𝑥𝑋𝑌𝑍 = 𝑚𝑎𝑥(|𝑒𝑋𝑌𝑍(𝑡)|)    (3.59) 

Standard deviation of the tracking error: 

𝑒̂𝑋𝑌 = 𝑆𝑇𝐷(𝑒𝑋𝑌(𝑡))     (3.60) 

𝑒̂𝑍 = 𝑆𝑇𝐷(𝑒𝑍(𝑡))     (3.61) 

𝑒̂𝑋𝑌𝑍 = 𝑆𝑇𝐷(𝑒𝑋𝑌𝑍(𝑡))     (3.62) 

The trajectory tracking specific performance vector, 𝑃𝑉𝑇𝑇 is defined as: 

𝑃𝑉𝑇𝑇 = [𝑡𝑡𝑖|𝑖 = 1,2. . . ,9] = [𝑒̅𝑋𝑌𝑒̅𝑍𝑒̅𝑋𝑌𝑍𝑒𝑚𝑎𝑥𝑋𝑌𝑒𝑚𝑎𝑥𝑍𝑒𝑚𝑎𝑥𝑋𝑌𝑍𝑒̂𝑋𝑌𝑒̂𝑍𝑒̂𝑋𝑌𝑍]𝑇    (3.63) 

3.4.2. Control Activity Indices 

The control action indices evaluate performance in terms of the controller’s 

capacity to maintain the trajectory and sailing condition with minimum control surface 

effort and minimum to no saturation of the control surfaces. With respect to these desired 
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behaviors, two parameters are required: integral of the absolute value of the rate of change 

of actuator deflection and percentage of actuator saturation. Since there are 6 actuators, 

there is are indices: flaps 𝛿𝑓, elevator 𝛿𝑒, ailerons 𝛿𝑎, rudder 𝛿𝑟, lateron 𝛿𝑙 and throttle 𝛿𝑡 . 

The control activity is defined as in (Wilburn, Perhinschi, Moncayo, Karas, & Wilburn, 

2013): 

𝐼𝛿̇𝑓 =
1

𝑇
∫ |𝛿̇𝑓(𝑡)|

𝑇

0
𝑑𝑡     (3.64) 

𝐼𝛿̇𝑒 =
1

𝑇
∫ |𝛿̇𝑒(𝑡)|

𝑇

0
𝑑𝑡     (3.65) 

𝐼𝛿̇𝑎 =
1

𝑇
∫ |𝛿̇𝑎(𝑡)|

𝑇

0
𝑑𝑡     (3.66) 

𝐼𝛿̇𝑟 =
1

𝑇
∫ |𝛿̇𝑟(𝑡)|

𝑇

0
𝑑𝑡     (3.67) 

𝐼𝛿̇𝑙 =
1

𝑇
∫ |𝛿̇𝑙(𝑡)|

𝑇

0
𝑑𝑡     (3.68) 

𝐼𝛿̇𝑡 =
1

𝑇
∫ |𝛿̇𝑡(𝑡)|

𝑇

0
𝑑𝑡     (3.69) 

The flap saturation index with symmetry extreme deflections: 

𝑆𝛿𝑓
=

100

𝑇
∫ 𝛿𝑓(𝑡)

𝑇

0
𝑑𝑡     (3.70) 

where   

𝛿𝑓(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑓 < 𝛿𝑓 𝑚𝑎𝑥 

1 𝑓𝑜𝑟 𝛿𝑓 ≥ 𝛿𝑓 𝑚𝑎𝑥
   (3.71) 

For the elevator saturation indices assume non-symmetric negative and positive 

extreme deflections can be defined as: 

𝑆𝛿𝑒
=

100

𝑇
∫ (𝛿𝑒1(𝑡) + 𝛿𝑒2(𝑡)

𝑇

0
)𝑑𝑡   (3.72) 

where   

𝛿𝑒1(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑒 < 𝛿𝑒 𝑚𝑎𝑥 
1 𝑓𝑜𝑟 𝛿𝑒 ≥ 𝛿𝑒 𝑚𝑎𝑥

 and  𝛿𝑒2(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑒 > 𝛿𝑒 𝑚𝑖𝑛 
1 𝑓𝑜𝑟 𝛿𝑒 ≤ 𝛿𝑒 𝑚𝑖𝑛

  (3.73) 
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The aileron saturation index with symmetry extreme deflections: 

𝑆𝛿𝑎
=

100

𝑇
∫ 𝛿𝑎(𝑡)

𝑇

0
𝑑𝑡     (3.74) 

where   

𝛿𝑎(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑎 < 𝛿𝑎 𝑚𝑎𝑥 
1 𝑓𝑜𝑟 𝛿𝑎 ≥ 𝛿𝑎 𝑚𝑎𝑥

   (3.75) 

The rudder saturation index: 

𝑆𝛿𝑟
=

100

𝑇
∫ 𝛿𝑟(𝑡)

𝑇

0
𝑑𝑡     (3.76) 

where   

𝛿𝑟(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑟 < 𝛿𝑟 𝑚𝑎𝑥 
1 𝑓𝑜𝑟 𝛿𝑟 ≥ 𝛿𝑟 𝑚𝑎𝑥

   (3.77) 

The lateron saturation index: 

𝑆𝛿𝑙
=

100

𝑇
∫ 𝛿𝑙(𝑡)

𝑇

0
𝑑𝑡     (3.78) 

where   

𝛿𝑙(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑙 < 𝛿𝑙 𝑚𝑎𝑥 
1 𝑓𝑜𝑟 𝛿𝑙 ≥ 𝛿𝑙 𝑚𝑎𝑥

    (3.79) 

The throttle saturation index: 

𝑆𝛿𝑡
=

100

𝑇
∫ 𝛿𝑡(𝑡)

𝑇

0
𝑑𝑡     (3.80) 

where   

𝛿𝑡(𝑡) = {
0 𝑓𝑜𝑟 𝛿𝑡 < 𝛿𝑡 𝑚𝑎𝑥 
1 𝑓𝑜𝑟 𝛿𝑡 ≥ 𝛿𝑡 𝑚𝑎𝑥

   (3.81) 

The trajectory tracking specific performance vector, 𝑃𝑉𝑇𝑇 is defined as: 

𝑃𝑉𝐶𝐴 = [𝑐𝑎𝑖|𝑖 = 1,2. . . ,12] = [𝐼𝛿̇𝑓𝐼𝛿̇𝑒𝐼𝛿̇𝑎𝐼𝛿̇𝑟𝐼𝛿̇𝑙𝐼𝛿̇𝑡𝑆𝛿𝑓
𝑆𝛿𝑒

𝑆𝛿𝑎
𝑆𝛿𝑟

𝑆𝛿𝑙
𝑆𝛿𝑡

]𝑇    (3.82) 

 

Finally, a global sailing 𝑃𝐼𝑆𝐴𝐼𝐿 can be defined as weighted sum of the tracking 
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trajectory 𝑃𝐼𝑇𝑇 and control activity 𝑃𝐼𝐶𝐴: 

𝑃𝐼𝑇𝑇 = 𝑤𝑇𝑇 ∙ 𝑃𝑉𝑇𝑇    (3.83) 

𝑃𝐼𝐶𝐴 = 𝑤𝐶𝐴 ∙ 𝑃𝑉𝐶𝐴    (3.84) 

𝑃𝐼𝑆𝐴𝐼𝐿 = 𝑤̅𝑇𝑇 ∙ 𝑃𝑉𝑇𝑇 + 𝑤̅𝐶𝐴 ∙ 𝑃𝑉𝐶𝐴 + 𝑤̅𝑇 ∙ 𝑃𝑉𝑇  (3.85) 

where 𝑤𝑇𝑇, 𝑤𝐶𝐴, 𝑤̅𝑇𝑇, and 𝑤̅𝐶𝐴 are normalization and desirability weights. While 

𝑤𝑇 and 𝑃𝑉𝑇 represent the thrust contribution. The weights are assigned to each parameter 

based on subjective and relative importance upon each metric. Each component is 

normalized, with 0 corresponding to perfect performance. Also note that if or when the 

cable breaks, it penalizes the controller 10% for every second because in the study values 

of the 𝑃𝐼𝑆𝐴𝐼𝐿 and 𝑃𝐼𝐶𝐴 are accumulation indices over time. 

A more detailed description of these metrics are provided in (Coulter, Moncayo, & 

Engblom, 2018b). 

3.5. Case Study 1: Simulation with Lateron Control Surface 

In order to demonstrate the benefit of adding a lateron as an unorthodox control 

surface simulation tests were performed and the effect on tracking and sailing performance 

analyzed with and without lateron. 

 The following plots in Figure 13 with no Lateron (left) and with the Lateron (right), 

present the value of implementing the control surface. Without the lateron, it has to 

overcome a large roll moment of inertia and it is unable to sail in ideal conditions. The 

lateron enables a faster lateral (y-direction) force response than the orthodox method of 

rolling an aircraft. These results support a previous hypothesis in (Engblom W. A., et al., 

2016). 

Figure 13 presents the results of the sailing performance when the UAS system 
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does not have lateron (in the left-sided plots). It is clear that the UAS must overcome a 

large rolling moment using available control surfaces to maintain sailing. As aileron 

actuator must deflect to maintain y-space separation and roll sailing condition at the same 

time, the control system is not able to guarantee a good sailing performance. Notice that 

with no lateron, the amount of thrust required in order to maintain sailing conditions.  This 

conclusion is also reflected in the total performance index, which was run for both cases: 

For no lateron 𝑃𝐼𝑆𝐴𝐼𝐿 = 0.6982, while with lateron 𝑃𝐼𝑆𝐴𝐼𝐿 = 0.2339. 

3.6. Case Study 2: Comparison of L1 and PID under Turbulence 

Conditions 

This case study is an investigation of the controller robustness under low to high 

  

  

Figure 13 No Lateron (left) and Lateron edition (right) 
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turbulence levels as discussed in Section 2.3. In this case the performance is analyzed under 

aforementioned levels as well as during long segments of turbulent flights. This analysis 

considers whether the UAS platforms are able to sail, how well they can track the sailing 

conditions without breaking formation and if not, how long they can stay connected. It 

should be recalled that a turbulence of level 20, is characterized as a hurricane force. 

Although it is unlikely that DAP would have to experience sustained turbulence for 

extended periods of time such as 100 seconds, it is a good comparison of controller 

robustness. It is important to note that in this case the SAIL aircraft does not start at ideal 

initial sailing conditions. Table 4 shows the initial conditions used for these tests. 

Table 4 Initial Condition of Case #2 

State Initial Condition (°) 

Angle of attack 0 

Sideslip angle 0 

Yaw angle 20 

Pitch angle 0 

Roll angle 0 

Turn-off Thrust 5sec 

 

Table 5 Performance Index under Different Turbulence Intensities 

Turbulence 

Intensity 
L1 PID 

𝑃𝐼𝑆𝐴𝐼𝐿 𝑃𝐼𝐶𝐴 𝑃𝐼𝑆𝐴𝐼𝐿 𝑃𝐼𝐶𝐴 

0 0.2311 0.05209 0.2401 0.05090 

2.5 2.4810 0.01106 4.3333 0.67434 

5 2.4940 0.24840 4.4108 0.66937 

15 3.8008 0.89992 7.0388 1.59445 

20 3.7560 0.98816 3.8849 1.61949 
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Figure 14  Positions and Thrust for PID (left) vs. L1 (right) controllers at level turbulence 5 for 100s 
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Figure 15 Control activity for PID (left) vs.  L1 (right) controllers at level turbulence 5 for 100s 
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Table 5 shows that at turbulence intensity of 2.5, which corresponds to 

approximately a wind force of 2.25 m/s (~5 mph gusts), PID controller has a sail 

performance of around 75% worse than L1.  

Plots in Figure 14 demonstrate the behavior of formation flight distances and thrust 

for PID and L1 controllers at a moderately low level of 5. Specifically, the cable breaks at 

80 seconds with PID controller in this case, which may be due to overwhelming stresses 

once the thrust turns off and altitude drops significantly while the sail exceeds its lateral 

spacing (y-direction) and it loses its position ahead of the truck (x-direction). 

Consequently, the controller attempts to quickly recover its positioning in all 3-axes and 

applies a strain to the cable. Therefore, with the PID controller the mission comes to a pre-

mature end at low levels of turbulence. These results are similar to those at a turbulence 

intensity of 2.5.  

For L1 adaptive controller case under turbulence level of 5, as presented in Figure 

14 that unlike the PID which demonstrates failure to sail around 50 seconds, the adaptive 

controller maintained sailing flight up to 90 seconds before degradation and without 

breaking the cable within 100 seconds.  

Results in Table 5 also show that as the turbulence intensity increases so does the 

control action index for both controllers. This is expected and it is due to the increased 

demand on the control surfaces to maintain the sailing target conditions. As shown in 

Figure 15 flaps saturate for both controllers in their attempt to track the pitch angle and 

maintain the required altitude from the truck’s trajectory.  

For an extreme level turbulence of 15 compared to L1 adaptive controller, the PID 

controller presents a significantly worse performance i.e. approximately 85% and 77% for 
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both 𝑃𝐼𝑆𝐴𝐼𝐿 and 𝑃𝐼𝐶𝐴, respectively. But at a severe turbulence level of 20 both controllers 

have similar sail performance, L1 adaptive controller is only ~3.4% better. Whereas, the 

𝑃𝐼𝐶𝐴 for L1 adaptive controller has an improved performance of about 64% over PID. 

 

Figure 16 Comparison of Sail Performance for L1 vs PID during different levels of 

turbulence 

 

Figure 17 Comparison of Control Activity Performance for L1 vs PID during different 

levels of turbulence 
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Figure 16 and 17 summarize the performance evaluations for sailing and minimum 

control surface effort for both controllers at different turbulence intensities. It can be noted 

that at 0 turbulence of the set initial conditions PID is slightly better for both metrics but 

the difference is negligible. However, for all tested turbulence levels from low to severe, 

the L1 adaptive output feedback controller performs evidently better than the PID 

conventional controller demonstrating its robustness under challenging environments. 

3.7. Case Study 3: Comparison of L1 and PID at different Initial 

Conditions 

This case analyzes the control performance under the influence of different initial 

conditions, but maintaining the same target sailing conditions. Ideal conditions are based 

on wind speed and direction which determine the orientation of the UAS. Table 6 shows 

the conditions investigated. 

Table 6 Initial Conditions Evaluated 

State Ideal 

Conditions (°) 

Conditions 

1 

Conditions 

2 

Conditions 

3 

Conditions 

4 

Angle of attack 7.9 0 0 0 0 

Sideslip angle 0 0 0 0 0 

Yaw angle 13.98 20 0 0 20 

Pitch angle 7.18 0 0 0 0 

Roll angle -24.789 0 0 0 0 

Turn-off Thrust On On On Cut at 5sec Cut at 5sec 

 

Table 7 Performance Metrics for Controllers at Various Initial Conditions 

Initial Conditions 𝑃𝐼𝑆𝐴𝐼𝐿 𝑃𝐼𝐶𝐴 

L1 PID L1 PID 

Ideal Conditions 0.2339 0.2122 0.03152 0.03148 

Conditions 1 0.2579 0.2731 0.03188 0.03166 

Conditions 2 0.4474 0.4455 0.02503 0.02470 

Conditions 3 0.4142 3.3134 0.26840 0.51173 

Conditions 4 0.2302 0.2386 0.03110 0.03008 
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Table 7 shows that both L1 and PID controllers have relatively similar sail 

performance metrics for Condition 1 and 4, with L1 controller presenting slightly better 

indices as illustrated in Table 8. For Condition 2, the PID controller has a 0.43% improved 

sailing performance. While for Condition 3, L1 controller presents significantly improved 

sailing performance i.e. 8 times better than PID controller. The PID controller deterioration 

in performance is because the cable breaks at 44 seconds, indicating that for certain initial 

conditions the PID controller may have low tolerance, and for this sailing configuration it 

cannot withstand being set at zero initial conditions and the thrust getting cut-off after 5 

seconds. 

Table 8 Difference Between PID with respect to L1 for Sail Performance 

Initial Conditions Difference Between 

PID and L1 

Conditions 1 0.0152 

Conditions 2 -0.0019 

Conditions 3 2.8992 

Conditions 4 0.0084 

 

Table 7 also shows that the PID controller presents better demand from the control 

surfaces for Condition 1, 2 and 4. However, the difference to L1 controller is minimal <2% 

for all 3 cases. In Condition 3 the PID controller fails to attain and maintain its sailing 

targets which affects the demand on its control activity making it perform 90.7% worse 

than the L1 controller. 

Figure 18 and 19 summarize the performance evaluations for sailing and minimum 

control surface effort for both controllers at non-nominal initial conditions while 

maintaining the same target sailing conditions. 
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Figure 18 Comparison of Sail Performance for L1 vs PID at different initial conditions 

 

Figure 19 Comparison of Control Activity Performance for L1 vs PID at different initial 

conditions 

 

0

0.5

1

1.5

2

2.5

3

3.5

Ideal
Conditions

Conditions 1 Conditions 2 Conditions 3 Conditions 4

S
ai

l 
P

er
fo

rm
an

ce

Case 3: Sail Performance at Different Initial 

Conditions

L1 PID

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Ideal
Conditions

Conditions 1 Conditions 2 Conditions 3 Conditions 4

C
o
n
tr

o
l 

A
ct

iv
it

y
 P

er
fo

rm
an

ce

Case 3: CA Performance at Different Initial 

Conditions

L1 PID



50  

L1 adaptive controller and PID controller had relatively similar indices for both 

𝑃𝐼𝑆𝐴𝐼𝐿 and 𝑃𝐼𝐶𝐴 except Condition 3; where L1 adaptive output feedback controller 

significantly outperformed the PID conventional controller, indicating the PID controller 

potentially has a lower tolerance when starting at non-ideal conditions.  

3.8. Case Study 4: Changing Wind Direction 

This case study, compares the robustness of both controllers under constantly 

changing wind direction while maintaining the same target sailing conditions. For this case, 

the simulation begins at nominal sailing conditions except that a sinusoidal of +/-10° is 

permitted in the direction of wind. Table 9 shows that PID controller has an improved 

sailing performance of about 3.9% over L1 adaptive controller. This is also true for the 

control activity performance except that the difference is 0.00009, which is almost 

negligible in this case. 

Table 9 Performance Metrics for Controllers with Changing Wind Direction 

 

 

 

Figure 20 shows that both controllers demand very little thrust especially when the 

wind direction is shifting further from the pre-determined sailing conditions. However, 

after the initial thrust effort, its contribution is less than 1.2 N for both controllers. The 

plots also show that the sailing performance captured in each time-step is relatively the 

same. Finally, although there is an initial disturbance in control activity for L1 controller it 

quickly updates and produces a similar plot compared to PID. These are parallel 

evaluations to the accumulated metrics shown in Table 9. 

Controller 𝑃𝐼𝑆𝐴𝐼𝐿 𝑃𝐼𝐶𝐴 

L1 0.3354 0.02120 

PID 0.3224 0.02111 
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3.9. Case Study 5: Changing Wind Speeds 

In this case, wind speed is doubled, i.e. +6 knots higher than the expected wind at 

ideal conditions. The additional wind speed is sustained for 1min. 

Table 10 shows that L1 controller has 12% better sail performance than the PID 

  

  

  

Figure 20 PID (left) vs. L1 (right) controllers for constantly changing wind direction 
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controller. Although they both have the same index for control activity, which indicates 

that L1 controller gets the improved performance by either efficiently tracking the truck’s 

trajectory and/or minimizing the demand for thrust. 

Table 10 Performance Metrics for Controllers with Changing Wind Speed 

Controller 𝑃𝐼𝑆𝐴𝐼𝐿 𝑃𝐼𝐶𝐴 

L1 1.84 0.581 

PID 2.06 0.581 

 

 

Figure 21 shows that both controllers do not sail because they are constantly 

demanding thrust. For instance, L1 controller demands thrust when needed then zeros-off 

while PID controller seems to harbor a growing desire for more thrust after 40 seconds. 

Therefore, an additional analysis was performed but cutting off the thrust at 5 seconds and 

the results are presented in Table 11. 

Table 11 Performance Metrics for Controllers with Changing Wind Speed, Thrust 

Cut at 5 sec 

Controller 𝑃𝐼𝑆𝐴𝐼𝐿 𝑃𝑉𝐶𝐴 

L1 0.6385 0.6182 

PID 4.2818 1.2172 

 

  

Figure 21 Thrust plots for PID (left) vs. L1 (right) controllers with +6 knots additional wind 
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In this case, the PID controller’s performance drastically falls. This is because the 

cable breaks at 36.5 seconds as shown in Figure 22. Therefore, in this circumstance L1 

controller’s sail performance is almost 7 times better than the PID and presents almost 

twice the improved control activity performance. Figure 22 also shows that although the 

SAIL UAS loses its position ahead of the truck, L1 controller is able to keep on recovering.  

 

Figure 23 and 24 summarize the comparisons when wind speed is doubled without 

adjusting the sailing target conditions to match the new wind speed within 60 seconds. L1 

controller generally has better performance for this case, in both the sailing and control 

activity effort. However, both controllers consistently necessitate thrust of >6 N, therefore 

a follow-up test was performed with the thrust turning off at 5 seconds. The performance 

  

  
Figure 22 Thrust and forward distance plots for PID (left) vs. L1 (right) controllers with +6 

knots, thrust cut-off at 5 seconds. 
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of the PID controller rapidly deteriorated because the cable broke. Note, that it was 

observed in Figure 23 that the sail performance of the L1 adaptive controller is better at 

cut-off thrust than with thrust.  

 

Figure 23 Comparison of Sail Performance for L1 vs PID at +6 knots of wind with and 

without thrust 

 

Figure 24 Comparison of Control Activity Performance for L1 vs PID at +6 knots of wind 

with and without thrust 
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CHAPTER 4: DAP UAS Research Test-Bed 

This section briefly describes the glider UAS flight test-bed used to validate the 

performance of the control laws. The chosen airframe of the DAP research platform is the 

commercial MAXA Pro 4m powered gliders distributed by Kennedy Composites based in 

Texas. These UAS’ were modified to use an externally mounted motor-propeller with 

adequate power (~500 W) to ascend to target altitudes within a minute. Other modifications 

include structural changes to place avionics, cable release mechanism and for structural 

integrity. The gross weight of a glider with all components is currently around 2.75 kg (or 

~6 lb). Figure 25 shows the MAXA Pro 4m glider’s airframe at Daytona Beach RC Club.  

 

 

Figure 25 MAXA Pro 4m Glider (photo taken at Daytona Beach RC Club) 

4.1. Airframe and Propulsion 

The UAS requires a microcontroller, also known as an onboard computer, in order 

to test algorithms for autonomous flight and to record in-flight data essential to proving the 

DAP concept. For the purposes of this thesis a “Pixhawk Autopilot” board is used. This 

low-cost and compatible board has series of digital and analog sensors that provide states 
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which are used by controllers and stable flight. A number of sensors are interfaced with the 

flight computer for measuring and estimating different flight parameters including vehicle 

position, angular rates, accelerations, velocity, attitude, wind direction. The sensor suit 

includes a uBlox LEA-6H high performance GPS, a PX4 digital airspeed, a ST Micro 

L3GD20H 16-bit gyroscope, a ST Micro LSM303D 14-bit accelerometer / magnetometer, 

an Invensense MPU 6000 3-axis accelerometer/gyroscope, MEAS MS5611 barometer. 

MAXA Pro 4m 

The main dimensions and properties of this vehicle used during flight testing are 

presented in Table 12:   

Table 12 General Specifications for the MAXA Pro 4m 

Specification Aircraft SAIL 

Wing Platform Area 8.8 ft2 (0.82 m2) 

Total Mass 5.5 lb (2.5kg) 

Wing Span 13.1 ft (4m) 

Aspect Ratio 19 

Airfoil Section Proprietary 

Not-to-exceed Speed 30 mph (28 knots) 

 

Hacker A30 12L Motor V3 

The electric AC brushless motor chosen was to develop 1000 RPM/V [Kv]. Its 

overall dimensions 37.2 x 39 mm with a shaft of 5 mm and weight 143 g. Its maximum 

current is 35A and a maximum power 500W.  
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Figure 26 Hacker Brushless Motor 

Electronic Speed Controller (ESC) 

Castle Creations Phoenix Edge Lite, 34V 50-Amp ESC with 5-Amp BEC. This 

ESC can be used with 2-8 cell LiPo batteries. It weighs 56 g with wires and dimensions of 

1.0 x 2.0”. For this project, stick programming was used to add a ‘Hard Brake – No Delay’, 

to prevent the prop from wind-milling when the throttle is off for gliding. 

 

Figure 27 Castle 50 Amp ESC 

Folding Propellers 

It is featured with Aeronaut Cam-Carbon folding propeller blades. These are 

designed through CAM technology. There are very thin and provide high efficiency with 

low power absorption from the electric motor. Dimensions: 12.0 x 6.5”, maximum RPM 
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[1/min] is 13000. 

 

Figure 28 Aeronaut Cam-Carbon Folding Prop 

Multiplex Spinner 

A Multiplex Folding Prop Spinner was designed in CATIA then 3D printed at 

ERAU. Paired with a 3in shaft that replaced the original 5mm shaft in the motor. 

 

Figure 29 Multiplex Folding Prop: 3D model (left), final part (right) 

4S LiPo Battery 

This LiPo battery supplies power to the motor alone. The Turnigy Nano-Tech with 

4 cells and a nominal voltage of 14.8V. The discharge rated at 1300mAh and its overall 

dimensions: 73 x 31 x 35 mm and weighs 208 g. 



59  

 

Figure 30 4S LiPo battery 

3DR Power Module 

The LiPo battery is connected via a 3DR power module to regulate any power that 

can be used as a backup for sensors (not servos) in case the receiver pack fails during flight.  

4.2. Cable 

A variety of cable materials were investigated and used including nylon, dyneema 

and nylon-dyneema hybrid with diameters of less than 1mm and maximum length of 200m. 

The required rating to ensure safety during all aerodynamic forces that the gliders may 

produce is typically a max. 7lbs while sailing. However, transient shock loads can exceed 

the limit therefore all cables were rated for 50lb tension force. 

Table 13 Cable Specifications 

Material Dyneema 

Cable Length (max) 656 ft (200 m) 

Cable Diameter 0.039 in (1-mm) 

Cable Tension Safety Factor 3.0 

Break Strength 300 lbf (1335 N) 

 

4.3. Avionic Systems 

 The onboard flight computer and sensors were integrated within the airplane 
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with the hardware architecture as shown in Figure 31. This section describes the flight 

management hardware and sensors. 

 
Figure 31 Hardware Interface Scheme of the Prototype Autopilot. 

Pixhawk Autopilot 

The primary flight computer that is used on board the DAP is the PixHawk v2 

(PX4). This autopilot board is designed by an open-source hardware development team 

from The Computer Vision and Geometry Lab of ETH Zurich in association with 3D 

Robotics and ArduPilot Group.  

PX4 is a commercial platform that has an ARM Cortex M4 with a principal clock 

of 168MHz. The processor runs Nuttx real-time operative system which contains drivers 

for on-board sensors such as accelerometers, gyroscopes, barometer, and magnetometer 

and global positioning system (GPS). In addition to the on-board sensors, the OBC has a 



61  

microSD slot, ADC, DSM interface for RC receiver antenna, and communication buses 

such as UART, SPI, CAN and I2C and a 2MB flash for data logging. As well as 14 

PWM/servo outputs. 

 

Figure 32 Pixhawk Autopilot Board 

InvenSense MPU 6000 Inertial Sensor 

The MPU 6000 is a 6-axis motion tracking device. It features a combination of 3-

axis gyroscope and a 3-axis accelerometer inside a 4 x 4 x 0.9 mm QFN footprint and it 

communicates through a serial interface in an I2C protocol. 

 

Figure 33 MPU 6000 

ST Micro LSM303D 

The LSM303D is a 14-bit ultra-compact compass that features 3D digital linear 

acceleration sensor and a 3D digital magnetic sensor. It includes an I2C/SPI serial interface, 

the former supports standard and fast mode (100 Hz and 400 Hz) and the latter a standard 

interface. 
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ST Micro L3GD20H  

The L3GD20H is a 16-bit MEMS motion sensor: 3-axis digital output gyroscope. 

This is a low-power angular rate sensor. It uses a sensing element and an IC interface 

capable to provide angular rate to the external would through I2C/SPI digital interface. It 

also has a full scale of +/- 245, +/- 500, +/- 2000 degrees per second and is able measure 

rates at different bandwidths. 

UBLOX LEA-6H GPS Receiver Module 

This GPS module has an in-built Antenna with 2.5 m accuracy. It also includes 

HMC5883L digital compass. The module can conveniently be mounted away from sources 

of interference such as the motor. It has a 5 Hz update rate and a low noise 3.3 V regulator. 

The dimensions are 38 x 38 x 8.5 mm and weight 16.8 g. 

 

Figure 34 3DR GPS with compass module 

3DR Telemetry 

The 915 MHz (American) Telemetry Radio Set. The data-link is used to 

communicate to the ground control station to vehicle wirelessly, allowing for a view of in-

flight data. These radios have -117dBm receiving sensitivity and use Frequency Hopping 

Spread Spectrum (FHSS). The dimensions are 25.5 x 53 x 11 mm (without antenna) and 

weigh 11.5 g (without antenna). 
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Figure 35 3DR Telemetry 

3DR Pitot-Static Tube 

The 3DR Pitot-Static tube paired with Measurement Specialties 4525DO sensor. 

This digital airspeed sensor has a 1 psi measurement range (approximately 100 m/s). The 

data is delivered at 14-bits from a 24-bit delta-sigma analog-digital-converter (ADC) at a 

resolution of 0.84Pa. It also measures temperature which allows the MS5611 static pressure 

sensor on Pixhawk to calculate true airspeed from indicated airspeed. Kit dimensions:  120 

x 16 x 78 mm, and weighs 18 g. In order to integrate and bond pitot-static tube to the 

aircraft’s leading edge a case was designed in CATIA then 3D printed at ERAU. 

  

Figure 36 Pitot-Static Tube and Pressure Sensor  

Spektrum Carbon Fuselage Receiver 

The AR9320T 9-Channel Carbon Fuse Integrated Telemetry Receiver by Spektrum 
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RC is 2.4 GHz system. This receiver (RX) is capable of 11ms frame rates. It reduces RF 

limitations due to the material of the glider fuselage. In order to increase redundancy an 

additional satellite is connected to the RX. Dimensions: 48.5 x 28.3 x 20.9 mm and weighs 

17.83 g. 

 

Figure 37 AR9320T 9 Channel Carbon Fuse Telemetry Receiver 

Spektrum DX8 Transmitter 

DX8 8-Channel DSMX Transmitter Gen 2, Mode 2 by Spektrum RC 2.4 GHz 

remote control. This is used for manual pilot control and used to switch to autonomous 

flight. All 8 channels are used, 5 control surfaces:  ailerons, elevator, throttle, rudder and 

flaps. The other three channels: emergency motor kill, cable release and switch to transition 

into autonomous flight. 

 

Figure 38 Spektrum DX8 Transmitter (TX) 
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PPM Encoder 

Translates 8 PWM (pulse width modulation) signals into one PPM (pulse position 

modulation) signal, allowing you to connect a PWM receiver to the PX4 over one wire. 

MKS DS6100 -MG Digital Servo 

The MKS DS6100 use + PWM with an operating voltage of 4.8 – 5.0 V with a dead 

band of 0.001 ms. Dimensions 22.5 x 10 x 23.5 mm and weigh 9.5 g. There are 7 servos 

onboard the aircraft. 

 

Figure 39 DS6100 Servo 

NiMH 4.8V 1600mAh Rechargeable Battery 

A HydriMax NiMH 4.8V 1600mAh Rechargeable Battery Pack with a maximum 

discharging rate of 12 A. This supplies power to the PX4 autopilot, sensors and servos. Its 

overall dimensions: 60 x 34 x 17 mm and weighs 85 g. 

 

Figure 40 NiMH 4.8V 1.6A 
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4.4. Flight Testing Software 

The software environment used is the Mathworks® Pixhawk Pilot Support Package 

(PSP). It generates ANSI/ISO C from Simulink® models explicitly created for Pixhawk 

FMUv2 (Flight Management Unit). This interface allows for the customization algorithms 

that leverage onboard sensor data and supplementary calculations at runtime. Once the 

flight control system (FCS) has been successfully modeled, simulated and verified, the 

Pixhawk Target can be used to deploy the control system onto the PX4 hardware. 

The Pixhawk PSP was used in combination with Pixhawk Firmware that was 

enhanced at the ERAU’s Flight Dynamics and Control Research Lab (FDCRL).  

The Pixhawk PSP firmware relies on a publisher-subscriber communication 

architecture for Inter-Process communication on the PX4. The libraries allow the user to 

interact with GPS, IMU, light emitting diode (LED) and PWM outputs for serial RX/TX 

communication, as well as the data exchange through micro-Object-Request-Broker 

application (uORB) topics. Topic information is exchanged in defined known “C” 

structures. The uORB topics used here are for airspeed and wind estimation. 

The additional FDCRL firmware applies Extended Kalman Filter (EKF) to sensor 

data from the PSP libraries. In addition, it is capable of logging and recording flight data 

from sensors, actuators and any control signal developed in the Simulink environment. This 

is particularly useful when analyzing post-flight data which can lead to redesigning or 

tuning algorithms. Figure 42 shows the target blocks implemented (Pilot Engineering 

Group, 2015). 
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Figure 41 Sample blocks from Pixhawk Support Package 

4.5. Ground Control Station 

Fight operations utilize the ERAU Mobile UAS Ground Control Station (GCS) 

which is an enclosed trailer that houses all necessary equipment for communication with 

the aircraft and observing flight data in real-time. The fundamental tasks of the ground 

station are to provide the following abilities: receive, process, and record telemetry data 

from the aircraft and display flight information to the flight test coordinator. For example, 

KSC Tower 313 wind profile measurements are also being accessed wirelessly from this 

station, in order to investigate the wind estimation capabilities on the flight computer.  Data 

communication between aircraft and the ground station is via a duplex serial data link using 

an RF transceiver operating at 900 MHz, (previously shown in Figure 31). The data link 

connects to Mission Planner.  
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Ground Weather Station 

The GCS hosts a weather station that is used to collect validation data for wind 

estimation. Peet Bros. equipment was used which includes (shown in Figure 41):  

- ULTIMETER 2100 Keyboard/Display Unit,  

- ULTIMETER PRO Anemometer/Wind Vane (w/40' cable),  

- Outdoor Temperature Sensor (w/25' cable) 

  

Figure 42 Ground Control Station’s Weather Station 

The weather station collects wind data at 2.9Hz with a wind speed accuracy of 

0.9m/s and 5% for the 16-point magnetic direction sensing. The ground weather station 

setup is securely mounted on a pole close to the flight path approximately 7m above the 

ground.   
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LANDING 

TAKE-OFF 

4.6. Flight Testing Program 

Three flying facilities were used, namely Daytona Beach RC Club, DeLand RC 

Club and the Shuttle Landing Facility (SLF) at Kennedy Space Center. The latter is shown 

in Figure 43. The flight tests are part of an extensive flight test program initiated to provide 

demonstrate of the DAP concept.  

The flight tests involve operating one UAS at KSC on a fishing line and being 

reeled by an individual on a moving pick-up truck. The pilot rides safely in the bed of a 

pick-up truck using a harness, along with other personnel operating the cable to collect 

tension data via a load cell, and to communicate with the ground station via radio. The 

truck and aircraft move together in parallel to the runway, beginning at one end of the 

runway, and landing/stopping at the other end as displayed in Figure 44. 

 
Figure 43 Shuttle Landing Facility and Tower 313 

(yellow circles represent typical take-off and landing areas) 
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Figure 44 Pilot harnessed in a truck bed with the glider cabled to a fishing pole (taken at 

SLF) 

 

Figure 45 Truck/Cable/Glider Combination 

4.6.1. Manual Flight Testing Truck/Glider 

The initial direction of DAP was to provide proof-of-concept by letting an RC pilot 

train via two vocations: simulation (described in Chapter 2) and on numerous 

Truck/Cable/Glider flights using the flight testing program described. The aim was to show 
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the SAIL UAS “towing” the truck with the appropriate cable tension force, as if the truck 

were the second aircraft, as shown in Figure 45. A load cell was used to collect cable 

tension data, then analyzed against data collected from the PX4 to evaluate that when the 

power was cut-off that the glider pulled on the cable in an attempt to sail.   

The flight test data displayed in Figure 46 is from a test at NASA SLF. The airspace 

provided ample length for the pilot and truck to get into sailing position without having to 

make a turn. Furthermore, wind profiles recorded by nearby Weather Tower 313 can 

provide target altitude, UAS orientation, ground speed and horizontal spacing required for 

effective sailing. Note that these tests were predominantly manual hence FFC controller 

was not implemented.        

 

Figure 46 Flight Test: Fully Manual Truck/Cable/Glider 
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The above data recorded from the flight test provided no evidence that the aircraft 

sailed. Sailing would imply that:  

 Altitude and ground speed hold (or increase) 

 Throttle if OFF (=1100) 

 Tension is significant (> 4 lbf) 

However, there was no supportive evidence, which is understandable because unlike a kite-

surfer there is no way for the possible to ‘feel’ the sail and relying solely on visual cues. 

This led the research into the direction of autonomous flight. 

4.6.2. Flight testing using a Formation Flight Controller without 

the Cable 

The formation flight controller has three segments: vertical, lateral and forward. In 

flight, the FFC was tested with a linear controller. Figures 47 – 50 display flight test data 

during the tuning phase. The PWM value of 1500 denotes that the pilot is switching from 

manual flight command to auto-command is on. These flight test were performed at 

Daytona Beach RC Club. The problem was simplified by decoupling the components that 

is first tuning the vertical components, then the lateral components, finally the forward 

components. Furthermore, only a proportional controller was used in the outer-loop and 

inner-loop. In a future study, various controllers may be implemented.  

The plots in Figure 47 show the glider holding the commanded altitude 𝑧 = 140 𝑚. 

The dotted lines highlight the autonomous segments. The plots in Figure 48 show the glider 

tracking in the lateral component, the command tested was for the controller to hold the 𝑦, 

once switched to autonomous. 
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Figure 47 Flight Test: Altitude Hold 

 

 

Figure 48 Flight Test: Lateral Tracking 
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Figure 49 shows forward tracking during tuning, since the gains can be adjusted in-

flight an improvement can be seen in the last segment. Figure 50 shows a segment of the 

ground velocity it has a +/-1 m/s accuracy around the commanded.   

 

Figure 49 Flight Test: Forward Tracking in Tuning Phase 

 

Figure 50 Flight Test: Segment of Forward 

 



75  

An penultimate test would include combining all three components tracking a 

trajectory such as the generic paths utilized in (Moncayo, et al., 2013) “figure-8” and an 

oval. This would further test the adequacy of the tuned parameters in the FFC controller. 

4.7. Wind Measurement and Estimation 

Aside from the control laws the UAS glider is required to have wind sensing 

technologies because to achieve sailing the aircraft must be oriented into a favorable 

configuration referred to as sailing conditions. Therefore, this study extends its focus into 

identifying and assessing various methods of attaining the wind velocity and direction in 

real-time either by estimation using the given the avionic components on-board the test-

bed or by implementing an addition instrument. The two approaches investigated are as 

follows: 

1. Estimation of wind parameters using an Extended Kalman Filter (EKF) 

 3 different methods from (Rhudy, Gu, Gross, & Chao, 2017) 

2. Direct measurement of angle of attack (alpha/α) and sideslip angle (beta/β) 

 M1: Mechanical Vanes 

 M2: Seven-Hole Air Data Boom (ADB) 

Different algorithms were flight tested on a modified Skywalker 1880 (for further 

details see Appendix C) prior to implementation in the DAP glider. The RC airplane offers 

a low-cost system that is capable of satisfying the needs of the tests. These modifications 

include: a landing gear, pitot-static tube and a different motor i.e. Turnigy D3542/6 

Brushless Motor (see Figure 51). However, the avionics and flight test software are similar 

to the glider.   

Supplementary work on this chapter can be found in (Nshuti, Coulter, Festa, 



76  

Engblom, & Moncayo, 2018). 

 

Figure 51 Modified Skywalker 

4.7.1. EKF to Estimate Wind Parameters 

The Extended Kalman Filter is used for non-linear discrete-time applications. The 

purpose of an EKF is that given the inputs, measured outputs and assumptions on the 

process and output noise then estimate unmeasured states and actual process outputs. 

 

Figure 52 Wind Triangle and Airspeed definition (Cho, Kim, Lee, & Kee, 2011) 

 

Where 𝑉𝑤𝑖𝑛𝑑 is wind velocity, 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 is the ground velocity of an aircraft, 𝑉𝑎𝑖𝑟 is 

Pitot-static 

tube 
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velocity of the aircraft relative to air, 𝑉𝑝𝑖𝑡𝑜𝑡 is airspeed measured by a Pitot static tube. 

(Rhudy, Gu, Gross, & Chao, 2017) presents comparisons of wind estimation 

techniques depending on what sensors are available on the UAS using a UKF. However, 

all methods used the wind triangle relationship, shown in Figure 52. The wind triangle 

relationship requires information on both ground speed and airspeed. Thus, all methods use 

GPS for velocity estimates and pitot-static tube for airspeed.  

In this study, the wind parameter estimates were tested in-flight and then compared 

to values collected from the PX4 uORB block (described section 4.4) in and the 

measurements from ERAU Mobile UAS Ground Weather Station (4.5). 

Table 14 defines the construction of the state space system for each method i.e. 

state vector x, input vector u and output vector y. 

Table 14 EKF Formulations 

Method States Input Measurements 

1 𝑥̂ = [𝑢𝑤
𝑛   𝑣𝑤

𝑛  𝑤𝑤 
𝑛  𝜁]𝑇 𝑢 = [𝑉𝑁

𝐺𝑃𝑆 𝑉𝐸
𝐺𝑃𝑆 𝑉𝐷

𝐺𝑃𝑆]𝑇 𝑦 = 𝑝𝑑 

2 𝑥̂ = [𝑉𝑁 𝑉𝐸  𝑉𝐷  𝑢𝑤
𝑛  𝑣𝑤

𝑛 𝑤𝑤 
𝑛  𝜁]𝑇 𝑢 = [𝑎𝑥 𝑎𝑦 𝑎𝑧]

𝑇
 𝑦 = [𝑉𝑁 𝑉𝐸  𝑉𝐷  𝑝𝑑] 

3 𝑥̂ = [𝑢 𝑣 𝑤 𝑢𝑤
𝑛  𝑣𝑤

𝑛  𝑤𝑤 
𝑛 ]𝑇 𝑢 = [𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑝 𝑞 𝑟]

𝑇
 𝑦 = [𝑉𝑁 𝑉𝐸  𝑉𝐷  𝑉𝑝𝑖𝑡𝑜𝑡] 

 

Where 

𝑢𝑤
𝑛   𝑣𝑤

𝑛   𝑤𝑤 
𝑛  are the wind velocities, 

𝜁 is the scale factor, which is an accumulated parameter defining the effects of air 

density, angle of attack and angle of sideslip; 

𝑉𝑁 𝑉𝐸  𝑉𝐷 are the north, east and down components of ground speed from the GPS 

receiver; 

𝑝𝑑 is the dynamic pressure measured from the pitot-static tube; 
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𝑎𝑥 𝑎𝑦 𝑎𝑧 are the acceleration components of the aircraft; 

𝑝 𝑞 𝑟 roll, pitch and yaw rates, respectively 

𝑢 𝑣 𝑤 the estimates of airspeed in body frame 

 𝑉𝑝𝑖𝑡𝑜𝑡 airspeed from the pitot-static tube 

Method 1: GPS Correction Factor based EKF 

This method considers the estimation of north, east and down components of wind 

velocity 𝑢𝑤
𝑛  , 𝑣𝑤

𝑛 and 𝑤𝑤
𝑛 as well as a scale factor 𝜁, which is a collective parameter 

employed to estimate the effect of air density, angle of attack and sideslip angle.  

The state dynamics for wind are described by random walk with zero-mean 

Gaussian process noise 𝑤 vector with covariance 𝑸: 

𝑥𝑘 = 𝑥𝑘−1 + 𝑤𝑘−1    (4.1) 

Using the wind triangle relationship, the output is determined as follows: 

𝑉𝑎𝑖𝑟 = 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑉𝑤𝑖𝑛𝑑   (4.2) 

Taking the square of the L2 norm of the air, ground and wind velocity vectors which 

are expressed in the NED reference frame. 

𝑉𝑎𝑖𝑟
2 = (𝑉𝑁

𝐺𝑃𝑆 − 𝑢𝑤
𝑛 )2 + (𝑉𝐸

𝐺𝑃𝑆 − 𝑣𝑤
𝑛)2 + (𝑉𝐷

𝐺𝑃𝑆 − 𝑤𝑤
𝑛)2  (4.3) 

The airspeed from the pitot-tube can be expressed in terms of total airspeed 𝑉𝑎𝑖𝑟: 

𝑉𝑝𝑖𝑡𝑜𝑡 = 𝑉𝑎𝑖𝑟 cos 𝛼 cos 𝛽   (4.4) 

where 𝛼 is angle of attack and 𝛽 is sideslip angle. Bernoulli’s equation gives: 

𝑝𝑑 =
𝜌

2
𝑉𝑝𝑖𝑡𝑜𝑡

2      (4.5) 

where 𝜌 is the density of air. Thus the scale factor is defined as follows: 

𝜁 =  
𝜌

2
cos2 𝛼 cos2 𝛽    (4.6) 
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The output equation: 

𝑦 = 𝑝𝑑 = 𝜁[(𝑉𝑁
𝐺𝑃𝑆 − 𝑢𝑤

𝑛 )2 + (𝑉𝐸
𝐺𝑃𝑆 − 𝑣𝑤

𝑛)2 + (𝑉𝐷
𝐺𝑃𝑆 − 𝑤𝑤

𝑛)2] + 𝑣𝑘 (4.7) 

where 𝑣 is the zero-mean Gaussian measurement noise vector with variance 𝑹. 

Method 2: GPS + IMU based EKF 

Method 2 is based on (Rhudy et al, 2017) formulation #3. However, the flight 

software includes another KF for attitude estimation, therefore Euler attitude angle and 

rates are not included here. This method expands on Method 1 by including information 

from the IMU. Thus, 3-DOF of ground speed can be estimated as states instead of inputs 

to the state space system. By converting the body-axis accelerations of the aircraft to Earth 

frame using the Direct Cosine Matrix (DCM) and adding gravity to the third component: 

[

𝑉̇𝑁

𝑉̇𝐸

𝑉̇𝐷

] = 𝐃𝐂𝐌(𝜙, 𝜃, 𝜓) ([

𝑎𝑥

𝑎𝑦

𝑎𝑧

] + 𝑤𝑎) − [
0
0
𝑔

]   (4.8) 

where 𝜙, 𝜃, 𝜓 are roll, pitch and yaw Euler angles, while 𝑤𝑎 is accelerometer 

Gaussian noise with zero-mean and the DCM is given by: 

𝐃𝐂𝐌(𝜙, 𝜃, 𝜓) = [

cos 𝜃 cos 𝜓 − cos 𝜙 sin 𝜓 + sin 𝜙 sin 𝜃 cos 𝜓 sin 𝜙 sin 𝜓 + cos 𝜙 sin 𝜃 cos 𝜓
cos 𝜃 sin 𝜓 cos 𝜙 cos 𝜓 + sin 𝜙 sin 𝜃 sin 𝜓 − sin 𝜙 cos 𝜓 + cos 𝜙 sin 𝜃 sin 𝜓

− sin 𝜃 sin 𝜙 cos 𝜃 cos 𝜙 cos 𝜃
] 

(4.9) 

The dynamics of the wind states are modeled as in equation (4.1). The output 

equation is partially given by (4.7) and: 

[
𝑉𝑁

𝑉𝐸

𝑉𝐷

] = [

𝑉𝑁
𝐺𝑃𝑆

𝑉𝐸
𝐺𝑃𝑆

𝑉𝐷
𝐺𝑃𝑆

] + 𝑣𝐺𝑃𝑆   (4.10) 

where 𝑣𝐺𝑃𝑆 is the Gaussian measurement noise with zero-mean and covariance 𝑹 
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from GPS estimates. This method helps to smooth abrupt changes from GPS sensor. 

Method 3: Linear Velocities based EKF 

Method 3 is based on (Rhudy et al, 2017) formulation #4, except the bias 

parameters are not included because a separate KF is used on the data from the IMU sensor. 

Furthermore, α and β are not included in the measurements however for a future study wind 

vanes or ADB may be added to the UAS. This method expands on the previous two by 

including 𝑉𝑝𝑖𝑡𝑜𝑡 airspeed from the pitot-static tube as an additional measurement. Thus, 

neither the scale factor 𝜁 is required nor the ground speeds as in GPS and IMU based KF.  

The state dynamics of the body-axis velocity states are formulated as: 

 [
𝑢̇
𝑣̇
𝑤̇

] = [
0 −𝑤 𝑣
𝑤 0 −𝑢

−𝑣 𝑢 0
] ([

𝑝
𝑞
𝑟

] + 𝑤𝑤) + 𝐷𝐶𝑀(𝜙, 𝜃, 𝜓)𝑇 [
0
0
𝑔

] + [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] + 𝑤𝑎  (4.11) 

where 𝑤𝑎 angular rate error. The dynamics of the wind states are modeled as in 

equation (4.1). For the output equation, the body-axis velocities can be rotated into Earth 

reference frame and corrected for wind: 

 [

𝑉𝑁
𝐺𝑃𝑆

𝑉𝐸
𝐺𝑃𝑆

𝑉𝐷
𝐺𝑃𝑆

] = 𝐷𝐶𝑀(𝜙, 𝜃, 𝜓) [
𝑢
𝑣
𝑤

] + [

𝑢𝑤
𝑛

𝑣𝑤
𝑛

𝑤𝑤
𝑛

] + 𝑣𝐺𝑃𝑆  (4.12) 

Since the pitot-tube is mounted along the longitudinal axis (as shown in Figure 51), 

airspeed is measured in the body x-axis, thus output equation: 

𝑉𝑝𝑖𝑡𝑜𝑡 = 𝑢 + 𝑣𝑝𝑖𝑡𝑜𝑡    (4.13) 

where 𝑣𝑝𝑖𝑡𝑜𝑡 is the Gaussian measurement noise from the pitot-static tube with zero 

mean and covariance 𝑹.  
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EKF Wind Estimation Results 

For this section, data from the FDCRL’s Ground Control Station’s Weather Station 

was used. Details on the GCS and its weather station are provided in Section (4.5).  

Upon analyzing an example of flight test data, Method 2 (using 6 states) and 

Method 3 (using 7 states) were noticeably yielding the better results. Results plotting 

Method 2 and 3 compared to the GCS weather station are shown in Figure 53.  

Both methods 2 (in red) and 3 (in blue) appear to follow a similar trend to the 

weather station reference (in yellow). Take note that between 0-20 s and 90-100 s are take-

off and landing phases of flight.  

The difference between these and the weather station reference comes from the fact 

that the weather station measured the wind parameters at 7 meters above the ground 

whereas the UAS flies at about 150 m. Though it is possible to find the same wind speed 

despite the difference in altitude, the same cannot be said concerning the wind direction. 

This may explain the discrepancy between the reference and the EKF outputs.  

 

Figure 53 Wind Parameters vs Weather Station Data 

 



82  

The fact that both EKF results are close was a sign that the results were promising. 

For this reason, the weather station was not used as a reference for future flight tests. This 

led to the implementation and study with vanes and ADB. 

4.7.2. Angle of Attack and Sideslip Angle Measurement 

Among the suggestions of (Rhudy, Gu, Gross, & Chao, 2017), it includes a direct 

measurement of angle of attack and sideslip angle via weather vanes. A novel concept that 

was originally presented in (Rhudy, Larrabee, Chao, Gu, & Napolitano, 2013). The results 

showed that the wind trends were better captured with the inclusion of angle of attack and 

sideslip angle measurements which means producing superior wind estimates when 

compared to weather station data.  

Weather Vanes 

Weather vanes offer a direct measurement of angle of attack and sideslip angle. It 

provides measurements of the relative flow angles of the UAS which are related to the 

airspeed. 

The weather vanes used for this test were in-house 3D printed components with 

high resolution attached to potentiometers. In a previous investigation measurement errors 

were attributed to friction from the potentiometers. Therefore, frictionless potentiometers 

where chosen: Bourns’ 6538S frictionless potentiometers (10 kOhm resistance and ±10% 

tolerance). Two potentiometers are used, one for angle of attack and the other for sideslip 

angle shown in Figure 54. 
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Figure 54 Vanes and potentiometers on Skywalker 

 

Prior to implementing the EKF estimation, preliminary flight tests were performed 

to test the correctness of the vanes at no wind conditions, because pitch and angle of attack 

are close at zero wind. This is demonstrated in Figure 55. 

 

Figure 55 Angle of attack (AoA) vs Pitch angle 

 

Vanes 

Potentiometer 
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Figure 55 illustrates that the vanes attempt to have the same trend as the pitch but 

with low accuracy. Inconsequentially, other flight tests were performed implementing the 

EKF methods to compare the vanes as demonstrated in Figure 56: 

 

 

Figure 56 Alpha-vane vs. Alpha-EKF (top) and Beta-vane vs Beta-EKF (bottom) 

 

The potentiometer plots are in blue, the EKF plots are in orange. One square on the 

yellow plot represents the beginning and end of maneuvers. The RC pilot performed 

different sets of maneuvers such as elevator doublets and rudder doublets during the flight. 

Doublet maneuvers are injected onto a control surface to excite the UAS dynamics. These 

are two-sided pulses, usually with each pulse being symmetric in amplitude and duration. 

The results show a large discrepancy in angle of attack, possibly due to the lack of 

wind measurement data in the down axis. A better tracking estimation performance was 

acquired for sideslip angle. However, for both angles the wind vanes displayed a low 

resolution in their ability to capture high frequency dynamics.   
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Seven-Hole Probe 

To design the 7-hole airdata probe this research was based on the work presented 

in (Zilliac, 1989). This led to a non-nulling, conical-ended 7-hole probe which was built 

in-house. The probe tip contains seven pressure ports, one of which sits at the tip of the 

cone, with the remaining six arranged in a ring downstream, see Figure 57. 

 

Figure 57 Stem of 7-hole probe 

 

The coefficient equations are different for different angles of attack. At low angles, 

the flow remains attached over the probe tip. Under such conditions, greater probe 

sensitivity can be gained by using pressures measured by all seven ports (Zilliac, 1989). 

As the angle increases for high angles of attack, the flow on the downwind or upwind side 

(depending on direction) of the probe eventually separates. The pressure data from the 

region of separated flow is not steady and does not represent the flow that is measured 

(Crawford, 2011). For this reason, the low angle regime i.e. where the flow is attached over 

all seven pressure ports is considered for this study.  

 

 

yaw 

pitch 

roll 
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Low Angle Coefficients  

In low angle flow, the highest pressure is read in port 7, P7. Thus P7 has 

approximately the total flow pressure. Since it is assumed that the flow does not separate, 

the approximate static pressure can be found: 

 𝑃̅ =
1

6
(𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 + 𝑃6)   (4.14) 

Velocity-invariant pressure coefficients can be calculated using equations 

normalized by the dynamic pressure of the flow: 

𝐶𝑃𝑡𝑎
= 𝑃4−𝑃1

𝑃7−𝑃̅
   𝐶𝑃𝑡𝑏

= 𝑃3−𝑃6
𝑃7−𝑃̅

   𝐶𝑃𝑡𝑐
=

𝑃2−𝑃5
𝑃7−𝑃̅

 (4.15) 

Based on the linear combination of the directional pressure coefficients, the 

coefficients that represent pitch and yaw as described in Figure 57 are given by: 

𝐶𝑃𝛼7
= 𝐶𝑃𝑡𝑎

+
𝐶𝑃𝑡𝑏

−𝐶𝑃𝑡𝑐

2
     (4.16) 

𝐶𝑃𝛽7
=

1

√3
(𝐶𝑃𝑡𝑏

+ 𝐶𝑃𝑡𝑐
)    (4.17) 

The total and static pressure coefficients are given by: 

𝐶𝑃𝑡𝑜𝑡𝑎𝑙7
=

𝑃7−𝑃𝑡𝑜𝑡𝑎𝑙
𝑃7−𝑃̅

  𝐶𝑃𝑠𝑡𝑎𝑡𝑖𝑐7
=

𝑃̅−𝑃𝑠𝑡𝑎𝑡𝑖𝑐
𝑃7−𝑃̅

  (4.18) 

Seven-Hole Air Data Boom Calibration 

The seven-hole probe was built in-house using stainless steel, because of its 

resistance to corrosion, heat damage and low weight. The probe is 12 in in length with 0.25 

in total radius. The ADB calibration was performed using ERAU wind tunnel. Details of 

the test components are provided in Table 15 and a placement map is shown in Figure 58: 
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Table 15 ADB Test Components 

Components Purpose 

APM 2.6 Low-cost onboard flight computer. Using the APM2 Simulink 

Blockset, a code was developed that moves the servos and logs 

data on flash memory. 

Servos To position the probe in different combinations of alpha and 

beta. 

Pitot-Static To measure static pressure 

0.15 psi differential 

pressure sensors by 

Merit Sensor 

7 pressure sensors for each port on the ADB 

NiMH 4.8 V 2A Power supply 

  

 

Figure 58 ADB Placement Map 

 

During the calibration process, the probe is submitted to a set of very well 

characterized incoming flows inside a wind tunnel with the provenience direction defined 

by the values of two angles. A MATLAB/Simulink code is built on the APM 2.6 to provide 
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timed commands to move the servos in predetermined orientations of angle of attack and 

sideslip angle. The ADB is placed in the wind tunnel to collect data for known varying 

wind speeds. Figure 59 shows test rig built for the wind tunnel calibrations. 

 

Figure 59 ADB Wind Tunnel Setup 

 

The onboard computer commands the servos to move from -25° to 25° in 

increments of 5° for both alpha and beta. The wind speeds tested were: 10 m/s, 15 m/s, 20 

m/s and 25 m/s. The data collected is then post-processed and analyzed using MATLAB. 

Figure 60 shows a sample of the post-processing data at wind speed 20 m/s. The top 2 plots 

show the average coefficient pressure (left) and total pressure at P7 (right). The bottom 2 

plots show the angle of attack (left) and sideslip (right) measured. 
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Figure 60 ADB Wind Tunnel Calibration at 20 m/s 

 

Flight Testing with ADB 

The ADB was mounted in the nose of the Skywalker UAS to measure angle of 

attack and sideslip angle to capture the local environment as shown in Figure 61. 
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Figure 61 ADB mounted on Skywalker III 

 

 

Figure 62 ADB Flight Test Data 

Pitot-Static 

tube 
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During the flight test, the ADB was mounted with a 40° bias in alpha instead of 

being leveled because landing gear was not accounted for. The results are illustrated in 

Figure 62, despite the mounting bias, the ADB was capable of capturing alpha and beta 

with good resolution. At ~530s and 540s the pilot performed elevator doublets, these are 

clearly attained because the excitation is captured i.e. the pitch up and pitch down from the 

maneuver. Furthermore, sideslip angle shows at ~570s and 585s the rudder doublets are 

also clearly captured. Note that the frequency associated with the doublet maneuver is 

unknown, thus these results assume the accurate capture of pilot input. Therefore, the 

trends of angle of attack and sideslip angle using the air-data probe are promising because 

they register the effect and they are sensitive to the maneuver. However, the results do not 

prove accuracy but prove that the probe responds and follow-on work can be pursued to 

improve the accuracy. The inaccuracies maybe due to imprecisions in the wind tunnel 

and/or noisy pressure sensors.  

In conclusion, this study implemented a number of methods to determine wind 

parameters, i.e. wind estimation and direct measurement. For wind estimation, the results 

showed that the increased number of measured states improve the wind speed and wind 

direction apprehended when compared to the ground control weather station. Although, it 

was concluded that the GCS did not provide a fair comparison during flight tests because 

the weather station is mounted at 7m above the ground while the Skywalker is flying 150m 

above ground. For direct measurement of wind parameters, the angle of attack and sideslip 

angle were evaluated using wind vanes and seven-hole air-data probe. The results show a 

low accuracy in the measurements from the vanes as compared to the EKF methods. 

Results from the multi-hole probe, showed that both angle of attack and sideslip angle were 
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captured relative to the maneuver being performed by the RC pilot, i.e. elevator doublets 

and rudder doublets, respectively. Finally, to further this work the air-data boom can be 

improved for accuracy and it can provide additional states to enhance wind estimation. 

Therefore, it could be installed on the DAP glider. 
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CHAPTER 5: Conclusion & Recommendations 

This UAS research effort has evolved as an integral part to support the proof-of-

concept of DAP, a novel approach to utilizing and implementing atmospheric satellites at 

a low-cost with the ability to station-keep for years at a time, using wind shears and 

requiring no propulsion. The DAP concept presents an unprecedented dynamic and control 

problem which requires the development of novel flight control laws. This study designs 

said control laws, as well as develops a simulation environment and a research test-bed for 

testing these control laws.   

To simplify the problem, the BOARD aircraft was replaced with a Truck model for 

both simulation and flight testing. The SAIL UAS is required to maintain sailing conditions 

and sustain the appropriate configuration so that there is constant tension in the cable, thus 

creating a situation where propulsion is not required. The study implemented and analyzed 

the L1 adaptive control laws to enhance the performance of the UAS. And performed a 

comparison study between a PID controller and L1 adaptive controller. In general, the 

adaptive augmentation performed better than the PID especially in non-ideal 

environmental conditions.  

A UAS research test-bed was developed using subscale gliders of 4m wing span 

and flying below 500ft. Results from manual flight tests showed that the RC pilot was 

incapable of putting the UAS into a sailing mode because there was no way for the pilot to 

‘feel’ the aircraft. This led to an investigation into autonomous flight, a FF based controller 

was implemented that tracks components in lateral, forward and vertical. These 

components were tuned separately during flight tests. It is recommended that in future all 

three components are integrated together and required to follow a trajectory such as a 
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‘figure 8’.    

To achieve the DAP concept, wind conditions are integral part of formulating 

sailing conditions. Therefore, a study was performed evaluating various wind estimation 

techniques, that may be implemented on-board the UAS platform. The results showed that 

the airdata probe was capable of capturing doublet maneuvers with good resolution, 

relative to the weather vanes. In future, adding the angle of attack and sideslip angle 

measurements from the probe to estimation, EKF Method #3 would potentially provide 

enhanced accuracy in the wind speed and wind direction values.        

Additional future recommendations include implementation of L1 adaptive control 

on the UAS. Utilizing the ADB to perform a system identification that can enhance the 

Vortex Lattice Method model that generated this simulation. This would increase options 

of investigating various control laws such as using additional nonlinear controllers that can 

be applied such as the Nonlinear Dynamic Inversion (NLDI), which could be 

supplementary to the current control architecture by placing it in the Outer-loop. As well 

implementing the characterized propulsion subsystem into the thrust model of the 

simulation.  
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Appendix A: Propulsion Test Data 
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Hacker A30        

       

          

Run 1 ESC(A): 50 
Batt. Cap 

(mAh) 
1300 

Motor Initial Temp 71  Volts Temp(F) 

Desc: AR8000 Rx, no PX4, 4S 1300mAh battery 
Batt. 
Start 16.75 71 

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp 
(F) 

Amps 
Static updraft 

(lbf) 
End 
Volts Batt End 14.71 71.6 

1:00 48% 108 91 16.2 2.91 15.66 Delta -2.04 0.6 

3:00 35% 112 101 4.55 1.1 15.38    

5:00 35% 104 85 4.51 1.1 15.17 Date 24-Jan  
7:00 35% 105 84 4.67 1.1 14.98    

9:00 35% 97 85 4.57 1.1 14.8    

10:00 35% 94 82 4.37 1.1 14.71    

                 

          

Run 2 ESC(A): 70 
Batt. Cap 

(mAh) 
1300 

Motor Initial Temp 83  Volts Temp(F) 

Desc: AR8000 Rx, no PX4, 4S 1300mAh battery 
Batt. 
Start 16.66 65 

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp 
(F) 

Amps 
Static updraft 

(lbf) 
End 
Volts Batt End 14.85 70 

1:00 65% 114 77 13.8 3.1 15.35 Delta -1.81 5 

3:00 50% 104 97 3.6 1 15.13    

5:00 50% 91 99 3.61 0.93 14.94 Date 24-Jan  
7:00 50% 88 96 3.6 0.92 14.84    

9:00 50% 102 97 3.61 0.92 14.72    
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10:00 50% 103 96 3.53 0.91 14.85    

               

          

Run 3 ESC(A): 50 
Batt. Cap 

(mAh) 
3500 

Motor Initial Temp 74  Volts Temp(F) 

Desc: AR8000 Rx, PX4 added, 4S 1300mAh battery 
Batt. 
Start 16.6 60 

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp (F) Amps Static updraft (lbf) 
End 
Volts Batt End 15.5 70 

1:00 49% 100 77 13.8 3 15.7 Delta -1.1 10 

3:00 40% 101 97 3.6 1.1 15.67    

5:00 40% 104 99 3.61 1.1 15.58 Date 24-Jan  
7:00 40% 101 96 3.6 1 15.47    

9:00 40% 100 97 3.61 1 15.35    

10:00 40% 101 96 3.53 1 15.5    

          

Run 4 ESC(A): 50 
Batt. Cap 

(mAh) 
1300 

Motor Initial Temp 56  Volts Temp(F) 

Desc: T1 Flight Pkg, NO PX4 
Batt. 
Start 16.37 60 

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp 
(F) 

Amps 
Static updraft 

(lbf) 
End 
Volts Batt End 14.81 68.6 

1:00 49% 62 62 17.6 3.11 14.57 Delta -1.56 8.6 

3:00 40% 89 84 3.99 1.01 15.05    

5:00 40% 83 83 3.93 1.01 14.91 Date 24-Jan  
7:00 40% 83 89 3.87 0.99 14.77    

9:00 40% 86 88 3.83 0.98 14.69    

10:00 40% 83 76 3.8 0.98 14.81    
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Run 5 ESC(A): 50 
Batt. Cap 

(mAh) 
3500 

Motor Initial Temp 55  Volts Temp(F) 

Desc: T1 Flight Pkg, PX4 in the loop 
Batt. 
Start 15.76 50 

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp (F) Amps Static updraft (lbf) 
End 
Volts Batt End 14.74 59 

1:00 49% 84 81 16.96 3.11 14.48 Delta -1.02 9 

3:00 40% 70 69 4.27 1.05 15    

5:00 40% 70 79 4.17 1.04 14.85 Date 24-Jan  
7:00 40% 79 89 4.19 1.05 14.73    

9:00 40% 60 73 4.13 1.02 14.61    

10:00 40% 74 74 4.13 1.03 14.74    
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E-Flite P25        

       

          

Run 1 ESC(A): 70 
Batt. Cap 

(mAh) 
1300 

Motor Initial 
Temp    Volts Temp(F) 

Desc: AR8000 Rx, no PX4, 11"x8" prop 
Batt. 
Start 12.44   

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp 
(F) 

Amps 
Static updraft 

(lbf) 
End 
Volts Batt End 11.09 102 

1:00 75% 86 87 8.96 1.34   Delta -1.35 102 

2:00 75% 88 88 7.8 1.22 11.8    

3:00 100% 109 95 21.6 2.5 11.6 
Date 

21-
Jan  

4:08 100% 117 95 20.3 2.4      

                 

          

Run 2 ESC(A): 50 
Batt. Cap 

(mAh) 
1300 

Motor Initial 
Temp 81  Volts Temp(F) 

Desc: AR8000 Rx, no PX4, 11"x8" prop 
Batt. 
Start 12.59 72 

Time(total) 
Power 
setting 

Motor Temp 
(F) 

ESC Temp 
(F) 

Amps 
Static updraft 

(lbf) 
End 
Volts Batt End     

1:00 75% 90 78 15.3 2.24 11.95 
Delta 

-
12.59 -72 

2:00 75% 95 76 14.6 2 11.6    

3:00 100% 100 77 22 2.55 11.3 
Date 

21-
Jan  

  100%              
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Appendix B: Sailing Conditions 

Sailing Conditions at Wind Speed 6 Kts and Wind Direction 90° 

Specifications Value 

Horizontal Heading (deg) -0.7048  (NOTE: 0.0 deg is due North) 

Length of Cable (m) 150 

SAIL Specifications 

Mass (kg) 3.00 

Altitude (m) 150.00 

Yaw Angle (deg) 13.980 

Pitch Angle (deg) 7.1800 

Roll Angle (deg) -24.789 

Angle of Attack (deg) 7.90 

Sideslip (deg) 0.00 

Position of SAIL relative to Truck 

North (m) 11.8 

East (m) -110.46 
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Appendix C: Skywalker 1880  

 

Figure. Skywalker 1880 

 

Skywalker Dimensions and Mass Properties 

Wing Area (m2) 0.41143 

Wing MAC (m) 0.22647 

Wingspan (m) 1.88 

Horizontal Tail Span (m) 56.26 

Horizontal Tail MAC (m) 17.1 

Vertical Tail Span (m) 24.4 

Vertical Tail MAC (m) 19.5 

Total Length (m) 1.183 

Weight (Kg) 0.9525 
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