
Doctoral Dissertations and Master's Theses 

Fall 12-2017 

Development of a Remotely-Piloted Vehicle Platform to Support Development of a Remotely-Piloted Vehicle Platform to Support 

Implementation, Verification, and Validation of Pilot Control Implementation, Verification, and Validation of Pilot Control 

Systems Systems 

Sean O’Toole 
Embry-Riddle Aeronautical University 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Navigation, Guidance, Control and Dynamics Commons 

Scholarly Commons Citation Scholarly Commons Citation 
O’Toole, Sean, "Development of a Remotely-Piloted Vehicle Platform to Support Implementation, 
Verification, and Validation of Pilot Control Systems" (2017). Doctoral Dissertations and Master's Theses. 
372. 
https://commons.erau.edu/edt/372 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/372?utm_source=commons.erau.edu%2Fedt%2F372&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


  

 
 
 
 

DEVELOPMENT OF A REMOTELY-PILOTED VEHICLE PLATFORM TO 

SUPPORT IMPLEMENTATION, VERIFICATION, AND VALIDATION OF PILOT 

CONTROL SYSTEMS 

 

A Thesis  

Submitted to the Faculty  

of  

Embry-Riddle Aeronautical University  

by  

Sean O’Toole 

 

In Partial Fulfillment of the  

Requirements for the Degree  

of  

Master of Science in Aerospace Engineering  

 

December 2017  

Embry-Riddle Aeronautical University  

Daytona Beach, Florida 





iii  

ACKNOWLEDGMENTS 
 

It is with great honor that I can thank all those who provided support and assistance in 

this process of completing a thesis study. First off, I would like to thank my mother and 

father, Debbie & Tim O’Toole. They have always provided me with unconditional love, 

support and inspiration. They have been role models to me, taught me a lot about life, and 

helped me become the man I am today. I would also like to thank my wife, Angelia, for 

her love, devotion and patients in this process as many late night and lots of time has been 

spent on this research.   

Dr. Hever Moncayo, I would like to thank you for taking me under your advice and 

providing guidance in this research topic. In the last three years you have taught me a lot 

about dynamics and controls and I appreciate you accepting me into the Flight Dynamics 

and Controls Research Lab. I have made many friends and enjoyed becoming a part of the 

dynamics and control family! Additionally, my appreciation for my thesis’ committee 

members, Dr. Yan Tang and Dr. Claudia Moreno, for their valuable input towards the 

completion of this manuscript. 

For all those whom I had the opportunity to work with and alongside, thank you, 

especially to my friends in the FDCRL; you all were there whenever a hand was needed. 

Special thanks to Yomary Betancur and Cindy Nshuti who helped tremendously when 

there were technical difficulties. Nolan Coulter, your friendship made the whole process 

more enjoyable, and I will miss having you as a neighbor in the lab. To the Pilots Eric 

Frantz, Robert Moore, and Albert Obi your time and efforts at the airfield are much 

appreciated. Lastly and most importantly I would like to give the glory to God! For he is 

the one who opened the doors and gave me the ability to succeed and endure. 



iv  

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES ......................................................................................................... vii 

SYMBOLS ......................................................................................................................... ix 

ABBREVIATIONS ............................................................................................................ x 

ABSTRACT ....................................................................................................................... xi 

1. Introduction ............................................................................................................ 1 

1.1. Literature Review ....................................................................................................... 2 
1.1.1. Pilot-Induced Oscillations ...................................................................................... 2 
1.1.2. Testbed Platforms ................................................................................................... 4 
1.1.3. Metrics for Evaluation of Handling Qualities and PIO ........................................ 5 

2. Remotely – Piloted Vehicle Platform .................................................................... 7 

2.1. Hardware ..................................................................................................................... 8 
2.2. Software .................................................................................................................... 17 
2.2.1. Simulink Real-Time ............................................................................................. 17 
2.2.2. PX4 Support Package ........................................................................................... 18 

3. Simulation Environment ...................................................................................... 20 

3.1. Equations of Motion ................................................................................................. 21 
3.2. Aircraft Dynamics .................................................................................................... 24 
3.3. Actuator Dynamics ................................................................................................... 25 
3.4. Aircraft Failure Model ............................................................................................. 26 
3.5. Control Architectures ............................................................................................... 27 
3.5.1. Pilot Reference Model .......................................................................................... 28 
3.5.2. Non-Linear Dynamic Inversion ........................................................................... 29 

4. Pilot Induced Oscillation Metrics ................................................................ 33 

4.1. Pilot Modeling .......................................................................................................... 35 
4.2. Flying Qualities and PIO Criterion ......................................................................... 37 

5. Results.................................................................................................................. 41 

5.1. Simulation Experiments ........................................................................................... 41 
5.2. Flight Testing ............................................................................................................ 51 

6. Conclusion and Future Work ............................................................................... 55 

REFERENCES ................................................................................................................. 57 

 

 

 



v  

  



vi  

LIST OF TABLES 
 

Table 2.1 SIG Rascal 110 Geometric Data ....................................................................... 14 

Table 3.1 Preliminary Stability Derivatives from Digital Datcom ................................... 24 

Table 3.2 Trim Conditions for Rascal in Simulation ........................................................ 25 

Table 4.1 Cooper-Harper Rating Scale (Cooper, G. and Harper, R. 1969) ...................... 39 

Table 5.1 Trim conditions for RPV simulation ................................................................ 41 

Table 5.2 Optimized 𝐾𝐾𝐾𝐾,𝑇𝑇𝑇𝑇 with ∠𝑝𝑝𝑝𝑝, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ......................................................... 42 

Table 5.3 Pilot-in-the-Loop Experiments ......................................................................... 47 

 
  



vii  

LIST OF FIGURES 
 

Figure 1.1 Closed Loop Pitch Attitude Control Task Schematic Diagram (Bailey, R. and 
Bidlack, T. 1996) ................................................................................................................ 5 

Figure 2.1 SIG Rascal 110 with all systems installed ......................................................... 7 

Figure 2.2 ERAU Mobil Ground Station ............................................................................ 8 

Figure 2.3 PCM-3355 Enclosure with input/output ports ................................................... 9 

Figure 2.4 LORD MicroStrain® 3DM-GX4-45™ ............................................................. 9 

Figure 2.5 Pixhawk passing through RS-232 to TTL converter and into PCM-3355 ...... 10 

Figure 2.6 Multiplexer (bottom left) connected to AR8000 receiver (top left and right) . 11 

Figure 2.7 AXi 5345/18HD mounted on Rascal ............................................................... 12 

Figure 2.8 FPV Camera (left), HUD visual and MRM OSD (center), Boscam video 
transmitter with Immersion clover antenna (right) ........................................................... 13 

Figure 2.9 Ground Station Pilot Cockpit .......................................................................... 15 

Figure 2.10 RPV and Ground Station Signal/Power scheme ........................................... 16 

Figure 2.11 Simulink Real-Time Compilation Steps ........................................................ 17 

Figure 2.12 Pixhawk Simulink Library ............................................................................ 19 

Figure 3.1 Simulation pilot cockpit in lab ........................................................................ 20 

Figure 3.2 6-DoF aircraft body axis .................................................................................. 21 

Figure 3.3 Elevator system response to a step input of 25° (Lyons, B. 2013) .................. 25 

Figure 3.4 Motor System Thrust Response to 5.75 lbs. input (Lyons, B. 2013) .............. 26 

Figure 3.5 Failure setup graphical user interface (GUI) ................................................... 27 

Figure 3.6 General Simulation Architecture ..................................................................... 30 

Figure 4.1 Performance Optimization Plot ....................................................................... 35 

Figure 4.2 Optimization Tool Box .................................................................................... 37 

Figure 4.3 Time-Domain Neal-Smith Parameter Plane .................................................... 38 

Figure 4.4 Time-Domain Neal-Smith PIO parameter plane ............................................. 40 

Figure 5.1 Nominal handling qualities and PIO prediction .............................................. 43 

Figure 5.2 Optimization Tracking for D=2.25sec NLDI (Left) Stick-to-Servo (Right) ... 44 

Figure 5.3 Delay 300ms handling qualities and PIO prediction ....................................... 44 

Figure 5.4 NLDI experiences PIO when a delay of 300ms present and performing an 
aggressive maneuver (D=1.25) ......................................................................................... 45 

Figure 5.5 Right Aileron Lock at 2º handling qualities and PIO prediction ..................... 45 

Figure 5.6 HUD used by pilot to acquire maneuver ......................................................... 46 



viii  

Figure 5.7 Audio and Visual Cue for Pilot to Start and Complete Maneuver .................. 46 

Figure 5.8 Nominal Pilot-in-the-Loop Time-Domain Handling Qualities ....................... 49 

Figure 5.9 Pilot-in-the-Loop with 300ms Delay Stick-to-Servo (left) NLDI (right) ........ 50 

Figure 5.10 300ms Delay Pilot-in-the-Loop Time-Domain Handling Qualities .............. 50 

Figure 5.11 2° Right Aileron Lock Pilot-in-the-Loop Time-Domain Handling Qualities 51 

Figure 5.12 Daytona RC Flying Park ............................................................................... 51 

Figure 5.13 Flight Test at Daytona RC Flying Park ......................................................... 54 

 

  



ix  

SYMBOLS 
 

m Mass 
v Velocity 
∠𝑝𝑝𝑝𝑝 Pilot phase compensation angle 
𝑝𝑝, 𝑞𝑞, 𝑟𝑟 Roll rate, pitch rate, yaw rate 
𝐼𝐼𝑥𝑥𝑥𝑥, 𝐼𝐼𝑦𝑦𝑦𝑦,𝐼𝐼𝑧𝑧𝑧𝑧 Symmetrical moments of inertia 
𝑢𝑢, 𝑣𝑣,𝑤𝑤 Linear velocities 
𝜙𝜙, 𝜃𝜃,𝜓𝜓 Euler angles 
𝜙̇𝜙, 𝜃̇𝜃, 𝜓̇𝜓 Euler rates 
𝜃𝜃𝑐𝑐 Commanded pitch 
𝛼𝛼 Angle of attack 
𝛽𝛽 Angle of side-slip 
𝐹⃑𝐹 Vector of total forces 
𝑀𝑀��⃑  Vector of total moments 
𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐, 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 Roll, pitch, and yaw rate command 
𝜔𝜔𝑛𝑛 Natural frequency 
𝜁𝜁 Damping 
𝜔𝜔𝐵𝐵𝐵𝐵 Bandwidth frequency 
𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) Root-mean-squared pitch error 
𝑥̇𝑥, 𝑦̇𝑦, 𝑧̇𝑧 Inertial reference frame velocities 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  



x  

ABBREVIATIONS 
 

RPV Remote-Pilot Vehicle 
GCS Ground Control Station 
UAV Unmanned Aerial Vehicle 
PIO Pilot-Induced Oscillation 
AirSTAR Airborne Subscale Transport Aircraft Research 
NASA National Aeronautics and Space Association 
WVU West Virginia University 
ADCL Advanced Dynamics and Control Lab 
TTL Transistor-Transistor Logic 
PWM Pulse Width Modulation 
FPV First-Person Viewer 
OSD On-Screen Display 
APC Advanced Precision Composites 
Li-Po Lithium Polymer 
Ni-MH Nickel-Metal Hydride 
ESC Electronic Speed Controller 
MAC Mean Aerodynamic Chord 
IMU Inertial Measurement Unit 
INS Inertial Navigation System 
6-DoF Six-Degree of Freedom 
NLDI Non-Linear Dynamic Inversion 
DCM Direct Cosine Matrix 
GUI Graphical User Interface 
PI Proportional-Integral  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  



xi  

ABSTRACT 
 
O’Toole, Sean MSAE, Embry-Riddle Aeronautical University, December 2017. 

Development of a Remotely-Piloted Vehicle Platform to Support Implementation, 

Verification and Validation of Pilot Control Systems. 

 
This thesis presents the development of a research test bed and the use of a set of metrics 

for evaluating handling qualities with pilot in the loop configuration. The main objective 

of this study is to provide software and hardware tools to support performance evaluation 

of control systems designed to compensate for Pilot Induced Oscillations (PIOs). A 

remotely-piloted vehicle presented in this thesis consists of an RC aircraft modified to be 

flown from a ground station cockpit. The unmanned aerial system has a high-speed on-

board processing system capable of simulating different conditions during flight such as 

injecting actuator failures and adding delays. In this study, the analysis of pilot handling 

qualities based on a set of evaluation metrics, is also included. The metrics are based on 

time-domain Neal-Smith criterion and are used to provide numerical data which 

categorizes the control system in one of the levels on the Cooper-Harper Rating scale. Two 

different control configurations were implemented and analyzed in this study: stick-to-

servo and non-linear dynamic inversion control laws. Piloted-simulation results are 

presented on the Neal-Smith flying qualities plane at different flight conditions. 
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1. Introduction 

Most current and future aircraft are or will be utilizing fly-by-wire technology, which 

allows for implementation of control systems to aid the pilot during operation. One major 

focus of the National Aeronautics and Space Administration (NASA) Aviation Safety 

Program is the research of transport-category aircraft during adverse flight conditions such 

as upsets, damage, and failures (Murch, A., 2008). When an aircraft is under adverse 

conditions it can lead to unfavorable pilot-vehicle interaction, loss of control, and 

ultimately catastrophe. These loss of control events go “beyond the normal flight envelope 

into regions where aerodynamic data is not available from conventional sources” (Jordan, 

T. L., et. al., 2006). In an effort to safely assist with the development of methods to 

minimize loss of control events, several type of Remotely Piloted Vehicle (RPV) platforms 

have been developed.  

RPV platforms have provided a safe and cost-efficient option towards the research in 

loss of control events. They allow for rapid development, testing and validation of flight 

controllers within these loss of control regions that are outside the normal flight envelope. 

Additionally, different categories of failures can be simulated in this test bed environment 

and pilot-vehicle interaction can be observed.  

During the testing and validation, it is necessary to evaluate the handling qualities of 

the control system. Since RPVs, do not have the motion cues like manned aircraft a metric 

is necessary for true evaluation of the handling. According to researchers at the University 

of Illinois at Urbana-Champaign: 
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Prediction of flying qualities and adverse aircraft-pilot coupling, fundamentally 
characterized by the closed-loop aircraft-pilot interactions, has remained as one of 
the key (missing) steps towards the application of adaptive control technologies in 
manned (and unmanned) aircraft (Choe, Ronald, et. al., 2010). 
 

The handling qualities can be representative of the pilot’s ability to “acquire the target 

quickly, and predictably with a minimum of overshoot and oscillation” (Choe, R., et. al. 

2010). Methods for evaluation and detection are based either in frequency- or time-domain. 

The current criteria recognized for handling qualities uses the frequency-domain and is 

contained in Military Specification (MIL-STD-1797). During the evaluation of handling 

qualities one adverse pilot-vehicle interaction which can be detected, is pilot induced 

oscillation. Systems which is susceptible to pilot induced oscillation, or PIO, is known as 

PIO-prone. There are a few methods used in evaluation of PIOs: Smith-Geddes criterion, 

Open Loop Onset Point method, and Neal-Smith criterion.  

This thesis uses the time-domain Neal-Smith criterion which has been shown in 

previous research by (Bailey, R. and Bidlack, T. 1996) to be equivalent to the frequency-

domain criteria for analysis of flying qualities. The time-domain Neal-Smith criteria, at its 

foundation, is a combination of the frequency-domain Neal-Smith criteria and step target 

tracking criteria (Bailey, R. and Bidlack, T. 1995). Through using the time-domain, 

analysis of all systems can be done without the need to make assumptions on linearity, 

inferred pilot inputs or control activity. This proves useful when an aircraft is under certain 

failures, as the system typically becomes nonlinear. The time-domain Neal-Smith criterion 

is utilized to analyze two configurations in this thesis. The standard stick-to-servo where 

no controller is augmented with the pilot, and the other configuration utilizes a non-linear 

dynamic inversion controller.  

In Chapter 2 of this thesis, the development and assembly of the RPV is addressed with 
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details and descriptions of the hardware and software which is used onboard and in the 

Ground Control Station (GCS). Chapter 3 explains how the vehicle is modeled for 

simulation, and the different controllers which are used to provide comparison when 

evaluating handling qualities. The way handling qualities metric is formulated and how it 

can be used to predict pilot-induced oscillations is discussed in Chapter 4. Chapter 5 

outlines the experiments which were conducted for pilot-in-the-loop simulation. 

Additional, the results from the pilot-in-the-loop simulation experiments and flight test are 

presented in the fifth chapter. Lastly to conclude this thesis an overall conclusion and 

preamble to future work and suggestions are made in Chapter 6. The two main objectives 

of this thesis are: 

1. Development of a remotely-piloted vehicle platform which can be flown from a 

ground control station cockpit 

2. Pilot-in-the-loop simulation utilizing the time-domain Neal-Smith criterion for the 

evaluation of handling qualities and PIO tendencies under nominal and failure 

conditions. 

1.1.  Literature Review 

1.1.1.  Pilot-Induced Oscillations 

Aircraft loss of control is one of the leading factors in the cause of fatal accidents. From 

the time of 2006 through 2015 there were 15 large commercial jet airplane accidents that 

resulted in 1396 fatalities (Belcastro, C.M. et. al. 2017). Loss of control is defined as 

motion that is outside the normal operating flight envelope; not predictably but altered by 

pilot control inputs; characterized by nonlinear effects, such as kinematic/inertial coupling, 

disproportionately large responses to small state variable changes, or oscillator/divergent 
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behavior; likely to result in high angular rates and displacements; characterized by the 

inability to maintain heading, altitude, and wings level (Wilborn, J.E., Foster, J.V. 2004). 

In a study performed by (Belcastro, C.M. et. al. 2017) their statistics for loss of control 

found aggressive maneuvers and abnormal maneuvers accounted for 5% and 9% of 

occurrences, respectively.  

Aggressive maneuvers or improper maneuvers are one of the cases which can lead to 

PIO, a subcategory in loss of control. PIO is defined as the sustained or uncontrollable 

oscillations resulting from the pilot’s efforts to control the aircraft. High profile PIO 

incidents involving the Lockheed/Boeing/General Dynamics YF-22 and SAAB JAS-39 

show that it is important to understand what causes PIO and how to prevent it (Mandal, 

Tanmay, et. al. 2013). 

PIO’s are typically labeled in three different categories. This thesis only focuses on 

category I and II failures to test in simulation. These categories as described in (Mcruer, 

D., et. al. 1997) are: 

Category I: This category is a linear pilot-vehicle system oscillation. The aircraft can 

be characterized by a linear function, and the pilot acts as a linear transfer function where 

the inputs are sinusoidal and neither the aircraft nor pilot’s dynamics change during PIO. 

The aircraft gains are a major factor in PIO where too high of gain makes for high 

sensitivity and to low of gains makes for sluggish responses. Not all category I PIOs are 

severe. Faulty pilot adaptation is a typical case of category I PIO but can be negated as 

more familiarity of the aircraft’s characteristics is gained. However, those PIOs where the 

gain range is inadequate or there is excessive time delay will not go away and can lead to 

catastrophe. 
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Category II: This category consists of rate and position limiting with a quasi-linear 

pilot-vehicle system oscillation. These are severe oscillations with high amplitudes where 

rate and position limits prevent recovery. They are the most common aircraft pilot coupling 

event, and typically occur with little or no notice (Mandal, Tanmay, et. al. 2013). 

1.1.2. Testbed Platforms 

Testbed platforms allow for actual flight test to be conducted, which is necessary when 

attempting to understand the complex and relatively unexplored nature of transport aircraft 

dynamics during event that lead to loss of control (Murch, A. 2008). Research efforts 

towards the development of mobile test-beds that can be used to investigate adverse flight 

conditions such as upsets, damage, and failures are being conducted by scholars at NASA 

and West Virginia University (WVU). NASA and WVU both have developed GCS that 

utilize low cost, easy-fly and maintain, robust platforms that are capable of hosting research 

data and control systems (Jordan, T. L., Bailey, R. M. 2008).  

The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed of NASA 

Langley Research Center has been leading the way with focuses on aviation safety research 

(Guerra, M., et. al., 2012). Their ground control station hosts three stations: a flight research 

station, operations command station, and operations engineering station. An additional 

external area is the safety pilot station. These stations all work together to enable the test 

flights of multiple unmanned aerial vehicles (UAVs), ranging from expensive, custom-

built, scale model aircraft to off the shelf radio controlled planes, which can be used 

interchangeably.  

West Virginia University’s testbed platform is like that of NASA’s AirSTAR although 

much more affordable. Their GCS is made from a box truck that has been modified to 
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accommodate necessary equipment to fly and collect data with their UAV. Their UAV is 

a custom-built aircraft called the “Phastball,” and host avionics for measuring the aircraft 

states and providing video to the GCS pilot. WVU’s UAV is capable of autonomous or 

partially autonomous flight from either the GCS or with an RC pilot.  

1.1.3. Metrics for Evaluation of Handling Qualities and PIO 

The evaluation of flying qualities can either be done in the frequency-domain or the 

time-domain. Both frequency- and time-domain performance analyze the systems closed-

loop response. Closed-loop means a state is fed back through to compare to a commanded 

or desired state, the error is then passed through a pilot transfer function which attempts to 

bring the error to zero (Figure 1.1).  

 

Figure 1.1 Closed Loop Pitch Attitude Control Task Schematic Diagram (Bailey, R. and 
Bidlack, T. 1996) 

 

The frequency-domain Neal-Smith criteria is based on different task demands which 

are defined by the bandwidth frequency. The pilot’s workload is then represented by the 

phase compensation angle at the bandwidth frequency, ∠𝑝𝑝𝑝𝑝, and compares it with the 

closed-loop resonance, � 𝜃𝜃
𝜃𝜃𝑐𝑐
�. The closed loop resonance is representative of the pilot’s 

ability to accurately acquire the task. One shortfall of this method is that it is “not 

necessarily adequate for the analysis of nonlinear flight control system elements” (Bailey, 
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R. and Bidlack, T. 1996). The reason for this is because frequency-domain cannot account 

for non-linarites without making assumptions and estimations.  

The time-domain Neal-Smith criteria is another method that can be used to investigate 

handling qualities. It stems from the frequency-domain Neal-Smith criterion (Choe, R. et. 

al. 2010). In a similar way to the frequency-domain, the task demands are defined by the 

task acquisition time. The ability for the control system to track the desired or commanded 

state is represented by the root-mean-squared value of the tracking error. Lastly, the pilot 

work load, like that of the frequency-domain, is represented by the pilot phase 

compensation angle. In previous study by (Bailey, R. E. and Bidlack, T. J., 1996) the time-

domain Neal-Smith criterion showed promising quantitative criterion for the prediction of 

flying qualities and Pilot Induced Oscillation (PIO) tendencies. 

Both the frequency- and time-domain Neal-Smith Criterion define PIO-prone 

configurations as those systems that are susceptible to more error due to changes in the 

aggressiveness of a maneuver.  
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2. Remotely – Piloted Vehicle Platform 

Large RC hobby planes have the capability to host avionics and can be easily modified 

to meet research criteria. They are low-cost, easily maintained platforms.  NASA utilizes 

different types of commercial-off-the-shelf transport models to allow for rapid evaluation 

of control design concepts (Jordan, T., Bailey, R. 2008).  

Here in the Advanced Dynamics and Control Lab (ADCL) at Embry-Riddle 

Aeronautical University the SIG Rascal 110 RC hobby plane, Figure 2.1, is used in 

conjunction with a portable closed trailer, Figure 2.2, to create the RPV platform. The 

Rascal was chosen as the airframe due to its large size and ability to house the needed 

hardware with only minor modification. Additionally, the SIG Rascal 110 has also been 

used by several other institutions as a research airframe (Choon Seong, 2008) (Xargay, E., 

et. al., 2013). 

 

Figure 2.1 SIG Rascal 110 with all systems installed 
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Figure 2.2 ERAU Mobil Ground Station 

 

The trailer chosen for the ground station is a custom-built trailer form Pace American. 

It was custom built to allow for climate control, power outlets, and a circuit breaker which 

can be powered by a generator or outlet. The trailer had further customization by installing 

desk and shelving to allow for workstations and a place to secure aircrafts for transport. In 

the following subsections both the aircraft and ground station are discussed, first addressing 

the embedded 1) Hardware and then 2) Software. 

2.1.  Hardware 

To have the SIG Rascal 110 operation for the purposes of this study, motors, servos, a 

microcontroller, computer, and several sensors were installed. Most important of these was 

the PCM-3355 by Advantech. This is a small PC-104 type computer that can be stacked 

with other boards to perform necessary processes. The PCM-3355 is the primary computer 

of the RPV. It gives the vehicle the ability to process and save large amounts of data, and 

can be used to run real-time simulation. The system features an AMD LX800/500 MHz 

and LX600/366 MHz processor by Geode™. Also included are two RS-232 port and two 
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USB 2.0 ports. In addition to the use of the PCM-3355, an Emerald-MM-4M by Diamond 

Systems® was stacked on top to provide an additional 4 serial ports. The computer stack 

was assembled and then placed inside a 3D printed enclosure with input/output ports to 

allow for external devices to be easily connected to the PCM-3355, see Figure 2.3. 

 

Figure 2.3 PCM-3355 Enclosure with input/output ports 

 

MicroStrain® 3DM-GX4-45™ INS as shown in Figure 2.4 is one of the sensors that is 

read by the PCM-3355 on-board the RPV. This sensor provides highly accurate 

measurements of the aircraft attitude (±0.8º), angular rates, and accelerations. It uses an 

Extended Kalman Filter to provide more accurate results and, to compute GPS location 

(±5m), velocities (±0.1m/s) as well as pressure altitude. This sensor is selected for its ease 

of use, light weight, high accuracy, and performance. The MicroStrain® automatically 

compensates for vehicle noise and vibration, and does not need field calibration due to 

automatic magnetometer calibration and anomaly rejection.   

 

Figure 2.4 LORD MicroStrain® 3DM-GX4-45™ 
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Pixhawk by 3D Robotics™ is a micro controller that is used in this thesis to read pulse 

width modulation (PWM) signals from the remote-control inputs and send them through 

the serial port. Pixhawk also has a built in IMU and barometer which is primarily used as 

a redundant system to back up better quality hardware as described earlier. However, 

before the values measured by the Pixhawk can be read by the PCM-3355 it must first go 

through a RS-232 to transistor-transistor logic (TTL) converter (Figure 2.5). This is 

because Pixhawk communicates in TTL which is a binary logic that uses voltages between 

0V and +5V while RS-232 port on most PCs typically read voltages from -13V to +13V. 

The RS-232 to TTL converter changes voltages so that the two systems can communicate.  

 

Figure 2.5 Pixhawk passing through RS-232 to TTL converter and into PCM-3355 
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Polulu Mini Maestro 18 is a servo controller which also uses an RS-232 to TTL 

converter. The Polulu reads the RS-232 signal from the PCM-3355 and converts it to a 

PWM signal which can actuate the servos on the RPV with a resolution of 0.25𝜇𝜇𝜇𝜇.  

The Transmitter used to by the RC pilot is a Spektrum DX7 7-channel receiver. This 

transmitter is used due to its many channels and ability to be set up in wireless trainer mode 

which is used to switch control to the ground station pilot. The transmitter is connected to 

an AR8000 8-channel receiver by Spektrum. This receiver is used because of its 

redundancy of two receivers which reduces the chances of a lost connection. The receiver 

obtains the signal from the transmitter and then feeds the signal to both the Pixhawk and 

an 8-channel RC/RX multiplexer by Cytron Technologies as seen in Figure 2.6. This 

multiplexer is used to allow the RC pilot to switch from running the signals directly to the 

servos to running through the primary on-board computer. It is most useful as a fail-safe, 

by allowing the RC pilot to abort the test, regain control of the aircraft and land safely.  

 

Figure 2.6 Multiplexer (bottom left) connected to AR8000 receiver (top left and right) 
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The actuators that were recommended and used on the Rascal 110 are the HS-5625MG 

Digital Servo by Hitec. It is a digital metal gear servo designed for high speed and high 

torque applications. There are in total 6 of these servos used for actuation: 1 for elevator, 

2 for ailerons, 1 for rudder, and 2 for flaps. 

Due to the increased weight and desire for a longer flight, the selected motor is an AXi 

5345/18HD, as displayed in Figure 2.7, with a 20x13 propeller by Advanced Precision 

Composites (APC). The motor is a brushless DC motor that can draw up to 75 amps and 

operates at 171 Kv (171 RPM/V). It can handle up to a 12-cell lithium polymer (Li-Po) 

battery. The 20x13 APC propeller means it has a diameter of 20 inches and a pitch of 13 

degrees at 25% of the length of the radius. 

 

Figure 2.7 AXi 5345/18HD mounted on Rascal 

 

The motor is controlled by an electronic speed controller (ESC), Jeti Spin 99 Pro Opto 

Brushless.  This ESC can support a continuous draw of 99 amps and a max current draw 

of 109 amps. It is important that the proper ESC, motor, propeller, and battery combination 

is selected to meet the needs of the desired performance. 

There are 4 batteries used on board the Rascal. Two 6-cell Li-Po batteries connected in 

series generate approximately 50V to power the AXi motor. The servos are powered by a 
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4-cell nickel-metal hydride (Ni-MH) battery that produces approximately 5V. There is an 

additional 3-cell Li-Po battery to power the camera, primary on-board computer, and video 

transmitter.  

Providing video to the ground station pilot is done with the use of a First-Person Viewer 

(FPV) camera, MRM On-Screen Display (OSD), and Boscam 5.8 GHz video transmitter 

with an Immersion clover antenna, see Figure 2.8. The MRM OSD takes values from the 

Pixhawk IMU and barometer and overlays them on the video image from the FPV camera. 

The video with the OSD overlay (Figure 2.8 center) is then transmitted to the ground station 

receiver. 

 

Figure 2.8 FPV Camera (left), HUD visual and MRM OSD (center), Boscam video 
transmitter with Immersion clover antenna (right) 

 

All the new components added to modify the SIG Rascal 110 gives it the geometric 

properties shown in Table 2.1.  
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Table 2.1 SIG Rascal 110 Geometric Data 

Parameter Value 

Mass 9.16 𝑘𝑘𝑘𝑘 

Wingspan 2.80 𝑚𝑚 

Wing Area 0.981 𝑚𝑚2 

MAC 0.351 𝑚𝑚 

𝐼𝐼𝑥𝑥𝑥𝑥  2.64 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2 

𝐼𝐼𝑦𝑦𝑦𝑦 2.10 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2 

𝐼𝐼𝑧𝑧𝑧𝑧 2.59 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2 

 

The ground station is where data can be analyzed, and the pilot sits to fly the RPV. A 

pilot sits in a Volair Sim™ Cockpit which holds 3 monitors to provide visuals for the pilot 

(Figure 2.9). Hardware used to provide visuals to the pilot from the RPV is a Boscam 

5.8GHz video receiver. Pilot inputs are commanded on a CH Eclipse yoke which is also 

shown in Figure 2.9. Inputs from the yoke are passed through to a ForceFly computer made 

by EMR Labs. ForceFly enables the yoke controls to be transmitted through the wired 

trainer port of a transmitter. A Spektrum DX5e transmitter is used, and wirelessly bound 

to the RC pilots DX8 transmitter. 
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Figure 2.9 Ground Station Pilot Cockpit 

 

Two additional desktop computers are used for the engineer workstation and the 

weather station. Software is generated and able to be uploaded through ethernet cable onto 

the RPV prior to starting flight test from the engineer workstation. The weather station 

reads wind speed and direction from sensors placed outside the ground station. Figure 2.10 

summarizes the power and signal flow for RPV and GCS. 
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 Figure 2.10 RPV and Ground Station Signal/Power scheme 
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2.2. Software 

Software enables the sensors and controller to communicate with the RPV’s on-board 

computer and allows the engineer station to choose which experiments are to be tested. In 

this thesis real-time applications are tested using MathWorks® MATLAB, Simulink and 

Simulink Real-Time™. 

2.2.1. Simulink Real-Time 

Simulink Real-Time™ allows real-time simulation and testing. “The typical 

environment for real-time applications consist of a development computer [engineer’s 

station], and the hardware under test [RPV’s on-board computer]” (MathWorks. 2017). 

Initialization code is built on the host computer in MATLAB to define states and values 

that are used in Simulink models. The target computer is connected to using a boot drive 

and TCP/IP protocol. The boot drive defines the targets IPv4 address so that the host may 

find it and connect. When the Simulink model is commanded to build to the target, the 

model passes through a C compiler which then builds onto the target computer (Figure 

2.11). 

 

Figure 2.11 Simulink Real-Time Compilation Steps 
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The Simulink Real-Time Explore opened on the host computer allows management 

and control of the simulation that is built on the target computer. Additionally, the explorer 

can read data and scopes that are inserted in the Simulink model built on the target. These 

scopes are useful for collecting and storing data while the RPV is in flight. In the real-time 

Simulink library are blocks that are used to read RS-232 Serial ports. The receiving RS-

232 blocks define the serial ports for the pixhawk, MicroStrain® and how many values are 

read. Headers are utilized to ensure that the information collected is in the proper order. 

RS-232 blocks are also used to send commands through the onboard computer to the Polulu 

which can move the servos. 

2.2.2. PX4 Support Package 

Simulink has many libraries for different hardware, but most useful for this thesis was 

their Pixhawk library (Figure 2.12). This library has blocks which enables Pixhawk to view 

values of signals and tune parameters in real time. The blocks also give Pixhawk the ability 

to log and record flight data of sensors, although not as much data as is capable by the 

PCM-3355. The main support blocks used in this thesis are those for reading PWM signals 

from the RC transmitters, in addition to reading IMU values and sending information 

through a selected I/O ports to be read by the RPVs on-board computer.  
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Figure 2.12 Pixhawk Simulink Library  
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3. Simulation Environment 

The ultimate objective of this thesis is a full working RPV and GCS where flight 

controls can be tested. However, before performing real-time flight test it is necessary to 

conduct preliminary test of different controllers in simulation, and to train the pilot under 

manual and augmented control modes. Flight simulator lab setup has the same look and 

feel as that of the ground control station (Figure 3.1). MATLAB and Simulink are used to 

develop an environment that models the Rascal with the desired controllers. The visuals in 

simulation are provided through FlightGear v3.4.0. 

 

Figure 3.1 Simulation pilot cockpit in lab 

 

Further explanation on the equations of motion, modeling of the SIG Rascal 110, and 

controllers implemented are covered in the following subsections.
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3.1.  Equations of Motion 

 

Figure 3.2 6-DoF aircraft body axis 

 

Simulation of the RPV aircraft dynamics is done by utilizing a non-linear six-degree-

of-freedom (6-DoF) set of equations of motion. Assumptions of a rigid-body RPV, and 

“flat-Earth equations … [Earth-fixed], with constant gravity, are sufficient for aircraft 

simulation…” (Stevens, B. L., et. al., 2016). The 6-DoF model requires twelve independent 

equations of motion which fall under four different categories: 

1. Force Equations [𝑢̇𝑢, 𝑣̇𝑣, 𝑤̇𝑤]  

2. Moment Equations [𝑝̇𝑝, 𝑞̇𝑞, 𝑟̇𝑟] 

3. Kinematic Equations �𝜙̇𝜙, 𝜃̇𝜃, 𝜓̇𝜓� (Euler Rates) 

4. Navigation Equations [𝑥̇𝑥, 𝑦̇𝑦, 𝑧̇𝑧] 

The equations of motion for a rigid-body aircraft utilize Newton’s Second Law: 

�𝐹𝐹 = 𝑚𝑚
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

 

 ∑𝐹𝐹 – sum of all forces acting on the aircraft 

 𝑚𝑚 – aircraft mass 
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 𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

 – rate of change of linear velocities  

�𝑀𝑀 =
𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑯𝑯 

𝑯𝑯 =  𝝎𝝎���⃗  𝒙𝒙 𝑰𝑰 

 ∑𝑀𝑀 – sum of all moments acting on the aircraft 

 𝝎𝝎���⃗  – vector containing aircraft angular velocities  

 I – aircraft mass moment of inertia matrix 

However, the position and orientation of an aircraft cannot be described relative to a 

moving body axis frame. Therefore, the body axis must go through a transformation matrix. 

Through making three consecutive rotations, called the “yaw-pitch-roll sequence” the 

following Direction Cosine Matrix (DCM) is obtained (Stevens, B. L., et. al., 2016): 

𝑹𝑹𝑁𝑁𝑁𝑁𝑁𝑁 = 

�
cos 𝜃𝜃 cos𝜓𝜓 − cos𝜙𝜙 sin𝜓𝜓 + sin𝜙𝜙 sin𝜃𝜃 cos𝜓𝜓 sin𝜙𝜙 sin𝜓𝜓 + cos𝜙𝜙 sin𝜃𝜃 cos𝜓𝜓
cos𝜃𝜃 sin𝜓𝜓 cos𝜙𝜙 cos𝜓𝜓 + sin𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓 − sin𝜙𝜙 cos𝜓𝜓 + cos𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓
− sin𝜃𝜃 sin𝜙𝜙 cos 𝜃𝜃 cos𝜙𝜙 cos 𝜃𝜃

� 

Once the ability to change between body and Earth reference frames is achieved, 

Newton’s Second Law for forces can be re-written as the force equations (1) with respect 

to the inertial reference frame. 

�
𝑢̇𝑢
𝑣̇𝑣
𝑤̇𝑤
� = �

𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑞𝑞
𝑝𝑝𝑝𝑝 − 𝑟𝑟𝑟𝑟
𝑞𝑞𝑞𝑞 − 𝑝𝑝𝑝𝑝

� + �
𝐹𝐹𝑥𝑥 𝑚𝑚⁄
𝐹𝐹𝑦𝑦 𝑚𝑚⁄
𝐹𝐹𝑧𝑧 𝑚𝑚⁄

�     (1) 

𝐹𝐹𝑥𝑥,𝑦𝑦,𝑧𝑧 – external forces acting along the x, y, or z-axis. 

𝑢𝑢, 𝑣𝑣,𝑤𝑤 – linear velocities 

𝑝𝑝, 𝑞𝑞, 𝑟𝑟 – roll, pitch, and yaw rate 
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The external forces are typically divided into three general categories, aerodynamic, 

gravitational, and propulsive forces. Thus 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐹𝐹𝑖𝑖𝑔𝑔 + 𝐹𝐹𝑖𝑖𝑇𝑇ℎ𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢 for 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧.  

Again, referencing the body to the inertial reference frame Newton’s Second Law for 

moments yields the moment equations (2). For the inertia of the aircraft symmetry about 

the X-Z plane can be assumed.  

�
𝑝̇𝑝
𝑞̇𝑞
𝑟̇𝑟
� = −

⎣
⎢
⎢
⎢
⎢
⎡
𝑞𝑞𝑞𝑞�𝐼𝐼𝑧𝑧𝑧𝑧−𝐼𝐼𝑦𝑦𝑦𝑦�

𝐼𝐼𝑥𝑥𝑥𝑥
𝑝𝑝𝑝𝑝(𝐼𝐼𝑥𝑥𝑥𝑥−𝐼𝐼𝑧𝑧𝑧𝑧)

𝐼𝐼𝑦𝑦𝑦𝑦
𝑝𝑝𝑝𝑝�𝐼𝐼𝑦𝑦𝑦𝑦−𝐼𝐼𝑥𝑥𝑥𝑥�

𝐼𝐼𝑧𝑧𝑧𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
1
𝐼𝐼𝑥𝑥𝑥𝑥

0 0

0 1
𝐼𝐼𝑦𝑦𝑦𝑦

0

0 0 1
𝐼𝐼𝑧𝑧𝑧𝑧⎦
⎥
⎥
⎥
⎤

 �
𝐿𝐿
𝑀𝑀
𝑁𝑁
�   (2) 

  𝐿𝐿,𝑀𝑀,𝑁𝑁 – External moments about the x, y, and z-axis 

  𝐼𝐼 – mass moment of inertia 

Like the external forces, external moments are divided into categories of aerodynamic, 

gravitational, and propulsive. Therefore 𝐿𝐿 =  𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐿𝐿𝑔𝑔 + 𝐿𝐿𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,  

𝑀𝑀 =  𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑀𝑀𝑔𝑔 + 𝑀𝑀𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝑁𝑁 =  𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁𝑔𝑔 + 𝑁𝑁𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

By performing a simple transformation using the Euler angles and aircraft angular rates 

the Euler rates, also known as the kinematic equations, can be obtained (3). 

�
𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
� = �

1 sin𝜙𝜙 tan𝜃𝜃 sin𝜙𝜙 tan 𝜃𝜃
0 cos𝜙𝜙 − sin𝜙𝜙
0 sin𝜙𝜙 sec𝜃𝜃 cos𝜙𝜙 sec𝜃𝜃

� �
𝑝𝑝
𝑞𝑞
𝑟𝑟
�   (3) 

Through using the DCM defined and the aircraft velocities, the inertial velocities, 

[𝑥̇𝑥 𝑦̇𝑦 𝑧̇𝑧], can be obtained (4). Sine and Cosine have been abbreviated to allow the 

equation to fit on one line. 

�
𝑥𝑥
𝑦̇𝑦
𝑧̇𝑧

̇
� = �

c𝜃𝜃 c𝜓𝜓 − c𝜙𝜙 s𝜓𝜓 + s𝜙𝜙 s 𝜃𝜃 c𝜓𝜓 s𝜙𝜙 s𝜓𝜓 + c𝜙𝜙 s 𝜃𝜃 c𝜓𝜓
c 𝜃𝜃 s𝜓𝜓 c𝜙𝜙 c𝜓𝜓 + s𝜙𝜙 s 𝜃𝜃 s𝜓𝜓 − s𝜙𝜙 c𝜓𝜓 + c𝜙𝜙 s 𝜃𝜃 s𝜓𝜓
− s 𝜃𝜃 s𝜙𝜙 c𝜃𝜃 c𝜙𝜙 c 𝜃𝜃

� �
𝑢𝑢
𝑣𝑣
𝑤𝑤
�  (4) 

True airspeed (𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇), angle of attack (𝛼𝛼), and sideslip (𝛽𝛽) are needed to complete the 
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simulation. Equation (5) shows how these values are solved.  

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑢𝑢𝑟𝑟2 + 𝑣𝑣𝑟𝑟2 + 𝑤𝑤𝑟𝑟2 

𝛼𝛼 = tan−1 �𝑤𝑤𝑟𝑟
𝑢𝑢𝑟𝑟
�     (5) 

𝛽𝛽 = sin−1 �
𝑣𝑣𝑟𝑟

�𝑢𝑢𝑟𝑟2 + 𝑣𝑣𝑟𝑟2 + 𝑤𝑤𝑟𝑟2
� 

𝑢𝑢𝑟𝑟 = 𝑢𝑢 + 𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

𝑣𝑣𝑟𝑟 = 𝑣𝑣 + 𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

𝑤𝑤𝑟𝑟 = 𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

3.2.  Aircraft Dynamics 

In previous research performed at the Advanced Dynamics and Controls Lab (Lyons, 

Brendon. 2013), the Rascal was modeled using Digital Datcom. This provides the stability 

derivatives for the dynamics of the aircraft in simulation. Table 3.1 shows the values 

obtained previously and what is used in this thesis for simulation.  

 

Table 3.1 Preliminary Stability Derivatives from Digital Datcom 

Longitudinal Stability 
Derivatives (per rad) 

Lateral – Directional Stability 
Derivatives (per rad) 

𝐶𝐶𝐿𝐿0 0.4940 𝐶𝐶𝑦𝑦𝑦𝑦 -0.3198 

𝐶𝐶𝐿𝐿𝐿𝐿 5.9730 𝐶𝐶𝑦𝑦𝑦𝑦 -0.1138 

𝐶𝐶𝐿𝐿𝐿𝐿 4.8850 𝐶𝐶𝑙𝑙𝑙𝑙 -0.1002 

𝐶𝐶𝐷𝐷0 0.0310 𝐶𝐶𝑙𝑙𝑙𝑙 -0.5087 

𝐶𝐶𝐷𝐷𝐷𝐷 0.5273   

𝐶𝐶𝑚𝑚0 0.0323 𝐶𝐶𝑛𝑛𝑛𝑛 0.0127 

𝐶𝐶𝑚𝑚𝑚𝑚 -0.3217 𝐶𝐶𝑛𝑛𝑛𝑛 -0.0380 

𝐶𝐶𝑚𝑚𝑚𝑚 -11.000 𝐶𝐶𝑛𝑛𝑛𝑛 -0.0378 



25  

After ensuring the simulation ran, the aircraft was trimmed. Table 3.2 list the values 

obtained. 

 

Table 3.2 Trim Conditions for Rascal in Simulation 

Parameter Value Units 
Altitude 4563 m 
Speed 38.93 m/s 

Angle of Attack -3.624 ° 
Elevator Deflection 5.52 ° 

Thrust 38.08 N 

3.3. Actuator Dynamics 

As described in (Lyons, Brendon 2013) Rascal engine and servos were modeled based 

on a first-order time-domain function.  Data logged was analyzed using MATLAB’s 

system identification tool.  The transfer function for the servo was found by tracking a step 

in the elevator of 25° (Figure 3.3). “The Laplace transform shown in equation [6] has a 

time constant of 0.033 seconds (1/30) and a delay of 0.1 seconds” (Lyons, B. 2013).  

 

Figure 3.3 Elevator system response to a step input of 25° (Lyons, B. 2013) 

𝐴𝐴(𝑠𝑠) = 30
𝑠𝑠+30

𝑒𝑒−0.1𝑠𝑠     (6) 
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Using the same method (Figure 3.4), the engine was found to have the “model shown 

in equation [7] as a Laplace transform with a time constant of 0.0201 seconds (1/49.75) 

and a delay of 0.1 seconds” (Lyons, B. 2013). 

 

Figure 3.4 Motor System Thrust Response to 5.75 lbs. input (Lyons, B. 2013) 

 

𝑀𝑀(𝑠𝑠) = 49.75
𝑠𝑠+49.75

𝑒𝑒−0.1𝑠𝑠     (7) 

 

3.4.  Aircraft Failure Model 

To enable the simulation of abnormal conditions blocks have been modeled into the 

Rascal 110 simulation environment. After opening the model, a GUI allows the selection 

of control surface failures. The failure setup GUI is shown in Figure 3.5.  
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Figure 3.5 Failure setup graphical user interface (GUI) 

 

The GUI allows the engineer to inject a failure of any degree at any time which they choose. 

However, through this thesis we are only interested in failures of the right aileron at 2°. 

3.5.  Control Architectures 

Flight control systems are used to assist the pilot in operating an aircraft. Control 

systems “should be able to cope with non-linear and time varying nature of flight vehicles, 

as well as the uncertainties and un-modeled dynamics in the system and physical 

environment around them” (Kutluay, K. T. and Yavrucuk, I. 2010). This Thesis test two 

different configurations of the control system:  

• Stick-to-servo – pilot has no assistance in controlling the aircraft 

• Feedback linearization – also known as non-linear dynamic inversion (NLDI) 

The objective is not to create a new controller but to monitor the interaction between 

the pilot and the control system, with a desire to see improvement in nominal operation 

and under failure when the pilot is assisted by the NLDI controller. The pilot closes the 

loop with visual tracking of the desired attitude. These attitude angles that the pilot tracks 
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and changes through stick deflections take time to sweep through and hence are known as 

the slow mode. The fast mode are the states that change rapidly, such as the angular rates. 

The following subsections discuss the pilot reference model and implementation of the 

non-linear dynamic inversion. 

3.5.1. Pilot Reference Model 

To give the pilot ideal handling like that of an actual aircraft, a reference model is used. 

A pilot reference model architecture like that presented by Perez et. al. (2015) is used to 

take the stick commands from the pilot �𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠 , 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠 ,𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠� and generate desired angular 

rate and acceleration commands. The first step is to take the pilot stick inputs and convert 

them into angular rate reference commands using equations (8) - (10); This ensures a stable 

transition from the stick inputs to the commanded angular rates.  

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠      (8) 

𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠      (9) 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑔𝑔
𝑉𝑉
�𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 + sin𝜙𝜙�    (10) 

𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 – pilot stick gains 

𝑔𝑔 – gravity  

𝑉𝑉 – True airspeed 

𝜙𝜙 – bank angle 

Once the angular rates are obtained they are passed through a first- and second-order 

model reference transfer functions. These transfer functions represent the aircraft’s short 

period, phugoid and Dutch roll modes. The outputs of the transfer functions are reference 

angular rates.  
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𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) = 1
1+𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)    (11) 

𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) =
𝜔𝜔𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ
2

𝑠𝑠2+2𝜁𝜁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝜔𝜔𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠+𝜔𝜔𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ
2 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)   (12) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) = 𝜔𝜔𝑛𝑛 𝑦𝑦𝑦𝑦𝑦𝑦
2

𝑠𝑠2+2𝜁𝜁𝑦𝑦𝑦𝑦𝑦𝑦𝜔𝜔𝑛𝑛 𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠+𝜔𝜔𝑛𝑛 𝑦𝑦𝑦𝑦𝑦𝑦
2 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)   (13) 

 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 – roll rate constant 

 𝜁𝜁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ, 𝜁𝜁𝑦𝑦𝑦𝑦𝑦𝑦 – short period and Dutch roll damping 

𝜔𝜔𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ ,𝜔𝜔𝑛𝑛𝑦𝑦𝑦𝑦𝑦𝑦 – short period and Dutch roll natural frequency 

A pseudo proportional-integral (PI) controller is used to take the reference rates to 

angular accelerations by the equations shown in (14), where, 𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 are the constants of the 

PI controller. They are determined to achieve adequate stability and performance 

characteristics in closed-loop conditions. 

�
𝑝̇𝑝
𝑞̇𝑞
𝑟̇𝑟
� = �

𝑈𝑈𝑝𝑝
𝑈𝑈𝑞𝑞
𝑈𝑈𝑟𝑟
� = �

𝐾𝐾𝑝𝑝𝑝𝑝�𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑝𝑝� + 𝐾𝐾𝑖𝑖𝑖𝑖 ∫�𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑝𝑝�
𝐾𝐾𝑝𝑝𝑝𝑝�𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑞𝑞� + 𝐾𝐾𝑖𝑖𝑖𝑖 ∫�𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑞𝑞�
𝐾𝐾𝑝𝑝𝑝𝑝�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑟𝑟� + 𝐾𝐾𝑖𝑖𝑖𝑖 ∫�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑟𝑟�

�  (14) 

3.5.2. Non-Linear Dynamic Inversion  

Non-Linear Dynamic Inversion (NLDI) is often used with nonlinear systems such as 

equation (15), where 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are non-linear state and control functions respectively. 

This is because its ability to eliminate inherent nonlinearities. However, the inversion is 

only possible given that 𝑔𝑔−1(𝑥𝑥) exists.  

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑢𝑢     (15) 

𝑢𝑢 = 𝑔𝑔−1(𝑥𝑥)[𝑥̇𝑥𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑓𝑓(𝑥𝑥)]    (16) 
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Equation (16) shows system rates, 𝑥̇𝑥, are replaced by the desired states, 𝑥̇𝑥𝑑𝑑𝑑𝑑𝑠𝑠 to generate 

the generalized control laws. The theory is if the plant is modeled accurately and 𝑥̇𝑥𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥̇𝑥, 

then nonlinearities of the system are cancelled.  For this thesis the NLDI is used to provide 

control surface commands, Figure 3.6 shows the general architecture for this controller 

with the pilot reference model. 

 

Figure 3.6 General Simulation Architecture 

 

In this thesis NLDI is used to regulate the fast mode of the aircraft by relating the 

aircraft angular motion to the control surface deflections using the aerodynamic moments. 

It is useful to express these moment terms as aerodynamic coefficients 𝐶𝐶𝑙𝑙 ,𝐶𝐶𝑚𝑚,𝐶𝐶𝑛𝑛: 

𝑀𝑀�𝐴𝐴 = �
𝐿𝐿𝐴𝐴
𝑀𝑀𝐴𝐴
𝑁𝑁𝐴𝐴
� = 𝑞𝑞�𝑆𝑆 �

𝑏𝑏𝐶𝐶𝑙𝑙(𝑥𝑥, 𝛿𝛿)
𝑐𝑐̅𝐶𝐶𝑚𝑚(𝑥𝑥, 𝛿𝛿)
𝑏𝑏𝐶𝐶𝑛𝑛(𝑥𝑥, 𝛿𝛿)

�    (17) 

 𝑆𝑆 – wing area 

 𝑞𝑞� – dynamic pressure  

 𝑏𝑏 – wing span 

 𝑐𝑐̅ – mean aerodynamic chord 
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 𝐿𝐿𝐴𝐴,𝑀𝑀𝐴𝐴,𝑁𝑁𝐴𝐴 – represent the moment about their prospective axis (Figure 3.2) 

 𝛿𝛿 – placeholder for relevant actuators [𝛿𝛿𝑎𝑎, 𝛿𝛿𝑒𝑒 ,𝛿𝛿𝑟𝑟]𝑇𝑇 

The moments [𝐿𝐿𝐴𝐴,𝑀𝑀𝐴𝐴,𝑁𝑁𝐴𝐴]𝑇𝑇 of equation (17) is typically written in terms of angular 

accelerations [𝑝̇𝑝, 𝑞̇𝑞, 𝑟̇𝑟]𝑇𝑇as shown in equation (18), for convenience it is re-written here: 

�
𝑝̇𝑝
𝑞̇𝑞
𝑟̇𝑟
� = −

⎣
⎢
⎢
⎢
⎢
⎡
𝑞𝑞𝑞𝑞�𝐼𝐼𝑧𝑧𝑧𝑧−𝐼𝐼𝑦𝑦𝑦𝑦�

𝐼𝐼𝑥𝑥𝑥𝑥
𝑝𝑝𝑝𝑝(𝐼𝐼𝑥𝑥𝑥𝑥−𝐼𝐼𝑧𝑧𝑧𝑧)

𝐼𝐼𝑦𝑦𝑦𝑦
𝑝𝑝𝑝𝑝�𝐼𝐼𝑦𝑦𝑦𝑦−𝐼𝐼𝑥𝑥𝑥𝑥�

𝐼𝐼𝑧𝑧𝑧𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
1
𝐼𝐼𝑥𝑥𝑥𝑥

0 0

0 1
𝐼𝐼𝑦𝑦𝑦𝑦

0

0 0 1
𝐼𝐼𝑧𝑧𝑧𝑧⎦
⎥
⎥
⎥
⎤

 �
𝐿𝐿𝐴𝐴
𝑀𝑀𝐴𝐴
𝑁𝑁𝐴𝐴
�   (18) 

Rearranging (18) and replacing the aerodynamic moments with the desired aerodynamic 

moments, �𝐿𝐿𝐴𝐴𝑑𝑑 ,𝑀𝑀𝐴𝐴𝑑𝑑 ,𝑁𝑁𝐴𝐴𝑑𝑑�
𝑇𝑇
 and the angular accelerations calculated in equation (14) 

�𝑈𝑈𝑝𝑝,𝑈𝑈𝑞𝑞 ,𝑈𝑈𝑟𝑟�
𝑇𝑇
: 

�
𝐿𝐿𝐴𝐴𝑑𝑑
𝑀𝑀𝐴𝐴𝑑𝑑
𝑁𝑁𝐴𝐴𝑑𝑑

� = �
𝑞𝑞𝑞𝑞�𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑦𝑦𝑦𝑦�
𝑝𝑝𝑝𝑝(𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧)
𝑝𝑝𝑝𝑝�𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑥𝑥𝑥𝑥�

� + �
𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� �
𝑈𝑈𝑝𝑝
𝑈𝑈𝑞𝑞
𝑈𝑈𝑟𝑟
�   (19) 

Using the standard perturbative techniques to expand the aerodynamic moment coefficient 

functions [𝐶𝐶𝑙𝑙(𝑥𝑥, 𝛿𝛿),𝐶𝐶𝑚𝑚(𝑥𝑥, 𝛿𝛿),𝐶𝐶𝑛𝑛(𝑥𝑥, 𝛿𝛿)]𝑇𝑇, they can be written as equations (20)-(22) 

(Lyons, B. 2013): 

𝐶𝐶𝑙𝑙(𝑥𝑥, 𝛿𝛿) = 𝐶𝐶𝑙𝑙0 + 𝐶𝐶𝑙𝑙𝛽𝛽𝛽𝛽 + 𝑏𝑏
2𝑉𝑉
�𝐶𝐶𝑙𝑙𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑙𝑙𝑟𝑟𝑟𝑟� + 𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + 𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿  (20) 

𝐶𝐶𝑚𝑚(𝑥𝑥, 𝛿𝛿) = 𝐶𝐶𝑚𝑚0 + 𝐶𝐶𝑚𝑚𝛼𝛼𝛼𝛼 + 𝑐𝑐̅
2𝑉𝑉
𝐶𝐶𝑚𝑚𝑞𝑞𝑞𝑞 + 𝐶𝐶𝑚𝑚𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   (21) 

𝐶𝐶𝑛𝑛(𝑥𝑥, 𝛿𝛿) = 𝐶𝐶𝑛𝑛0 + 𝐶𝐶𝑛𝑛𝛽𝛽𝛽𝛽 + 𝑏𝑏
2𝑉𝑉
�𝐶𝐶𝑛𝑛𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑛𝑛𝑟𝑟𝑟𝑟� + 𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + 𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿  (22) 

 Using the equations (17)-(22) the aileron, elevator, and rudder deflection 

commands can be found for proper tracking performance. The elevator command 

deflection, 𝛿𝛿𝛿𝛿, can be obtained from the dynamic pitching moment in equation (21): 
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𝛿𝛿𝛿𝛿 =
𝐶𝐶𝑚𝑚(𝑥𝑥,𝛿𝛿)−𝐶𝐶𝑚𝑚0−𝐶𝐶𝑚𝑚𝛼𝛼𝛼𝛼−

𝑐𝑐�
2𝑉𝑉𝐶𝐶𝑚𝑚𝑞𝑞𝑞𝑞

𝐶𝐶𝑚𝑚𝛿𝛿𝛿𝛿
=

𝑀𝑀𝐴𝐴𝑑𝑑
𝑞𝑞�𝑆𝑆𝑐𝑐� −𝐶𝐶𝑚𝑚0−𝐶𝐶𝑚𝑚𝛼𝛼𝛼𝛼−

𝑐𝑐�
2𝑉𝑉𝐶𝐶𝑚𝑚𝑞𝑞𝑞𝑞

𝐶𝐶𝑚𝑚𝛿𝛿𝛿𝛿
   (23) 

As can be seen in equations (20) and (22) there is coupling between the aileron and rudder 

deflections. To enable easier formulation of equations, the expressions in equation (24) are 

considered. 

𝑏𝑏1 = 𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + 𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 and 𝑏𝑏2 = 𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + 𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿    (24) 

Replacing equation (24) into equation (20) and (22), the following variables are obtained: 

𝑏𝑏1 = 𝐶𝐶𝑙𝑙(𝑥𝑥, 𝛿𝛿) − 𝐶𝐶𝑙𝑙0 − 𝐶𝐶𝑙𝑙𝛽𝛽𝛽𝛽 −
𝑏𝑏
2𝑉𝑉
�𝐶𝐶𝑙𝑙𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑙𝑙𝑟𝑟𝑟𝑟� =

𝐿𝐿𝐴𝐴𝑑𝑑
𝑞𝑞�𝑆𝑆𝑐𝑐̅

− 𝐶𝐶𝑙𝑙0 − 𝐶𝐶𝑙𝑙𝛽𝛽𝛽𝛽 −
𝑏𝑏
2𝑉𝑉
�𝐶𝐶𝑙𝑙𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑙𝑙𝑟𝑟𝑟𝑟�  (25) 

𝑏𝑏2 = 𝐶𝐶𝑛𝑛(𝑥𝑥, 𝛿𝛿) − 𝐶𝐶𝑛𝑛0 − 𝐶𝐶𝑛𝑛𝛽𝛽𝛽𝛽 −
𝑏𝑏
2𝑉𝑉
�𝐶𝐶𝑛𝑛𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑛𝑛𝑟𝑟𝑟𝑟� =  

𝑁𝑁𝐴𝐴𝑑𝑑
𝑞𝑞�𝑆𝑆𝑐𝑐̅

− 𝐶𝐶𝑛𝑛0 − 𝐶𝐶𝑛𝑛𝛽𝛽𝛽𝛽 −
𝑏𝑏
2𝑉𝑉
�𝐶𝐶𝑛𝑛𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑛𝑛𝑟𝑟𝑟𝑟�(26) 

The final step is to solve for the aileron 𝛿𝛿𝛿𝛿 and rudder deflections 𝛿𝛿𝛿𝛿.  Since terms in 

equation (25) and (26) are known values, the resulting deflections become: 

𝛿𝛿𝛿𝛿 =
𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝑏𝑏2−𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝑏𝑏1

𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿−𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿
    (27) 

𝛿𝛿𝛿𝛿 =
𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝑏𝑏1−𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝑏𝑏2

𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿−𝐶𝐶𝑛𝑛𝛿𝛿𝛿𝛿𝐶𝐶𝑙𝑙𝛿𝛿𝛿𝛿
     (28) 
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4. Pilot Induced Oscillation Metrics 

In the effort to validate different control systems with analytical data, a pilot metric 

based on the time-domain Neal-Smith criterion is implemented. The desire with 

implementing a metric is to be able to “detect and prevent…unfavorable aircraft-pilot 

interactions” (Choe, R., et. al. 2010). This method was proposed by (Bailey, R. E. and 

Bidlack, T. L. 1995) and showed promising results for the predictions of flying qualities 

and PIO tendencies.  

There are several advantages of using this time-domain Neal-Smith method. One is, 

“flight control nonlinearities can be evaluated without assumptions or compromise” 

(Bailey, R. and Bidlack, T. 1996). Therefore, analysis of the nonlinear aircraft dynamics 

can be conducted where in frequency-domain the model would have to be linearized. The 

method also allows for analysis of handling qualities when using nonlinear control laws 

and while under control surface failures or time-delays. While this method does have many 

advantages, it is not always accurate in its predictions. A previous study in manned aircraft 

showed a 74% success rate for the prediction of Category I PIO (Choe, R., et. al. 2010). 

Also depending on the size of the response window and pilot, ratings can sometimes be 

inconclusive. In a study by (Choe, R., et. al. 2010) a window of 5 seconds was analyzed, 

and pilot-in-the-loop simulation was conducted to support results. In some configurations 

the 5 second simulation window was able to capture the desired state with minimum 

oscillation, but in actual pilot-in-the-loop simulation flight after the 5 seconds the aircraft 

had an onset of divergence and made the plane uncontrollable. However, their results 

showed trends of correlation between flying qualities and piloted-simulation evaluations, 
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so the criterion will work as a foundation for evaluation. A broader response window of 10 

seconds is also used in this thesis in hopes of better capture of handling qualities and PIO 

tendencies. 

The basis for the time-domain Neal-Smith criterion forms from the established 

frequency-domain counterpart. The criterion development stems from the target step 

tracking task. Similar to the frequency-domain bandwidth requirement, the task 

performance standard is defined by acquisition time D. Variations in this acquisition time 

D correlate to the aggressiveness of the task. An increase in the acquisition time slows 

down the speed of the closed-loop response and results in a less demanding task, and vice-

versa. For evaluation of the closed-loop performance the root-mean-square of the tracking 

error, 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) is found. This is equivalent to the frequency-domains closed-loop 

resonance. Finally, in a similar manner to the frequency-domain, the pilot workload is 

enumerated by the pilot compensation phase angle, ∠𝑝𝑝𝑝𝑝. 

As mentioned earlier the acquisition time, D, is the time that the pilot must acquire a 

desired pitch attitude (Figure 4.1). D is defined as the time from the commanded step input 

to when pitch attitude error first becomes less than the allowable pipper error. The pipper 

error is set to 1/40 of the pitch attitude commanded; this is defined as an acceptable tracking 

error. The closed-loop performance index, 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒), is calculated over the transient 

response after the acquisition time D. 
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Figure 4.1 Performance Optimization Plot 

 

In the following subsections the methods for modeling the pilot and evaluating the pilot 

handling qualities is explained. 

4.1.  Pilot Modeling 

The pilot is to be tasked with tracking a simple step input for pitch, 𝜃𝜃𝑐𝑐. A lead-lag 

transfer function, shown in equation (29), is used to model the pilot. Like that of the study 

conducted by Choe et. al. (2010), the transfer function is parameterized by the pilot gain, 

(𝐾𝐾𝑝𝑝), and pilot compensation parameter (𝑇𝑇𝐿𝐿). Also included in the model is a time delay, 𝜏𝜏, 

which was set equal to 300 msec to represent the neuromuscular delay of the pilot (Bailey, 

R. and Bidlack, T. 1996). With a perfect compensator assumption, the bandwidth frequency 

can be written, 𝜔𝜔𝐵𝐵𝐵𝐵 = � −1
𝐷𝐷−0.25

� ∗ ln � 1
40
�.  

𝛿𝛿𝑝𝑝
𝜃𝜃𝑒𝑒

(𝑠𝑠) = 𝑒𝑒−𝜏𝜏𝜏𝜏𝐾𝐾𝑝𝑝 �
𝜏𝜏𝑝𝑝1𝑠𝑠+1
𝜏𝜏𝑝𝑝2𝑠𝑠+1

�     (29) 
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𝜏𝜏𝑝𝑝2 = 1
𝜔𝜔𝐵𝐵𝐵𝐵

− 𝑇𝑇𝐿𝐿      (30) 

𝜏𝜏𝑝𝑝1 = 1
𝜏𝜏𝑝𝑝2𝜔𝜔𝐵𝐵𝐵𝐵

2       (31) 

It should be noted that the desire of this study is not to model the pilot as accurately as 

possible but to provide a baseline for deriving metrics that are able to accurately predict 

flying qualities. To obtain the values for 𝐾𝐾𝑝𝑝 and 𝑇𝑇𝐿𝐿, MATLAB Simulink’s optimization 

tool is utilized. This tool is representative of a pilot, because a pilot will attempt to adjust, 

and adapt to the system being controlled. The pilot is the best-case optimization because 

of the ability to think and adapt. The optimization tool uses defined constraints such as rise 

time, percent overshoot, and settling time with the objective to meet design requirements 

and be within the tolerances and parameter bounds (MathWorks. 2017).  

For step target tracking optimization, a specified reference signal is taken as a sequence 

of time-amplitude pairs. The optimization tool then runs the simulation to get the simulated 

time-amplitude pairs. The reference and simulated time-amplitude pairs are compared to 

see if any match and if so a new time base is taken from their union. Then using linear 

interpolation, the software computes the output values and computes the scaled error. 

Finally, the software computes the integral square error. When this value is minimized the 

optimization converges.  

The constraints for the optimization process for our simulation is to track a desired 

pitch, with the rise time being equivalent to the acquisition time, D. The optimization cost 

is the root-mean-square of the pitch error, 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒). Where the 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) is computed after 

the acquisition time. Therefore, optimization satisfies the acquisition time, D, and 

simultaneously produces the minimum root-mean-squared pitch tracking error. Figure 4.2 

is an optimization example after solving the optimization of the NLDI for D = 2.25 sec.  
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Figure 4.2 Optimization Tool Box 

 

Theses optimization parameters are designed to realistically model the pilot’s adaptive 

behavior to each aircraft configuration to “acquire the target quickly, [D] and predictably 

with a minimum of overshoot and oscillation,[𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒)]” (Choe, R., et. al. 2010).  Because 

of this flying rule and the parameters satisfying the need to “acquire quickly” and 

“predictably…” these serve well as performance parameters.  

4.2. Flying Qualities and PIO Criterion 

Pilot compensation phase angle,∠𝑝𝑝𝑝𝑝 and root-mean-squared pitch tracking error, 

𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) are used to parameterize the flying qualities in time-domain Neal-Smith criterion. 

The pilot compensation phase angle calculated using equation (32) represents the pilot 

workload. This and root-mean-squared pitch tracking error represent the closed-loop 

performance.  

∠𝑝𝑝𝑝𝑝 = 180
𝜋𝜋
�tan−1�𝜏𝜏𝑝𝑝1𝜔𝜔𝐵𝐵𝐵𝐵� − tan−1�𝜏𝜏𝑝𝑝2𝜔𝜔𝐵𝐵𝐵𝐵��   (32) 
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For analysis these two parameters are plotted against each other after the acquisition time 

D in the time-domain Neal-Smith parameter plane. This parameter plane is comparable to 

that for frequency-domain Neal-Smith, where the only difference is ∠𝑝𝑝𝑝𝑝 is plotted against 

the closed-loop resonance|𝜃𝜃 𝜃𝜃𝑐𝑐⁄ |𝑚𝑚𝑚𝑚𝑚𝑚. In previous studies the flying qualities boundaries of 

the time-domain have been validated and compared to the frequency-domain ratings, also 

it was shown that criterion in frequency-domain mapped to a similar location on the time-

domain parameter plane (Choe, R., et. al. 2010) (Bailey, R. and Bidlack, T. 1996). 

The time-domain Neal-Smith parameter plane boundaries shown in Figure 4.3 are related 

to the Cooper-Harper Rating Scale shown in Table 4.1.  

 

Figure 4.3 Time-Domain Neal-Smith Parameter Plane 
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Table 4.1 Cooper-Harper Rating Scale (Cooper, G. and Harper, R. 1969) 

 

The Cooper-Harper rating scale is what test pilots use when evaluating flight control 

systems based or their ability to handle and easily perform maneuvers. The scale is divided 

into 4 different levels: 

• Level 1 are the pilot ratings from 1 to 3. This is when the aircraft is easily 

handled and does not ask for high demand of the pilot. 

• Level 2 are the pilot ratings from 4 to 6. This aircraft is still able to be controlled 

but with minor and tolerable deficiencies. The pilot workload is much higher 

for level 2 ratings. 

• Level 3 are the ratings 7 to 9. These aircraft configurations are difficult to 

control and require an extreme pilot workload 



40  

• Level 4 is the pilot rating of 10. This is the worst case and aircraft loss of control 

occurs during operation. 

An additional use of the time-domain Neal-Smith criterion is the measure of whether a 

configuration is susceptible to pilot induced oscillations. An aircraft configuration is 

described as PIO-prone or -immune based on its sensitivity to task performance 

requirement variations. In the same way defined by Choe et. al. (2010): 

The PIO criterion is formulated as: ‘if local second derivative of 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) after D 
with respect to D is greater than 100, the configuration is predicted to be PIO-
prone. Otherwise, the configuration is predicted to be PIO-immune.’ 

 
The PIO parameter plane for time-domain Neal-Smith criterion is shown in Figure 4.4. 

 

Figure 4.4 Time-Domain Neal-Smith PIO parameter plane 
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5. Results 

In this section the results obtained from the optimization process for the prediction of 

flying qualities and PIO tendencies of the RPV are presented. The predictions as described 

in Section 4.1 are based on the time-domain Neal-Smith criteria. This chapter also presents 

simulation flight testing with pilot in the loop. These are to substantiate the metrics ability 

to evaluate a RPV’s handling qualities. It is important to notice that this thesis is not 

focused on designing a controller for a RPV, but to generate valuable data that can be used 

onboard to predict flying qualities and PIO tendencies with different control configurations 

of a RPV.  

Flight testing procedures are also explained in this Chapter as the RPV platform could 

be successfully operated from the GCS cockpit.  

5.1.  Simulation Experiments 

Before performing simulations, the aircraft was trimmed and the only control that was 

modeled and provided was the longitudinal pitch control. The trim conditions are 

summarized in Table 5.1: 

 

Table 5.1 Trim conditions for RPV simulation 

Parameter Value Units 
Altitude 4563 M 
Speed 38.93 m/s 

Angle of Attack -3.624 ° 
Elevator Deflection 5.52 ° 

Thrust 38.08 N 
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The high altitude was chosen to allow additional time for the pilot to attempt recovery 

of the aircraft without crashing into the ground. Starting off with these trim states and with 

constant thrust value, the pilot transfer function is optimized for 5 variances in acquisition 

time and two different flight control configurations. The acquisition times D = [1.25, 1.50, 

1.75, 2.00, 2.25], and the flight control configurations are stick-to-servo and non-linear 

dynamic inversion. After running the optimization process, Table 5.2 is obtained.  

 

Table 5.2 Optimized 𝐾𝐾𝑝𝑝,𝑇𝑇𝐿𝐿 with ∠𝑝𝑝𝑝𝑝, and 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) 

Control 
Architecture D 𝐾𝐾𝑝𝑝 𝑇𝑇𝐿𝐿 ∠𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) 

Reference 
NLDI 

2.25 0.1053 0.0672 7.5598 0.0294 

2.00 0.1076 0.0671 8.7040 0.0303 

1.75 0.1131 0.0856 13.4187 0.0403 

1.50 0.1253 0.1044 20.6409 0.0696 

1.25 0.1446 0.1193 31.5096 0.1227 

      

Stick 
To 

Servo 

2.25 0.1884 0.0964 11.1462 0.0515 

2.00 0.1898 0.0933 12.4481 0.0530 

1.75 0.1897 0.0916 14.4678 0.0561 

1.50 0.1928 0.0915 17.7431 0.0603 

1.25 0.1832 0.0936 23.5728 0.0554 
 
This data is then mapped to the time-domain Neal-Smith handling qualities plane to 

give the plots in Figure 5.1: 
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Figure 5.1 Nominal handling qualities and PIO prediction 

 

Analyzing Figure 5.1, the optimizations of both the NLDI and the Stick-to-Servo 

configurations in nominal conditions are predicted to be level I handling qualities and 

presented an acceptable performance for all acquisition times. Since both controllers did 

not present sensitivity to changes in the root-mean-squared pitch error with changes in 

acquisition time, the resulting second derivative of the 𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑒𝑒) after D with respect to D 

is less than 100. This indicates that the configurations in nominal conditions are PIO-

immune.  

Figure 5.2 shows a direct time-history comparison between the NLDI and the Stick-to-

Servo configuration. The NLDI shows less demand by the pilot since the elevator 

command is nearly half of what it required in the Stick-to-Servo configuration. This is a 

good sign as it means the NLDI controller is reducing the amount of workload that the pilot 

must produce to perform a desired maneuver. 
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Figure 5.2 Optimization Tracking for D=2.25sec NLDI (Left) Stick-to-Servo (Right) 

 

After optimizing in the nominal configuration, a delay of 300ms (Category I PIO) was 

injected. The results are shown in Figure 5.3. The pilot compensation phase angle increases 

for each acquisition time of both configurations. However, the stick-to-servo configuration 

performs better than the NLDI. This can be explained by the misrepresentation of the 

aircraft model reference due to the delay. The delay leads to the inversion having an 

additional nonlinear term which causes saturation of the control input. This is a typical 

issue for standard nonlinear dynamic inversion controllers which have no additional 

augmentation (Sieberling, S. et. al. 2010). 

 

Figure 5.3 Delay 300ms handling qualities and PIO prediction 
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The configurations within the level I boundary show to not be susceptible to PIO. But, 

the NLDI with an acquisition time of 1.25 seconds did demonstrate PIO caused by the 

delay (Figure 5.4). It can be seen in the elevator deflection that the controls have become 

saturated. 

 

Figure 5.4 NLDI experiences PIO when a delay of 300ms present and performing an 
aggressive maneuver (D=1.25) 

 

To test for Category II PIOs, a 2º right aileron lock is injected. The predictions are 

provided on the handling qualities and PIO plane in Figure 5.5. For this condition the NLDI 

configuration is predicted to perform better than the stick-to-servo configuration, as its 

root-mean-squared error is less than that of the stick-to-servo error.  

 

Figure 5.5 Right Aileron Lock at 2º handling qualities and PIO prediction 
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Following the optimizations of the pilot transfer function to predict the handling 

qualities, pilot-in-the-loop test were conducted. The pilot was informed at the beginning of 

the experiment to capture a pitch up to 0º; the same pitch command that was done with the 

pilot transfer function. Figure 5.6 shows the visual provided to the pilot to acquire the pitch 

target in simulation. 

 

Figure 5.6 HUD used by pilot to acquire maneuver 

 

An auditory tone and visual cue were used to inform the pilot when to start the 

maneuver, as shown in Figure 5.7. Once the acquisition time is up, a second audio tone 

sounds to indicate error values are now being collected.  

   

Figure 5.7 Audio and Visual Cue for Pilot to Start and Complete Maneuver 
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Results for tests that were executed with the Pilot-in-the-Loop are summarized in Table 

5.3. The average root-mean-squared of pitch error of three different tests is taken at each 

acquisition time. The same pipper error � 1
40
� 𝜃𝜃𝑐𝑐 used with the pilot transfer function is used 

for the pilot-in-the-loop simulation. 

 

Table 5.3 Pilot-in-the-Loop Experiments 

Experiment PIO 
Category Conditions Results – average 𝒓𝒓𝒓𝒓𝒓𝒓(𝜽𝜽𝒆𝒆) in degrees 

𝜃𝜃𝑑𝑑 = 0° 
3 tests per D 

 

 Average 
for D = 2.25 2.00 1.75 1.50 1.25 

Nominal 

Stick-to-
Servo 0.1599 0.1857 0.1812 0.2314 0.4838 

Reference 
NLDI 0.2184 0.1782 0.4155 0.4603 0.3862 

Category I 
PIO Delay 300ms 

Stick-to-
Servo 0.2386 0.2087 0.1259 0.5662 0.4097 

Reference 
NLDI 0.9031  1.1353  2.2313 

Category 
II PIO 

Failure at 2° 
right aileron 

Stick-to-
Servo 34.104  50.999  31.6251 

Reference 
NLDI 0.4597  0.8781  0.8917 

 
 

During one part of the nominal experimentation the engineer did not inform the pilot 

that a control system was implemented. This was not done intentionally, as a pilot would 

normally be informed when an augmented control is in use on an aircraft. However, an 

adverse-pilot interaction was observed, such that the pilot was fighting the control system 

to converge to the desired pitch attitude. The pilot informed, “inputs were being over 

exaggerated,” but in fact the pilot was used to not having assistance. So, when the pilot 

held the yoke at the desired position in previous experiments the aircraft did not respond 
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in the same way, and the pilot had to continuously adjust until it was figured out what the 

control system was doing. Although unintentional, this anomaly was a valuable 

observation because it can be related to real world accidents. More specifically when an 

autopilot is unknowingly engaged as in Japan Airlines flight 706 in 1997, or Federal 

Express Flight 80 in 2009 (ALPA Japan Technical Support Team. 1997)(Japan 

Transportation Safety Board. 2013). The pilots and control system fighting each other 

caused destabilizing interaction and led to PIO which resulted in injury and loss of aircraft.  

The pilots stick deflections and the pitch error are collected throughout the pilot-in-the-

loop simulations. Using the error as the input and the stick deflections as the output a data 

set is created. Then using the MATLAB tfest() function a transfer function of the pilot is 

estimated from the data set. The tfest() function estimates the initial conditions using the 

best least squares fit and solves for the parameter values of the transfer function using the 

nonlinear least-squares solver. The transfer function gives a FitPercent, which measures 

how well the response of the model fits the estimation data using the normalized root mean 

squared error measure (MathWorks. 2017). It was desired to have a FitPercent of 36% or 

better. The time-domain Neal-Smith handling qualities plane using the pilot-in-the-loop 

transfer function are displayed below in Figure 5.8:  
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Figure 5.8 Nominal Pilot-in-the-Loop Time-Domain Handling Qualities 

 

For nominal conditions the pilot workload was minimal, and error remain in the level 

one handling qualities border for both controllers (Figure 5.8). Whenever a delay of 300ms 

(Category I failure) was added to the system the pilot performed almost exactly as the 

predicted pilot transfer function optimization. Figure 5.9 shows plots of the pilot-in-the-

loop elevator deflections and tracking while under a delay of 300ms and an acquisition 

time, D=1.25 s. The pilot was instructed at 6 seconds to perform the maneuver. Figure 5.10 

shows the stick-to-servo configuration performs much better than the NLDI. The NLDI 

configuration shows actuator saturation occurring, which was predicted during the 

optimization in Figure 5.4. 
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Figure 5.9 Pilot-in-the-Loop with 300ms Delay Stick-to-Servo (left) NLDI (right) 

 

Figure 5.10 300ms Delay Pilot-in-the-Loop Time-Domain Handling Qualities 

 

While the aircraft was under the failure of a right aileron locking at 2º, the NLDI 

configuration performed better than the stick-to-servo configuration. This was predicted in 

simulation and proved true during pilot-in-the-loop simulation. One difference, however, 

is that the pilot handling qualities were much worse than the prediction as shown in Figure 

5.11. This can be attributed to the fact that the pilot does not know the error and takes time 

to figure out how to solve the problem. By the time the pilot has pinpointed the problem 

sometimes recovery is not possible, whereas in the transfer function simulation the problem 

is immediately known and attempted to be corrected. This can also explain why when under 
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this type of failure the simulation is rated as having level I handling qualities shown as 

presented in Figure 5.5. 

 

Figure 5.11 2° Right Aileron Lock Pilot-in-the-Loop Time-Domain Handling Qualities 

 

5.2. Flight Testing  

Flight Test were conducted at the Daytona Beach Radio Control Association field off 

Tomoka Farms Road in Port Orange (Figure 5.12). 

 

Figure 5.12 Daytona RC Flying Park 
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This location offered a safe environment with reasonable space to conduct flight patterns 

and maneuvers. During flight test the RC pilot, GCS pilot, and engineer station all wear 

radios to communicate the passing of controls and any technical difficulties.  

Initial flight tests were conducted over the summer of 2017 and into the spring. Prior 

to take off all systems are checked using both RC and GCS controls. The following pre-

flight checklist is an example of the procedures followed during the flight tests: 

• All battery voltages are checked to ensure enough charge for flight 

• Batteries are then connected, and power switches are turned on. 

• The desired code in Simulink is built, and run on the target computer using the 

Simulink Real-Time Explorer 

• The RC pilot deflects all control surfaces ensuring they are moving in the proper 

direction. The on-board computer is then engaged by flipping a designated 

switch on the RC remote and control surfaces are checked once more. 

• The RC pilot then passes control to the GCS pilot to check deflections and their 

direction. 

• Lastly a throttle check is performed, and control is passed to the GCS pilot to 

ensure proper hand-off throttle on the GCS pilot controls.  

Upon successful completion of the checklist the RC pilot then performs take-off and 

ensures that the plane is operating well, and the on-board computer is also able to receive 

controls and pass them through to the control surfaces. Then the RC pilot notifies the GCS 

pilot to be prepared to take over. The GCS pilot confirms, “Prepared for take-over” and 

RC pilot then enables the GCS pilot to fly. The RC pilot continues to stand by to ensure 

safe operation of the aircraft and to take over control if the plane is at risk. While under 
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control by the GCS pilot maneuvers that require the deflections of all control surfaces are 

performed and measured. The RC pilot then takes back control and lands the RPV. 

On August 10, 2017, a short flight test was conducted using a smaller motor to check 

sensors, pilot visuals, and telemetry for the ground control station were working. This test 

was overall successful allowing about 6 minutes of flight time. The plane flew well, and 

the onboard computer was able to compile and feed controls through. However, the pilot 

visuals were not consistent and flight by the ground control station was not sustainable.  

A second flight test was conducted on September 22, 2017. This configuration had the 

upgraded motor which is described earlier in Section 2.1 of the thesis. The flight again was 

to test telemetry and pilot visuals. This test lasted approximately 9 minutes. The visuals 

were much better than the previous flight, although noise in the visuals caused by radio 

interference and long-range telemetry controls made GCS flight difficult. When under the 

pilot cockpit controls there was large amounts of delay and the pilot was unable to maintain 

consistent control.   

In the most recent flight on November 4, 2017, a clover leaf antenna was used for better 

video reception and the long-range telemetry was replaced by using trainer mode with 

ForceFly. These changes reduced weight as well as the amount of interference. The flight 

lasted approximately 9 minutes, and the pilot was able to maintain visuals until the aircraft 

rolled towards the ground station and signal was lost. While in straight flight the GCS pilot 

was able to perform roll, pitch and yaw doublets.  
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Figure 5.13 Flight Test at Daytona RC Flying Park 

 

The GCS proved to be mobile and operational only needing a generator to power all 

equipment inside. Through preliminary flight tests, it has been proved that the RPV is 

operational and communicates with the GCS.
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6. Conclusion and Future Work 

A working platform that utilizes different types of software and hardware tools to 

support flight control systems testing was developed. The modified SIG Rascal 110 worked 

well as a remotely-piloted vehicle able to be flown from a ground station cockpit. The 

RPV’s high-speed on-board processing system proved capable in being able to measure 

data and pass controls through to the aircraft. The ground control station facility performed 

satisfactorily, enabling different configurations to be generated and then tested on the RPV, 

and also allowing for the reception, and processing of data post flight.   

The performance metrics based on the time-domain Neal-Smith criterion were tested 

in simulation and showed to be useful as a general tool, providing analytical data in 

reference to Cooper-Harper Rating scale. The author is aware that the simulation should 

be improved to more accurately represent the aerodynamic coefficients of the RPV, as this 

effects the handling. Nevertheless, through simulations, by analyzing the Neal-Smith 

flying qualities plane, the non-linear dynamic inversion control laws showed to be better 

under category II failure than that of the non-augmented system. The NLDI can be 

improved for category I failure by augmenting it with an adaptive controller.  

From the research started here, future testing which implements delay to investigate 

PIO can be attempted. Also, more improvements and additions to the remote pilot vehicle 

and ground control station can continue to fit the needs of tests. A higher fidelity model for 

the RPV utilizing lookup tables for aerodynamic coefficients should be made. Other 

controllers can be investigated and implemented on-board the RPV to be tested in real-

time.  
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Another work that would provide value to the handling qualities metric is the 

implementation of an Unscented Kalman Filter to predict the pilot model parameters 

(Mandal, T. K. and Gu, Yu). These estimated parameters could then be used to calculate 

the pilot compensation phase angle throughout different conditions of flight.  
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