Abstract
As commercial and governmental space endeavors increase in number and complexity, the need for people educated in space policy and law will also grow. In order to create this well-educated group of space professionals, a sophisticated space policy and law curriculum is needed. As accessibility of technology increases and more students are becoming digital natives, the importance of non-traditional curriculums increases. Students in an independent study course created space policy and law educational videos based on topics within the curriculum of an existing undergraduate space law course. Two educational models can be derived from this experiment: the creation of the videos as a special project within a traditional classroom or independent study course, or as a component of the completed video part of a flipped classroom model. This paper proposes measures of success for both educational models derived from the experiment as well. Other potential uses for the videos are also identified.

Introduction
Digital learning tools, such as educational videos, are used to help make curriculums more flexible and have been widely incorporated into undergraduate-level education programs. Project ATLANTIS (Applied Technology Learning Activities for Non-Traditional Instruction in Space) was an experiment that engaged two students in a novel project within an independent study course, with the task of creating videos based on existing course materials. Project ATLANTIS was designed to test the potential of expanding space law curriculum using educational video content. The Project ATLANTIS videos created can be used as a project to supplement the existing curriculum for future students, or be used as materials for part of a flipped classroom. Other potential uses for the videos are also identified.

Experiment
The Project ATLANTIS students created videos to supplement the curriculum in an existing undergraduate-level course. The two students held different roles in the project, one being the Project Manager and one being the Content Creator.

Process

Acknowledgements
The authors of this report would like to thank the Embry-Riddle Department of Applied Aviation Sciences, the Embry-Riddle Center for Teaching and Learning Excellence, and the Embry-Riddle Digital Studio, as well as Professor D. Schaum, Dr. G. McGuirk, Xi Wang, Yun Lui, Jack Grant, Billy Nguyen, Elsa Ingwerson, Dr. Cassandra Branham and the Embry-Riddle Hunt Library.