
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 11 Number 2 Article 2

2016

Security Analysis of MVhash-B Similarity Hashing Security Analysis of MVhash-B Similarity Hashing

Donghoon Chang
Indraprastha Institute of Information Technology Delhi

Somitra Sanadhya
Indraprastha Institute of Information Technology Delhi

Monika Singh
Indraprastha Institute of Information Technology Delhi

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Chang, Donghoon; Sanadhya, Somitra; and Singh, Monika (2016) "Security Analysis of MVhash-B
Similarity Hashing," Journal of Digital Forensics, Security and Law: Vol. 11 : No. 2 , Article 2.
DOI: https://doi.org/10.15394/jdfsl.2016.1376
Available at: https://commons.erau.edu/jdfsl/vol11/iss2/2

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol11
https://commons.erau.edu/jdfsl/vol11/iss2
https://commons.erau.edu/jdfsl/vol11/iss2/2
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2016.1376
https://commons.erau.edu/jdfsl/vol11/iss2/2?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

SECURITY ANALYSIS OF MVHASH-B
SIMILARITY HASHING

Donghoon Chang, Somitra Kr. Sanadhya, Monika Singh
Indraprastha Institute of Information Technology Delhi (IIIT-D), India

{donghoon,somitra,monikas}@iiitd.ac.in

ABSTRACT

In the era of big data, the volume of digital data is increasing rapidly, causing new challenges
for investigators to examine the same in a reasonable amount of time. A major requirement
of modern forensic investigation is the ability to perform automatic filtering of correlated
data, and thereby reducing and focusing the manual effort of the investigator. Approximate
matching is a technique to find “closeness” between two digital artifacts. mvHash-B is a well-
known approximate matching scheme used for finding similarity between two digital objects
and produces a ‘score of similarity’ on a scale of 0 to 100; however, no security analysis of
mvHash-B is available in the literature. In this work, we perform the first academic security
analysis of this algorithm and show that it is possible for an attacker to “fool” it by causing
the similarity score to be close to zero even when the objects are very similar. By similarity
of the objects, we mean semantic similarity for text and visual match for images.
The designers of mvHash-B had claimed that the scheme is secure against ‘active manip-
ulation.’ We contest this claim in this work. We propose an algorithm that starts with a
given document and produces another one of the same size without influencing its semantic
and visual meaning (for text and image files, respectively) but which has low similarity score
as measured by mvHash-B. In our experiments, we show that the similarity score can be
reduced from 100 to less than 6 for text and image documents. We performed experiments
with 50 text files and 200 images and the average similarity score between the original file
and the file produced by our algorithm was found to be 4 for text files and 6 for image files.
In fact, if the original file size is small then the similarity score between the two files was
close to 0, almost always.
To improve the security of mvHash-B against active adversaries, we propose a modification
in the scheme. We show that the modification prevents the attack we describe in this work.

Keywords: Fuzzy hashing, Approximate Matching, Blacklisting, Whitelisting, Anti-
Blacklisting, Similarity digest

1. INTRODUCTION

In today’s digital world, everything has been
turning digital: conventional books have
been replaced by ebooks, letters have been
replaced by emails, paper photographs have

been replaced by digital image and com-
pact audio and video cassettes have been re-
placed by mp3 and mp4 CD/DVDs. This
transformation has influenced the capacity
of storage media that has changed from a

c© 2016 ADFSL Page 21

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

few megabytes to some terabytes, which is an
enormous volume of data for a forensic inves-
tigator to manually examine in a reasonable
period of time. The essential requirement of
modern forensic investigations is the ability
to perform automatic filtering of the relevant
data that an investigator needs to examine
manually.

Due to the decreasing costs per Gigabytes
and ever increasing capacity of storage me-
dia, on a crime scene, an investigator is con-
fronted with several terabytes of suspected
data. Manual forensic investigation of the
enormous volume of data is hard to complete
in a practicable amount of time. Therefore,
it may be helpful for an investigator to re-
duce the data under investigation by elimi-
nating similar files from the suspect’s hard
disk. On the other hand, in some situations,
the investigator might be interested in look-
ing only at files similar to a given file in order
to find a suspected malicious file or investi-
gate modifications to that file.

Nowadays, most of the forensic toolkits
provide the functionality of automatic filter-
ing by finding ‘similarity’ between files. Au-
tomatic filtering is normally done by measur-
ing the amount of correlation between files.
However, correlation method does not work
well if the adversary deliberately modifies
the file without influencing the semantics of
file in such a manner that the correlation
value becomes very low. For example, a C
program can be modified by changing the
names of variables, adding comments, writ-
ing looping constructs in a different way etc.
Ideally, an investigator needs to find all the
files which are similar to the desired (ma-
licious) file along with their corresponding
percentage similarity to the desired file. The
traditional cryptographic hash functions do
not work in this situation as even a single
bit change in the file content is expected to
modify the entire digest randomly. Hence,
Cryptographic Hash Functions can be used

to find exact duplicates, not similar files.
‘Approximate Matching’ is a generic tech-

nique for finding similarity among given
files, typically by assigning a ‘similarity
score.’ An approximate matching technique
can be characterized into one of the fol-
lowing categories: Bytewise Matching, Syn-
tactic Matching, and Semantic Matching
(Breitinger, Guttman, McCarrin, & Rous-
sev, 2014). Bytewise Matching relies on
the byte sequence of the digital object with-
out considering the internal structure of the
data object. These techniques are known as
fuzzy hashing or similarity hashing. Syntac-
tic Matching relies on the internal structure
of the data object. Semantic Matching re-
lies on the contextual attributes of the digi-
tal objects which are more closely related to
human perception. It is also called Percep-
tual Hashing or Robust Hashing.

Nowadays, approximate matching algo-
rithms are used to filter in/out the files based
on a reference data set. The investigator can
generate the similarity digest of all the files
on the target device and compare it with
reference data set. Based on the dataset,
files can be filtered in or out from the pro-
cess of investigation. The reference datasets
are broadly categorized in following two cat-
egories: 1) Known-to-be-good 2) Known-to-
be-bad. Based on the reference dataset fil-
tering process is of following two types:

• Blacklisting: In this process, files are
filtered by matching them with the set
of already Known-to-be-bad files. The
resultant files after this process are the
ones which an investigator needs to ex-
amine closely.

• Whitelisting: In this process, filter-
ing is done by matching the files with a
database of already Known-to-be-good
files. The files passing this process need
not be examined by the investigator.

Page 22 c© 2016 ADFSL

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

mvHash-B proposed by Breitinger et
al. (Breitinger, Astebol, Baier, & Busch,
2013) in 2013, is one of the most well
known fuzzy hashing schemes. The runtime
complexity of the mvHash-B scheme is al-
most equivalent to cryptographic hash func-
tion SHA-1, which makes it fastest among
the existing approximate matching schemes.
Moreover, the length of the mvHash-B simi-
larity digest is just 0.5% of the input length.
Both of the above desirable features make
it one of the most prominent approximate
matching scheme.

(Breitinger et al., 2013) also claims that
mvHash-B is sufficiently robust against ac-
tive manipulations. In this work, we propose
an anti-forensic attack on mvHash-B similar-
ity hashing. We develop an algorithm that
can be used to circumvent the blacklisting
based filtering of the mvHash-B scheme, i.e.
it is possible to hide a malicious file from the
blacklisting process of mvHash-B similarity
hashing. This work shows that less than 0.03
% deliberate modifications can take down
the similarity score of a file from 100 to less
than 6 without influencing the file semanti-
cally and visually.

Our attack can also be used to carry out
an anti-forensic mechanism that defeats the
very purpose of the approximate matching
scheme by hiding a malicious file from the
filtering process. An attacker could modify
the desired file without changing its seman-
tics and visual meaning. When an investi-
gator tries to filter the desired malicious file
using mvHash-B similarity preserving hash-
ing from the hard disk of a suspect, it will
not appear in the filtered output.

Finally, we also propose an improvement
to the mvHash-B construction in order to
prevent our attack. The minor tweak we pro-
pose to the scheme ensures the security of
the modified mvHash against an active ad-
versary.

The rest of the paper is organized as fol-

lows: We discuss related literature in § 2.
Notations and definitions used in the paper
are provided in § 3. The mvHash-B scheme
is explained in § 4 . § 5 contains our analy-
sis and attack on mvHash-B, followed by our
proposed attack against the scheme. Exper-
imental results on text and image files vali-
dating our attack are presented in § 6. Fi-
nally, we conclude the paper in § 7 and § 8
by proposing solutions to mitigate our attack
on mvHash-B.

2. RELATED WORK
The first approximate matching technique
was proposed in the year 2002 by Nicholas
Harbour (Harbour, 2002) called dcfldd. It di-
vides an input into fixed-size blocks, hashes
each block separately and concatenates all
hash values. dcfldd is also known as block
based hashing. Security of this scheme
can easily bypass by inserting / remov-
ing one byte in the beginning (Divakaran,
2008). Context Triggered Piecewise Hash-
ing (CTPH) was proposed by Kornblum
(Kornblum, 2006) in his tool named ssdeep.
CTPH can be considered as an improve-
ment of dcfldd. It overcomes the weakness of
dcfldd. The CTPH scheme is based on the
spamsum algorithm proposed by Andrew et
al.(Tridgell, 2002) for spam email detection.
The ssdeep tool computes a digest of the
given file by first dividing the file into several
chunks and then by concatenating the least
significant 6-bits of the hash value of each
chunk. A hash function named FNV is used
to compute the hash of each chunk. Some
improvement to ssdeep scheme was proposed
by Chen et al.(Chen & Wang, 2008) and Seo
et al.(Seo, Lim, Choi, Chang, & Lee, 2009)
in terms of efficiency and security. Thorough
security analysis of ssdeep is done by Baier
et al.(Baier & Breitinger, 2011) and showed
that ssdeep sceme does not withstand an ac-
tive adversary for blacklisting and whitelist-

c© 2016 ADFSL Page 23

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

ing.
In year 2010, Roussev et al.(Roussev,

2009, 2010) proposed a new approximate
matching scheme called sdhash. The ba-
sic idea of sdhash scheme is to identify sta-
tistically improbable features of document
based on the entropy analysis of consecu-
tive 64 byte sequence of file data (which
is called a ‘feature’), which then be used
generate the final hash digest of the file.
Breitinger et al.(Breitinger & Baier, 2012b)
showed some weaknesses in sdhash and pre-
sented improvements to the scheme. De-
tailed security and implementation analy-
sis of sdhash are done in (Breitinger, Baier,
& Beckingham, 2012) by the same authors.
This work uncovered several implementation
bugs and showed that it is possible to beat
the similarity score by tampering a given
file without changing the perceptual behav-
ior of this file (e.g. image files look almost
same despite the tampering). Then claims of
(Breitinger et al., 2012) is again verified by
chang et al. in (Chang, Sanadhya, Singh, &
Verma, 2015). They also proposed an attack
method which can mislead the investigator
with many forged similar files.

In year 2012 Breitinger et al. proposed
a new scheme called bbHash (Breitinger &
Baier, 2012a). bbHash aims two proper-
ties of the approximate matching algorithm:
1) Coverage: every byte of input expected
to be involved in final hash digest genera-
tion. Thus, every byte should influence the
hash digest. 2) Variable sized length: unlike
the traditional hash bbHash ensures that the
hash digest length is proportional to the size
of the input. The run time of bbHash is too
high so it is practically not usable.

mvHash-B similarity preserving hashing
was proposed by Breitinger et al. in year
2013 (Breitinger et al., 2013). The basic idea
of mvHash-B algorithm is to first compress
the input data using majority voting and run
length encoding then represent the final fin-

gerprint into Bloom filters. ’B’ in mvHash-B
symbolizes the bloom filter representation of
similarity digest.

3. NOTATIONS
• BS denotes input byte sequence i.e.

BS= B0B1B2.....BL−1 where Bi repre-
sents the ith byte of input and L denotes
the length of the input file in bytes.

• Nk,n denotes the n-neighborhood of in-
put byte Bk.
Nk,n = Bk−n

2
Bk−n

2
+1....Bk−1BkBk+1.....Bk+n

2
−1Bk+n

2

where n denotes size of neighborhood
and n is always even.

• bitcount(Nk,n) denotes the function
that outputs number of bits set to 1 in
binary representation of Nk,n

• t denotes the threshold

• ib denotes average number of influenc-
ing bits for one byte.

4. DESCRIPTION OF

MVHASH-B
mvHash-B works in following three phases:

1. Majority Votes: The idea of this
phase is to convert each input byte into
0x00 or 0xFF in order to compress the
input in subsequent phases. mvHash-
B counts number of bits set to one
for n-neighboring of each input byte
i.e. bitcount(Nk,n) for 06k6(L-1). If
bitcount(Nk,n)6 t(threshold), then the
value majority vote of the byte Bk is set
to 0xFF else 0x00. The value threshold
t is calculated as follows:

t = (n+1)·ib
2

where ib denotes average number of in-
fluencing bits for one byte(0≤ib≤8), de-
fault value of ib=8.

Page 24 c© 2016 ADFSL

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

2. Encoding the majority vote bit se-
quence with RLE: Run length encod-
ing(RLE) is a data compression algo-
rithm. Number of the identical subse-
quent byte is called ‘Sun-count’. The
output of run length encoding is the se-
quence of run-counts as shown in Fig
1 and denoted as RLE. mvHash-B as-
sumes that each RLE starts with num-
ber of identical 0x00 bytes, therefore, if
the majority vote of input starts with
0xFF then run-length-encoding keeps 0
in the beginning.

3. Fingerprint generation using
Bloom filters: mvHash-B stores
the resultant RLE sequence in bloom
filter. The reason behind using bloom
filter is its efficient comparison capa-
bility. Bloom filter is an array of m
elements with all elements initialized
to 0. In mvHash-B implementation
m=2018(211). Select first 11 bytes of
RLE sequence to built a group and
perform mod 2 of each RLE element of
this group. Mod 2 operation transforms
the RLE sequence into 11 bit sequence
of 1 or 0 i.e. b0b1b2. . . b10 where biε
0,1 and 0≤i≤10. This is further divided
into two parts:

• v1 = b10b9b8b7b6b5b4b3 is used to
identify the byte within the Bloom
filter and

• v2 = b2b1b0 is used to identify the
bit within the byte.

Identified bit position of bloom filter is
set to 1. Next group can not be consec-
utive in order to ensure alignment ro-
bustness. Next group starts will the al-
ternate element of RLE sequence. This
process is explained in detailed in Fig 1.
Same process is applied to till the last
element of RLE sequence.

In order to find similarity between
two bloom filters, a distance score
is calculated which is represented as
discore. discore computation uses the
hamming distance. Let bf1 and bf2 are
two bloom filters, the value of discore is
calculated as follows:

discore =hd(bf1,bf2)
|bf1|+|bf1| · 100

where hd(bf1, bf2) denotes the hamming
distance between bf1 & bf2 and |bfi| de-
notes the number of bits set to 1 in
bloom filter bfi. Value of discore ranges
from 0 to 100, where 0 indicates the ex-
act similarity(100% similarity) and 100
indicates zero similarity.

5.

ANTI-BLACKLISTING

ATTACK ON

MVHASH-B
We present an anti-forensic attack based on
mvHash-B blacklisting i.e. we have shown
that it is possible to circumvent mvHash-
B blacklist filtering. We have provided an
algorithm/tool that can be used to avoid
the automated detection of the blacklisted or
malicious files by the blacklisting process of
mvHash-B similarity hashing. Blacklisting is
the process of filtering out the files by match-
ing it with the set of already Known-to-be-
bad files. The resultant file of the blacklist-
ing process is similar to known-to-be-bad or
malicious files and need to be examined man-
ually. The proposed algorithm modifies the
target file without changing the semantics of
the file in a way so that it does not appear
in the list of blacklisted files. These kind of
attacks are termed as an ‘Anti-Blacklisting
attack’ in literature by baier et al. (Baier &
Breitinger, 2011).

c© 2016 ADFSL Page 25

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

Figure 1. Processing of RLE encoding by mvHash-B from (Breitinger et al., 2013) .

The proposed Anti-Blacklisting attack
shows that mvHash-B scheme does not with-
stand an active adversary against a black-
list. This paper follows the definition of anti-
blacklisting provided by Baier et al. in their
paper (Baier & Breitinger, 2011). Proposed
attack generates false negatives for mvHash-
B similarity results. Let F1 is a malicious
file. The malicious user or attacker can use
the proposed algorithm and generate file F2,
which is semantically and perceptually same
as F1. However, mvHash-B similarity hash-
ing results F2 as non-similar to F1, thus a
false negative.

As discussed in § 4, mvHash-B works in
three phases 1)Majority Votes 2)Encoding
the majority vote bit sequence with RLE 3)
Fingerprint generation using Bloom filters,
where the first phase majority votes converts
each input byte into 0x00 or 0xFF, then the
next phase Run length encoding transforms
the input into run-count of the identical sub-
sequent bytes (0x00 or 0xFF) and finally the
last phase performs a modulo 2 operation
on the resultant RLE sequence and stores
the resultant RLE sequence in bloom filter
as shown in Fig. 1. Each consecutive 11 ele-
ments of RLE-sequence forms a group. Each
group sets one bit in bloom filter. Fig.2
shows an example.

The key idea of the attack is by modifying
one element in each group, we can change
the position of all the set bits in bloom fil-
ter. Since the bloom filter represents the fi-

nal mvHash-B digest hence the entire digest
is modified. Each element of a group is mod-
ulo 2 representation of corresponding RLE
elements, therefore, it is either 1 or 0. We
need to flip any one bit among all 11 bits
of a group. Which requires to increase or
decrease any of the corresponding 11 RLE-
elements just by 1. Any modification in the
RLE sequence requires replacement of the
corresponding input byte with the byte con-
taining more or fewer number of 1s (in its
binary representation). Now the important
question is, how to modify RLE-encoding
without influencing the semantics of the file.
Algorithm 1 presents a way of making such
modifications. Algorithm1 works in follow-
ing steps:

1. Go through each byte of the input file.
Check if the number of bits set to 1
in the n-neighborhood(bitcount(Nk,n))
of the current byte(Bk) is equal to t or
(t-1), where k is the current byte index
and t is the threshold. If yes, proceed
with following steps:

(a) Modify the Bk with semantically
similar character (defined later in
this section). Let B

′

k denotes
modification on Bk and similarly
N

′

k,n denotes modification on Nk,n.
Check for following condition:

i. bitcount(N
′

k,n)<bitcount(Nk,n)
and
bitcount(Nk,n)=t

Page 26 c© 2016 ADFSL

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

Figure 2. mvHash-B similarity digest generation considering n=2

ii. bitcount(N
′

k,n)>bitcount(Nk,n)
and
bitcount(Nk,n)=(t-1)

If any of the above condition sat-
isfies then accept the modification
else revert the changes.

(b) If the modification happens at step
(a) it will change the majority vote
of the corresponding byte from
0x00 to 0xFF or vice versa.

(c) Any change in majority vote will
reflect modification in correspond-
ing RLE element since it is the
count of consecutive 0x00 or 0xFF.

(d) Any alteration in RLE sequence
will modify the index of bloom fil-
ter element addressed by the group
containing the modified RLE el-
ement. Fig. 3 shows an exam-
ple of one byte modification. One
RLE modification may effect sev-
eral groups.

2. Perform step 1 after the last byte of the
last modified group.

3. Repeat all the above steps till the last
byte of the input file.

The semantically and perceptually similar

alteration can be performed as follows:

• For text documents:

1. Lower case to upper case conver-
sion or vice-versa

2. Space to tab or tab to space, etc

• For the image documents:
The modification can be performed by
doing a minor change in the RGB
value of a pixel. For example, in
bmp (RGB32) format each pixel in an
indexed color image is described by
3 bytes, representing its RGB (Red-
Green-Blue) value. This RGB value is
the index of single color described by
the color table. Altering the least sig-
nificant bit of any of these three bytes
does not produce a visual change in the
image.

• For a program file:

1. changing the names of variables

2. writing looping constructs in a dif-
ferent way

3. adding comments, etc.

c© 2016 ADFSL Page 27

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

Figure 3. Example of one byte modification

One byte modification in a group is
enough, since a modulo 2 operation is per-
formed on the RLE elements, so addition
or subtraction of one byte will change the
position of the addressed bit in bloom fil-
ter. Each group differs from its neighbor-
ing group only by two elements; therefore,
one modification influences several groups.
Fig. 4 contains an example which shows that
for a 174 byte long document, just 2 in-
put byte modifications are enough to change
the entire mvHash-B digest of the document.
The value of n considered in the example
explained in Fig. 4 is 2, where as recom-
mended value of n by design of mvHash-B
scheme is 50 or 20 depending on the file type.
If the value of neighborhood(n) is higher
then number of modifications required are
smaller. For example if n is 50, then one
byte modification will impact majority vote
calculation of 50 neighboring bytes.

6. RESULTS
We performed two experiments: one on the
textual data(text documents) and other on
visual data (images).

6.1 Experiment 1

Our first experiment was performed on a
dataset of 50 text files of variable sizes from

the T5-corpus dataset1. As recommended
in (Breitinger et al., 2013), we took parame-
ters n and ib to be 50 and 7, respectively.
The results obtained from the experiment
show that merely 3% deliberate modification
in the file takes down the similarity score
from 100 to 4 (on an average), whereas the
modified file is semantically similar to the
original file. Table 1 shows the experimen-
tal results of our proposed anti-blacklisting
attack for a small sample of 10 text files.

6.2 Experiment 2

We performed a second set of experiments
on a dataset of 200 bitmap images of vari-
able sizes. We took images from various
publicly available datasets such as Microsoft
Windows Bitmap Sample Files 2, CVonline:
Image Databases 3 and Yokogawa Y-Link 4).
The value of input parameter n was chosen
to be 50 and ib was taken to be 8. This is
as per the suggestion in (Breitinger et al.,
2013).

1http://roussev.net/t5/t5.html
2http://www.fileformat.info/format/bmp/

sample/
3http://homepages.inf.ed.ac.uk/rbf/

CVonline/Imagedbase.htm#segmentatio
4https://y-link.yokogawa.com/YL008/

?V ope type=Show&LANG=EN&Language id=

EN&Login type=2&Download id=DL00002164

Page 28 c© 2016 ADFSL

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

Figure 4. Example illustrating number of Deliberate Modifications required in order perform
anti-blacklisting attack

Table 2 illustrates the experimental results
of our proposed attack on a sample set of
10 bitmap images. Observed results demon-
strate that by varying as little as 0.3% of the
original image bytes, the similarity score of
mvHash-B digest for the image reduces from
100 to 6 on an average. Moreover, the re-
sultant modified images are visually same as
the original image. Fig. 5 shows an image
and a similar image obtained by our attack
algorithm. The left image is the unmodi-
fied source RAY.BMP, taken from Microsoft
Windows Bitmap Sample Files 5 while the
image on the right is the modified image gen-
erated by our algorithm. Visual similarity
between these two files can be seen to be
very high. However, the mvhash-B similar-
ity score for these images is 0.

An attacker can apply the proposed algo-
rithm on a malicious image and can gen-
erate a modified image, which is visually
same as the original malicious image but can
not be detectable from mvhash-B similar-
ity hashing. Therefore an attacker can eas-
ily hide the malicious image/text file from
the mvhash-B filtering process defeating the

5http://www.fileformat.info/format/bmp/

sample/1d71eff930af4773a836a32229fde106/

view.htm

very purpose of approximate matching algo-
rithms.

7.

COUNTERMEASURES
In order to prevent the proposed attack, we
suggest following improvement in the design
of mvHash-B construction. The root cause
of the attack is that attacker has the ability
to identify the position of input byte that
he can modify with maximum influence over
the mvHash digest. We want to restrict this
liberty by adding two secret input parameter
called ‘trigger’ and ‘x’ to the scheme. The in-
vestigator can choose any value of these two
parameter while mvHash digest calculation.

Let T be the trigger value chosen by the
investigator. Fig. 6 explains our suggested
improvement to mvHash-B scheme. Before
Majority vote calculation rolling hash over
the input byte is calculated. The rolling hash
calculation is be done in same way as ex-
plained by Kornblum in Context Triggered
Piecewise Hashing (Kornblum, 2006). The
value of rolling hash depends only on last s
bytes of the input file. Let Ri denotes the
rolling hash of ith input byte.
Ri=Rolling-Hash(Bi,Bi−1,Bi−2,. . .,Bi−s)

c© 2016 ADFSL Page 29

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

Table 1. Experimental results obtained from the proposed attack technique on Text file

S.No. File Name File size Number of Modification Similarity
(In Kilo Bytes) (in Kilo Bytes) Score

1† Test 02.text 0.47 0.01 0
2 Test 4955.text 14 0.40 0
3 Test 4950.text 23 0.61 0
4 Test 4954.text 27 0.74 0
5 Test 4956.text 30 0.91 0
6 Test 3518.text 34 0.41 0
7 Test 4960.text 47 1.20 7
8 Test 4953.text 76 2.00 14
9 Test 4953.text 189 6.00 9
10 Test 4953.text 190 4.00 10

On an avg. 2.59% 4
† This file is not from T5-corpus database

Table 2. Experimental results obtained from the proposed attack technique on bitmap images

S.No. File Name File size Number of Modification Similarity
(In Kilo Bytes) (in Kilo Bytes) Score

1 Air Conditioner S.bmp 6 0.01 0
2 Pressure Transmitter 03 M.bmp 20 0.45 0
3 Control Valve L.bmp 55 0.028 0
4 DadWood.bmp 265 0.480 0
5 Edison.bmp 500 1.838 8
6 carsgraz 287.bmp 901 2.383 10
7 Ray.bmp 1407 2.14 0
8 Alex bit.bmp 3984 16.682 13
9 MARBLES.bmp 4165 13.424 16
10 12x12 Women sample 400 dpi.bmp 22502 42.244 16

On an avg. 0.228% 6.3
† This file is not from T5-corpus database

Page 30 c© 2016 ADFSL

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

Figure 5. Example: First image from the left is original image taken from Microsoft Windows
Bitmap Sample Files6 and the other image is the generated modified image from the proposed
algorithm; mvHash-B similarity score of above images is 0

Figure 6. Counter measure for the proposed attack

where Bi represents the ith input byte. If
Ri== -1 mod T for s≤i< n where n denotes
input size. ith byte position is called trigger
point. Select last x bytes from the trigger
point for further digest calculation as shown
in Fig. 6. The number of trigger points is

inversely proportional to T (Baier & Bre-
itinger, 2011). Thus, for the higher value
of T number of trigger points will be smaller
or vice-versa. An investigator can choose the
value of T and x based on input file size and
these values are unknown to the attacker.

c© 2016 ADFSL Page 31

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

The attacker does not know selected input
byte. Therefore, cannot perform the delib-
erate intelligent modification. Random mod-
ification also does not impact the mvHash-B
digest much because every input byte is not
taking part in final digest calculation. The
attacker is unaware of trigger positions, and
thus cannot perform random insertion/dele-
tion as well.

8. CONCLUSION
This work explores the weakness of mvHash-
B similarity digest scheme, which can be
exploited by an active adversary to de-
feat the purpose of the approximate match-
ing scheme. We show an Anti-Blacklisting
attack on mvHash-B similarity digest and
practically prove that mvHash-B does not
withstand an active adversary against black-
list. We provide an anti-forensic tool that
can be used by an adversary to bypass the
blacklist filtering process of mvHash-B sim-
ilarity digest. Additionally, we suggested an
improvement to mvHash design to conquer
the proposed attack. Furthermore, the pro-
posed improvement ensures the security of a
scheme against an active adversary.

9.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their
helpful suggestions and feedback. We thank
our colleagues Surabhi Garg, Robin Verma,
Sweta Mistra, and Jyoti Leeka, who provided
insight and fruitful suggestions during the
course of this work. Monika Singh was sup-
ported by TCS Research and Development
PhD fellowship.

REFERENCES

Baier, H., & Breitinger, F. (2011). Security
aspects of piecewise hashing in

computer forensics. In
H. Morgenstern et al. (Eds.), Sixth
international conference on IT
security incident management and IT
forensics, IMF 2011, stuttgart,
germany, may 10-12, 2011 (pp.
21–36). IEEE Computer Society.
Retrieved from http://dx.doi.org/

10.1109/IMF.2011.16 doi:
10.1109/IMF.2011.16

Breitinger, F., Astebol, K. P., Baier, H., &
Busch, C. (2013). mvhash-b - A new
approach for similarity preserving
hashing. In Seventh international
conference on IT security incident
management and IT forensics, IMF
2013, nuremberg, germany, march
12-14, 2013 (pp. 33–44).

Breitinger, F., & Baier, H. (2012a). A
fuzzy hashing approach based on
random sequences and hamming
distance. In Proceedings of the
conference on digital forensics,
security and law (pp. 89–100).

Breitinger, F., & Baier, H. (2012b).
Properties of a similarity preserving
hash function and their realization in
sdhash. In 2012 information security
for south africa, balalaika hotel,
sandton, johannesburg, south africa,
august 15-17, 2012 (pp. 1–8).
Retrieved from http://dx.doi.org/

10.1109/ISSA.2012.6320445 doi:
10.1109/ISSA.2012.6320445

Breitinger, F., Baier, H., & Beckingham, J.
(2012). Security and implementation
analysis of the similarity digest
sdhash. In First international baltic
conference on network security &
forensics (nesefo).

Breitinger, F., Guttman, B., McCarrin, M.,
& Roussev, V. (2014). Approximate
matching: definition and terminology.
URL http://csrc. nist.
gov/publications/drafts/800-

Page 32 c© 2016 ADFSL

Security Analysis of mvHash-B Similarity ... JDFSL V11N2

168/sp800 168 draft. pdf .

Chang, D., Sanadhya, S. K., Singh, M., &
Verma, R. (2015). A collision attack
on sdhash similarity hashing. In
Proceedings of 10th intl. conference on
systematic approaches to digital
forensic engineering (pp. 36–46).

Chen, L., & Wang, G. (2008). An efficient
piecewise hashing method for
computer forensics. In Proceedings of
the international workshop on
knowledge discovery and data mining,
WKDD 2008, adelaide, australia,
23-24 january 2008 (pp. 635–638).
IEEE Computer Society. Retrieved
from http://dx.doi.org/10.1109/

WKDD.2008.80 doi:
10.1109/WKDD.2008.80

Divakaran, A. (2008). Multimedia content
analysis: Theory and applications (1st
ed.). Springer Publishing Company,
Incorporated.

Harbour, N. (2002). Dcfldd. defense
computer forensics lab.

Kornblum, J. D. (2006). Identifying almost
identical files using context triggered
piecewise hashing. Digital
Investigation, 3 (Supplement-1),
91–97. Retrieved from
http://dx.doi.org/10.1016/

j.diin.2006.06.015 doi:
10.1016/j.diin.2006.06.015

Roussev, V. (2009). Building a better
similarity trap with statistically
improbable features. In 42st hawaii
international international conference
on systems science (HICSS-42 2009),
proceedings (CD-ROM and online),
5-8 january 2009, waikoloa, big
island, hi, USA (pp. 1–10). IEEE
Computer Society. Retrieved from
http://dx.doi.org/10.1109/

HICSS.2009.97 doi:
10.1109/HICSS.2009.97

Roussev, V. (2010). Data fingerprinting
with similarity digests. In K. Chow &
S. Shenoi (Eds.), Advances in digital
forensics VI - sixth IFIP WG 11.9
international conference on digital
forensics, hong kong, china, january
4-6, 2010, revised selected papers
(Vol. 337, pp. 207–226). Springer.
Retrieved from http://dx.doi.org/

10.1007/978-3-642-15506-2 15

doi: 10.1007/978-3-642-15506-2 15
Seo, K., Lim, K., Choi, J., Chang, K., &

Lee, S. (2009, 12). Detecting similar
files based on hash and statistical
analysis for digital forensic
investigation. In Proceedings of the
2009 2nd international conference on
computer science and its applications,
csa 2009. doi:
10.1109/CSA.2009.5404198

Tridgell, A. (2002). Spamsum readme.
Retrieved from https://

www.samba.org/ftp/unpacked/

junkcode/spamsum/README

c© 2016 ADFSL Page 33

JDFSL V11N2 Security Analysis of mvHash-B Similarity ...

Algorithm 1

1: *input . Pointer to the input file
2: input size . Size of input file in Bytes
3: n . Size of neighhood (Default value for text files is 20)
4: ib . ib denotes average number of influencing bits for one byte(0≤ib≤8), default value of ib=8.
5: bitcount n(k) . Function that outputs number of bits set to 1 in n-neighborhood of kth byte of input
6: bits[255] . Array containing number of bits set to one in all ASCII characters
7: *output . Pointer to the modified resultant file
8: rle index = 0; . Temporary variable containing the current index position of RLE sequence
9: input index = 0; . Temporary variable containing the index position of current input byte

10: t = 0; . Threshold
11: modification = ‘Y’ . Temporary variable initialised with ’Y’
12: tmp, tmp rle . Temporary variables
13: reduce bitcount(input[k]) . Function that modifies input byte and write it to the resultant file with simantically

similar character if that modification reduces the bitcount n(kk) and returns ’Y’ else ’N’
14: increase bitcount(input[k]) . Function that modifies input byte and write it to the resultant file with simantically

similar character if that modification increases the bitcount n(kk) and returns ’Y’ else ’N’
15: t = ((n + 1) ∗ ib)/2 . Calculate the threshold value
16: for kk ← 0 to input size− 1 do . Run through each byte of input file
17: if tmp rle == t then
18: tmp rle ← 0
19: modification ← Y
20: tmp rle ← bitcount N(kk)
21: modification ← reduce bitcount(input[kk]) . Try to reduce the bitcount of the byte

without changing semntic value
22: if modification == ‘Y ′ then . If modification of kkth byte is possible
23: end fl ← 0;
24: while input index ≤ kk do . Get the RLE index of that byte
25: input index = input index + output[rle index]; rle index++;
26: end while
27: if input index<input size then end fl = input index;
28: elseend fl = input size
29: end if
30: if (kk + 1) ≤ input size then . Get the index of last byte of the group involved the modified

byte
31: for i← (kk + 1) to end fl do fputc(input[i], output)
32: end forkk = end fl; . Next modification will be perform after end flth byte of input
33: end if
34: end if
35: else if tmp rle == (t - 1) then tmp = input[kk]; modification = increase bitcount(input[kk])

. Try to increase the bitcount of the byte with changing semntic value
36: if modification == ‘Y’ then
37: while input index ≤ kk do . Get the RLE index of that byte
38: input index = input index + output[rle index]; rle index++;
39: end while
40: end fl ← 0;
41: if (input index)<input size then end fl = input index
42: else end fl = input size
43: end if
44: if (kk + 1) ≤ input size then . Get index of last byte of the group involved, the modified byte
45: for j ← (kk + 1) to end fl do fputc(input[j], output)
46: end forkk = end fl; . Next modification will be perform after end flth byte of input
47: end if
48: end if ch value = (char)tmp;
49: else fputc(input[kk], output)
50: end if
51: end for

Page 34 c© 2016 ADFSL

	Security Analysis of MVhash-B Similarity Hashing
	Recommended Citation

	Security Analysis of MVhash-B Similarity Hashing

