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ABSTRACT

Hash functions are established and well-known in digital forensics, where they are commonly
used for proving integrity and file identification (i.e., hash all files on a seized device and
compare the fingerprints against a reference database). However, with respect to the latter
operation, an active adversary can easily overcome this approach because traditional hashes
are designed to be sensitive to altering an input; output will significantly change if a single
bit is flipped. Therefore, researchers developed approximate matching, which is a rather new,
less prominent area but was conceived as a more robust counterpart to traditional hashing.
Since the conception of approximate matching, the community has constructed numerous
algorithms, extensions, and additional applications for this technology, and are still working
on novel concepts to improve the status quo. In this survey article, we conduct a high-level
review of the existing literature from a non-technical perspective and summarize the existing
body of knowledge in approximate matching, with special focus on bytewise algorithms. Our
contribution allows researchers and practitioners to receive an overview of the state of the
art of approximate matching so that they may understand the capabilities and challenges of
the field. Simply, we present the terminology, use cases, classification, requirements, testing
methods, algorithms, applications, and a list of primary and secondary literature.

Keywords: Approximate matching, Fuzzy hashing, Similarity hashing, Bytewise, Survey,
Review, ssdeep, sdhash, mrsh-v2.

1. INTRODUCTION

It is no secret that the number of networked
devices in the world continues to increase
alongside the complexity of cyber crimes,
size of storage devices, and amount of data.
We are beyond the point where investiga-
tors can manually analyze all cases. These
advances have also been complemented with

an increase in processing power. Speaking in
numbers, while 80-200 GB HDDs, 2-4 GB of
RAM memory, and dual core were the quasi
standards for machines in 2011, nowadays
they are 512 GB SSDs, 8-16 GB RAM, and
multicore architectures; (external) storage
devices may have several terabytes of stor-
age. Furthermore, if privately owned com-
puting resources are insufficient for a task,
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one may shift it to the cloud. In short,
practitioners need tools and techniques that
are capable of automatically handling large
amounts of data since time in investigations
is of the essence.

A common forensic process to support
practitioners is known file filtering, which
aims at reducing the amount of data an in-
vestigator has to manually examine. The
process is quite simple: (1) compute the
hashes for all files on a target device (2)
compare the hashes to a reference database.
Based on the signatures in the database,
files are whitelisted (filtered out / known-
good files, e.g., files of the operating system)
or blacklisted (filtered in / known-bad files,
e.g., known illicit content). This straightfor-
ward procedure is commonly implemented
using cryptographic hash functions like MD5
(Rivest, 1992) or an algorithm from the
SHA family (FIPS, 1995; Bertoni, Daemen,
Peeters, & Assche, 2008).

While cryptographic hashes are well-
established and tested, they have one down-
side – they can only identify bitwise identi-
cal objects. This means changing a single
bit of the input will result in a totally dif-
ferent hash value. Subsequently, the com-
munity worked on a counterpart for (crypto-
graphic) hashing algorithms that allows sim-
ilarity identification – approximate match-
ing. Although this is a practically useful
concept, a recent survey by Harichandran,
Breitinger, Baggili, and Marrington (2016)
with 99 participants showed that only 12%
of the forensic experts polled use this tech-
nology on regular basis. Detailed results are
provided in Table 1.

Contribution. In this paper we aim to ad-
dress the almost 15 % that have never heard
of approximate matching by providing them
with a comprehensive literature survey, and
the 31 % (unnecessary for my purposes) by
illustrating a multitude of applications for

Table 1. Answers to the survey question:
Have you ever used approximate match-
ing/similarity hashing algorithms?

Answer in %

Yes, I use them on a regular basis. 12.50
Yes, a few times. 34.38
No, they are too slow for practical
use.

7.29

No, they are unnecessary for my
purposes.

31.25

No, I am unaware of what it is. 14.58

approximate matching. Accordingly, we ad-
dress the following key points:

� Terminology, use cases, classification,
requirements, and testing.

� High-level description of existing algo-
rithms including strengths and weak-
nesses.

� Secondary literature that enhances / as-
sesses existing approaches.

� New applications that employ approx-
imate matching, e.g., file carving and
data leakage prevention.

� Current limitations and challenges, and
possible future trends.

Since it is low-level (is directly concerned
with the structure of everything digital), and
may be the most impacting / implemented
type due to its usage for automation, we fo-
cus on bytewise approximate matching.

Differentiation from previous work.
When writing this article, there were three
articles similar to this survey. The first
was the SP 800-168 from the National Insti-
tute for Standards and Technology (NIST,
Breitinger, Guttman, McCarrin, Roussev,
and White (2014)). While this article pro-
vides an overview of the terminology, uses
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cases, and testing, it does not include any
algorithm concepts, applications, or criti-
cal discussion. Moreover, a reader is not
provided with a long list of references.
Mart́ınez, Álvarez, and Encinas (2014) is a
purely technical paper and focused on the
full details of the algorithms and their imple-
mentations. Thirdly, the dissertation from
Breitinger (2014) contained almost all of
these topics but is extremely lengthy. Ergo,
our intention during writing was to make
this publication the primary source for re-
searchers / practitioners to grasp a cur-
sory bird’s-eye view of bytewise approximate
matching.

We summarized the most important ele-
ments of these works in a condensed and
direct manner to increase the awareness of
approximate matching. Extra texts are also
shared for each algorithm in Sec. 4.

Structure. The remainder of this paper is
organized as follows: Sec. 2 provides the his-
torical background of approximate match-
ing. Concepts are outlined, including use
cases, types, requirements (this subsection
describes the core principles of algorithm de-
sign), and testing. Then, after traversing 8
of the most popular algorithms in Sec. 4 we
mention newly explored prospects in Sec. 5.
Limitations and challenges precedes a brief
listing of future areas of research in Sec. 7.

2. HISTORY
Many of the approximate matching algo-
rithms designed to solve modern-day prob-
lems in digital forensics rely fundamentally
on the ability to represent objects as sets
of features, thereby reducing the similarity
problem to the well-defined domain of set op-
erations (Leskovec, Rajaraman, & Ullman,
2014). This approach has roots in the work
of the early Swiss 20th century biologist Paul
Jaccard, who suggested expressing the simi-
larity between two finite sets as the ratio of

the size of their intersection over the size of
their union (Jaccard, 1901, 1912): if A and
B are sets, then the Jaccard index J is de-
fined as J(A,B) = |A

⋂
B|

|A
⋃

B| . It has been widely
adopted as a method for quantifying similar-
ity and is still used mainly within computer
linguistics for plagiarism detection.

Nearly a century later, Broder (1997) pro-
posed using the Jaccard index as part of
his algorithm for identifying similar docu-
ments. Broder suggested a distinction be-
tween two commonly used types of similar-
ity: ‘roughly the same’ (resemblance) and
‘roughly contained inside’ (containment).
While he recommended using the Jaccard in-
dex for resemblance, he introduced a varia-
tion to approximate containment which “in-
dicates that A is roughly contained within
B”: c(A,B) = |A

⋂
B|

|A| . Additionally, Broder
described the MinHash algorithm, an effi-
cient method for estimating these similarities
(Broder, Charikar, Frieze, & Mitzenmacher,
1998).

On the other hand, Manber (1994) pre-
sented sif, an implementation used to cor-
relate text files. “Files are considered simi-
lar if they have a significant number of com-
mon pieces, even if they are very different
otherwise.” Due to the complexity of com-
paring strings directly, he utilized Rabin fin-
gerprinting to hash and compare substrings
(Rabin, 1981).

A first step towards approximate match-
ing as we use it today was dcfldd1 by Har-
bour in 2002, which was an extension for
the well-known disk dump tool dd. His
tool divided the input into chunks of fixed
length and hashed each chunk. Therefore,
Harbour’s approach is also called block-based
hashing. While this approach works per-
fectly for flipped bits, it has a limited ca-
pacity to detect similarity in strings where

1http://dcfldd.sourceforge.net (last ac-
cessed Feb 4th, 2016).
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the deletion or insertion of bits creates a
shift that changes the hashes of all blocks
that follow. Theoretically, the shift of even
a single bit at the beginning of a file could
cause nearly identical objects to appear to
have nothing in common, much like the naive
(traditional) file hashing approach.

Although this weakness can present a
problem for file-to-file comparison, it may
be acceptable in some scenarios. For exam-
ple, if the goal is to determine which parts of
a disk image might have been changed dur-
ing a cyber attack, Harbour’s technique re-
mains useful. Likewise, in the case of an an-
alyst scanning for blacklisted material across
a drive or a collection of drives, the loss of
a few block matches may be a worthwhile
trade-off for gains in speed and simplicity,
particularly because a single block is often
sufficient evidence to demonstrate the pres-
ence of an artifact, or at least to warrant
closer inspection.

Several efforts have been made to further
leverage this technique for detecting similar
material by matching fixed length file frag-
ments. Collange, Dandass, Daumas, and
Defour (2009) coined the term “hash-based
carving” to describe this method of scanning
for blacklisted material, since it can be used
to extract content without aid from the file
system, provided the targets are known be-
forehand.

Key (2013)’s File Block Hash Map
Analysis (FBHMA) EnScript and Simson
Garfinkel’s tool frag find (S. L. Garfinkel,
2009) provided practical implementations
that automated the process for forensic ex-
aminers, though searches were limited to a
few files at a time. S. Garfinkel, Nelson,
White, and Roussev (2010) described the
implementation and evaluation of frag find
in detail, noting a particular difficulty in
storing and searching billions of hashes at
practical speeds. S. Garfinkel and McCar-
rin (2014) later succeeded in scanning a

drive image for matches of 4096-byte blocks
across a set of nearly one million blacklisted
files stored in the custom-built database,
hashdb.

3. CONCEPTS

While approximate matching (a.k.a. fuzzy
hashing or similarity hashing) started to gain
popularity in the field of digital forensics in
2006, it was not until 2014 that the Na-
tional Institute for Standards and Technolo-
gies (NIST) developed standard definitions,
publishing Approximate Matching: Defini-
tion and Terminology (NIST SP 800-168,
Breitinger, Guttman, et al. (2014)). Sub-
sections below briefly summarize this work’s
principles.

The ‘Purpose and Scope’ section of the
NIST document defines approximate match-
ing as follows: “Approximate matching is
a promising technology designed to identify
similarities between two digital artifacts. It
is used to find objects that resemble each
other or to find objects that are contained
in another object.”

3.1 Use cases

In investigative cases, approximate match-
ing is used to filter known-good or known-
bad files while using a reference approximate
matching hashed data set, either on static
data or data in transit over a network. The
primary use cases for approximate matching
are presented below:

� Similarity detection correlates related
documents, e.g., different versions of a
Word document.

� Cross correlation correlates documents
that share a common object, e.g., a
DOC and a PPT document including
the same image.
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� Embedded object detection identifies an
object inside a document, e.g., an image
inside a memory dump.

� Fragment detection identifies the pres-
ence of traces/fragments of a known ar-
tifact, e.g., identify the presence of a file
in a network stream based on individual
packets.

A lecture at DFRWS USA 2015 decided
to break down uses into 6 categories instead,
from the perspective of the bytestreams
matching: R is identical to T, R contains T,
R & T share identical substrings, R is simi-
lar to T, R approximately contains T, and R
& T share similar substrings (where R and
T are two sequences) (Ren & Cheng, 2015).

Notwithstanding, approximate matching
may not be appropriate when used to
whitelist artifacts since such content can be
quite similar to benign content, e.g., an SSH
server with a backdoor would look analogous
to a regular entry point (Baier, 2015).

3.2 Types

Regardless of the use cases, approximate
matching can be implemented at different
abstractions. Usually we distinguish be-
tween the following three abstraction cate-
gories:

Bytewise: matching operates on the byte
level and uses only the byte sequences as
input only (also known as fuzzy hashing
and similarity hashing).

Syntactic: matching also works on the byte
level but may use internal structure in-
formation, e.g., one may ignore the TCP
header information of a packet that is
parsed.

Semantic: matching works on the content-
visual layer and therefore closely resem-
bles human behavior (also called percep-
tual hashing and robust hashing), e.g.,

the similarity of the content of a JPG
and a PNG image where the image file
types / byte streams are different, but
the picture is the same.

Furthermore, there are 4 cardinal cate-
gories of algorithms (see Sec. 4 for the inner
workings) (Mart́ınez et al., 2014):

� Context-Triggered Piecewise Hashing
(CTPH).

� Block-Based hashing (BBH).

� Statistically-Improbable Features
(SIF).

� Block-Based Rebuilding (BBR).

3.3 Requirements

There are multiple ways to interpret sub-
string matching. For example, “ababa” and
“cdcdc” might be considered similar because
they both have five characters ranging over
two alternating values, or they might be
treated as dissimilar because they have no
common characters. Thus, algorithms must
define the lowest common denominator of
its interpretation - a feature - including how
they are derived from an input. When two
features are compared the outcome is binary,
match or no match.

A feature set refers to a set of distinct
features found in the entire bytestream of
a file or file fragment. An algorithm may
choose to only include some features in this
set and must outline the method/criteria for
inclusion. Feature sets are then used to pro-
duce a match/similarity score, representing
the amount of similarity between sets of tar-
get files rationally (an increasing monotonic
function).

Bytewise algorithms have two main func-
tions. A feature extraction function iden-
tifies and extracts features from objects to
convert them to a compressed version for
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comparison. Then, a similarity function per-
forms the comparison between these com-
pressed versions to output a normalized
match score. This comparison usually in-
volves string formulas such as Hamming dis-
tance and Levenshtein distance; Mart́ınez,
Álvarez, Encinas, and Ávila (2015) and Li et
al. (2015) have proposed new algorithms for
specific uses. Normalized scores may be cal-
culated by weighing the number of matching
features against the total number of features
for both objects (for resemblance), or by ig-
noring unmatched features in the container
object (if concerned with containment).

In addition to the above, these traits must
be satisfied to be considered a valid ap-
proximate matching algorithm, according to
NIST:

Compression: actual storage of features is
usually implemented as a one-way hash
known as a similarity digest, signature,
or fingerprint); length is shorter than
the original feature/input itself.

Similarity preservation: similar inputs
should result in similar digests.

Self-evaluation: authors should state the
confidence level for the circumstances/-
parameters used to produce the match
score and what the scale is (e.g., 0 = no
features matched, 1 = all exact match).

Time complexity/runtime efficiency:
speed should be stated via theoretical
complexity in O-notation as well as the
runtime speed; for bytewise algorithms
it is preferable to know the isolated
speeds of the feature extraction and
similarity functions.

3.4 Testing bytewise
approximate matching

Testing algorithms is an important task, so
researchers set out to create a test envi-

ronment for bytewise approximate matching.
The first step was taken by Breitinger, Sti-
vaktakis, and Baier (2013), called FRame-
work to test Algorithms of Similarity Hash-
ing (FRASH).

It tested efficiency, sensitivity and robust-
ness, and precision and recall. This last cat-
egory can be divided further into synthetic
data vs. real world data. While synthetic
data provides the perfect ground truth (fur-
ther described below), it does not coincide
with the real world, and vise versa.

Synthetic data test results were published
(Breitinger, Stivaktakis, & Roussev, 2013)
in addition to real world data (Breitinger
& Roussev, 2014). The complete results
are too complex to be presented in this
article but can be found in chapter 6 in
Breitinger (2014). In the following subsec-
tions we briefly summarize how approximate
matching algorithms can be evaluated and
FRASH’s results. The main findings were:

� sdhash and mrsh-v2 outperform other
algorithms.

� mrsh-v2 is faster and shows better com-
pression than sdhash.

� sdhash obtains slightly better precision
and recall rates than mrsh-v2.

Therefore, the final decision for selecting an
algorithm depends on the use case.

Efficiency. As with cryptographic hash
functions, compression and runtime ef-
ficiency are important, but approximate
matching algorithms involve additional con-
cerns; several do not output fixed length di-
gests. Thus, researchers usually report com-
pression ratio, cr = digest length

input length
.

The community distinguishes between the
following for runtime:

Generation efficiency: time needed to
process an input and output the simi-
larity digest.
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Comparison efficiency: summarizes the
theoretical complexity (in O-notation)
to compare digests against an existing
data set / database; again, often stated
in units of time for implementations for
bytewise approximate matching.

Space efficiency: calculated by dividing
digest length by input length.

Sensitivity and robustness. Sensitivity
refers to the granularity at which an algo-
rithm can detect similarity, i.e., how minute
the feature is. At some threshold making a
feature too fine causes almost all objects to
appear common, however, and therefore the
algorithm designer must strike a balanced
sensitivity to optimize utility and time ef-
ficiency.

Robustness is a metric of how effective an
algorithm can be in the midst of noise and
plain transformations such as fragmentation
and insertion/deletion into the target byte
sequence.

As outlined by FRASH, these attributes
are tested by creating manual mutations of
the target fragments/files:

Alignment robustness: inserts blocks of
various sizes at the beginning of an in-
put; this should simulate scenarios like
growing log files or emails.

Fragment detection: identifies the small-
est fragment of a byte sequence that
still matches by cutting it; this feature
is important for network traffic analysis
(see Sec. 5.2) and hash-based file carv-
ing (see Sec. 5.1).

Single-common block correlation:
analyzes the minimum amount of
correlation between two files, e.g., two
word documents that share an common
paragraph.

White noise resistance: is a probability-
driven test that introduces (uniform)
random changes into a byte sequence
(via insertion, deletion, & substitution);
a viable scenario is source code where a
developer renamed a variable.

Precision and recall on synthetic data.
Precision can be thought of as a measure
of false positives (possibility of counting ob-
jects as similar that in actuality are not)
while recall refers to the false negatives
(omitting objects that should be tallied as
similar). These attributes are an indication
of an algorithm’s reliability.

In order to quantify them, the initial step
is to analyze synthetic data. First, ran-
dom byte sequences (the FRASH paper used
Linux /dev/urandom) are generated. Next,
mutations are created through methods like
those mentioned in the previous subsection.
Finally, the comparison is executed and the
results are analyzed.

Precision and recall on real world data.
Testing on real world data is a bit more com-
plex because there is no definition for simi-
larity and no ground truth (publicly avail-
able data sets for testing that involves ex-
planations of what the expected similarity
is between different files). To define the
ground truth, the community developed ap-
proximate longest common substring (aLCS)
which estimates the longest common sub-
strings of two files. According to this, two in-
puts are declared as similar, if their aLCS is
sufficient (e.g., 1 % of the total input length,
or at least 2 KiB).

3.5 Security

Most approximate matching algorithms cur-
rently implement few-to-zero security fea-
tures to guard against active, real-time at-
tacks. One staple is inherently built into ap-
proximate matching algorithms: hash func-
tions are one-way, even for similarity, and
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therefore prevent reverse engineering the
original input sequence of a fragment / file.
The few other tolerances exhibited by the al-
gorithms are stated in their individual sub-
sections under Sec. 4.

However, we posit that for most uses of
approximate matching, security features are
not essential. As pointed out by Baier (2015)
these algorithms are most likely to be used
for blacklisting. Why would an active ad-
versary want to create files that match a
blacklist of static (not in transit) data? Re-
searchers must find an answer to how easy
it is to avoid matching files. Maybe in the
future we should classify security for approx-
imate matching algorithms by the minimum
amount of changes that are necessary be-
tween two files in order to produce a non-
match. A question that needs fresh explo-
ration, though, is what practices criminals
can use to bypass certain (types of) algo-
rithms, use cases, and applications; a rigor-
ous analysis of this has not been performed
partially due to missing standards / ground
truth.

3.6 Extending existing
concepts

One of the major challenges that comes with
approximate matching is related to the near-
est neighbor problem, i.e., how to identify
the similarity digests that are similar to a
given one. More precisely, let’s assume a
database containing n entries. Most algo-
rithms require an ‘against-all’ comparison
which equals a complexity of O(n).

Winter, Schneider, and Yannikos (2013)
presented an approach to diminish this com-
plexity for ssdeep named F2S2. Gener-
ally speaking, instead of storing the com-
plete Base64 encoded similarity digest in the
database, they stored n-grams using hash-
tables. In order to lookup single digests they
first looked for the n-grams which reduced

the overall amount of comparisons. For the
final decision, the ssdeep comparison func-
tion was used. As a result, they reduced the
comparison time of 195,186 files against a
database containing 8,334,077 records from
442 h to 13 min (boosted by a factor of about
2000), a ‘practical speed’.

However, this approach works only for
Base64 and hence for none of the other ap-
proaches like sdhash or mrsh-v2. There-
fore, Breitinger, Baier, and White (2014)
presented a concept that could speed up the
process via Bloom filter-based approaches.
They suggested using one single huge Bloom
filter to store all feature hashes, which re-
sults in a complexity of ∼ O(1). Their ap-
proach overcomes the drawback of compar-
ing digests against digests but loses preci-
sion. That is, it allows for only yes or no
decisions: yes means there is a similar file in
the set; no equates to none of the files being
similar above the chosen threshold. It does
not allow for the returning of the matched
file(s).

Consequently, the authors presented an
enhancement which simply uses multiple
large Bloom filters to generate a tree struc-
ture that results in a complexity of O(log(n))
(Breitinger, Rathgeb, & Baier, 2014). But
these are only assumptions – while there is
a working prototype for the first approach,
the latter concept only exists in theory.

3.7 Distinction from
locality-sensitive hashing

(LSH)

It’s critical to note that sometimes people
confuse Locality-Sensitive Hashing (LSH)
(e.g., Rajaraman and Ullman (2012)) with
approximate matching. Therefore, we in-
cluded this section. LSH is a general mecha-
nism for nearest neighbor search and data
clustering where the performance strongly
relies on the used hashing method. Two pop-
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ular algorithms are MinHash (Broder, 1997)
and SimHash2 (Charikar, 2002).

This does not necessarily coincide with the
idea of approximate matching. Specifically,
while LSH aims at mapping similar objects
into the same bucket, approximate matching
outputs a similarity digest that is compara-
ble.

We would like to note here that the follow-
ing section mainly focuses on bytewise ap-
proximate matching.

4. INTRODUCTION

TO ALGORITHMS
As previously mentioned, approximate
matching started to gain attention in 2006
with the concept of context triggered piece-
wise hashing and its first implementation,
ssdeep (Kornblum, 2006). In the following
years, new algorithms were proposed and
published.

We will introduce the eight known approx-
imate matching algorithms. While the first
three algorithms are still extended and rele-
vant, the last four algorithms are less promis-
ing from a digital forensics perspective for
various reasons, e.g., precision and recall
rates, runtime efficiency and detection capa-
bilities. The last algorithm (TLSH) is more
related to LSH than approximate matching
and is included for completeness.

This section is a high-level summary of the
current algorithms. Throughout each sub-
section references are cited for deeper read-
ing.

4.1 ssdeep

CTPH is the technique used by ssdeep and
was presented by Kornblum (2006). Roughly

2Note, SimHash is a common term and is used
several times literature. Accordingly, it is also used
twice in this article. Besides this section it is also
used in Sec. 4.6 where it describes an approach from
Sadowski and Levin (2007).

speaking, it is a modified version of the spam
detection algorithm from Tridgell (2002–
2009) generalized to cope with any digital
object.

In CTPH the approach is to identify trig-
ger points to divide a given input into
chunks/blocks. This breakup is performed
using a rolling hash that slides through the
input, adds bytes to the current context
(think of it as a buffer), creates a pseudo-
random value, and removes them from the
context after a set number of bytes are com-
pleted. The context is then used as a trigger
– whenever a specified sequence is created
the current context is hashed by the non-
cryptographic FNV-hash function (Fowler,
Noll, & Vo, 1994–2012). To create the sim-
ilarity digest, the FNV-chunk-hashes are re-
duced to 6 bits, converted into a Base64 char-
acter and concatenated; this is done contin-
uously as the trigger outputs FNV hashes.

At the time of this article, ssdeep was
still an active project with version 2.13 and
is freely available online3. Over the years,
several extensions and performance improve-
ments have been published that mostly
focus on the efficiency of the implemen-
tation (Chen & Wang, 2008; Seo, Lim,
Choi, Chang, & Lee, 2009; Breitinger &
Baier, 2012b). However, a security analy-
sis conducted by Baier and Breitinger (2011)
showed that CTPH cannot withstand an ac-
tive attack.

4.2 sdhash

Similarity digest hashing was published
four years later by Roussev, Richard, and
Marziale (2008); Roussev (2010) and is also
still active. The SIF algorithm extracts sta-
tistically improbable features that are de-
termined by Shannon entropy (not the ones
with the highest / lowest entropy but the

3http://ssdeep.sourceforge.net (last ac-
cessed Feb 4th, 2016).
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ones that seem unique, Roussev (2009)). In
sdhash, a feature is a byte sequence of 64
bytes that is then compressed by hashing it
with SHA-1. Finally, the author developed a
way to insert the hashes into a Bloom filter4

(Bloom, 1970).
The original version was extended several

times, now supporting GPU usage for cal-
culation and a block-based hashing mode
(Roussev, 2012). The current version (3.4)
is available online5.

A comparison between ssdeep and
sdhash showed that the latter algorithm out-
performs its predecessor (Roussev, 2011). In
addition, a security analysis showed that
sdhash is much more robust and difficult to
overcome (Breitinger & Baier, 2012c).

4.3 mrsh-v2

This algorithm was published by Breitinger
and Baier (2013) and is a combination
of ssdeep and sdhash6. Like the afore-
mentioned implementations, mrsh-v2 is still
supported7. The algorithm uses the fea-
ture identification procedure from ssdeep,
then hashes the feature using the non-
cryptographic FNV (Fowler et al., 1994–
2012) and proceeds like sdhash, con-
sequently overcoming the weaknesses of
ssdeep and becoming faster than sdhash.
The precision and recall rates are slightly
worse than sdhash.

4.4 bbHash

Building block hashing is a completely dif-
ferent approach and is based on the concept
of eigenfaces (biometrics) and de-duplication

4A Bloom filter is a space efficient data structure
to represent a set. Bloom filters will not be discussed
in this article but more details can be found online.

5http://sdhash.org (last accessed Feb 4th,
2016).

6It was also inspired by multi-resolution similar-
ity hashing (Roussev, III, & Marziale, 2007).

7http://www.fbreitinger.de (last accessed
Feb 4th, 2016).

(data compression). Contrary to expecta-
tion, its type (see Sec. 3.2) is not epony-
mous, but rather BBR. The main difference
is that this approach utilizes an external ref-
erence point – the building blocks.

A set of 16 building blocks (random byte
sequences) is used to optimize representation
of a given file. In order to find this represen-
tation the algorithm calculates the Hamming
distance, which is time consuming and slow
for practical usage (e.g., it takes about two
minutes to process a 10 MB file) (Breitinger
& Baier, 2012a).

4.5 mvHash-B

Majority vote hashing, another BBR type,
was published by Åstebøl (2012); Breitinger,
Åstebøl, Baier, and Busch (2013). It trans-
forms any byte-sequence into long runs of
0x00s and 0xFFs by considering the neigh-
boring bytes of a specific byte. If the neigh-
borhood consists of mainly 1s, the byte is
set to 0xFF, otherwise to 0x00. Next, these
runs are encoded by Run Length Encod-
ing (RLE). Although this proceeding is very
fast, it requires a specific configuration for
each file type.

4.6 SimHash

SimHash was presented by Sadowski and
Levin (2007) and embodies the notion of
counting the occurrences of certain prede-
fined binary strings called “Tags” within an
input. In their BBR implementation, the au-
thors used 16 8-bit Tags, i.e., a possible Tag
could have been 00110101. Subsequently,
the tool parses an input bit by bit, searching
for each Tag. The total number of matches
is stored in a sum table. A hash key is com-
puted as a function of the sum table entries
that form linear combinations. Lastly, all
information (including file name, path, and
size) is stored in a database.

To identify similarities, a second tool
named SimFash is used to query the
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database. The hash keys are used as a first
filter to identify all possible matches. Next,
the sum tables are compared and a match
is found if the distance is within a specified
tolerance.

The authors clearly state that “two files
are similar if only a small percentage of their
raw bit patterns are different. ... [Thus,] the
focus of SimHash has been on resemblance
detection” (Sadowski & Levin, 2007).

4.7 saHash

Another SIF type, saHash uses Levenshtein
distance to derive similarity between two
byte sequences. The output is a lower bound
for the Levenshtein distance between two in-
puts. Akin to SimHash (Sec. 4.6), saHash

allows for the detection of only near dupli-
cates (up to several hundred Levensthein op-
erations).

A unique characteristic of this approach is
its definition of similarity. While all other
approaches output a number between 0 and
1 (not a percentage value), saHash actu-
ally returns the lower bound of Levenshtein
operations (Ziroff, 2012; Breitinger, Ziroff,
Lange, & Baier, 2014) to convert one file into
another.

4.8 TLSH

TLSH belongs to the category of locality-
sensitive hashes, published by Oliver, Cheng,
and Chen (2013), and is open source8. It
processes an input byte sequence using a
sliding window to populate an array of
bucket counts, and determines the quartile
points of the bucket counts. A fixed length
digest is constructed which consists of two
parts: (i) a header based on the quartile
points, the length of the input, and a check-
sum; (ii) a body consisting of a sequence of
bit pairs, which depends on each bucket’s

8https://github.com/trendmicro/tlsh (last
accessed Feb 4th, 2016).

value in relation to the quartile points. The
distance between two digest headers is deter-
mined by the difference in file lengths and
quartile ratios. Meanwhile, the bodies are
contrasted via their approximate Hamming
distance. Summing these together produces
the TLSH similarity score.

According to the authors, the precision
and recall rates are robust across a range of
file types. Additional experiments (Oliver,
Forman, and Cheng (2014)) showed that
TLSH can detect strings which have been
manipulated with adversarial intentions9.
TLSH is also effective in detecting embed-
ded objects depending on the level of object
manipulation. Despite these advantages, it
is less powerful than sdhash and mrsh-v2 for
cross correlation.

5. APPLICATIONS
Originally, approximate matching was de-
signed to support the digital investigation
process via the use cases stated in Sec.
3.1; search for target file(s)/fragments or re-
duce the volume of data needing investiga-
tion. Recently, tools such as EnCase, X-
Ways Forensics, and Forensic Toolkit (FTK)
have incorporated similar object detection
technologies (Breitinger, 2014). Researchers
have now identified additional working ar-
eas where these techniques or tools can
have practical impact, e.g., for file carving
(see Sec. 5.1), data leakage prevention (see
Sec. 5.2 and 5.4) and Iris recognition (see
Sec. 5.5).

5.1 Automatic data reduction
and hash-based file

carving

As sifting through data has become cum-
bersome, pre-processing schemes have risen.

9Tolerance of manipulation was one of the design
considerations for TLSH.
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Extracting data in bulk is arguably the
most sought after application of approximate
matching. One perspective that should be
fruitful is hash-based file carving.

This alienated area of work was presented
by S. Garfinkel and McCarrin (2014). In
their paper, the authors combined tech-
niques from file carving and approximate
matching to search on “media for complete
files and file fragments with sector hash-
ing and hashdb.” Instead of focusing on
the complete file and comparing it against
a database, the authors use individual data
blocks. They utilized a special database
named hashdb (Allen, 2015) to obtain high
throughput.

The evaluation proved their strategy
works, although they had to solve the prob-
lem of non-probative blocks that emerged
“from common data structures in office doc-
uments and multimedia files.” To filter out
such artifacts, the authors presented several
‘tests’ that alleviated the problem.

5.2 Network traffic analysis

Gupta (2013); Breitinger and Baggili (2014)
demonstrated preliminary results when us-
ing approximate matching on network traf-
fic for data leakage prevention. The ques-
tion was (since approximate matching can
be used for fragment detection) whether net-
work packets could be matched back to their
original files.

Design was similar to its traditional coun-
terpart: create a database of known-object
signatures (most likely files) and identify
these objects, but instead of analyzing a
hard drive the researchers used a network
stream (single packets). This work illus-
trated approximate matching’s utility in
data leakage prevention, a formerly un-
touched application.

Beginning with modifying the original
mrsh-v2 algorithm to handle the small size
of 1460 bytes per packet, the authors showed

that this method works robustly on random
data (true positive rate 99.6 %, true nega-
tive rate 100.0 %) having a throughput of 650
Mbit/s on a regular workstation.

Regardless, they faced several unsolved
problems for real world data. One obstacle
was that many files share the same structural
information (e.g., file header information;
this is equivalent to the non-probative blocks
problem from the previous subsection) which
led to false positive rates of around 10−5 –
too high for network traffic analysis.

5.3 Malware

Innately, similarity hashing is ideal for
grouping things together, but it was not un-
til 2015 that it was rigorously tested when
applied to malware clustering (Li et al.,
2015). Faruki, Laxmi, Bharmal, Gaur, and
Ganmoor (2015) developed AndroSimilar, a
syntactical detection algorithm for Android
Malware that falls into the SIF category.
While Zhou, Zhou, Jiang, and Ning (2012)’s
DroidMoSS, a CTPH algorithm, was devel-
oped to also detect mobile malware, a com-
parison between the two could not be per-
formed due to unavailable code.

Polymorphic malware families are on the
rise, often hosted on servers that automati-
cally alter inconsequential segments of a file
(before sending across a network) to bypass
cryptographic detection tactics (Security,
2013). An intriguing paper by Payer et al.
(2014) expands on ways criminals can cir-
cumvent the use of similarity-based match-
ing for spotting malicious binary code, which
often diversifies itself during recompilation.
Thus, it is imperative that malware receives
more attention.

5.4 Data leakage prevention

With respect to data leakage prevention, ap-
proximate matching may also be utilized for
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printer data inspection, e.g., MyDLP10 and
Symantec (2010) Data Leakage Prevention.
If a document is protected, the software can
discard the print (implemented by MyDLP).
A similar experiment was also run by our re-
search group11 which created a virtual secure
printer that analyzed a sent document before
forwarding it to an actual printer.

Note, according to Comodo Group Inc.
(2013), these software solutions often call
their technology partial document match-
ing, unstructured data matching, intelli-
gent content matching, or statistical docu-
ment matching, all synonyms for approxi-
mate matching.

5.5 Biometrics

Biometrics is another independent do-
main employing approximate matching with
promising results (Rathgeb, Breitinger, &
Busch, 2013; Rathgeb, Breitinger, Busch, &
Baier, 2013). In their work, the authors
demonstrated the feasibility of using tech-
niques from approximate matching for bio-
metric template protection, data compres-
sion and efficient identification. According
to Breitinger (2014), there are three im-
provements:

� “Template protection: the successive
mapping of parts of a binary biomet-
ric template to Bloom filters represents
an irreversible transformation achieving
alignment-free protected biometric tem-
plates.”

� “Biometric data compression: the pro-
posed Bloom filter-based transforma-
tion can be parameterized to obtain a
desired template size, operating a trade-

10https://www.mydlp.com (last accessed Feb 4th,
2016).

11The project was done by Kyle Anthony, a mem-
ber of the UNH Cyber Forensics Research & Educa-
tion Group

off between compression and biometric
performance.”

� “Efficient identification: a compact
alignment-free representation of iris-
codes enables a computationally effi-
cient biometric identification reducing
the overall response time of the system.”

6. LIMITATIONS AND

CHALLENGES

Bytewise approximate matching has some
intrinsic limitations. First and foremost, it
cannot pick up similarity at a higher level
of abstraction, such as semantically. For in-
stance, it cannot meaningfully match two
image files that have the same semantic pic-
ture but are different file types / formats
due to different binary encoding. However,
placing it in tandem with other approaches
will still help; Neuner, Mulazzani, Schrit-
twieser, and Weippl (2015) include it as a
critical component of the digital forensic pro-
cess. Doubly crucial when it comes to appli-
cations like malware that employ databases
is lookup time. Winter et al. (2013) out-
lined a faster approach to conduct similarity
searching using a database but this method
will not work effectively for all approximate
matching algorithms. We will not belabor
the point since this was discussed in Sec. 3.6.

Evidently, the first challenge to confront
is awareness and adoption of approximate
matching, a possible indication that more re-
search needs to be conducted to understand
the needs for the community. As we outlined
in the introduction, 15 % of professionals are
unaware of approximate matching – an un-
acceptable number. Conversely, 7 % criticize
that algorithms are too slow for practical
use. On the other hand, inquiry needs to
be made into why 35 % have used approxi-
mate matching only a few times. Our hope
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is that having the NIST SP 800-168 defini-
tion, a technical classification of algorithms
(Mart́ınez et al., 2014), and this more univer-
sal outline will improve awareness and adop-
tion.

Yet another major obstacle is the lack of
a standard definition of similarity (Baier,
2015). As addressed by S. Garfinkel and Mc-
Carrin (2014), not all kinds of byte level sim-
ilarity are equally valuable as there are some
artifacts (e.g., structural information, head-
ers, footers, etc.) that are less important
or lead to false positives. Hence, we need
a filtering mechanism to prioritize matches.
One possibility could be to extract the main
elements (like text or images) and compare
those, meaning including a pre-processing
step before the comparison.

Aside from initial efforts to test approx-
imate matching algorithms, there are cur-
rently no accepted standards and reliable
testing frameworks. FRASH is not easy
to implement, a deterrent to practitioners.
This is one reason this paper avoids giving
absolute comparisons between all the (types
of) algorithms. More bothersome is the lack
of an accepted ground truth for real world
data that would support implementation as-
sessments like whether algorithms scale ef-
fectively. The ground truth should embody
the four use cases (see Sec. 3.1) and algo-
rithm types, even if different data sets are
required for each one. Once this is done,
the algorithms will be directly comparable
(e.g., embedded object detection: A better
than B better than C; speed: B faster than
A faster than C). We posit that it is criti-
cal for practitioner efficiency to know which
algorithms solve which potential problems.
At the moment the National Software Ref-
erence Library (NSRL12) has built the most
prominent software database and is piecing

12http://www.nsrl.nist.gov (last accessed Feb
4th, 2016).

together a test corpus (its usefulness was
demonstrated in Rowe (2012)).

7. FUTURE FOCUS
Future research should, in accompaniment
to prior comments, pursue areas that branch
out from digital forensics, even if completely
detached. Below we name some possible ap-
plications that could use enhancement, and
areas that approximate matching may be
able to be enhanced by (this is not an ex-
haustive list):

� Bioinformatics: This field already uses
exact matching methods, albeit us-
ing bytewise or semantic approximate
matching alongside today’s methods
could conceivably increase efficiency.

� Text mining: Identifying patterns in
structured data to gain high-quality, se-
mantic value.

� Templates and layouts: Semantically
identify document layout and separate
content from template automatically.

� Deep / machine learning: Automated
forms of learning need to be able to
process information fast, store it effi-
ciently space-wise, and be able to differ-
entiate similarities and differences; se-
mantic hashing is a known aspect of
deep learning and ergo might be able
to strengthen approximate matching.

� Source code governance: Manage
shared code better, especially for open
source software.

� Spam filtering and anti-plagiarism:
These have already been looked at but
might be behooved by deeper scrutiny.

Ultimately, approximate matching is an
alienated domain and its increased adoption
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will strongly support other domains. Re-
searchers looking to improve on the slow-
ness of indexing and searching may also ben-
efit to look into other domains such as com-
pression and programming. Once more peo-
ple are aware of approximate matching we
might identify more fields where the tech-
nology would be relevant.
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Mart́ınez, V. G., Álvarez, F. H., Encinas,
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