Com Universal S ΡΜυχ PowerMUX

Primary Batt Operation UEL-G Fuel Gauge Japan Solder LiPo 1S 15C Lithium-ion

Nominal) 15 Battery Auxiliary Bat Operation

Low Voltage LiPo 1S 20C Lithium-ion Nominal) 20 Battery POWER-G Power Gauge

Power Mana BUCK (Step PIO-EXP

General Purp VCU-2 Microcontro! MCU-1

Microcontro Antenna/Ra

Sensor Suite

Design parameters of a power management system for an emerging Medical Artificial Intelligence of Things (MAIoT) technology

Abstract

Though concurrent growth of technologies can sometimes lead to discord, often they lead to the meshing of ideas to form a new frontier of study, collaboration, and innovation. Recently, the inelastic collision of technologies has begotten a new frontier, called Medical Artificial Intelligence of Things (MAIot), edge-inferencing, encompassing the knowledge from Internet of Things (IoT) and Artificial Intelligence (AI), just targeted toward medicine using physiological data. Further, MAIoT is a discipline-focused subcategory of Artificial Intelligence of Things (AIoT) where feature detection from sensor data is done by a Machine Learning (ML) model programmed on a microprocessor unit (MPU); sequentially, inference results are communicated to an IoT network using additional software and an integrated circuit (IC) radio transceiver. In this study, Machine Vision (MV), a computer vision-based form of ML, is used to enhance camera data for a domain-specific purpose. High-power demand, specifically, from the camera, microprocessor, radio transceiver, and other sensors operating simultaneously, generates a load of approximately 7.916W. This is a problem for the battery within the targeted handheld device. Therefore, a power management subsystem featuring battery *HotSwap*/was conceived by combining hardware, software, and mechanical design to retain wireless modality, IoT connectivity, and practitioner dexterity during health monitoring.

DESIGN NOTE#:

HotSwap Subsystem Architecture comprised of IC's for space optimzation on a dense PCB. Architecture is depedentent on the design requriements. The most imposing requirement being the need to charge the auxilary cell from the primary cell.

ponent	Purpose
erial Bus Type-C connector	Interface with external power delivery and programming device
	Multiplex between two power sources. Configured as a standalone automatic switch
tery Charger in BUCK (Step-down)	Provide power to, and from the primary battery and to the system load, using PowerPath topology
	Measure the current and voltage of the connected battery and communicate data, using I2C
less Terminal connector	Method of detachable interconnection between the primary battery and system during <i>HotSwap</i>
[1.5A] Polymer Single Cell (3.7V C High-discharge Rate 1.5A	Primary power source and only interchangeable body of <i>HotSwap</i> . Supplies system load during normal system operation
tery Charger in BOOST (Step-up)	Provide power to, and from the auxiliary battery and to the system load only when required, using PowerPath topology.
e Protection	Protect the auxiliary battery from undervoltage during the <i>extended-usage condition</i>
[0.2A] Polymer Single Cell (3.7V C High-discharge Rate 0.2A	Auxiliary power source and integral fixed body of <i>HotSwap</i> . Supplies system load during the <i>extended-usage condition</i>
e	Measure the power requirement of the system load and communicate data, using I2C
gement Integrated Circuit (IC) in -down) Operation	Distribute power to the system load by generating multiple DC voltage rails at variable potentials via a supervisory IC
pose Input/Output Expander	Provides additional I/O pins controllable through an I2C bus when host controller GPIO is limited
ller Unit Coprocessor 2	Manage peripheral (accessory) ICs. Contribute to the system load
ller Unit Coprocessor 1	Manage image processing, AI inference and streaming. Contribute to the system load
idio	Matching network and chip antenna w/ or w/o secondary IC. Contribute to the system load
e	Comprised of various sensors, e.g. camera. Contribute to the system load

Block Type	Definition
Prototype Block	Only present during early research and development TRL, or serves as a placeholder
Contingent Block	Dependent on a system requirement or technology availability or existence
Optimizable Block	Comprised of components that can be optimize in some way such as combining submodules into one all-encompassing module that exists
Optimized Block	Gone through intense iteration. Only susceptib to change when the integration of a new component into system engenders new knowledge or design requirements. Typically, this event is apparent with the development of the final circuit belonging to the deployable device, high TRL. Otherwise, the status of the block remains constant.