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Abstract

This thesis study motion of a class of non-holonomic systems using geometric me-
chanics, that provide us an efficient way to formulate and analyze the dynamics and
their temporal evolution on the configuration manifold. The kinematics equations
of the system, viewed as a rigid body, are constrained by the requirement that the
system maintain contact with the surface. They describe the constrained translation
of the point of contact on the surface. In this thesis, we have considered three differ-
ent examples with nonholonomic constraint i-e knife edge or pizza cutter, a circular
disk rolling without slipping, and rolling sphere. For each example, the kinematics
equations of the system are defined without the use of local coordinates, such that
the model is globally defined on the manifold without singularities or ambiguities.
Simulation results are included that show effectiveness of the proposed control laws.
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Chapter 1

Introduction

The robots are becoming more intelligent than ever and they are capable of performing
tasks with great accuracy and speed. There is a growing use robots in industrial
applications, space robotics and medical science. For example, a mobile robot can
move very precisely over the surface of asteroids and collect a sample of the material.
Similarly, now a days, intelligent machines are able to perform robotic surgeries and
they offer several advantages including greater precision in tissue cutting, lesser time,
improved reproducibility and ultimately better comfort for the patients. In addition
to that, the doctors have access to the high definition images of the patient in real
time and so that they can monitor the robotic surgeries remotely. The design of a
robotic system is proposed in (Ebrahimi et al, 2015) that is capable of performing
ophthalmic surgeries.

Depending upon the mechanical design of the robot, the system may have motion
constraints. We can categorize these constraints into two types. The first type is
holonmic constraints, that arise from configuration and allow motion with physical
restrictions. For example, a particle constrained to lie on a plane or a particle sus-
pended from a taut string in three dimensional space. The holonomic constraints
are integrable and such system can be characterized by a smaller number of general-
ized coordinates. The second type of constraints are nonholonomic constraints. Such
constraints are non-integrable and it is impossible to reduce number of generalized
coordinates. In this thesis, we have considered kinematics of three basic nonholo-
nomic systems including motion of knife edge, rolling disk and a sphere rolling on an
arbitrary smooth surface.

The knife-edge is assumed to have a single point of contact with the friction-less
surface such that its velocity vector always lies in the tangent plane at the point of
contact and the normal vector of the tangent plane is always aligned with the axis
of the knife-edge. The knife-edge can turn around its axis at the point of contact
or it can slide only in the direction of the velocity vector. Then we talked about
nonholonomic motion of disk rolling on an arbitrary smooth surface. A thin uniform
circular disk is considered as a rigid body that can roll on a the surface without
slipping. The disk remains upright during the motion and can be steered about the

1



2

surface normal. The problem has a large number of application in wheeled mobile
robotics, for example, precise motion control of a unicycle/bicycle/cars on an arbitrary
smooth surface. Furthermore, we also studied the kinematics of a sphere rolling on
a smooth surface, without slipping or twisting. The problem is mostly discussed in
literature as chaplygins sphere after the name of Sergey A. Chaplygin. The velocity
of rolling sphere on a smooth surface, always lie in the tangent space at the given
position.

Nonholonomic system can be transformed from one state to another state but
the final state always depends on the path taken by the system between the two
states. For example if we roll the ball on flat surface between an initial and final
position using different paths, the attitude of the ball at the final position may differ
for different paths. Similarly, if the ball is rolled in different closed path trajectories,
every time the ball will reach back to the starting point and it may have different
orientation. Therefore, control of both position and attitude, for such systems, is a
challenging task.

The literature on such nonholonomic control problems is large, both in terms of
theoretical results and studies of specific physical examples in the context of robot
manipulation, mobile robots, wheeled vehicles, and space robotics. An excellent refer-
ence that provides a geometric and control theoretical view of nonholonomic systems
is the book by (Bloch. , 2003). A few representative control works include the study
of controllability and stabilizability in (Bloch et al, 1992, 1991); motion planning
in (Murray et al, 1994; Reyhanoglu, 1994); and feedback stabilization and tracking
in (Astolfi, 1996; Jiang et al, 1999, 1995; Sordalen et al, 1995). All of this litera-
ture is based on the use of mathematical models, most often arising from principles
of mechanics and geometry, that are expressed in terms of local coordinates for the
configuration vector. This use of local coordinates is a significant limitation in some
physical examples, where non-local or even global results are desired. Our formula-
tion in this thesis considers arbitrary smooth manifolds embedded in R3. We view
the knife-edge as a rigid body but our formulation differs from the formulations using
Lie group manifolds see e.g., (Leonard et al, 1995; Morin et al, 2003) and references
therein.

Similarly ,nonholonomic motion of the rolling sphere is explained in (Johnson,
2007). Geometric aspects for the control of position and orientation of the sphere
rolling on a plane is discussed in (Bicchi et al, 1995). The dynamics of a spherical robot
are discussed in (Camicia et al, 2000), wherein a linear control law for the longitudinal
dynamics of the robot is proposed. In (Murray et al, 1993), steering of nonholonomic
systems using sinusoids is discussed. The rolling motion of a homogeneous ball on an
arbitrary surface is studied in (Borisov et al, 2002). In (Shen et al, 2008), internal
rotors and sliders are proposed as the mechanism for the control of spherical robots.
The work in (Morin et al, 2008) considers a rolling sphere actuated by a moving
plate and develops a control algorithm for the stabilization of admissible reference
trajectories. In (Borisov et al, 2012), dynamics and control of a non-symmetric sphere
(with rotors) on a plane are discussed and the controllability for the system is shown.
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Moreover, the influence of rolling friction on the control of the sphere is discussed.
The work in (Muralidharan et al, 2015) derives the dynamics of a spherical robot on a
plane in a geometric framework and studies strong accessibility and small-time local
controllability for the system. A smooth global tracking controller is proposed for the
position trajectories. In (Kleinsteuber et al, 2006), the motion of the rolling sphere
on a flat plane is studied and the ideas of slip and twist maneuvers are presented.
In the slip maneuver, the sphere moves from a given position to the desired position
without changing the attitude. While in the twist maneuver, the sphere rolls in a
closed path trajectory to produce a desired twist about the surface normal.

These problems are widely studied but mostly the formulation is done with local
coordinates using principles of mechanics and geometry. The use of local coordinates
has significant limitation in some physical examples, where nonlocal or even global
results are desired. The formulation for the same problems considers arbitrary smooth
manifolds embedded in R3.

Control of nonholonomic systems can be accomplished using open loop control
and the system can be steered from any initial configuration to any prescribed con-
figuration. The motion planning solely uses kinematics of the system. Although, a
feedback control can be designed for a nonholonomic system, but due to the funda-
mental restriction which prohibits existence of continuous state feedback controller.
However, a discontinuous feedback control law can be designed that can stabilize a
prescribed configuration. Discontinuous feedback control law for the nonholonomic
systems have been proposed in (Bloch et al, 1992, 1991).

In this thesis, we are interested to study of nonholonomic systems subjected to
motion constraints. First we need to formulate kinematics/dynamics of the systems
without any use of local coordinates, so that the mathematical model remains valid
everywhere on the configuration manifold and have no singularities or ambiguities.
And later, comments are made for the motion planning of the nonholonomic systems
on a variety of smooth surfaces like flat plane, sphere, hyperboloid and torus. The ge-
ometric mechanics provide us an efficient way to formulate and analyze the dynamics
and their temporal evolution on the configuration manifold.



Chapter 2

Mathematical Background

We summarize the mathematical background that is used subsequent sections. Im-
portant results in linear algebra are introduced for finite dimensional vectors and
matrices. A summary is given of manifold concepts and related differential geomet-
ric concepts are introduced; a summary of results for embedded manifolds is given.
Further mathematical background can be found in Lee et al (2017), where additional
details on manifolds are provided.

2.1 Vectors and matrices

A vector x is an n-tuple of real numbers. Vector addition and scalar multiplication
are defined as usual. A matrix A is an n×m ordered array of real numbers. Matrix
addition, for compatible matrices, and scalar multiplication are defined as usual. The
transpose of a n × m matrix A is an m × n matrix, denoted by AT , obtained by
interchange of the rows and columns. The n× n identity matrix is denoted by In×n.
The n×m zero matrix composed of zero elements is denoted by 0n×m or more often
by 0. Vector spaces in this thesis should be understood as being defined over the real
field.

2.2 Vector spaces

As usual, Rn denotes the set of all ordered n-tuples of real numbers, with the usual
definition of vector addition and scalar multiplication. Thus, Rn is a real vector
space. Also, Rn×m denotes the set of all n×m real matrices consisting of n rows and
m columns. With the usual definition of matrix addition and scalar multiplication
of a matrix, Rn×m is a real vector space. Unless indicated otherwise, we view an
n-tuple of real numbers as a column vector and we view a matrix as an array of real
numbers. The common notions of span, linear independence, basis, and subspace are
fundamental. The dimension of a vector space is the number of elements in a basis.

4



2.3. VECTOR OPERATIONS 5

2.3 Vector operations

The usual Euclidean inner product or dot product of two vectors x, y ∈ Rn is the real
number

x · y = xTy = yTx,

and the Euclidean norm on the real vector space Rn is the non-negative real number

‖x‖ =
√
xTx

Vectors x, y ∈ Rn that satisfy x · y = 0 are said to be orthogonal or normal.
The skew-symmetric matrix representing the cross product operator on R3 given

by

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


which satisfy S(x)y = x× y and S(x)T = −S(x).

The standard basis vectors in Rn are denoted by e1, ..., en, where ei ∈ Rn denotes
the n-tuple with 1 in the i-th place and zeros elsewhere. Note that each of the
standard basis vectors has unit norm and they are mutually orthogonal, that is, they
form a set of orthonormal vectors. In particular, in R2 the standard basis vectors are
e1 = [1, 0]T , e2 = [0, 1]T ; in R3 the standard basis vectors are e1 = [1, 0, 0]T , e2 =
[0, 1, 0]T , e3 = [0, 0, 1]T .

We make use of several categories of Euclidean frames. A Euclidean frame may be
fixed or stationary with respect to a background in the material world; such frames
are said to be inertial. We refer to such frames as fixed frames or inertial frames. In
some cases, we introduce Euclidean frames that are attached to a rigid body, that is
the frame translates and rotates with the body; such frames are said to be body-fixed
frames. In some cases, it is convenient to introduce a reference Euclidean frame that
is neither stationary nor body-fixed but is physically meaningful as a reference. In
situations where several Euclidean frames are introduced, it is important to maintain
their distinction. We do not introduce any special notation that identifies a specific
frame or frames, but rather we hope that this is always clear from the context.

2.4 Continuously differentiable function

Let h : A→ R be a scalar function defined on an open subset A of Rn. The value of
h at x = (x1, ..., xn) ∈ A is denoted by h(x) = h(x1, ..., xn). The function h is called
a Ck (k times continuously differentiable) function if it possesses continuous partial
derivatives of all orders ≤ k on A. Here k ∈ Z+, i.e., k is a positive integer. If h is
Ck for all k then h is said to be a smooth or C∞ function.



2.5. EMBEDDED MANIFOLD 6

2.5 Embedded manifold

A differentiable manifold, as a submersion or embedded manifold in Rn, is described
by

M = {x ∈ R3 : φi(x) = 0, i = 1, ..., l}
where φi : R3 → R1, i = 1, ..., l are scalar differentiable functions with the property
that the vectors ∂φi(x)

∂x
6= 0, x ∈ M, i = 1, ..., l are linearly independent vectors in Rn

for each x ∈ M . Thus, necessarily 1 ≤ l ≤ n. We say that the manifold M has
dimension n− l and codimension l.

For example S1 and S2 are the unit sphere manifolds embedded in R2 and R3,
respectively, i.e.

S1 = {x ∈ R2 : xTx = 1}
S2 = {x ∈ R3 : xTx = 1}

Consequently, we can represent a vector in an embedded manifold M ⊂ Rn as a
vector in Rn so long as the equality conditions defining the embedded manifold are
satisfied. Such representations for a point in M have the geometric advantage that
they are global in the sense that they are defined everywhere that the manifold M is
defined.

Manifolds are fundamental to our subsequent development, and subsequent ref-
erences to a smooth manifold or simply a manifold imply that the manifold is dif-
ferentiable. A differentiable manifold M is also assumed to have an inner product,
typically the inner product that arises from the finite-dimensional vector space within
which it is embedded.

2.6 Tangent space and tangent bundle

Tangent space of M at x ∈M is a subspace of Rn that is the set of all tangent vectors
to M at x ∈ M . It is denoted as TxM . Let ξ ∈ TxM is a tangent to M at x ∈ M .
For a manifold M as given above, it can be shown that the tangent space

TxM = {ξ ∈ Rn : (
∂φi(x)

∂x
· ξ) = 0, i = 1, ...,m}

so that the tangent space consists of the set of vectors in Rn that are orthogonal
to all of the gradients of the functions that define the manifold. The dimension of
the tangent space is n−m.

The tangent bundle of M is TM = Ux∈MTxM , the union of tangent spaces. A
vector field τ on M is a smooth map, which assigns to each point on x ∈M a tangent
vector τ(x) ∈ TxM .



2.7. ORTHOGONAL MATRICES 7

2.7 Orthogonal matrices

We use the notation GL(n) for the set of all n × n real nonsingular matrices. Since
GL(n) is a subset of Rn×n, the inner product and the norm for matrices in GL(n)
are defined. It can be shown that GL(n) has the properties of a group, formally
introduced shortly, where matrix multiplication is the group operation. An impor-
tant subset of GL(3) is the set of real 3 × 3 orthogonal matrices, that is, matrices
whose inverses are equal to their transposes. In other words, a matrix R ∈ R3×3

is orthogonal if RRT = I3×3, R
TR = I3×3. Orthogonal matrices have the property

that their columns, as vectors in R3, are orthonormal and their rows, as vectors in
R3, are orthonormal. An orthogonal matrix can be viewed as an invertible linear
transformation on R3. The set of 3 × 3 orthogonal matrices, with determinant +1,
is denoted subsequently as SO(3), referred to as the special orthogonal group or the
group of rotations.

2.8 Homogeneous matrices

An important subset of GL(4) is the set of real 4 × 4 matrices with the following
partitioned matrix structure [

R x
0 1

]
where R ∈ SO(3) is a 3× 3 orthogonal matrix with determinant +1 and x ∈ R3 is a
column vector. Here, the 0 is a row vector in R3 and 1 is a real number in R1. Such
matrices are said to be homogeneous matrices. A homogeneous matrix can also be
viewed as a linear transformation on R4. The set of 4 × 4 homogeneous matrices is
denoted subsequently as SE(3), and the homogeneous matrix above is sometimes de-
noted by (R, x) ∈ SE(3). It has important properties that we subsequently describe.
The set of all real 4× 4 homogeneous matrices is closed under matrix multiplication.
To illustrate, the matrix product of two homogeneous matrices is a homogeneous
matrix since [

R2 x2
0 1

] [
R1 x1
0 1

]
=

[
R2R1 x2 +R2x1

0 1

]
Each homogeneous matrix has an inverse given by[

R x
0 1

]−1
=

[
RT −RTx
0 1

]
which is also a homogeneous matrix. The identity matrix I4×4 is a homogeneous

matrix. Consequently, the set of all homogeneous matrices is closed under matrix mul-
tiplication and is a group. The matrix product represents the composition of the two
linear transformations represented by the individual homogeneous matrices. As a set,
SE(3) can be identified with SO(3)×R3; however the calculation above indicates that
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the group composition on SE(3) is given by (R2, x2)(R1, x1) = (R2R1, x2 +R2x1), as
opposed to the natural composition on SO(3)×R3, (R2, x2)(R1, x1) = (R2R1, x2+x1).
The homogeneous matrix representation of SE(3) provides a convenient way of en-
coding the semidirect product structure in terms of matrix multiplication on GL(4).
We can identify a vector x ∈ R3 with the vector (x, 1) ∈ R4.

The group action of a homogeneous matrix in SE(3) acting on R3 can be expressed
as [

R x2
0 1

] [
x1
1

]
=

[
x2 +Rx1

1

]
that represents the action x1 → x2 + Rx1 of a homogeneous matrix in GL(4) on

a vector in R3. In geometric terms, the element (R, x2) ∈ SE(3) acts on x1 ∈ R3 by
first rotating the vector x1 by R, followed by a translation by x2.

2.9 Lie bracket and it’s properties

A nonlinear system can be considered as a collection of dynamical systems (vector
fields) parametrized by a parameter called control. It is natural to expect that basic
properties of such system depend on interconnection between the different dynamical
systems correspond to different controls. The dynamical systems are represented
by vector fields as this allows algebraic operations on them such as taking linear
combinations and a taking a product called Lie bracket. It is the Lie product which
allows studying interconnections between different dynamical systems in a coordinate
independent way.

The Lie bracket of two vector fields is another vector field. Let X ⊂ Rn, and let f
and g be vector fields on X. The Lie bracket of f and g is another vector field on X
defined as follows

[f, g](x) =
∂g

∂x
(x)f(x)− ∂f

∂x
g(x)

where ∂f/∂x and ∂g/∂x denote the Jacobi matrices of f and g.
Example For the vector fields f = (1, 0)T and g = (0, x)T on Rn. The Lie bracket

[f, g] = (0, 1)T adds a new direction to the space spanned by f and g at the origin.
Let f = b be a constant vector field and g = Ax be a linear vector field. Then

[f, g] = [b, Ax] = Ab.
Proposition 2.1: The Lie bracket of two constant vector fields is zero. The Lie

bracket of a constant vector field with a linear vector field is a constant vector field.
Finally, the Lie bracket of two linear fields is a linear vector field.

The basic geometric properties of Lie bracket are stated in the following proposi-
tions. The first one says that vanishing of Lie bracket [f, g] is equivalent to the fact
that starting from a point p and going along trajectory of f for time t and then along
trajectory g for time s gives always the same result s with the order of taking f and
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g reversed.
The Lie bracket of vector fields f and g is equal identically to zero if an only if

their flows commute.i-e

[f, g] ≡ 0 ⇐⇒ γft ◦ γgs (p) = γgs ◦ γft (p) ∀s, t ∈ R,∀p ∈ X

γ
f
t

γgs

γ
f
t

γgs

p

Figure 2.1: Commutative iff [f,g]=0.

Given vector fields f, g, h ∈ Rn and smooth functions α, β : Rn → R, the Lie
bracket satisfies the following properties:

Skew-symmetry
[f, g] = −[g, f ]

Jacobi-Identity

[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0

Chain rule
[αf, βg] = αβ[f, g] + α(Lfβ)g − β(Lgα)f

where Lfβ and Lgα stand for the Lie derivatives of β and α along the vector fields f
and g respectively.

2.9.1 Lie algebra

A vector space V (over R) is a Lie algebra if there exists a bilinear operation V ×V →
V , denoted [, ], satisfying (i) skew-symmetry and (ii) the Jacobi identity.

The set of smooth vector fields on Rn with the Lie bracket is a Lie algebra. Let
g1, ..., gm be a set of smooth vector fields, ∆ the distribution defined by g1, ..., gm
and, ∆̄ the involutive closure of ∆. Then, ∆̄ is a Lie algebra (in fact the smallest
Lie algebra containing g1, ..., gm). It is called the Lie algebra generated by g1, ..., gm
and is often denoted (}∞, ..., }m). Elements of (}∞, ..., }m) are obtained by taking all
linear combinations of elements of g1, ..., gm, taking Lie brackets of these, taking all
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linear combinations of these, and so on. We define the rank of L(}∞, ..., }m) at a point
q ∈ Rn to be the dimension of ∆̄q as a distribution.

2.10 Controllability and accessibility

A finite-dimensional nonlinear control system on a smooth n-manifold M is a differ-
ential equation of the form

ẋ = f(x, u)

where x ∈ M , u(t) is a time-dependent map from the nonnegative reals R+ to a
constraint set Ω ⊂ Rm, and f is taken to be C∞ (smooth) from M × Rm into TM
such that for each fixed u, f is a vector field on M. The map u is assumed to be
piecewise smooth or piecewise analytic. Such a map u is said to be admissible. The
manifold M is said to be the state space or the phase space of the system.

In this thesis, we will restrict our discussion to affine nonlinear control systems,
which have the form

ẋ = f(x) +
m∑
i=1

gi(x)ui, (2.1)

where f and the gi, i = 1, ...,m, are smooth vector fields on M. We usually suppose
that the constraint set Ω contains an open set of the origin in Rm. Thus u ≡ 0 is
an admissible control resulting in trajectories generated by the vector field f . Hence
the vector field f is usually called the drift vector field, and the gi are called the
control vector fields.

In the analysis of controlled dynamic systems, there are two basic goals : One
goal is being able to drive the given system from one part of the state space (the
phase space for a mechanical system) to another, and a second goal is being able to
stabilize a given system about a given equilibrium or equilibrium manifold.

For the first goal, one is interested in the first instance in controllability, the
question of whether one can drive the system from one point to another with the
given class of controls, but one does not concern oneself with the path taken. On the
other hand, one might want to prescribe a given path. This is the problem of path
planning. Or one might want to choose a path that is optimal in some sense.

2.10.1 Controllability

We begin by making precise the general notion of controllability that was discussed
informally in the previous section. We assume in this section that the set of admissible
controls contains the set of piecewise constant controls with values in Ω.

Definition 2.1: The system (2.1) is said to be controllable if for any two points
x0 and xf in M there exists an admissible control u(t) defined on some time interval
[0, T ] such that the system (2.1) with initial condition x0 reaches the point xf in time
T .
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Controllability is a basic concept in control theory, and much work has been done
on deriving useful sufficient conditions to ensure it. A related property, called (local)
accessibility, is often much easier to prove.

2.10.2 Accessibility

. To define accessibility we first need the notion of a reachable set. This notion will
depend on the choice of a positive time T . The reachable set from a given point at
time T will be defined to be, essentially, the set of points that may be reached by
the system by traveling on trajectories from the initial point in a time at most T .
In particular, if q ∈ M is of the form x(t) for some trajectory with initial condition
x(0) = p and for some t with 0 ≤ t ≤ T , then q will be said to be reachable from p
in time T . More precisely:

Definition 2.2: Given x0 ∈ M we define R(x0, t) to be the set of all x ∈ M for
which there exists an admissible control u such that there is a trajectory of (2.1) with
x(0) = x0, x(t) = x. The reachable set from x0 at time T is defined to be

RT (x0) =
⋃

0≤t≤T

R(x0, t)

Definition 2.3: The accessibility algebra C of (2.1) is the smallest Lie algebra
of vector fields on M that contains the vector fields f and g1, ..., gm.

Note that the accessibility algebra is just the span of all possible Lie brackets of
f and the gi.

Definition 2.4: We define the accessibility distribution C of (2.1) to be the
distribution generated by the vector fields in C; i.e., C(x) is the span of the vector
fields X in C at x.

Definition 2.5: The system (2.1) on M is said to be accessible from p ∈ M if
for every T > 0, RT (p) contains a nonempty open set. Roughly speaking, this means
that there is some point q (not necessarily even close to a desired objective point)
that is reachable from p in time no more than T and that points close to q are also
reachable from p in time no more than T .

Accessibility, while relatively easy to prove, is far from proving controllability.
Theorem 2.1: Consider the system (2.1) and assume that the vector fields are

C∞. If dim C(x0) = n (i.e., the accessibility algebra spans the tangent space to M at
x0), then for any T > 0, the set RT (x0) has a nonempty interior; i.e., the system has
the accessibility property from x0.

When the hypotheses of this theorem, namely dim C(x0) = n, hold, we say that
the accessibility rank condition holds at x0.

Note that while this spanning condition is an intuitively reasonable condition, the
resulting theorem is quite weak, since it is far from implying controllability. The
problem is that one cannot move backward long the drift vector field f . If f is absent,
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this is a strong condition.
Controllability Rank Condition. Another case of interest where accessibility

implies controllability is a linear system of the form

ẋ = Ax+ f(x) +
m∑
i=1

bi(x)ui = Ax+Bu, (2.2)

where x ∈ Rn, and A ∈ Rn × Rn and B ∈ Rn × Rm are constant matrices, bi being
the columns of B.

The Lie bracket of the drift vector field Ax with bi is readily checked to be the
constant vector field Abi. Bracketing the latter field with Ax and so on tells us that
C is spanned by Ax, bi, Abi, ..., A

n−1bi, i = 1, ...,m.
Thus, the accessibility rank condition at the origin is equivalent to the classical

controllability rank condition

rank[B,AB, ..., An−1B] = n.

In fact, the following theorem holds.
Theorem 2.2: The system (2.2) is controllable if and only if the controllability

rank condition holds.
Note that in this case accessibility is equivalent to controllability but that the

drift vector field is involved.
In this linear setting if the system is not controllable, the reachable subspace

R of the system (the space reachable from the origin) is given by the range of
[B,AB, ..., An−1B].

Strong Accessibility. In the preceding discussion, note that the term spanAx
is not present in the controllability rank condition. This motivates a slightly stronger
definition of accessibility in the nonlinear setting, where the gi (over which we have
direct control) play a more prominent role in the rank condition:

Definition 2.6: The system (2.1) is said to be strongly accessible from x0 if
the set R(x0, T ) contains a nonempty open set for any T sufficiently small.

Thus this means that points that we can reach in exactly time t contain a nonempty
open set.

Definition 2.7: Let C be the accessibility algebra of (2.1). Define C0 to be the
smallest subalgebra containing g1, ..., gn and such that [f,X] ∈ C0 for all X ∈ C0.

Definition 2.8: We define the strong accessibility distribution C0 of (2.1)
to be the distribution generated by the vector fields in C0.

If dim C0(x0) = n, then the system (2.1) can be shown to be strongly accessible
at x0.

Example. The Euler equations for the rigid body are given by

Ω̇1 =
I2 − I3
I1

Ω2Ω3 + a1u1



2.10. CONTROLLABILITY AND ACCESSIBILITY 13

Ω̇2 =
I3 − I1
I2

Ω3Ω1 + a2u2

Ω̇3 =
I1 − I2
I3

Ω2Ω3

where the ai are nonzero constants. Writing the system in the standard affine form

Ω̇ = f(Ω) + u1g1(Ω) + u2g2(Ω)

we find that [g2, [g1, f ]](Ω) = [0, 0, a1a2(I1I2)/I3]
T . The vectors [a1, 0, 0]T , [a2, 0, 0]T ,

and [0, 0, a1a2(I1I2)/I3]
T are contained in C0(0), and hence if I1 6= I2, the system is

strongly accessible from Ω = 0. Further, I1 6= I2 is also necessary, for if I1 = I2, then
Ω̇ = 0.

We will now restrict our attention to control systems of the form

q̇ =
m∑
i=1

gi(q)ui, (2.3)

where q ∈ Rn, u ∈ U ⊂ Rm. This system is said to be drift-free, meaning to say that
when the controls are set to zero the state of the system does not drift. We assume
that the gj are smooth, linearly independent vector fields on Rn and that their flows
are defined for all time (i.e., the gj are complete). We wish to determine conditions
under which we can steer from q0 ∈ Rn to an arbitrary qf ∈ Rn by appropriate choice
of u().

A system (2.3) is controllable if for any q0, qf ∈ Rn there exists a T > 0 and
u : [0, T ]→ U such that (2.3) satisfies q(0) = q0 and q(T ) = qf . A system is said to
be small-time locally controllable at q0 if we can reach nearby points in arbitrarily
small amounts of time and stay near to q0 at all times. Given an open set V ⊆ Rn,
define RV (q0, T ) to be the set of states q such that there exists u : [0, T ] → U that
steers (2.3) from q(0) = q0 to q(T ) = qf and satisfies q(t) ∈ V for 0 ≤ t ≤ T . We also
define

RV (q0,≤ T ) =
⋃

0≤τ≤T

RV (q0, τ)

to be the set of states reachable up to time T . A system is small-time locally
controllable (locally controllable for brevity) if RV (q0, T ) contains a neighborhood of
q0 for all neighborhoods V of q0 and T > 0. Let ∆ = L(}∞, ..., }m) be the Lie algebra
generated by g1, ..., gm. It is referred to as the the controllability Lie algebra. For
the system given in (2.3) using an input sequence of the following

u1 = +1 u2 = 0 for 0 ≤ t < ε

u1 = 0 u2 = +1 for ε ≤ t < 2ε
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u1 = −1 u2 = 0 for 2ε ≤ t < 3ε

u1 = 0 u2 = −1 for 3ε ≤ t < 4ε

That implies that the points attainalbe from p by means of the vector fields g1
and g2 lie not only in the direction g1 and g2, but also in the direction of the Lie
bracket [g1, g2](p). This fact will be of basic importance for studying controllability
properties of nonlinear control system.

p ǫg1

−ǫg1

ǫg2

−ǫg2

Non-zero net motion

Figure 2.2: A Lie bracket motion.

we get motion in the direction of the Lie bracket [g1, g2]. If we were to iterate
on this sequence, it should be possible to generate motion along directions given by
all the other Lie products associated with the gi. Thus, it is not surprising that it
is possible to steer the system along all of the directions represented in L(}∞, ..., }m).
This is made precise by the following theorem, which was originally proved by W.-L.
Chow (in somewhat different form) in the 1940s.

Theorem 2.3: The control system (2.3) is locally controllable at q ∈ Rnif∆̄q =
TqRn.

In principle, we now have a recipe for solving the motion planning problem for
systems which meet the controllability rank condition.



Chapter 3

Knife-edge Moving on a Smooth
Surface

This chapter studies a new formulation for the kinematics of a knife-edge moving on
an arbitrary smooth surface in R3. The kinematics equations for a knife-edge, viewed
as a rigid body, are constrained by the requirement that the knife-edge maintain
contact with the surface. They describe the constrained translation of the point of
contact of the knife-edge on the surface and the constrained attitude of the knife-edge
as a rigid body. These equations for the knife-edge kinematics in R3 are expressed in a
geometric form, without the use of local coordinates; they are globally defined without
singularities or ambiguities. The kinematics equations can be expressed in several
simplified forms and written as a drift-free nonlinear control system. Comments are
made about interesting motion planning and path planning problems. The kinematics
equations are specialized for two specific surfaces defined in R3, namely a flat plane
and the surface of a sphere. Results for the flat plane are compared with standard
results obtained using local coordinates; results for the sphere, in contrast, require
full attention to the three-dimensional geometry.

3.1 Introduction

A knife-edge, viewed as a rigid body, can slide on a smooth surface without friction;
the knife-edge is assumed to have a single point of contact with the surface. The
motion of the point of contact of the knife-edge is constrained so that its velocity
vector is always in the direction of the axis of the knife-edge. This constraint on the
direction of the velocity vector is an example of a nonholonomic or non-integrable
constraint. If the motion of the knife-edge is controlled by the axial velocity of the
knife-edge and the turn rate of the knife-edge, the result is one of the simplest exam-
ples of a nonholonomic control system. This is in fact an example of a nonholonomic
control system, expressed in a kinematics form Jiang et al (1995). This knife-edge
control system has been extensively studied in (Neimark et al, 1972; Osborne et al,

15
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2005; Salinic et al, 2013), where it is referred to as a Čaplygin sleigh; all of these
results are based on simplified planar models of the knife-edge kinematics expressed
in terms of local coordinates.

We also recognize that this model of a knife-edge has been used, on occasion,
to describe the kinematics of a flight vehicle where the angle of attack and side slip
angle are maintained to be zero so that the control inputs are the axial flight velocity
and the turn rate of the flight vehicle. The requirement that the motion of the flight
vehicle is constrained to a surface can arise naturally from mission specifications. This
interpretation is not pursued further.

The literature on such nonholonomic control problems is large, both in terms of
theoretical results and studies of specific physical examples in the context of robot
manipulation, mobile robots, wheeled vehicles, and space robotics. An excellent refer-
ence that provides a geometric and control theoretical view of nonholonomic systems
is the book by Bloch Bloch. (2003). A few representative control works include
the study of controllability and stabilizability in Bloch et al (1992, 1991); motion
planning in Murray et al (1994); Reyhanoglu (1994); and feedback stabilization and
tracking in Astolfi (1996); Jiang et al (1999, 1995); Sordalen et al (1995). All of this
literature is based on the use of mathematical models, most often arising from prin-
ciples of mechanics and geometry, that are expressed in terms of local coordinates
for the configuration vector. This use of local coordinates is a significant limitation
in some physical examples, where non-local or even global results are desired. Our
formulation in this paper considers arbitrary smooth manifolds embedded in R3. We
view the knife-edge as a rigid body but our formulation differs from the formulations
using Lie group manifolds (see e.g., Leonard et al (1995); Morin et al (2003) and
references therein).

This chapter makes two contributions by studying a new formulation that de-
scribes the motion of a knife-edge moving on a smooth surface. The two contributions,
developed and explained in the context of the controlled motion of a knife-edge, are:
(1) the knife-edge, viewed as a rigid body, translates and rotates while maintaining
a point of contact with an arbitrary smooth surface in three-dimensions and (2) we
express the results without the use of local coordinates in a geometric form where the
mathematical models are globally defined without singularities or ambiguities.

We first develop the kinematics equations for a rigid knife-edge that translates
and rotates while maintaining point contact with an arbitrary smooth surface. These
kinematics equations are expressed in several equivalent forms and it is shown that
they can be expressed as a drift-free nonlinear control system defined on a configu-
ration manifold. Comments are made about nonlinear controllability and about the
formulation of motion and path planning problems for the controlled knife edge. Then
the equations of motion are specialized for two specific surfaces. In the first case, the
smooth surface is a flat plane in R3; in the second case, the smooth surface is the
surface of a sphere in R3. Controllability and motion planning results are described
In each case.

We are motivated to study the knife-edge kinematics, subject to constrained mo-
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tion on a surface (especially a surface with nontrivial curvature), to illustrate the
geometric formulation of nonholonomic kinematics and their use in nonlinear control.
The development in this paper follows the results in Lee et al (2009) and the book
Lee et al (2017); similar formulations are suggested in problems given on page 87 and
pages 483-484 of Lee et al (2017).

3.2 Kinematics of a knife-edge

A Euclidean frame in R3 is introduced with standard basis vectors e1, e2, e3 in R3.
A fixed surface is defined by the two-dimensional manifold

M =
{
x ∈ R3 : φ(x) = 0

}
,

where φ : R3 → R1 is a differentiable function that satisfies ∂φ(x)
∂x
6= 0, x ∈ M . The

manifold is assumed to be connected.
The knife-edge is assumed to be a rigid body that maintains contact with the

surface at a single point, the contact point. The knife-edge can translate with respect
to the surface only in a direction that is defined by the heading of the knife-edge; the
knife-edge can also rotate only about a direction that is normal to the surface at the
contact point.

Let x ∈M ⊂ R3 denote the position vector of the contact point of the knife-edge
in the Euclidean frame; let γ ∈ S2 ⊂ R3 denote the heading direction vector of the
knife-edge as shown in Figure 3.1. As usual S2 denotes the unit sphere, a smooth
manifold embedded in R3.

ν

γ

σ

Figure 3.1: A moving frame for a knife edge on a smooth surface in R3.

A nonholonomic constraint is important in characterizing the motion of a knife-
edge on a smooth manifold. The nonholonomic constraint, in this case, is that the
velocity vector ẋ of the point of contact of the knife-edge is always in the heading
direction γ ∈ S2 of the knife-edge and the heading direction satisfies γ ∈ TxM . Let
ν ∈ S2 be the unit normal of the surface at the point of contact. A right hand
Euclidean frame, fixed to the knife-edge with origin located at the point of contact,
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is defined by introducing the unit vector σ = ν × γ ∈ S2. It follows that σ ∈ TxM .
(see Figure 3.1.)

The control inputs are the scalar V ∈ R1 that denotes the magnitude of the
velocity vector of the point of contact of the knife-edge, referred to as the speed of
the knife-edge, and the scalar ω ∈ R1 that denotes the turn rate of the knife-edge
about the normal vector ν ∈ S2.
Proposition 3.1: The kinematics of a knife edge controlled by its speed V along the
heading direction γ and its turn rate ω about the normal axis ν = n(x) are given by

ẋ = V γ, (3.1)

γ̇ = ωS (n(x)) γ − V
(
γTN(x)γ

)
n(x), (3.2)

where n(x) = ∂φ(x)
∂x

/
∥∥∥∂φ(x)∂x

∥∥∥ and N(x) = ∂n(x)
∂x

.

Proof: The knife edge can move only in the heading direction; thus it satisfies the
nonholonomic constraint given by (3.1). Since γ ∈ S2 is allowed to rotate with the
angular velocity vector ωn(x), its time rate of change in the tangent plane TxM is
given by S(ωn(x))γ. The time rate of change along the normal to the tangent plane
TxM due to the translational motion is of the form V h(x, γ)n(x). Therefore, γ̇ can
be expressed as

γ̇ = ωS (n(x)) γ + V h(x, γ)n(x),

where h(x, γ) is a scalar function to be determined using the geometric properties of
the configuration manifold Q. Clearly, νT γ̇ = V h(x, γ). Since

νTγ = 0⇒ νT γ̇ + ν̇Tγ = 0,

it follows that
νT γ̇ = −γT ν̇ = −V γTN(x)γ.

Therefore, h(x, γ) = −γTN(x)γ, and thus the equation (3.2) follows. �

The equations (3.1) and (3.2) describe the coupled translational and rotational
kinematics of the knife-edge moving on an arbitrary smooth surface. Since Q is
a three-dimensional configuration manifold, there are three degrees of freedom and
there are two scalar control input variables.

Here S : R3 → R3×3 is the skew-symmetric matrix representing the cross product
operator on R3 given by

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ,
and the 3× 3 matrix function N(x) = ∂n(x)

∂x
. The first term on the right hand side of
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(3.2) lies in the tangent plane TxM while the second term is normal to the tangent
plane TxM .

The configuration vector is (x, γ) ∈M × S2 and

Q =
{

(x, γ) ∈M × S2 : γ ∈ TxM
}

(3.3)

is the configuration manifold.
Suppose that the control inputs V and ω are given time functions. Let the initial

conditions satisfy (x(0), γ(0)) ∈ Q; the unique solution of (3.1) and (3.2) can be
shown to satisfy (ẋ, γ̇) ∈ T(x,γ)Q so that (x(t), γ(t)) ∈ Q, t ≥ 0.

Consequently, these equations (3.1) and (3.2) describe the coupled translational
and rotational kinematics of the knife-edge moving on an arbitrary smooth surface.
They define the global evolution of (x, γ) ∈ Q in the sense that for any control inputs
(V, ω) : [0,∞) → R2, the motion of the knife-edge is defined by a flow on Q; there
are no singularities or ambiguities in the characterization of the flow on Q. Since Q
is a three-dimensional configuration manifold, there are three degrees of freedom and
there are two scalar control input variables.

To fully describe the rotational kinematics of the knife-edge as a rigid body, we
characterize the previously introduced attitude vectors σ = S (n(x)) γ and ν = n(x)
of the knife-edge. In fact, these three unit vectors {γ, σ, ν} determine a rotation
matrix in SO(3) for the attitude of the rigid body knife-edge.

Alternatively, the translational and rotational kinematics for the knife-edge can
be written in terms of x ∈M and σ ∈ S2 on the configuration manifold

Q =
{

(x, σ) ∈ R3 × S2 : σ ∈ TxM
}
.

Using the fact that γ = S (σ)n(x), it can be shown that equations (3.1) and (3.2) are
equivalent to the coupled translational and rotational kinematics equations

ẋ = −V S (n(x))σ, (3.4)

σ̇ = ωS (n(x))σ + V
(
σTN(x)S (n(x))σ

)
n(x). (3.5)

The following initial value property can be shown to be valid based on the def-
inition of the configuration manifold and the kinematics equations (3.4) and (3.5).
Suppose that the control inputs V and ω are given time functions. Let the initial con-
ditions satisfy (x(0), σ(0)) ∈ Q; the unique solution of (3.4) and (3.5) can be shown to
satisfy (ẋ, σ̇) ∈ T(x,σ)Q so that (x(t), σ(t)) ∈ Q, t ≥ 0. Consequently, these equations
(3.4) and (3.5) describe the coupled translational and rotational kinematics of the
knife-edge moving on an arbitrary smooth surface. The full attitude of the knife edge
is completed by γ = S (σ)n(x) and ν = n(x).

The kinematics of the knife-edge can be represented by either equations (3.1) and
(3.2) or by equations (3.4) and (3.5). These equations have similar forms and either
can be used as the basis for control of the knife-edge kinematics using the knife-edge
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speed and turn rate as control inputs.

3.3 Controllability and motion planning for the

knife-edge kinematics

It is convenient to write equations (3.1) and (3.2) and equations (3.4) and (3.5) in a
standard nonlinear control form. Each of these set of equations can be expressed in
the form of a driftless control-affine nonlinear system as

q̇ = g1(q)V + g2(q)ω, (3.6)

where g1(q) and g2(q) are control vector fields defined on the configuration manifold
Q.

In the case of equations (3.1) and (3.2), the configuration vector is q = (x, γ) ∈ Q
and the control vector fields are

g1(q) =

[
γ

−γTN(x)γn(x)

]
, g2(q) =

[
0

S (n(x)) γ

]
.

In the case of equations (3.4) and (3.5), the configuration vector is q = (x, σ) ∈ Q
and the control vector fields are

g1(q)=

[
−S(n(x))σ

σTN(x)S(n(x))σn(x)

]
, g2(q)=

[
0

S (n(x))σ

]
.

These equations are in a standard drift-free affine form to which standard nonlinear
control results can be applied.

In particular, equation (3.6) is controllable on Q, according to Chow’s theorem, if

rank
[
g1 g2 [g1, g2]

]
(q) = dim(Q) = 3, ∀q ∈ Q.

That is, the knife edge can be maneuvered so that it moves from any initial point on
Q to any prescribed final point on Q if the Lie bracket [g1, g2] is linearly independent
of the two control vector fields on Q.

There are many possible approaches to motion planning that have been proposed
in the literature. Several possible construction approaches involve the use the span-
ning brackets, sums of sinusoidals, or switchings of the control. Here we propose a
motion planning approach that makes use of the geometry of the knife-edge problem.

For example, let tf ≥ 0 and consider the problem of determining the control inputs,
namely the forward speed and the turn rate (V, ω) : [0, tf ] → R2, that transfers
the initial configuration q0 = (x0, γ0) ∈ Q at time 0 to the the final configuration
qf = (xf , γf ) ∈ Q at time tf . This implies that the initial position and initial attitude
of the knife-edge satisfy x0 ∈ M, γ0 ∈ Tx0M and σ0 = S(n(x0))γ0, ν0 = n(x0); the
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final position and final attitude of the knife-edge at completion of the maneuver satisfy
xf ∈M, γf ∈ TxfM and σf = S(n(xf ))γf , νf = n(xf ).

A natural approach for the knife-edge maneuver problem is to construct a smooth
path in M that connects x0 ∈ M and xf ∈ M . We select the path this is the
intersection of M and a transversal plane and connects x0 ∈ M and xf ∈ M . This
path defines an initial heading direction γ1 ∈ Tx0M and a final heading direction
γ2 ∈ TxfM . The motion planning problem then involves the following procedure:

Step 1: Set V = 0, choose the turn rate ω to rotate the initial heading direction
γ0 to the heading direction γ1 required to move along the determined path.

Step 2: Set ω = 0, choose the speed V of the knife edge to translate the knife-edge
along the determined path.

Step 3: Set V = 0, choose the turn rate ω to rotate the heading direction γ2 at
the end of the path to the desired terminal heading direction γf .

The changes in the attitude vectors σ and ν of the knife-edge during a maneuver
can be determined from the prior expressions that show how they depend on (x, γ) ∈
Q. There are many ways to implement this planning approach; illustrations are given
in the following sections.

3.4 Knife-edge moving on a flat plane

Here, we assume that the constraint surface is a flat plane in R3 and the constraint
manifold is

M =
{
x ∈ R3 : eT3 x = 0

}
and the configuration manifold is

Q =
{

(x, γ) ∈ R3 × S2 : eT3 γ = 0
}
.

The vector function for the scaled normal vector is n(x) = e3, so that the matrix
function N(x) = 0.

The kinematics of the knife-edge moving on the flat plane are given by

ẋ = V γ, (3.7)

γ̇ = ωS(e3)γ, (3.8)

or equivalently by

ẋ = −V S (e3)σ, (3.9)

σ̇ = ωS(e3)σ. (3.10)
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If we introduce the attitude angle θ of the knife-edge, then

x =

x1x2
0

 , γ =

cos θ
sin θ

0


In this way we obtain the standard form for the equations of motion of the knife-edge
on a flat plane expressed in local coordinates:

ẋ1 = V cos θ,

ẋ2 = V sin θ,

θ̇ = ω.

These kinematics equations for a knife-edge on a flat plane have been extensively
studied. However, they are limited by the ambiguity that is introduced by the use of
an angle. This motivates our use of the prior equations.

Based on equations (3.7) and (3.8), the control vector fields are given by

g1(q) =

[
γ
0

]
, g2(q) =

[
0

S(e3)γ

]
.

The following Lie bracket is computed:

[g1, g2](q) =

[
−S(e3)γ

0

]
.

It can be shown that

rank
[
g1 g2 [g1, g2]

]
(q) = 3, ∀q ∈ Q.

Therefore, the knife-edge is controllable on the flat plane and it can be maneuvered
so that it moves from any initial point on Q to any prescribed final point on Q.

3.4.1 Motion planning

We follow the strategy described previously to describe a solution to the motion
planning problem. In particular, the path connecting x0 ∈ M to xf ∈ M is taken
as the straight line path between these two points, which necessarily lies in the flat
plane.

Suppose that 0 ≤ t1 ≤ t2 ≤ tf . Assume that x0 6= xf and let γ1 denote the unit
vector in the direction of xf − x0, given by

γ1 =
xf − x0
‖xf − x0‖ .
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Define the three scalars

ω1 =
1

t1
tan−1

(
eT3 S(γ0)γ1

γ0Tγ1

)
,

V2 =

∥∥xf − x0∥∥
t2 − t1

,

ω3 =
1

tf − t2
tan−1

(
eT3 S(γ1)γf

γ1Tγf

)
.

A solution of the maneuver problem is given as follows:
Step 1: Set V = 0, ω = ω1, 0 ≤ t < t1. This step can be shown to rotate the

knife edge about the normal attitude vector e3 from γ0 at time 0 to γ1 at time t1.
Step 2: Set V = V2, ω = 0, t1 ≤ t < t2. This step can be shown to translate the

knife edge in the constant direction of the heading attitude vector γ1 from x0 at time
t1 to xf at time t2.

Step 3: Set V = 0, ω = ω3, t2 ≤ t ≤ tf . This step can be shown to rotate the
knife edge about the normal attitude vector e3 from γ1 at time t2 to γf at time tf .

Note that if x0 = xf , then we set t2 = t1 = 0 and start from Step 3 with γ1 = γ0.
In this case the first and third steps involve only rotations while the second step

involves only translation along a manifold geodesic, namely a straight line segment.
The translational and rotational motion of the rigid knife-edge corresponding to

the above steps can be expressed as

x(t) =


x0, t ∈ [0, t1)
x0 + γ1V2(t− t1), t ∈ [t1, t2)
xf , t ∈ [t2, tf ]

γ(t) =


eS(e3)ω1tγ0, t ∈ [0, t1)
γ1, t ∈ [t1, t2)

eS(e3)ω3(t− t2)γ1, t ∈ [t2, tf ]

σ(t) =


eS(e3)ω1tσ0, t ∈ [0, t1)
σ1, t ∈ [t1, t2)

eS(e3)ω3(t− t2)σ1, t ∈ [t2, tf ]

ν(t) = e3, t ∈ [0, tf ],

where σ0 = S(e3)γ
0 and σ1 = S(e3)γ

1.
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3.4.2 An example controlled maneuver

We consider the following initial and final conditions for a knife-edge maneuver on
the flat plane, assuming t1 = 2, t2 = 4, tf = 6.

x0 = (2, 2, 0), γ0 = (0, 1, 0),

xf = (0, 0, 0), γf = (1, 0, 0).

The control functions that solve this maneuver problem, according to the above
prescription, can be expressed as

V (t) =


0, t ∈ [0, 2)
1.414, t ∈ [2, 4)
0, t ∈ [4, 6]

ω(t) =


1.178, t ∈ [0, 2)
0, t ∈ [2, 4)
1.178, t ∈ [4, 6]

The complete description of the translational and rotational motion of the knife-
edge, in completing this maneuver, is given as follows:

x(t) =


(2, 2, 0), t ∈ [0, 2)
(2, 2, 0)− (1, 1, 0)(t− 2), t ∈ [2, 4)
(0, 0, 0), t ∈ [4, 6]

γ(t) =


(− sin(1.178t), cos(1.178t), 0), t ∈ [0, 2)

(−1,−1, 0)/
√

2, t ∈ [2, 4)

(−c3 + s3,−s3 − c3, 0)/
√

2, t ∈ [4, 6]

σ(t) =


(− cos(1.178t),− sin(1.178t), 0), t ∈ [0, 2)

(1,−1, 0)/
√

2, t ∈ [2, 4)

(c3 + s3, s3 − c3, 0)/
√

2, t ∈ [4, 6]

ν(t) = e3, t ∈ [0, tf ],

where s3 = sin(1.178(t− 4)) and c3 = cos(1.178(t− 4)).

3.5 Knife-edge moving on the surface of a sphere

Here, we assume that the knife-edge is constrained to the surface of a sphere, a
compact manifold in R3, given by

M = S2
R =

{
x ∈ R3 : ‖x‖2 −R2 = 0

}
, (3.11)
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Figure 3.2: Position of the knife edge moving on a flat surface.
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Figure 3.3: Direction of the knife edge moving on a flat surface.
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Figure 3.4: Control effort for the knife edge moving on a flat surface.

where R > 0. The configuration manifold is

Q =
{

(x, γ) ∈ S2
R × S2 : γ ∈ TxS2

R

}
. (3.12)

The vector function for the scaled normal vector is n(x) = x
R , so that the matrix

function N(x) =
I3×3
R .

3.5.1 Control equations and controllability

The kinematics of the knife-edge moving on a sphere are given by

ẋ = V γ, (3.13)

γ̇ = ωS
( x
R

)
γ − V

R2
x, (3.14)

or equivalently by

ẋ = −V S
( x
R

)
σ, (3.15)

σ̇ = ωS
( x
R

)
σ. (3.16)

The equations of motion are globally defined on the configuration manifold and
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they do not have any singularities or ambiguities.
The equations of motion can also be expressed in terms of an attitude angle in the

tangent plane that described the direction of the knife-edge and a latitude angle and
a longitude angle that describe the position vector of the knife-edge on the sphere.
These equations, not given here, necessarily have singularities that limit their domain
of definition.

Based on equations (3.13) and (3.14), the control vector fields given by

g1(q) =
1

R2

[
R2γ
−x

]
,

g2(q) =
1

R

[
0

S(x)γ

]
.

The following Lie bracket is computed:

[g1, g2](q) =
1

R

[
−S(x)γ

0

]
.

It can be shown that

rank
[
g1 g2 [g1, g2]

]
(q) = 3, ∀q ∈ Q.

Therefore, the knife-edge is controllable on the surface of a sphere and it can be
maneuvered so that it moves from any initial point on Q to any prescribed final point
on Q.

3.5.2 Motion planning

We follow the strategy described previously to describe a solution to the motion
planning problem. In particular, the path connecting x0 ∈ M to xf ∈ M is taken as
the intersection of a plane containing x0, xf , 0 and the sphere; this defines the arc of
a great circle path between these two points, which necessarily lies in the surface of
the sphere.

Suppose that 0 ≤ t1 ≤ t2 ≤ tf . The initial and final configurations define the
initial and final attitude vectors:

σ0 = S
(x0
R

)
γ0, σf = S

(
xf

R

)
γf ,

ν0 =
x0

R
, νf =

xf

R
.

Assume that x0 and xf are not parallel and let σ1 denote the unit vector (normal to
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the plane formed by x0 and xf ) given by

σ1 =
S(x0)xf

‖S(x0)xf‖
.

Define the three scalars

ω1 =
1

t1
tan−1

(
Rσ0Txf

σ0Tσ1‖S(x0)xf‖

)
,

V2 =
R

t2 − t1
tan−1

(
R4 − (x0

T
xf )2

x0Txf‖S(x0)xf‖

)
,

ω3 =
1

tf − t2
tan−1

(
Rσf

T
x0

σf Tσ1‖S(x0)xf‖

)
.

A solution of the maneuver problem is given as follows:
Step 1: Set V = 0, ω = ω1, 0 ≤ t < t1. This step can be shown to rotate the

knife edge about the normal attitude vector x
0

R from γ0 at time 0 to γ1 at time t1.
Step 2: Set V = V2, ω = 0, t1 ≤ t < t2. This step can be shown to translate the

knife edge in the direction of the attitude heading vector from x0 at time t1 to xf

at time t2. The attitude heading vector of the knife-edge rotates about the attitude
vector σ as required to maintain satisfaction of the nonholonomic constraint.

Step 3: Set V = 0, ω = ω3, t2 ≤ t ≤ tf . This step can be shown to rotate the

knife edge about the normal attitude vector x
f

R from γ1 at time t2 to γf at time tf .

Note that if x0 is parallel to xf , then we let σ1 = σ0 at t1 = 0, i.e., Step 1 is
skipped. Moreover, if x0 = xf , then t2 = t1 = 0, i.e., both Step 1 and Step 2 are
skipped.

In this case the first and third steps involve only rotations while the second step
involves only translation along a manifold geodesic, namely the arc segment of a great
circle.

The translational and rotational motion of the rigid knife-edge corresponding to
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the above steps can be expressed as

x(t) =


x0, t ∈ [0, t1)

eS(σ1)V̄2(t− t1)x0, t ∈ [t1, t2)
xf , t ∈ [t2, tf ]

γ(t) =


eS(x

0

R
)ω1tγ0, t ∈ [0, t1)

eS(σ1)V̄2(t− t1)γ1, t ∈ [t1, t2)

eS(x
f

R
)ω3(t− t2)γ2, t ∈ [t2, tf ]

σ(t) =


eS(x

0

R
)ω1tσ0, t ∈ [0, t1)

σ1, t ∈ [t1, t2)

eS(x
f

R
)ω3(t− t2)σ1, t ∈ [t2, tf ]

ν(t) =
x(t)

R
, t ∈ [0, tf ]

where V̄2 = V2
R , = S(σ1)x

0

R , and γ2 = S(σ1)x
f

R .

3.5.3 An example controlled maneuver

We consider the following initial and final conditions for a knife-edge maneuver on
the surface of a sphere with radius R = 2 and t1 = 2, t2 = 4, tf = 6.

x0 = (0, 0, 2), γ0 = (0, 1, 0),

xf = (−
√

2,
√

2, 0), γf = (− 1√
2
, − 1√

2
, 0).

The control functions that solve this maneuver problem, according to the above pre-
scription, can be expressed as

V (t) =


0, t ∈ [0, 2)
π/2, t ∈ [2, 4)
0, t ∈ [4, 6]

ω(t) =


π/8, t ∈ [0, 2)
0, t ∈ [2, 4)
π/4, t ∈ [4, 6]
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The complete description of the translational and rotational motion of the knife-edge,
in completing this maneuver, is given as follows:

x(t) =


(0, 0, 2), t ∈ [0, 2)

(−
√

2s2,
√

2s2, 2c2), t ∈ [2, 4)

(−
√

2,
√

2, 0), t ∈ [4, 6]

γ(t) =


(− sin(πt/8), cos(πt/8), 0), t ∈ [0, 2)

(−c2/
√

2, c2/
√

2,−s2), t ∈ [2, 4)

(−s3/
√

2,−s3/
√

2,−c3), t ∈ [4, 6]

σ(t) =


(− cos(πt/8),− sin(πt/8), 0), t ∈ [0, 2)

(−1,−1, 0)/
√

2, t ∈ [2, 4)

(−c3/
√

2,−c3/
√

2, s3), t ∈ [4, 6]

ν(t) = 0.5x(t), t ∈ [0, tf ]

where s2 = sin(π(t − 2)/4), c2 = cos(π(t − 2)/4), s3 = sin(π(t − 4)/4), and c3 =
cos(π(t− 4)/4).
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Figure 3.5: Position of the knife edge moving on a flat surface.
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Figure 3.6: Direction of the knife edge moving on a flat surface.
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Figure 3.7: Control effort for the knife edge moving on a flat surface.
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3.6 Knife-edge moving on the surface of a hyper-

boloid

In this section, we study the motion planning problem for a knife edge moving on
the surface of a hyperboloid using our new formulation in (McClamroch et al, 2017).
Assuming that the motion of the knife-edge is controlled by the axial velocity of
the knife-edge and the turn rate of the knife-edge, we formulate the kinematics as
a drift-free nonholonomic control system. We then make comments about nonlinear
controllability and provide a solution of the path planning problem. Our main con-
tributions in this paper are (i) the development of a motion planning algorithm for a
knife edge moving on the surface of a hyperboloid and (ii) the demonstration of the
effectiveness of the algorithm via simulation results.

Consider the surface of a hyperboloid defined by the two-dimensional manifold

M =
{
x ∈ R3 : φ(x) = x21 + x22 − x23 − 1 = 0

}
. (3.17)

The explicit expressions for n(x) and N(x) are given by

n(x) =
1√

1 + 2x23

 x1
x2
−x3

 (3.18)

and

N(x) =
1√

1 + 2x23

1 0 − 2x1x3
1+2x23

0 1 − 2x2x3
1+2x23

0 0 − 1
1+2x23

 . (3.19)

3.6.1 Motion planning

We first note that the hyperboloid given by (3.17) is a one-sheeted circular hyper-
boloid, which can be described as a surface of revolution obtained by rotating a
hyperbola about the perpendicular bisector to the line between the foci. As can
be seen in Figure 3.8, it is a ruled surface, i.e., it belongs to an important class of
quadratic surfaces that can be generated by an infinite number of straight lines. That
means, every point on the curved surface is also part of one or more straight lines
lying on the surface. It is a doubly ruled surface, which means that there are two
distinct set of straight lines that can generate the same hyperboloid (Hilbert et al,
1999).

We first note that at every point on the surface of the hyperboloid, the ruled
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Figure 3.8: Hyperboloid as a ruled surface.

straight lines can be determined using the following parameterizations:

x1 = cosu∓ v sinu, (3.20)

x2 = sinu± v cosu, (3.21)

x3 = ±v. (3.22)

Assume that the initial and final position and direction vectors are given by (x0, γ0)
and (xf , γf ), respectively. A natural approach for the knife-edge maneuver problem
is to construct a path in M that connects x0 ∈M and xf ∈M . Let x1 and x2 denote
two points on the unit circle corresponding to x3 = 0, which lie on the ruled straight
lines passing through x0 and xf , respectively. We select the path as the concatenation
of the ruled straight line that connects x0 to x1, a circular arc that connects x1 to x2

on the unit circle, and the final ruled straight line that connects x2 to xf .
Using (3.20)-(3.22), x1 and x2 can be computed as

u1 = tan−1
x02 − x01x03
x01 + x02x

0
3

, x1 = (cosu1, sinu1, 0),

u2 = tan−1
xf2 − xf1xf3
xf1 + xf2x

f
3

, x2 = (cosu2, sinu2, 0).

Suppose that 0 ≤ t1 . . . ≤ t6 ≤ tf . A solution of the maneuver problem can now
be given as follows:
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Step 1: Let ν0 = n(x0) and compute

γ1 =
x1 − x0
‖x1 − x0‖ , ω1 =

1

t1
tan−1

ν0 · S(γ0)γ1

γ0 · γ1

If γ1 = γ0, then set V = ω = 0, t1 = 0 and go to Step 3. Else set V = 0, ω = ω1, 0 ≤
t < t1. This step can be shown to rotate the knife edge about the normal vector ν0

from γ0 at time 0 to γ1 at time t1.
Step 2: If x1 = x0, then set V = ω = 0, t2 = t1 and go to Step 3. Else compute

V2 =
1

t2 − t1
∥∥x1 − x0∥∥

and set V = V2, ω = 0, t1 ≤ t < t2. This step can be shown to translate the knife
edge in the direction of the heading vector γ1 from x0 at time t1 to x1 at time t2.

Step 3: Let ν1 = n(x1) and compute

γ2 = S(e3)ν
1, ω3 =

1

t3 − t2
tan−1

ν1 · S(γ1)γ2

γ1 · γ2

Then set V = 0, ω = ω3, t2 ≤ t < t3. This step can be shown to rotate the knife
edge about the normal vector ν1 from γ1 at time t2 to γ2 at time t3.

Step 4: If x2 = x1, then set V = ω = 0, t4 = t3 and go to Step 5. Else compute

V4 =
1

t4 − t3
tan−1

e3 · S(x1)x2

x1 · x2

and set V = V4, ω = 0, t3 ≤ t < t4. This step can be shown to translate the knife
edge along the circular arc from x1 at time t3 to x2 at time t4.

Step 5: Let ν2 = n(x2) and compute

γ3 =
xf − x2
‖xf − x2‖ , ω5 =

1

t5 − t4
tan−1

ν2 · S(γ2)γ3

γ2 · γ3 .

Then set V = 0, ω = ω3, t4 ≤ t < t5. This step can be shown to rotate the knife edge
about the normal vector ν2 from γ2 at time t4 to γ3 at time t5.

Step 6: If xf = x2, then set V = ω = 0, t6 = t5 and go to Step 7. Else compute

V6 =
1

t6 − t5
∥∥xf − x2∥∥

and set V = V6, ω = 0, t5 ≤ t < t6. This step can be shown to translate the knife
edge in the direction of the heading vector γ3 from x2 at time t5 to xf at time t6.
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Step 7: Let νf = n(xf ) and compute

ω7 =
1

tf − t6
tan−1

νf · S(γ3)γf

γ3 · γf .

Then set V = 0, ω = ω7, t6 ≤ t < t7. This step can be shown to rotate the knife edge
about the normal vector νf from γ3 at time t6 to γf at time t7.

3.6.2 Simulation

We now illustrate the ideas developed in the previous sections through computer simu-
lations of a knife-edge moving on the surface of the hyperboloid with (t1, t2, . . . , tf ) =
(2, 4, . . . , 14). We implement the control algorithm described in Section 3.6.1 for the
following initial and final conditions:

x0 = (2.828, 3, 4), γ0 = (0, 0.8, 0.6),

xf = (2.828, −3, −4), γf = (0, 0.8, 0.6).

Figures 3.9-3.12 show the results of the simulation. The controlled knife-edge
trajectory is shown in Figure 3.9. Figures 3.10 and 3.11 show the time responses of
x and γ, respectively. The time responses of V and ω are shown in Figure 3.12.

Figure 3.9: Knife-edge trajectory.
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Figure 3.10: Time response of x.
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Figure 3.11: Time response of γ.
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Figure 3.12: Time responses of V and ω.

3.7 Knife-edge moving on the surface of a torus

Let x ∈ M ⊂ R3 denote the position vector of the contact point of the knife-edge
in the Euclidean frame and consider the surface of a torus, which is the surface of
revolution generated by revolving a circle about an axis, coplanar with the circle, that
does not touch the circle. It is assumed that the torus has major radius R > 0, which
is the distance from the axis of the torus to the center of the circle, and minor axis
0 < r < R, which is the radius of the revolved circle. The surface of the torus can be
defined by the two-dimensional manifold

M =

{
x ∈ R3 : φ(x) =

(
R−

√
(x1)2 + (x2)2

)2
+ (x3)

2 − r2 = 0

}
. (3.23)

The explicit expressions for n(x) and N(x) are given by

n(x) =
1

r
√

(x1)2 + (x2)2


x1

(√
(x1)2 + (x2)2 −R

)
x2

(√
(x1)2 + (x2)2 −R

)
x3
√

(x1)2 + (x2)2

 (3.24)
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and

N(x) =
1

r


1−R(x2)

2
(√

(x1)2 + (x2)2
)−3

Rx1x2

(√
(x1)2 + (x2)2

)−3
0

Rx1x2

(√
(x1)2 + (x2)2

)−3
1−R(x1)

2
(√

(x1)2 + (x2)2
)−3

0

0 0 1

 .
(3.25)

We can write the equations (3.1) and (3.2) in the form of a driftless-control-affine
nonlinear system as

q̇ = g1(q)V + g2(q)w. (3.26)

Here the configuration vector is q = (x, γ), so the control vector fields are defined as

g1(q) =

[
γ

−(γTN(x)γ)n(x)

]
,

g2(q) =

[
0

S(n(x))γ

]
.

It can be shown that

rank
[
g1 g2 [g1, g2]

]
(q) = 3, ∀q ∈ Q.

Therefore, the knife-edge is controllable on the surface of the torus and it can be
maneuvered so that it moves from any initial point on Q to any prescribed final point
on Q.

3.7.1 Motion planning

We first note that the parametric equations for the surface of the torus are given by

x1 = (R + r cos v) cosu, (3.27)

x2 = (R + r cos v) sinu, (3.28)

x3 = r sin v, (3.29)

where (u, v) ∈ R2.
Assume that the initial and final position and direction vectors are given by (x0, γ0)

and (xf , γf ), respectively. A natural approach for the knife-edge maneuver problem
is to construct a path in M that connects x0 ∈ M and xf ∈ M . Let x1 = (x11, x

1
2, 0)

and x2 = (x21, x
2
2, 0) denote two points on the surface of the torus such that x1 lies on

the same small circle as x0 and x2 lies on the same small circle as xf . Clearly, x1 and
x2 lie on the large outer circle of radius R + r.

Using (3.27)-(3.29), we can compute the parameters u0 and uf corresponding to
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x0 and xf , respectively, as

u0 = tan−1
(
x02
x01

)
, (3.30)

uf = tan−1

(
xf2

xf1

)
. (3.31)

We can now determine the intermediate points x1 and x2 as

x1 = (R + r)(cosu0, sinu0, 0), (3.32)

x2 = (R + r)(cosuf , sinuf , 0). (3.33)

In what follows, we define νi = n(xi).
Suppose that 0 ≤ t1 . . . ≤ t6 ≤ tf . A solution of the maneuver problem can now

be given as follows:

Step 1: Let σ1 = S(ν0)ν1 and γ1 = S(σ1)ν0. Then, compute

ω1 =
1

t1
tan−1

ν0 · S(γ0)γ1

γ0 · γ1 . (3.34)

If γ1 = γ0, then set V = ω = 0, t1 = 0 and go to Step 2. Else set V = 0, ω = ω1, 0 ≤
t < t1. This step can be shown to rotate the knife edge about the normal vector ν0

from γ0 at time 0 to γ1 at time t1.
Step 2: If x1 = x0, then set V = ω = 0, t2 = t1 and go to Step 3. Else compute

V2 =
r

t2 − t1
tan−1

(
σ1 · S(ν0)ν1

ν0 · ν1
)
, (3.35)

and set V = V2, ω = 0, t1 ≤ t < t2. This step can be shown to translate the knife
edge along the small circular arc from x0 at time t1 to x1 at time t2.

Step 3: Compute γ2 = S(σ1)ν1 and

σ3 =
S(x1)x2

‖S(x1)x2‖ , γ
3 = S(σ3)ν1,

ω3 =
1

t3 − t2
tan−1

(
ν1 · S(γ2)γ3

γ2 · γ3
)
. (3.36)

Then set V = 0, ω = ω3, t2 ≤ t < t3. This step can be shown to rotate the knife edge
about the normal vector ν1 from γ2 at time t2 to γ3 at time t3.

Step 4: If x2 = x1, then set V = ω = 0, t4 = t3 and go to Step 5. Else compute

V4 =
R + r

t4 − t3
tan−1

(
σ3 · S(x1)x2

x1 · x2
)

(3.37)
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and set V = V4, ω = 0, t3 ≤ t < t4. This step can be shown to translate the knife
edge along the large circular arc from x1 at time t3 to x2 at time t4.

Step 5: Compute γ4 = S(σ3)ν2 and

σ5 = S(ν2)νf , γ5 = S(σ5)ν2,

ω5 =
1

t5 − t4
tan−1

(
ν2 · S(γ4)γ5

γ4 · γ5
)
. (3.38)

Then set V = 0, ω = ω5, t4 ≤ t < t5. This step can be shown to rotate the knife edge
about the normal vector ν2 from γ4 at time t4 to γ5 at time t5.

Step 6: If xf = x2, then set V = ω = 0, t6 = t5 and go to Step 7. Else compute

σ6 = S(ν2)νf , γ6 = S(σ6)νf ,

V6 =
r

t6 − t5
tan−1

(
σ6 · S(ν2)νf

ν2 · νf
)
, (3.39)

and set V = V6, ω = 0, t5 ≤ t < t6. This step can be shown to translate the knife
edge along the small circular arc from x2 at time t5 to xf at time t6.

Step 7: Compute

ω7 =
1

tf − t6
tan−1

(
νf · S(γ6)γf

γ6 · γf
)
. (3.40)

Then set V = 0, ω = ω7, t6 ≤ t ≤ tf . This step can be shown to rotate the knife edge
about the normal vector νf from γ6 at time t6 to γf at time tf .

3.7.2 Simulation

We now illustrate the ideas developed in the previous sections through computer
simulations of a knife-edge moving on the surface of a torus with R = 5, r = 2, and
(t1, t2, . . . , tf ) = (2, 4, . . . , 14). We implement the control algorithm described in the
previous section for the following initial and final conditions:

x0 = (−3, 4, 2), γ0 = (0.7071, −0.7071, 0),

xf = (5, 0, 2), γf = (0.7071, −0.7071, 0).

Figures 3.13-3.16 show the results of the simulation. The controlled knife-edge
trajectory is shown in Figure 3.13. Figures 3.14 and 3.15 show the time responses
of position and direction vectors, respectively. The time responses of the speed and
turn rate are shown in Figure 3.16.
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Figure 3.13: The trajectory of the knife edge.
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Figure 3.14: Position x.
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Figure 3.15: Direction vectors γ and σ.
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Figure 3.16: Speed V and turn rate ω.
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3.8 Conclusions and extensions

The focus in this chapter has been on the nonholonomic constraint equation and the
associated knife-edge kinematics. The problem of controlling a knife-edge moving
on a smooth surface embedded in R3 has been studied. The results are based on
new formulations of the translational and rotational kinematics equations, including
the nonholonomic knife-edge constraint, that are globally defined on the surface and
capture the rigid body motion of the knife-edge in three-dimensions.

The geometries of different surfaces allow development of analytical expressions
for the knife-edge motions in the proposed maneuvers. It is possible to formulate the
knife-edge dynamics, using methods of dynamic extension, and to develop associated
control results for such nonholonomic dynamics. In other words, the development
in Bloch et al (1992), expressed in terms of local coordinates, can be extended to a
globally defined geometric formulation following the methods used in this chapter.



Chapter 4

Control of Rolling Disk Motion on
an Arbitrary Smooth Surface

This chapter studies the motion of a vertical rolling disk on an arbitrary smooth
surface in R3. The disk can roll without slipping about its axis and turn about
the surface normal. A global formulation for the dynamics of the rolling disk is
proposed without the use of local coordinates, and the model is globally defined
on the manifold without singularities or ambiguities. The theoretical results are
specialized for two different surfaces; a flat surface and a spherical surface. The
proposed motion planning algorithm consists of three phases and each phase is a
rest-to-rest maneuver, such that the rolling disk is stationary at both the start and
the end of each phase. Simulation results are included that show effectiveness of the
motion planning algorithm on the smooth surfaces.

4.1 Introduction

A (vertical) disk rolling on a flat surface is one of the basic and widely studied systems
in classical mechanics. In these studies, the disk is treated as a rigid body that can
roll on the surface without slipping. The disk remains upright during the motion and
can be steered (turned) about the surface normal. If the motion of the rolling disk is
controlled by the rolling and steering accelerations (which can be expressed in terms
of rolling and steering torques through the respective moments of inertia), the control
problem for the rolling disk can be formulated as a nonholonomic control problem.
The nonholonomic constraints of a homogeneous vertical disk are explained in Bloch.
(2003); Neimark et al (1972), where the kinematics of the system are given using
local variables. Feedback control law for the trajectory tracking of a disk rolling on
a horizontal plane is proposed in Yavin et al (1999).

The literature on nonholonomic control problems is large, both in terms of theo-
retical results and studies of specific physical examples in the context of robot manip-
ulation, wheeled mobile robotic systems, and space robotic systems (see e.g., Li et al

44
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(1990); Murray et al (1994); Osborne et al (2005); Young et al (2000)). A few repre-
sentative control works include the study of controllability and stabilizability in Bloch
et al (1992, 1991); motion planning in Ito (2015); Reyhanoglu (1994); and feedback
stabilization and tracking in Astolfi (1996); Ishikawa et al (2008); Jiang et al (1999,
1995); Sordalen et al (1995). This literature is based on the use of mathematical mod-
els that are expressed in terms of local coordinates for the configuration vector. This
use of local coordinates is a significant limitation in some physical examples, where
non-local or even global results are desired. Formulations using Lie group manifolds
can be found in Jurdjevic (1993); Leonard et al (1995); Morin et al (2003, 2008), and
references therein.

In our recent work McClamroch et al (2017), we have studied the kinematics
of a knife-edge on an arbitrary smooth surface (smooth embedded manifold) in R3

using ideas from geometric mechanics. In McClamroch et al (2017), a nonlinear
system model is derived that is globally defined on the manifold without singularities
or ambiguities. The formulation describes the constrained translation of the point of
contact of the knife-edge on the surface and the constrained attitude of the knife-edge
as a rigid body. These equations for the knife-edge kinematics in R3 are expressed
in a geometric form, without the use of local coordinates; they are globally defined
without singularities or ambiguities. The development in McClamroch et al (2017)
follows the results in Lee et al (2009) and the book Lee et al (2017). This formulation
has been applied to different smooth surfaces including a flat surface, a spherical
surface, and the surface of a hyperboloid Rehan et al (2007).

In this article, we study the dynamics of a rolling disk on an arbitrary smooth sur-
face (smooth embedded manifold) using tools from geometric mechanics. Assuming
that the motion of the rolling disk is controlled by the rolling and steering accelera-
tions, we formulate the dynamics as a nonholonomic control system. We then make
comments about nonlinear controllability and provide a solution of the motion control
problem. The theoretical results are specialized for two specific surfaces defined in
R3, namely a flat surface and the surface of a stationary sphere. Our main contri-
butions in this chapter are (i) the dynamic formulation and controllability analysis
for a vertical disk rolling on the surface of an arbitrary smooth surface in R3, (ii)
the development of a motion planning algorithm, and (iii) the demonstration of the
effectiveness of the algorithm via simulation results.

4.2 Dynamics of a rolling disk

Consider a smooth connected manifold embedded in R3 given by

M =
{
x ∈ R3 : φ(x) = 0

}
,

where φ : R3 → R1 is a differentiable function that satisfies ∂φ(x)
∂x
6= 0, x ∈ M .

The manifold is assumed to be connected. As usual, the notation TxM denotes the
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tangent plane of the manifold at x ∈M , which is given by

TxM =

{
ξ ∈ Rn :

(
∂φ(x)

∂x
· ξ
)

= 0

}
.

The disk is assumed to be a rigid body that maintains a single point of contact with
the surface. Let x ∈ M ⊂ R3 denote the position vector of the contact point of the
rolling disk in the Euclidean frame and let γ ∈ S2 ⊂ R3 be the heading direction
vector of the rolling disk as shown in Figure 4.1. As usual S2 denotes the unit sphere,
a smooth manifold embedded in R3. The configuration vector is q = (x, γ) ∈M × S2

and

Q =
{

(x, γ) ∈M × S2 : γ ∈ TxM
}

(4.1)

is the configuration manifold. Note that the rolling angle of the disk (Bloch. , 2003)
is not included in the definition of the configuration space as it is not considered to
be part of the control problem. This is consistent with the modeling of a unicycle or
Hilare-type mobile robot (see e.g., Young et al (2000)).

Let n ∈ S2 be the unit normal of the surface at the point of contact. A right hand
Euclidean frame, fixed to the rolling disk with origin located at the point of contact,
is defined by introducing the unit vector σ = n × γ ∈ S2 (see Figure 4.1). It follows
that σ ∈ TxM .

Let S : R3 → R3×3 denote the skew-symmetric matrix representing the cross
product operator on R3 given by

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .
The following result can now be stated:

Proposition 4.1: The kinematics of a disk of radius r with rolling rate ωr about its
axis parallel to σ and steering rate ω about the normal axis n = n(x) are given by

ẋ = rωrγ, (4.2)

γ̇ = ωsS (n(x)) γ − rωr
(
γTN(x)γ

)
n(x), (4.3)

where

n(x) =
∂φ(x)

∂x
/

∥∥∥∥∂φ(x)

∂x

∥∥∥∥
and

N(x) =
∂n(x)

∂x
.
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Figure 4.1: Disk rolling on a smooth surface.

Proof: The disk is assumed to roll without slipping so that it translates with a speed
V = rωr only in the heading direction; thus it satisfies the nonholonomic constraint
given by (4.2). Since γ ∈ S2 is allowed to rotate with the angular velocity vector
ωsn(x), its time rate of change in the tangent plane TxM is given by S(ωsn(x))γ.
The time rate of change along the normal to the tangent plane TxM due to the
translational motion is of the form rωrh(x, γ)n(x). Therefore, γ̇ can be expressed as

γ̇ = ωsS (n(x)) γ + rωrh(x, γ)n(x),

where h(x, γ) is a scalar function to be determined using the geometric proper-
ties of the configuration manifold Q. Clearly, nT γ̇ = rωrh(x, γ). Since nTγ =
0 ⇒ nT γ̇ + ṅTγ = 0, it follows that nT γ̇ = −γT ṅ = −rωrγTN(x)γ. Therefore,
h(x, γ) = −γTN(x)γ, and thus the equation (4.3) follows. �

In what follows, we will consider the dynamic extension of (4.2), (4.3) given by

ẋ = rωrγ, (4.4)

γ̇ = ωsS (n(x)) γ − rωr
(
γTN(x)γ

)
n(x), (4.5)

ω̇r = u1, (4.6)

ω̇s = u2, (4.7)

where the control inputs u1 and u2 correspond to the rolling and steering accelerations,
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respectively, which can be expressed in terms of rolling and steering torques through
the respective moments of inertia.

Note that the knife edge model in McClamroch et al (2017) is a drift-free system
(where Chow’s theorem is used straightforwardly to prove controllability), whereas
the rolling disk model described by (4.4)-(4.7) is a nonlinear system with drift. As
such, nonlinear controllability analysis and motion planning algorithm development
become much more involved. The rolling disk model introduced here is consistent
with the dynamic model of a unicycle or Hilare-type mobile robot (see e.g., Young
et al (2000)). In other words, the dynamic extension given by (4.4)-(4.7) represents
the dynamic equations of motion for such robots. The significance of our formulation
above is that it provides a global description of the robot dynamics an any smooth
surface, without singularities or ambiguities.

Remark: For simplicity in presenting the main ideas, the effect of gravity has been
ignored in the formulation above assuming that there is a physical mechanism based on
electromagnetic or electrostatic principles that generate forces/torques that counteract
the effect due to gravity. For example, it is possible to design an electromagnet-based
rolling disk configured to adhere to and roll over a ferrous spherical surface.

4.3 Controllability and motion planning

Let z = (x, γ, ωr, ωs) denote the state. Equations (4.4)-(4.7) define a drift vector
field

f(z) = (rωrγ, ωsS (n(x)) γ − rωr
(
γTN(x)γ

)
n(x), 0, 0)

and control vector fields g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1), according to the standard
control system form

ż = f(z) +
2∑
i=1

giui. (4.8)

Note that an equilibrium solution ze, corresponding to u = 0, of equation (4.8) has
the form ze = (xe, γe, 0, 0), (xe, γe) ∈ Q; i.e., an equilibrium solution corresponds
to a motion of the system for which all the configuration variables remain constant.
In the subsequent sections, it will be shown for the flat surface and spherical surface
cases that the space spanned by the vectors

g1, g2, [g1, f ], [g2, f ], [g2, [f, [g1, f ]]]

has dimension 5 at any equilibrium solution. Since the above spanning Lie brackets are
all good and the bad brackets of order 1 and 3 are zero at the equilibrium solution ze,
Sussmann’s sufficient conditions for small time local controllability Sussmann (1987)
are satisfied. Clearly, the system is a real analytic system, and therefore there exist
both time-invariant piecewise analytic feedback laws Sussmann et al (1979) and time-
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periodic continuous feedback laws Coron (1995) which asymptotically stabilize ze.
Let tf ≥ 0 and consider the problem of determining the control inputs, namely

the rolling acceleration and the steering acceleration (u1, u2) : [0, tf ] → R2, that
transfers the initial rest configuration q0 = (x0, γ0) ∈ Q at time 0 to the the final rest
configuration qf = (xf , γf ) ∈ Q at time tf . The initial position and initial attitude of
the rolling disk satisfy x0 ∈ M, γ0 ∈ Tx0M and σ0 = S(n0)γ0, n0 = n(x0); the final
position and final attitude of the rolling disk at completion of the maneuver satisfy
xf ∈M, γf ∈ TxfM and σf = S(nf )γf , nf = n(xf ).

There are many possible approaches to motion planning problems that have been
proposed in the literature. Several possible construction approaches involve the use
the spanning brackets, sums of sinusoidals, or switchings of the control. Here we
propose a rest-to-rest motion planning approach that makes use of the geometry of
the rolling disk problem.

A natural approach for the rolling disk maneuver problem is to construct a smooth
path in M that connects x0 ∈ M and xf ∈ M . As in our recent work McClamroch
et al (2017), we select the path that is the intersection of M and a transversal plane,
which connects x0 ∈ M and xf ∈ M . This path defines an initial heading direction
γ1 ∈ Tx0M and a final heading direction γ2 ∈ TxfM . The motion planning problem
then involves the following procedure:

Step 1: Set u1 = 0, choose the steering acceleration u2 to rotate the initial heading
direction γ0 to the heading direction γ1 required to move along the determined path.

Step 2: Set u2 = 0, choose the rolling acceleration u1 of the rolling disk to
translate the disk along the determined path.

Step 3: Set u1 = 0, choose the steering acceleration u2 to rotate the heading
direction γ2 at the end of the path to the desired terminal heading direction γf .

Figures 4.2 and 4.3 illustrate one possible way to design the controls u1 and u2 to
accomplish the above steps. Let T > 0 and for i = 0, 1, 2 define

u[iT,(i+1)T )(ω
∗)=

{
2
T
ω∗, t ∈

[
iT, (i+ 1

2
)T
)

− 2
T
ω∗, t ∈

[
(i+ 1

2
)T, (i+1)T

) (4.9)

The control inputs in Figures 4.2 and 4.3 correspond to

u1 = u[0,T )(ω
∗
r), u2 = u[0,T )(ω

∗
s),

where ω∗r and ω∗s are to be determined from the initial and final configurations.

4.4 Disk rolling on a flat surface

Consider a disk rolling on a flat surface. The constraint manifold is given by

M =
{
x ∈ R3 : eT3 x = 0

}
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t

t

T

T

T
2

T
2

u2

2
Tω

∗
1

- 2Tω
∗
1

ω∗
1

ωs(t)

Figure 4.3: Steering about the surface normal n.
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and the configuration manifold is

Q =
{

(x, γ) ∈ R3 × S2 : eT3 γ = 0
}
.

The vector function for the scaled normal vector is n(x) = e3, so that the matrix
function N(x) = 0. The dynamics of the disk on the flat surface are given as

ẋ = rωrγ, (4.10)

γ̇ = ωsS(e3)γ, (4.11)

ω̇r = u1, (4.12)

ω̇s = u2. (4.13)

4.4.1 Controllability

Based on equations (4.10)-(4.13), the drift vector field is given by f(z) = (rωrγ, ωsS(e3)γ, 0, 0)
and the control vector fields are g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1). The following
Lie brackets can be computed:

[g1, f ] = (rγ, 0, 0, 0), [g2, f ] = (0, S(e3)γ, 0, 0, 0),

[g2, [f, [g1, f ]]] = (rS(e3)γ, 0, 0, 0).

The space spanned by the vectors

g1, g2, [g1, f ], [g2, f ], [g2, [f, [g1, f ]]]

has dimension 5 at any equilibrium solution ze. Since the above spanning Lie brack-
ets are all good and the bad brackets of order 1 and 3 are zero at ze, Sussmann’s
sufficient conditions for small time local controllability Sussmann (1987) are satis-
fied. Again since the system is a real analytic system, there exist both time-invariant
piecewise analytic feedback laws and time-periodic continuous feedback laws which
asymptotically stabilize ze.

4.4.2 Motion planning

We follow the strategy described previously to develop a solution to the rest-to-rest
motion planning problem. In particular, the path connecting x0 ∈ M to xf ∈ M is
taken as the straight line path between these two points, which necessarily lies on the
flat surface.

Without loss of generality, assume that xf 6= x0 and γf 6= γ0. Also, for simplicity,
let ti = iT, i = 0, 1, 2, T > 0, denote the time instants switching is performed. A
solution of the maneuver problem can now be given as follows:
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Step 1: Compute

γ1 =
xf − x0
‖xf − x0‖ , ω

1
s =

2

T
tan−1

(
e3 · S(γ0)γ1

γ0 · γ1
)

and set u1 = 0, u2 = u[0,T )(ω
1
s) to rotate the disk about the normal vector e3 from γ0

at time 0 to γ1 at time T .
Step 2: Compute

ω2
r =

2

Tr

∥∥xf − x0∥∥
and set u1 = u[T,2T )(ω

2
r), u2 = 0 to roll the disk in the constant heading direction γ1

from x0 at time T to xf at time 2T .
Step 3: Compute

ω3
s =

2

T
tan−1

(
e3 · S(γ1)γf

γ1 · γf
)

and set u1 = 0, u2 = u[2T,3T ](ω
3
s) to rotate the disk about the normal vector e3 from

γ1 at time 2T to γf at time 3T .

4.4.3 An example controlled maneuver

We now illustrate the ideas developed in the previous section through computer sim-
ulations of a disk of radius r = 0.2 m on a flat surface with T = 2 s. We implement
the 3-Step algorithm described in the previous section for the following initial and
final conditions:

x0 = (0, 0, 0), γ0 = (0, 1, 0),

xf = (5, 10, 0), γf = (1, 0, 0).

Figures 4.4-4.6 show the results of the simulation.
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Figure 4.4: Position x (flat surface case).
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Figure 4.5: Vectors γ and σ (flat surface case).
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Figure 4.6: Controls (u1, u2) and angular velocities (ωr, ωs) (flat surface case).

4.5 Disk rolling on a spherical surface

Consider a circular disk rolling on a (stationary) spherical surface as shown in Figure
4.7. Let r and R denote the radii of the disk and the spherical surface, respectively.
The constraint manifold is given by

M = S2
R =

{
x ∈ R3 : ‖x‖2 −R2 = 0

}
and the configuration manifold is

Q =
{

(x, γ) ∈ S2
R × S2 : γ ∈ TxS2

R

}
.

The vector function for the scaled normal vector is n(x) = x
R , so that the matrix

function N(x) =
I3×3
R .

The dynamics of the disk on the spherical surface are given as

ẋ = rωrγ, (4.14)

γ̇ = ωsS
( x
R

)
γ − rωr

R2
x, (4.15)

ω̇r = u1, (4.16)

ω̇s = u2. (4.17)
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Figure 4.7: Disk rolling on a spherical surface.

4.5.1 Controllability

Based on equations (4.14)-(4.17), the drift vector field is given by

f(z) =
(
rωrγ, ωsS

( x
R

)
γ − rωr

R2
x, 0, 0

)
and the control vector fields are g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1). The following Lie
brackets can be computed:

[g1, f ] =
(
rγ, − rx

R2
, 0, 0

)
, [g2, f ] =

(
0, S

( x
R

)
γ, 0, 0

)
,

[g2, [f, [g1, f ]]] =
(
rS
( x
R

)
γ, 0, 0, 0

)
.

The space spanned by the vectors

g1, g2, [g1, f ], [g2, f ], [g2, [f, [g1, f ]]]

has dimension 5 at any equilibrium solution ze. Since the above spanning Lie brackets
are all good and the bad brackets of order 1 and 3 are zero at the equilibrium solution
ze, Sussmann’s sufficient conditions for small time local controllability Sussmann
(1987) are satisfied. Again since the system is a real analytic system, there exist
both time-invariant piecewise analytic feedback laws and time-periodic continuous
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feedback laws which asymptotically stabilize ze.

4.5.2 Motion planning

We follow the strategy described previously to develop a solution to the rest-to-rest
motion planning problem. In particular, the path connecting x0 ∈ M to xf ∈ M is
taken as the geodesic path connecting these two points, which necessarily lies on the
spherical surface.

Again, without loss of generality, assume that xf 6= x0 and γf 6= γ0. Also, for
simplicity, let ti = iT, i = 0, 1, 2, T > 0, denote the time instants switching is per-
formed. A solution of the maneuver problem can now be given as follows:

Step 1: Compute

σ1 = S(n0)nf , γ1 = S(σ1)n0

ω1
s =

2

T
tan−1

(
n0 · S(γ0)γ1)

γ0 · γ1
)

and set u1 = 0, u2 = u[0,T )(ω
1
s) to rotate the disk about the normal vector x

0

R from

γ0 at time 0 to γ1 at time T .
Step 2: Compute

ω2
r =

2R

Tr
tan−1

(
σ1 · S(n0)nf )

n0 · nf
)

and set u1 = u[T,2T )(ω
2
r), u2 = 0 to roll the disk in the heading direction vector from

x0 at time T to xf at time 2T . The heading vector of the disk rotates about the
attitude vector σ as required to maintain satisfaction of the nonholonomic constraint.
At time 2T , the heading vector is γ2 = S(σ1)nf .

Step 3: Compute

ω3
s =

2

T
tan−1

(
nf · S(γ2)γf

γ2 · γf
)
,

and set u1 = 0, u2 = u[2T,3T ](ω
3
s) to rotate the disk about the normal vector x

f

R from

γ2 at time 2T to γf at time 3T .

4.5.3 An example controlled maneuver

We now illustrate the ideas developed in the previous section through computer sim-
ulations of a disk of radius r = 0.2 m on a spherical surface with R = 2 m. Again we
set T = 2 s. We implement the 3-Step algorithm described in the previous section
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for the following initial and final conditions:

x0 = (0, 0, 2), γ0 = (1, 0, 0),

xf = (
√

2, −
√

2, 0), γf = (1/
√

2, 1/
√

2, 0).

Figures 4.8-4.10 show the results of the simulation.
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Figure 4.8: Position x (spherical surface case).
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Figure 4.9: Vectors γ and σ (spherical surface case).
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Figure 4.10: Controls (u1, u2) and angular velocities (ωr, ωs) (spherical surface case).
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4.6 Conclusions

The motion of a disk rolling on an arbitrary smooth surface has been studied. The
results are based on new formulations of the dynamics equations that are globally
defined on the surface. A motion planning algorithm is proposed for two different
surfaces: flat surface and spherical surface. The motion planning algorithm can be
extended to more complex geometric surfaces such as surfaces of torus, hyperboloid,
and cone. The ideas presented in this chapter can also be extended to the trajectory
tracking control of a disk rolling on an arbitrary smooth surface.



Chapter 5

Global Formulation and Motion
Planning for a Sphere Rolling on a
Smooth Surface

In this chapter, we study the motion of a rolling sphere on an arbitrary smooth man-
ifold embedded in R3. The sphere is allowed to roll on the surface without slipping or
twisting. A nonlinear control system model describing the kinematics of the sphere
is developed in a geometric form so that the model is globally defined without singu-
larities or ambiguities. An algorithm for constructing a path between specified initial
and final configurations is presented. The algorithm utilizes the nonholonomic nature
of the system. The theoretical results are specialized for two specific surfaces defined
in R3, namely a flat surface and the surface of a stationary sphere.

5.1 Introduction

The rolling motion of a sphere on a smooth surface without slipping and twisting is
an interesting problem in classical mechanics. The motion planning problem for the
rolling sphere is categorized as nonholonomic control problem due to non-integrable
velocity constraints. The literature on such nonholonomic control problems is large,
both in terms of theoretical results and studies of specific physical examples in the
context of robot manipulation, wheeled mobile robotic systems, and space robotic
systems Murray et al (1994); Li et al (1990); Liu et al (2017); Cheng et al (2017);
Petrinicet al (2017). An excellent reference that provides a geometric and control
theoretical view of nonholonomic systems is the book by Bloch Bloch. (2003). A few
representative control works include the study of controllability and stabilizability
in Bloch et al (1992, 1991); motion planning in Reyhanoglu (1994); Murray et al
(1993); and feedback stabilization and tracking in Astolfi (1996); Jiang et al (1999);
Sordalen et al (1995); Zhao et al (2018).

The research on rolling sphere problem has evolved consistently for more than a

60
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century and mathematicians, physicists and engineers from all around the world have
studied various aspects of the problem. That certainly shows the richness and impor-
tance of the domain and its applications to science and technology. The theoretical
problem has a large number of applications; for example, a spherical mobile robot
moving on the surface of an asteroid to collect a sample, where precise control of both
position and attitude are required.

The nonholonomic motion of the rolling sphere is explained in Johnson (2007).
Geometric aspects for the control of position and orientation of the sphere rolling on a
plane is discussed in Jurdjevic (1993); Bicchi et al (1995); Marigo et al (2000). Motion
planning algorithms for spherical robots are studied in Minor et al (2002); Svinin et al
(2008); Zheng et al (2011). The dynamics of a spherical robot are discussed in Camicia
et al (2000), wherein a linear control law for the longitudinal dynamics of the robot
is proposed. The rolling motion of a homogeneous ball on an arbitrary surface is
studied in Borisov et al (2002). In Shen et al (2008), internal rotors and sliders are
proposed as the mechanism for the control of spherical robots. The work in Morin
et al (2008) considers a rolling sphere actuated by a moving plate and develops a
control algorithm for the stabilization of admissible reference trajectories. In Borisov
et al (2012), dynamics and control of a non-symmetric sphere (with rotors) on a plane
are discussed and the controllability for the system is shown. Moreover, the influence
of rolling friction on the control of the sphere is discussed. The work in Muralidharan
et al (2015) derives the dynamics of a spherical robot on a plane in a geometric
framework and studies strong accessibility and small-time local controllability for the
system. A smooth global tracking controller is proposed for the position trajectories.
In Kleinsteuber et al (2006), the motion of the rolling sphere on a flat plane is studied
and the ideas of slip and twist maneuvers are presented. In the slip maneuver, the
sphere moves from a given position to the desired position without changing the
attitude. While in the twist maneuver, the sphere rolls in a closed path trajectory to
produce a desired twist about the surface normal.

In this chapter, we study the kinematics of a rolling sphere on an arbitrary smooth
surface (smooth embedded manifold) using geometric mechanics. The development
follows the new formulation introduced in our recent work McClamroch et al (2017)
for a simple nonholonomic system. A nonlinear system model is derived that is
globally defined on the manifold without singularities or ambiguities. The theoretical
results are specialized for two specific surfaces defined in R3, namely a flat surface
and the surface of a stationary sphere. A motion planning scheme is proposed that
incorporates the slip and twist maneuvers described in Kleinsteuber et al (2006).
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5.2 Kinematics of a sphere rolling on a smooth

surface

Consider a Euclidean frame in R3 with standard basis vectors e1, e2, e3. A fixed
surface is defined by the two-dimensional connected manifold

M =
{
x ∈ R3 : φ(x) = 0

}
,

where φ : R3 → R1 is a differentiable function that satisfies ∂φ(x)
∂x
6= 0, x ∈ M . The

sphere is assumed to be rigid and have single point of contact with the surface M .
Let x ∈ M ⊂ R3 denote the position vector of the contact point of the sphere in
the Euclidean frame. As usual, the notation TxM denotes the tangent plane of the
manifold at x ∈M .

TxM =

{
ξ ∈ Rn :

∂φ(x)

∂x
· ξ = 0

}
.

It is assumed that the sphere can roll without slipping or twisting on the smooth
surface defined by M . Consider an actuation plane that has single point of contact
with the rolling sphere. Let ν ∈ S2 be the unit normal to the surface M at x, which

is given by ν = n(x), where the vector function n(x) = ∂φ(x)
∂x

/
∥∥∥∂φ(x)∂x

∥∥∥. Let γ and σ be

two orthogonal basis vectors that span the tangent space TxM such that ν = γ × σ.
The actuation plane is always parallel to the tangent plane at the given position
x ∈M (see Figure 5.1).

Consider a body-fixed frame {b1, b2, b3} whose origin is at the center of the sphere.
The attitude of the sphere R ∈ SO(3) is defined by

R =

e1 · b1 e1 · b2 e1 · b3
e2 · b1 e2 · b2 e2 · b3
e3 · b1 e3 · b2 e3 · b3


The sphere can roll about a unit vector χ ∈ TxM with a rate ω ∈ R. The rolling
angular velocity ωχ can be expressed as a linear combination of γ and σ as

ωχ = ω1γ + ω2σ.

The following result can now be stated:

Proposition 5.1: The kinematics of a sphere of radius rs controlled by its rolling
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rate ω about an axis χ ∈ TxM are given by

ẋ = rs(ω2γ − ω1σ), (5.1)

Ṙ = S(Ω)R, (5.2)

γ̇ = −rsγTN(x)(ω2γ − ω1σ)n(x), (5.3)

σ̇ = −rsσTN(x)(ω2γ − ω1σ)n(x), (5.4)

where ω1 = ωγTχ, ω2 = ωσTχ, N(x) = ∂n(x)
∂x

, Ω ∈ R3 is the angular velocity of the
rolling sphere in inertial frame of reference, and S : R3 → R3×3 is the skew-symmetric
matrix representing the cross product operator on R3.

Proof: Rolling without slipping about γ by ω1 yields a velocity of −rsω1σ and
about σ by ω2 yields a velocity of rsω2γ. Thus, the sphere satisfies the nonholonomic
constraint given by (5.1). Equation (5.2) describes the attitude kinematics of a rigid
body whose angular velocity in the inertial frame is Ω.

Since twisting is not allowed, the time rates of change of γ and σ along the normal
to the tangent plane TxM due to the translational motion should be of the form

γ̇ = h1(x, γ, σ, ω1, ω2)n(x), (5.5)

σ̇ = h2(x, γ, σ, ω1, ω2)n(x), (5.6)

where hi, i = 1, 2, are scalar functions to be determined using the geometric proper-
ties of the configuration manifold. Clearly, νT γ̇ = h1 and νT σ̇ = h2. Since

νTγ = 0⇒ νT γ̇ + ν̇Tγ = 0,

it follows that
νT γ̇ = −γT ν̇ = −γTN(x)ẋ.

Therefore, h1 = −rsγTN(x)(ω2γ − ω1σ), and thus the equation (5.3) follows. Simi-
larly, since

νTσ = 0⇒ νT σ̇ + ν̇Tσ = 0,

we have
νT σ̇ = −σT ν̇ = −σTN(x)ẋ.

Therefore, h2 = −rsσTN(x)(ω2γ − ω1σ), and thus the equation (5.4) follows. �

The equations (5.1) and (5.2) describe the coupled translational and rotational
kinematics of the sphere rolling on an arbitrary smooth surface. They represent
a kinematic control system with the configuration (or state) vector q = (x, R) ∈
M × SO(3) and the control vector u = (ω1, ω2). Note that equations (5.3) and
(5.4) describe the actuation condition that there is no twisting. Since M is a two
dimensional manifold and the rotation manifold SO(3) is a three dimensional Lie
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group, it is possible to describe the kinematics using five local coordinates as has
been shown in [2].

5.3 Sphere rolling on a flat plane

Consider a sphere rolling on a flat horizontal plane defined as

M =
{
x ∈ R3 : eT3 x = 0.

}
The surface normal for the flat plane is ν = e3, and thus N(x) = 0. The velocity of
the rolling sphere lies in the tangent plane at x. Let γ = e1 and σ = e2. Then, the
kinematics equations (5.1)-(5.2) simplify to

ẋ = rs(ω2γ − ω1σ), (5.7)

Ṙ = S(Ω)R, (5.8)

and γ̇ = σ̇ = 0. Thus, the configuration vector for the flat surface case is q = (x, R) ∈
M × SO(3). Here Ω ∈ R3 is the angular velocity of the rolling sphere, which is given
in the inertial frame by

Ω = ω

χ · e1χ · e2
0

 . (5.9)

ν

σ
γ

e1

e2

e3

M

Actuation plane

TxM

Figure 5.1: Sphere rolling on a flat surface.
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5.3.1 Motion planning

Assume that the initial and final position and attitudes are given by (x0, R0) and
(xf , Rf ), respectively. A natural approach for solving the rolling sphere maneuver
problem is to construct a path in M × SO(3) that connects (x0, R0) ∈ M × SO(3)
and (xf , Rf ) ∈ M × SO(3). The initial and final attitudes can be expressed as
R0 = [b01, b

0
2, b

0
3] and Rf = [bf1 , b

f
2 , b

f
3 ].

Without loss of generality, assume that xf 6= x0 and Rf 6= R0. Also, for simplicity,
let ti = iT, i = 1, · · · , 10, T > 0, denote the time instants switching is performed.
We now describe a 10-Step solution of the maneuver problem. In Step 1, the sphere is
rolled along the shortest path from (x0, R0) to (xf , R1). In Step 2, a pre-slip maneuver
is performed to roll the sphere from (xf , R1) to (x2, R2), where b23 is aligned with
the surface normal e3. Slip maneuver is accomplished in Steps 3 and 4. As shown in
Figure 5.2, the maneuver starts and ends at positions x2 and x4, respectively, and x3

is an intermediate position that is equidistant to both x2 and x4. To compute x3 and
x4, first define the auxiliary variables ωa, Ωa and χa as

χa =
S(bf3)e3∥∥∥S(bf3)e3

∥∥∥ , ωa =
1

T
tan−1


∥∥∥S(bf3)e3

∥∥∥
bf3 · e3

 ,

Ωa = ωa

χa · e1χa · e2
0

 ,
and then compute

x4 = xf + rsω
aTS(χa)e3, R

a = eS(Ωa)TRf .

Choose the smallest integer value of l that satisfy

l >
‖x4 − x2‖

2πrs
(5.10)

and solve the following equations simultaneously for x3 using Symbolic Math Toolbox
of Matlab : ∥∥x3 − x2∥∥− ∥∥x4 − x3∥∥ = 0, (5.11)∥∥x3 − x2∥∥ = 2πrsl. (5.12)

In Steps 5-9, a twist maneuver is performed. As shown in Figure 5.3, the maneuver
starts and ends at position x4 producing a twist of angle Φ (about the surface normal
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2πrsl

2πrsl

x3

x2

x4

Figure 5.2: Slip maneuver; the position changes but the attitude remains the same.

at x4) given by

Φ = tan−1
(
e3 · (S(b42)b

a
2)

b42 · ba2

)
.

Finally, Step 10 accomplishes the motion planning goal of reaching (xf , Rf ).

Remark: Note that Ra = [ba1, b
a
2, b

a
3] can be determined by using Rodrigues’ formula

given by

eS(Ωa)T =I+
S(Ωa)

‖Ωa‖ sin(‖Ωa‖T )+
S2(Ωa)

‖Ωa‖2
(1−cos(‖Ωa‖T ).

Starting position

x4

rsΦ
2

rsΦ
2

rsπ
2

rsπ
2

rsπ

Figure 5.3: Twist maneuver; the attitude changes but the position remains the same.
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We now describe the 10-Step motion planning algorithm for the flat surface case.

Step 1: Compute

χ1 =
S(e3)(x

f − x0)
‖xf − x0‖ , ω1 =

∥∥xf − x0∥∥
Trs

and then roll the sphere about χ1 with the angular speed ω1. At the end of this step,
the position and attitude of the sphere are xf and R1 = [b11, b

1
2, b

1
3], respectively.

Step 2: Compute

χ2 =
S(b13)e3
‖S(b13)e3‖

, ω2 =
1

T
tan−1

(‖S(b13)e3‖
b13 · e3

)
and then roll the sphere about χ2 with the angular speed ω2. At the end of this step,
the position and attitude of the sphere are x2 and R2 = [b21, b

2
2, b

2
3], respectively, where

b23 is aligned with the surface normal e3.

Step 3: Compute

χ3 =
S(e3)(x

3 − x2)
‖x3 − x2‖ , ω3 =

‖x3 − x2‖
Trs

and then roll the sphere about χ3 with angular speed ω3. At the end of this step, the
position and attitude of the sphere are x3 and R3 = [b31, b

3
2, b

3
3], respectively.

Step 4: Compute

χ4 =
S(e3)(x

4 − x3)
‖x4 − x3‖ , ω4 =

‖x4 − x3‖
Trs

and then roll the sphere about χ4 with the angular speed ω4. At the end of this step,
the position and attitude of the sphere are x4 and R4 = [b41, b

4
2, b

4
3], respectively.

Step 5: Compute

χ5 = σ, ω5 =
π

2T

and then roll the sphere about χ5 with the angular speed ω5. At the end of this step,
the position and attitude of the sphere are x5 and R5 = [b51, b

5
2, b

5
3], respectively.

Step 6: Compute

χ6 = γ, ω6 =
Φ

2T
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and then roll the sphere about χ6 with the angular speed ω6. At the end of this step,
the position and attitude of the sphere are x5 and R6 = [b61, b

6
2, b

6
3], respectively.

Step 7: Compute

χ7 = −σ, ω7 =
π

T

and then roll the sphere about χ7 with the angular speed ω7. At the end of this step,
the position and attitude of the sphere are x7 and R7 = [b71, b

7
2, b

7
3], respectively.

Step 8: Compute

χ8 = −γ, ω8 =
Φ

2T

and then roll the sphere about χ8 with the angular speed ω8. At the end of this step,
the position and attitude of the sphere are x8 and R8 = [b81, b

8
2, b

8
3], respectively.

Step 9: Compute

χ9 = σ, ω9 =
π

2T

and then roll the sphere about χ9 with the angular speed ω9. At the end of this step,
the position and attitude of the sphere are x9, where x9 = x4, and R9 = [b91, b

9
2, b

9
3],

respectively.

Step 10: Compute

χ10 =
S(e3)b

f
3∥∥∥S(e3)b
f
3

∥∥∥ , ω10 =
1

T
tan−1


∥∥∥S(e3)b

f
3

∥∥∥
e3 · bf3


and then roll the sphere about χ10 with the angular speed ω10. At the end of this step,
the position and attitude of the sphere will be xf and Rf = [bf1 , b

f
2 , b

f
3 ], respectively,

thereby accomplishing the motion planning goal.

5.3.2 An example controlled maneuver

We now illustrate the ideas developed in the previous section through computer sim-
ulations of a sphere of radius rs = 2 on a surface with T = 2. We implement the
10-step algorithm described in the previous section for the following initial and final
conditions:

x0 = (0, 0, 0), R0 =

 0 1/
√

2 1/
√

2

0 1/
√

2 −1/
√

2
−1 0 0

 ,
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xf = (5, 8, 0), Rf =

−1/
√

2 0 1/
√

2

−1/
√

2 0 −1/
√

2
0 −1 0

 .
Figures 5.4-5.6 show the results of the simulation. Figure 5.4 shows the time

response of position x. The time responses of ω1 and ω2 are shown in Figure 5.5.
Figure 5.6 shows the path of the contact point of the rolling sphere on the flat surface.
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Figure 5.4: Position x (flat surface case).

5.4 Kinematics of a sphere rolling on a stationary

sphere

Consider a sphere rolling on a stationary sphere of radius Rs defined as

M = S2
Rs

=
{
x ∈ R3 : ‖x‖2 −R2

s = 0
}
. (5.13)

The surface normal is ν = x
Rs

, and thus N(x) =
I3×3
Rs

. The velocity of the rolling

sphere lies in the tangent plane at x. As shown in Figure 5.7, σ, γ ∈ TxM are two
orthogonal basis vectors that span the tangent plane at x. The kinematics of the
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Figure 5.5: Controls ω1 and ω2 (flat surface case).
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Figure 5.6: The path of the contact point of the rolling sphere (flat surface case).
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sphere of radius rs are obtained using (5.1)-(5.2) as

ẋ = rs(ω2γ − ω1σ), (5.14)

Ṙ = S(Ω)R, (5.15)

γ̇ = − rs
R2
s

ω2x, (5.16)

σ̇ =
rs
R2
s

ω1x, (5.17)

(5.18)

Thus, the configuration vector for the spherical surface case is q = (x, γ, σ, R) ∈
M × (S2)2 × SO(3). Here Ω ∈ R3 is the angular velocity of the rolling sphere, which
is given in the inertial frame by

Ω = (1 +
rs
Rs

)ω

χ · e1χ · e2
χ · e3

 .

e1

e3

e2

Rolling Sphere

γ

σ

ν

Actuation plane

TxM

M

Figure 5.7: Sphere rolling on a stationary sphere.
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5.4.1 Motion planning

Assume that the initial and final position and attitudes are given by (x0, R0) and
(xf , Rf ), respectively. A natural approach for solving the rolling sphere maneuver
problem is to construct a path on M × SO(3) that connects (x0, R0) ∈ M × SO(3)
and (xf , Rf ) ∈ M × SO(3). The initial and final attitudes can be expressed as
R0 = [b01, b

0
2, b

0
3] and Rf = [bf1 , b

f
2 , b

f
3 ]. The initial values of γ and σ can be computed

as

σ0 =
S(x0)xf

‖S(x0)xf‖ , γ
0 = S(σ0)ν0,

Without loss of generality, assume that xf 6= x0 and Rf 6= R0. Also, for simplicity,
let ti = iT, i = 1, · · · , 10, T > 0 denote the time instants switching is performed.
We now describe a 10-Step solution of the maneuver problem. In Step 1, the sphere
is rolled along the shortest path (geodesic) from (x0, R0) to (xf , R1). In Step 2, a
pre-slip maneuver is performed to roll the sphere from (xf , R1) to (x2, R2), where b23
is aligned with the surface normal at x2. Slip maneuver is accomplished in Steps 3
and 4. As shown in Figure 5.2, the maneuver starts and ends at positions x2 and x4,
respectively, and x3 is an intermediate position that is equidistant to both x2 and x4.
To compute x3 and x4, first define the auxiliary variables ωa, Ωa and χa as

χa =
S(bf3)νf∥∥∥S(bf3)νf

∥∥∥ , ωa =
1

T
tan−1


∥∥∥S(bf3)νf

∥∥∥
bf3 · νf

 ,

Ωa = (1 +
rs
Rs

)ωa

χa · e1χa · e2
χa · e3

 ,
and then compute

x4 = eS(χa)V̄ aT xf , Ra = eS(Ωa)TRf ,

where V̄ a = rsω
a

Rs
. Choose the smallest integer value of l that satisfy

l >
Rs

2πrs
tan−1(

‖S(x1)x4‖
x1 · x4

) (5.19)

and solve the following equations simultaneously for x3 using Symbolic Math Toolbox
of Matlab: ∥∥x3∥∥ = Rs, (5.20)

Rs tan−1
(
n1 · S(x2)x3

x2 · x3
)

= 2πrsl, (5.21)

Rs tan−1(
n2 · S(x3)x4

x3 · x4 ) = 2πrsl, (5.22)
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where

n1 =
S(x2)x3

‖x2 · x3‖ , n
2 =

S(x3)x4

‖x3 · x4‖ .

In Steps 5-9, a twist maneuver is performed. As shown in Figure 5.3, the maneuver
starts and ends at position x4 producing a twist of angle Φ (about the surface normal
at x4) given by

Φ = tan−1
(
ν4 · (S(b42)b

a
2)

b42 · ba2

)
.

Finally, Step 10 accomplishes the motion planning goal of reaching (xf , Rf ).

We now describe the 10-Step motion planning algorithm for the spherical surface
case.

Step 1: Compute

χ1 = σ0, ω1 =
Rs

rsT
tan−1

(∥∥S(x0)xf
∥∥

x0 · xf

)

and then roll the sphere about χ1 with angular speed ω1. At the end of this step, the
position and attitude of the sphere are xf and R1 = [b11, b

1
2, b

1
3], respectively.

Step 2: Compute

χ2 =
S(b13)ν

f

‖S(b13)ν
f‖ , ω2 =

1

T
tan−1

(∥∥S(b13)ν
f
∥∥

b13 · νf

)

and then roll the sphere about χ2 with angular speed ω2. At the end of this step, the
position and attitude of the sphere are x2 and R2 = [b21, b

2
2, b

2
3], respectively, where b23

is aligned with the surface normal at x2.

Step 3: Compute

χ3 =
S(x2)x3

‖x2 · x3‖ , ω3 =
Rs

rsT
tan−1

(‖S(x2)x3‖
x2 · x3

)
and then roll the sphere about χ3 with angular speed ω3. At the end of this step, the
position and attitude of the sphere are x3 and R3 = [b31, b

3
2, b

3
3], respectively.

Step 4: Compute

χ4 =
S(x3)x4

‖x3 · x4‖ , ω4 =
Rs

rsT
tan−1

(‖S(x3)x4‖
x3 · x4

)
.
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and then roll the sphere about χ4 with angular speed ω4. At the end of this step, the
position and attitude of the sphere are x4 and R4 = [b41, b

4
2, b

4
3], respectively.

Step 5: Compute

χ5 = σ, ω5 =
π

2T

and then roll the sphere about χ5 with angular speed ω5. At the end of this step, the
position and attitude of the sphere are x5 and R5 = [b51, b

5
2, b

5
3], respectively.

Step 6: Compute

χ6 = γ, ω6 =
Φ

2T

and then roll the sphere about χ6 with angular speed ω6. At the end of this step, the
position and attitude of the sphere are x6 and R6 = [b61, b

6
2, b

6
3], respectively.

Step 7: Compute

χ7 = −σ, ω7 =
π

T

and then roll the sphere about χ7 with angular speed ω7. At the end of this step, the
position and attitude of the sphere are x7 and R7 = [b71, b

7
2, b

7
3], respectively.

Step 8: Compute

χ8 = −γ, ω8 =
Φ

2T

and then roll the sphere about χ8 with angular speed ω8. At the end of this step, the
position and attitude of the sphere are x8 and R8 = [b81, b

8
2, b

8
3], respectively.

Step 9: Compute

χ9 = σ, ω9 =
π

2T

and then roll the sphere about χ9 with angular speed ω9. At the end of this step, the
position and attitude of the sphere are x9 and R9 = [b91, b

9
2, b

9
3], respectively.

Step 10: Compute

χ10 =
S(νf )bf3∥∥∥S(νf )bf3

∥∥∥ , ω10 =
1

T
tan−1


∥∥∥S(νf )bf3

∥∥∥
νf · bf3


and then roll the sphere about χ10 with angular speed ω10. At the end of this step, the
position and attitude of the sphere are xf and Rf = [bf1 , b

f
2 , b

f
3 ], respectively, thereby

accomplishing the motion planning goal.
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5.4.2 An example controlled maneuver

We now illustrate the ideas developed in the previous section through computer sim-
ulations of a sphere of radius rs = 2 rolling on a stationary sphere of radius Rs = 10.
We implement the 10-step algorithm described in the previous section with T = 2 for
the following initial and final conditions:

x0 = (10, 0, 0), R0 =

 1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0
0 0 1

 ,

xf = (10, 10, 10)/
√

3, Rf =

1 0 0
0 1 0
0 0 1

 .
Figures 5.8-5.11 show the results of the simulation. Figures 5.8 and 5.9 show the

time responses of position x and basis vectors (γ, σ), respectively. The time responses
of ω1 and ω2 are shown in Figure 5.10. Figure 5.11 shows the path of the contact
point of the rolling sphere on the spherical surface.
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Figure 5.8: Position x (spherical surface case).
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Figure 5.9: Basis vectors of the actuation plane (spherical surface case).
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Figure 5.10: Controls ω1 and ω2 (spherical surface case).
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Figure 5.11: The path of the contact point of the rolling sphere (spherical surface case).

5.5 Conclusion and future work

The motion of a sphere rolling on an arbitrary smooth surface has been studied. The
results are based on new formulations of the kinematics equations that are globally
defined on the surface. A motion planning algorithm is proposed for two different
surfaces: flat surface and spherical surface. The geometries of the flat surface and
the sphere allow development of analytical expressions for the rolling sphere in the
proposed maneuvers. The motion planning algorithm can be extended to more com-
plex geometric surfaces such as surfaces of torus, hyperboloid, and cone. The ideas
presented in this chapter can also be extended to the trajectory tracking control of a
sphere rolling on an arbitrary smooth surface.

The focus in this chapter has been on the rolling sphere kinematics. It is possible
to formulate the rolling sphere dynamics, using methods of dynamic extension, and to
develop associated control results for such nonholonomic dynamics. In other words,
the development in Lee et al (2017) can be utilized to obtain a globally defined
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geometric formulation of rolling sphere dynamics, and develop motion planning results
following the methods used in this chapter.
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