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Abstract

Understanding how radiation particles are transported throughout a system and

interact with shielding is extremely computationally expensive. Reduced order

models (ROMs) can be used to significantly increase the speed of these

calculations [1]. This project focuses on analysis of the simulated radiation

transport for Cobalt-60, Cesium-137, and Technetium-99. A ROM may be

developed from several formalisms and then analyzing the feature vectors of

each. The methods considered here include principal component analysis (PCA),

non-negative matrix factorization (NNMF), and CP tensor decomposition (CPT). By

comparing the signal from fitted Lorentzian profiles to spectral features, we

evaluate whether each ROM is capable of accurately displaying the radiation

signal traces in the data. This model will be able to locate possible sources of

radiation from real world data and quickly identify them without the need to
reconstruct a computationally expensive ROM.

(5) Conclusions and Future Work

CPT is the best for describing radiation data

Pros (of CPT):
● Non-linear method, which can extrapolate non-linear features

● CPT and NNMF require less dimension to describe the data

● Sameness test verifies the near-uniqueness of the CPT vectors 

(efficiently describing data)

Cons (of CPT):
● Missing the positivity enforced by NNMF

● Qualitative comparison indicates PCA had the most overall-positive attributes

● Reconstruction error is low, and identifies features which have significant noise

Future work:

We have only begun to scratch the surface. Quantitative analysis between PCA, NNMF, and CPT

will be lastingly important because of their relativity to machine learning.

Introduction

Much of the science at Pacific Northwest National Laboratory (PNNL) involves

radiation in some aspect. Understanding how radiative particles interact with

shielding and how particles are emitted by machines, X-ray sources and

radioactive materials is critical for detection and remediation of the radioactive

sources. In order to study radiation, it must be measured, which is typically done

by analyzing radiation spectra. Historically, the developed reduced order models

(ROM) serve to generate basis functions that can compactly represent the

radiation spectra. These ROMs are generated by several different numerical

methods: principal component analysis (PCA), nonnegative matrix factorization

(NNMF), and CP tensor decomposition (CPT).

Our aim is to test these procedures with the given simulated data and develop

methods for qualitatively comparing the results and generate the best ROM that

may be used to model larger data sets. This will provide us with a model that best

describes real-world data, where we are able to extract information about the

radiation, among the most important being the identification and location of the

source. In this work, we analyze three different simulated radiation sources,cobalt-

60, cesium-137, and technetium-99, and their spectra. The spectra have an

energy range 70 keV to 2 MeV and are taken over a 21x21 grid of detectors,

with a triangular steel shield laying across the top half of the of the detector

grid, see the figure below.

Figure 1: (a): The grid points of the simulation. The dark grey is concrete shielding 

and the light grey is open air. (b): Energy spectrums of Co60, Cs137 and Tc99

respectively. The data contains three sets of spectrum for each element (Co60, 
Cs137, Tc99) overlaid on the grid in (a) at each gridpoint.
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Theory and Methods

a. Principal Component Analysis

c. CP Tensor Decomposition

Future Results…
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In NNMF, a given data matrix, A, is approximated by taking the

low-rank product of two or more generated matrices, W and H,

with the constraint that the matrix elements are nonnegative [3]:

● Extracts sparse features from the data matrix A

● Is easily interpretable (following logical or physical patterns)

● Reduces dimensionality of data into linear combination of

bases
● Learns part-based representations by combining parts to form

a whole

To the right shows the decomposition of a large matrix A into

spatial information in W and Source information (energy)

contained in the H matrix.

(1)Test of the similarity between the eigenvectors:
We normalize the eigenvectors generated by PCA, NNMF, and CPT in order to determine the coefficient of sameness, S, given

by

This quantity provides a comparison between eigenvectors, both within and between each method.

Figure 5 (left): The top row of panels evaluate the inner product of the normalized eigenvector (below denotes with psi).

Methods are either: PCA, NNMF, or CPT. By normalizing the eigenvectors, we could then calculate a coefficient called

“sameness” which ranged from 0 (no similarity) to one which means they are identical.

Figure 6 (right): Sorting the last figure (in y) in order to see the spread of the data. For NNMF dotted with NNMF, we see the

vectors are not all orthogonal like they are in PCA or like they are close to in CPT.

(1)Test Ambient Noise:

Testing our reconstruction (see below) by introducing gaussian noise to the signal, we looked to see which method

could best isolate the signal.

(3) Reconstruction of the original Matrix
From our reduced order model, we can rebuild our original matrices by simple matrix products. This is useful for

calculating the frobenius norm: fnorm = ||A - ARebuild||. These are calculated by

(4) Determination of Locations & Determination of Radiation Types
Using our eigenvectors PCA, and feature vectors, NNMF and CPT, from our reduced order models (ROMs) we can

solve the system of equations to determine the types and locations of the radiation types.

PCA NNMF CPT

Non-negativity No Yes No

Residuals Machine Precision Normal Normal

Feature Type Eigenvector Feature Vector Feature Vector

Characterization 

of breakdown

By highest 

variance

By high/low 

energy component

Both high/low 

energy comp./var.

Fixed Features Yes No No

Run time 0-1s 15-60s ~1000s

Linearity Linear Non-linear Non-linear

Total 4 3 3

(a)

Figure 2 (PCA): This figure demonstrates 

constraining to eigenvectors which best cover 
the space while minimizing the variance

(b)

Figure 4 (CPT) : Tensor decomposition 
visualization into arrays a, b, c, reproduced 
from: ref. [5].

When PCA is applied to large data sets, it calculates 

eigenvectors (called the principle components) [2]. This 

is accomplished by the PCA algorithm which:

● Iterates the data to minimize least-squares-error 

between eigenvectors and the data

● Maximizes variance with each iteration to best span 

the data
● Reduces the number of dimensions 

(eigenfunctions) used to describe the data
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Similar to NNMF in decomposition and PCA in the 

developed vectors, CPT gives a low-rank approximation. 

However, the approximated tensor is unique and provides 

useful information from [4]:

● Separated mixtures of sources/ signals

● Measured concentrations of sources and signals

● Approximated spectral profiles

Comparison
Comparing metrics gives us 

a better idea of which

method is the best before 

developing our own analysis

Notice
● Highlighted most desirable

traits from each method

We conclude
PCA has the most qualitatively

favorable attributes.

Figure 3 (NNMF): Visualization of the 

matrices of NNMF. A is the data matrix, 
and W, and H are the decomposed 
matrices.

Figure 7 (right): Demonstration of noise addition (right) and 

our ability to identify the features even in this noisy data (left).

Running this on PCA, NNMF, and CPT we found that PCA was 

typically able to best at retrieving the features in the 

reconstruction.


