
Half Line Titchmarsh-Weyl 𝑚 functions of vector-valued discrete Schrodinger operators

Keshav Raj Acharya

.

Contact:  Embry-Riddle Aeronautical University Department 
of Mathematics
E-mail: acharyak@erau.edu
Ph:  3862266298

References:
1. Acharya, K.R. Titchmarsh–Weyl theory for vector-valued discrete Schrödinger operators. Anal.Math.Phys. 9, 1831–
1847 (2019). https://doi.org/10.1007/s13324-018-0277

In this research, we discuss some important properties of half line Titcchmarsh-Weyl m 

functions associated to the vector-valued discrete Schrodinger operators induced by the second 

order difference expression. The Titchmarsh-Weyl 𝑚 functions provide explicit description of 

absolutely continuous, singular continuous and pure point spectrum of corresponding 

Schrodinger operators. The Remling's theorem utilizes these m functions to describe the 

absolutely continuous spectrum. We have established that these m functions are matrix-valued 

Herglotz functions maping complex upper half plane to Siegel Space, a generalization of 

complex upper half plane. We then define a metric on the Siegel space as a generalization of 

the hyperbolic metric on complex upper half plane. Then we establish the distance decreasing 

property of these m functions with respect to the metric we defined, for vector-valued discrete 

Schrodinger operators. This property of these 𝑚 functions is isssential to prove the Remling's

theorem, an ongoing research project.

Abstract

Theorem 1 For 𝑧 ∈ ℂ+ 𝑀± 𝑛, 𝑧 are given in terms of resolvent operator as

where ∆𝑛= 0, 0,⋯⋯⋯0, 𝐼, 0⋯ , 0

These functions 𝑀± 𝑛, 𝑧 are matrix valued fractional transformation. More precisely

𝑀± 𝑛, 𝑧 = 𝑇± 𝐵, 𝑛 𝑀± 𝑛 − 1 where        𝑇± 𝐵, 𝑛 =
𝑧𝐼 − 𝐵 ±𝐼
∓𝐼 0

These transfer matrices 𝑇± 𝐵, 𝑛 satisfy the following symplectic identity:

This shows that 𝑇± 𝐵, 𝑛 ∈ 𝑆𝑙(2𝑑, 𝐶), a group of  of 2𝑑 × 2𝑑 symplectic matrices. We denote the imaginary part of 

𝑀± 𝑛, 𝑧 by 

𝐼𝑚 𝑀± 𝑛, 𝑧 = 
1

2𝑖
𝑀 −𝑀∗

Let 𝒮𝑑 is the set of all 𝑑 × 𝑑 symmetric matrices with positive definite imaginary parts. 

These Weyl-m functions 𝑀±: ℂ → ℂ𝑑 are matrix valued Hergtolz functions. In addition, thesea are symmetric matricws with 

positive definite imaginary parts. Therefore  𝑀± ∈ 𝒮𝑑. We define a metric on 𝒮𝑑 by  

𝑑∞ 𝑍1, 𝑍2 = inf
𝑍(𝑡)

0
1
𝐹𝑍 𝑡 ( ሶ𝑍(𝑡)) 𝑑𝑡 where 𝐹𝑍 𝑡 𝑊 = 𝑌−

1

2 𝑊 𝑌
1

2 .

The infimum is taken over all differentiable paths 𝑍(𝑡) joining 𝑍1 and 𝑍2.

Let 𝑃−(𝑛, 𝑧) = 𝑇− 𝑛, 𝑧 . 𝑇(𝑛 − 1, 𝑧)…………𝑇(1, 𝑧). The we have the following theorem.

Theorem 2.  Let 𝑧 ∈ ℂ+, then

𝑑∞ 𝑀− 𝑛, 𝑧 , 𝑃− 𝑛, 𝑧 𝑀+(0, 𝑧) ≤
1

1+𝑦2 𝑛 𝑑∞ 𝑀− 0, 𝑧 ,𝑀+(0, 𝑧)

Introduction

The vector-valued discrete Schrödinger operators associated to the equations 

𝑦 𝑛 + 1 + 𝑦 𝑛 − 1 + 𝐵 𝑛 𝑦 𝑛 = 𝑧𝑦(𝑛); 𝑧 ∈ ℂ (1) 

where 𝑦 𝑛 ∈ ℂ𝑑and the potential B(n) is a 𝑑 × 𝑑 matrix is defined by

J𝑦 𝑛 = 𝑦 𝑛 + 1 + 𝑦 𝑛 − 1 + 𝐵 𝑛 𝑦 𝑛
If the potential B(n) is bounded symmetric matrix then J is a self adjoint operator.  

Definition. Let 𝑧 ∈ 𝐶+. The Titchmarsh-Weyl m function is defined as

the unique complex matrix 𝑀 𝑧 such that

𝐹 𝑛; 𝑧 = 𝑈 𝑛; 𝑧 + 𝑉 𝑛; 𝑧 𝑀 𝑧

where 𝑈(𝑛; 𝑧); 𝑉 (𝑛; 𝑧) are matrix valued solutions consisting of d linearly independent 

solutions with some initial values  and the matrix valued solution 𝐹(𝑛; 𝑧) is a set of 𝑑 linearly 

independent solutions of that are in 𝑙2(𝑁; 𝐶𝑑) . If 𝐹 is a 𝑑 × 𝑑 matrix valued solution whose 𝑑

columns are linearly independent solutions of (1.1) that are in 𝑙2 𝑁, 𝐶𝑑 then these functions 

are given by 

𝑀 𝑧 = −𝐹 1; 𝑧 𝐹 0; 𝑧 −1

Moreover,

𝑀 𝑧 = 𝑚𝑖𝑗 𝑧
𝑑×d

∈ ℂ𝑑×d, 𝑚𝑖𝑗 𝑧 = 𝛿𝑗 , 𝐽 − 𝑧 −1𝛿𝑖 . 

As a continuation, we extend the theory of Titchmarsh-Weyl 𝑚 functions from [1] to the one on 

helf lines: 𝑁− = 0, 1, 2, ……… , 𝑛 and 𝑁+ = {𝑛 + 1, 𝑛 + 2,…………… . . }
For 𝑧 ∈ 𝐶+,  the half-line 𝑚 functions are defined by

𝑀± 𝑛, 𝑧 = −𝐹± 𝑛 + 1, 𝑧 𝐹± 𝑛; 𝑧 −1 where 𝐹± 𝑛, 𝑧 are solutions of (1) such that 

𝐹− 0, 𝑧 = 0 and 𝐹+ 𝑛, 𝑧 ∈ 𝑙2(𝑁; 𝐶𝑑×𝑑 ) .

Results
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