Half Line Titchmarsh-Weyl m functions of vector-valued discrete Schrodinger operators Keshav Raj Acharya

Abstract

In this research, we discuss some important properties of half line Titcchmarsh-Weyl m functions associated to the vector-valued discrete Schrodinger operators induced by the second order difference expression. The Titchmarsh-Weyl m functions provide explicit description of absolutely continuous, singular continuous and pure point spectrum of corresponding Schrodinger operators. The Remling's theorem utilizes these m functions to describe the absolutely continuous spectrum. We have established that these m functions are matrix-valued Herglotz functions maping complex upper half plane to Siegel Space, a generalization of complex upper half plane. We then define a metric on the Siegel space as a generalization of the hyperbolic metric on complex upper half plane. Then we establish the distance decreasing property of these m functions with respect to the metric we defined, for vector-valued discrete Schrodinger operators. This property of these *m* functions is isssential to prove the Remling's theorem, an ongoing research project.

Introduction

The vector-valued discrete Schrödinger operators associated to the equations $y(n + 1) + y(n - 1) + B(n)y(n) = zy(n); z \in \mathbb{C}$ where $y(n) \in \mathbb{C}^d$ and the potential B(n) is a $d \times d$ matrix is defined by Jy(n) = y(n + 1) + y(n - 1) + B(n)y(n)If the potential B(n) is bounded symmetric matrix then J is a self adjoint operator.

Definition. Let $z \in C^+$. The Titchmarsh-Weyl m function is defined as the unique complex matrix M(z) such that

$$F(n; z) = U(n; z) + V$$

where U(n; z); V(n; z) are matrix valued solutions consisting of d linearly independent solutions with some initial values and the matrix valued solution F(n; z) is a set of d linearly independent solutions of that are in $l^2(N; C^d)$. If F is a $d \times d$ matrix valued solution whose d columns are linearly independent solutions of (1.1) that are in $l^2(N, C^d)$ then these functions are given by

$$M(z) = -F(1; z)F(0; z)^{-1}$$

Moreover,

 $M(z) = \left(m_{ij}(z) \right)_{d \times d} \in \mathbb{C}^{d \times d}, \ m_{ij}(z) = \left\langle \delta_j, (J-z)^{-1} \delta_i \right\rangle.$ As a continuation, we extend the theory of Titchmarsh-Weyl *m* functions from [1] to the one on helf lines: $N_{-} = \{0, 1, 2, ..., n\}$ and $N_{+} = \{n + 1, n + 2, ..., n\}$ For $z \in C^+$, the half-line *m* functions are defined by $M_+(n,z) = -F_+(n+1,z)F_+(n;z)^{-1}$ where $F_+(n,z)$ are solutions of (1) such that

 $F_{-}(0,z) = 0$ and $F_{+}(n,z) \in l^{2}(N; C^{d \times d})$.

Acknowledgment: This research work was funded under the FIRST program, Embry-Riddle Aeronautical University, Daytona Beach Florida.

Contact: Embry-Riddle Aeronautical University Department of Mathematics E-mail: <u>acharyak@erau.edu</u> Ph: 3862266298

(1)

(n; z)M(z)

 $M_+(n,z)$ by

Let \mathcal{S}_d is the set of all $d \times d$ symmetric matrices with positive definite imaginary parts. These Weyl-m functions $M_+: \mathbb{C} \to \mathbb{C}^d$ are matrix valued Hergtolz functions. In addition, these are symmetric matric with positive definite imaginary parts. Therefore $M_+ \in S_d$. We define a metric on S_d by

 $d_{\infty}(Z_1, Z_2) = \inf_{Z(t)}$

The infimum is taken over all differentiable paths Z(t) joining Z_1 and Z_2 .

Theorem 2. Let $z \in \mathbb{C}^+$, then

References:

Results

- **Theorem 1** For $z \in \mathbb{C}^+ M_+$ (n, z) are given in terms of resolvent operator as $M_{+}(n,z) = \langle \mathbb{A}_{n+1}, (J_{+} - zI)^{-1} \mathbb{A}_{n+1} \rangle = \left(\langle \mathbb{S}_{i}^{n+1}, (J_{+} - zI)^{-1} \mathbb{S}_{j}^{n+1} \rangle \right)$ where $\Delta_n = \{0, 0, \dots, 0, I, 0, \dots, 0\}$
- These functions M_+ (n, z) are matrix valued fractional transformation. More precisely
- $M_{\pm}(n,z) = T_{\pm}(B,n)M_{\pm}(n-1)$ where $T_{\pm}(B,n) = \begin{pmatrix} zI B \\ \pm I \end{pmatrix}$ $\top I$
- These transfer matrices $T_+(B, n)$ satisfy the following symplectic identity:
- **Lemma 2.3.** For all n and B, $T_{\pm}(B,n)$ satisfy (1) $T_{\pm}(B,n)^T J T_{\pm}(B,n) = J$ where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ (2) $\begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} T_+(B,n) \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} = T_-(B,n)$
- This shows that $T_+(B,n) \in Sl(2d, C)$, a group of of $2d \times 2d$ symplectic matrices. We denote the imaginary part of

$$Im M_{\pm}(n,z) = \frac{1}{2i}(M - M^*)$$

$$\int_{0}^{1} F_{Z(t)}(Z(t)) dt \text{ where } F_{Z(t)}(W) = \left\| Y^{-\frac{1}{2}} W Y^{\frac{1}{2}} \right\|.$$

- Let $P_{-}(n,z) = T_{-}(n,z)$. T(n-1,z).....T(1,z). The we have the following theorem.
 - $d_{\infty}(M_{-}(n,z),P_{-}(n,z)M_{+}(0,z)) \leq \frac{1}{(1+\nu^{2})^{n}} d_{\infty}(M_{-}(0,z),M_{+}(0,z))$

1. Acharya, K.R. Titchmarsh–Weyl theory for vector-valued discrete Schrödinger operators. Anal. Math. Phys. 9, 1831– 1847 (2019). https://doi.org/10.1007/s13324-018-0277

$$\begin{pmatrix} \pm I \\ 0 \end{pmatrix}$$