THE JOURNAL OF

DIGITAL FORENSICS, Journal of Digital Forensics,
SECURITY AND LAW _
Security and Law

Volume 11 | Number 4 Article 5

12-31-2016

Bloom Filters Optimized Wu-Manber for Intrusion Detection

Monther Aldwairi
Network Engineering and Security Department, Jordan University of Science and Technology

Koloud Al-Khamaiseh
cDepartment of Electrical Engineering, Tafila Technical University

Fatima Alharbi
College of Technological Innovation, Zayed University

Babar Shah
College of Technological Innovation, Zayed University

Follow this and additional works at: https://commons.erau.edu/jdfsl

0‘ Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer
Engineering Commons, Forensic Science and Technology Commons, and the Information Security
Commons

Recommended Citation

Aldwairi, Monther; Al-Khamaiseh, Koloud; Alharbi, Fatima; and Shah, Babar (2016) "Bloom Filters
Optimized Wu-Manber for Intrusion Detection," Journal of Digital Forensics, Security and Law: Vol. 11 : No.
4 , Article 5.

DOI: https://doi.org/10.15394/jdfsl.2016.1427

Available at: https://commons.erau.edu/jdfsl/vol11/iss4/5

EMBRY-RIDDLE
= T utl | L 5

DAYTONA BEACH, FLORIDA

PURDUE

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of (c)ADFSL
Scholarly Commons. For more information, please
contact commons@erau.edu.

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol11
https://commons.erau.edu/jdfsl/vol11/iss4
https://commons.erau.edu/jdfsl/vol11/iss4/5
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2016.1427
https://commons.erau.edu/jdfsl/vol11/iss4/5?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

BLOOM FILTERS OPTIMIZED WU-MANBER
FOR INTRUSION DETECTION

Monther Aldwairia’b’*, Koloud Al-Khamaiseh®, Fatima Alharbi” and Babar Shah”
*Network Engineering and Security Department, Jordan University of Science and
Technology, Irbid 22110, Jordan
bCollege of Technological Innovation, Zayed University, Abu Dhabi, P.O. Box 144534, U.A.E
‘Department of Electrical Engineering, Tafila Technical University, Tafila 66110, Jordan
*Corresponding author. E-mail: munzer@just.edu.jo

ABSTRACT

With increasing number and severity of attacks, monitoring ingress and egress network traffic is
becoming essential everyday task. Intrusion detection systems are the main tools for capturing
and searching network traffic for potential harm. Signature-based intrusion detection systems are
the most widely used, and they simply use a pattern matching algorithms to locate attack
signatures in intercepted network traffic. Pattern matching algorithms are very expensive in terms
of running time and memory usage, leaving intrusion detection systems unable to detect attacks
in real-time. We propose a Bloom filters optimized Wu-Manber pattern matching algorithm to
speed up intrusion detection. The Bloom filter programs the hash table into a vector, which is
quickly queried to exclude unnecessary searches. On average hash table searches are avoided
10.6% of the time. The proposed algorithm achieves a best-case speedup of 66% and worst-case
speedup of 33% over Wu-Manber at the cost of 0.33% memory usage increase.

Keywords: network security, intrusion detection systems, pattern matching, Wu-Manber, Bloom
filters

1. INTRODUCTION! announced daily at an alarming rate (Roberts,
2000).
Internet connectivity has become essential and

a basic requirement for any kind of business.
More applications require Internet connectivity
to install, update, run or function correctly. In

Intrusion detection systems (IDS) are a
widely-used control measure to inspect network
traffic in order to detect and sometimes block
attacks. IDSs are classified based on
deployment into two main types: network and
host-based systems. Network-based intrusion
detection systems (NIDS) scan all ingress and
egress traffic looking for attacks and are
generally seen in the form of dedicated IDS
appliance. While host-based intrusion detection
systems (HIDS) on the other hand, are a
software agent running on a specific host that
monitors all activity looking for malicious
events. Hardware IDS appliances cost

addition, cloud computing, social networks and
Internet of things have placed a lot of private
data at risk of being exposed to the increasing
number of high skilled attackers. The number
and complexity of attacks have been increasing
at an alarming rate against banks, hospitals,
governments and other companies. New
vulnerabilities, exploits and attacks are

' Proceedings of the 2nd World Symposium on Web Applications
and Networking (WSWAN’2015) (2015), IEEE.

©) 2016 ADFSL Page 5

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

hundreds of thousands of dollars, that is why
IDS

remain

running on PC
widely deployed.
However, software-based systems are unable to
keep up with the ever-increasing Internet speed
(Zheng, Cai, Zhang, Wang, & Yang, 2015).
Unlike IDSs, Intrusion prevention systems
(IPS) are a new breed of proactive IDS that
are deployed inline to detect malicious activity
in real-time and take corrective action. IPSs

software-based
workstations

can log the activities, alarm administrators, or
drop connections. They have not been widely
adopted due to users not favoring automatic
dropping of sessions or packets.

Intrusion detection systems are categorized
based on the technique into: signature and
anomaly-based (Aldwairi, 2006). Signature-
based intrusion detection systems detect
known attacks by searching network traffic for
attack signatures. They
traditional pattern matching algorithms and

generally use

yield better speed and accuracy compared to
anomaly The
manually written after security analysts study
the captured attack or malware code looking

detection. signatures are

for invariant parts. The manually developed
signatures are a big disadvantage in terms of
signatures accuracy and the fact that it takes a
considerable amount of time to provide a
signature after a new attack is detected
(Jirachan, & Piromsopa, 2015). On the other
hand, anomaly detection builds a profile of the
normal system behavior during the training
It wuses
clagsifiers to extract features from new traffic

phase. common machine learning
and classify them into benign or malicious. The
profiles are based on statistical analysis to
capture specific behavior patterns such as
system calls. Proprietary rule based languages
are used to capture those profiles in isolated
setup. It is true that anomaly-based IDSs
detect attacks, they are
considerably slow and generate more false
positives and opposed to

new however

negatives as

Page 6

signature-based (Aldwairi, Khamayseh, & Al-
Masri, 2015).

Signature-based IDSs continue to dominate
the market, with Snort being one of the most
commonly deployed systems (Roesch, 1999).
Snort (2016) has been the target of numerous
studies and became the de facto among
researchers working to speed up pattern
matching algorithms for IDS. Simply, Snort
inspects network traffic trying to match
packets against predefined rules. It has many
other capabilities such as packet capture and
reassembly (Lam, Mitzenmacher, & Varghese,
2010). However, this work is concerned only
with pattern matching, which dominates
Snorts performance. Antonatos, Anagnostakis,
and Markatos (2004) found that pattern
matching algorithms consume up to 70% of
Snort running time. To make matters worse, as
new attacks arise, the number of signatures
grows
Snort rules examine the packets header and

packets payload for attack
(Aldwairi, & Alansari, 2011).
However, the majority of the rules contain one
or more signatures. Almost 87% of Snort rules
contain signatures to match against (Aldwairi,
Conte, & Franzon, 2004). Therefore, there is
still a need to speedup pattern matching for
intrusion detection (Gharaee, Seifi, &
Monsefan, 2014).

exacerbating the performance issue.

search the
signatures

There is surge of studies to improve

pattern matching for intrusion detection
whether in hardware or software.
Dharmaprikar, Krishnamurthy, Sproull, &

Lockwood, (2004) proposed hardware parallel
Bloom filters to exclude benign packets. But
because Bloom filters only work with fixed
length signatures, they were forced to use
many parallel Bloom filters. Bearing in mind
that Snort signatures lengths can be over 1000
characters, this solution ends up being very
expensive in terms of memory. We will show
later that each Bloom vector can grow up to

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

1MB in size, having thousands of those is not
quite efficient. It is worth pointing out that
Bloom filters are used in a more efficient way
paper. We program only the B
character prefixes of the sparse hash table to
avoid hash table
searches. Consequently, one Bloom filter is
used as opposed to one for each signature’s
length in case of Dharmaprikar et al. (2004).

Yang, Xu, & Cui (2006) improved Wu-
Manber (QWM) using Quick Search (QS)
algorithm (Sunday, 1990)
information, to increase the shift values. Quick
Search is basically used to find if a packet

in this

unnecessary expensive

and mismatch

contains a prefix of an attack signature. If a
prefix is found QWM then uses Wu-Manber
(WM) to verify the match. To achieve that a
fourth table is added, the HEAD table. The
table decides if the first two characters of a
matching window are the prefix of a pattern.
QWM was designed to outperform WM for
Chinese texts with large alphabets as opposed
to network traffic with limited character set. In
addition, a considerable memory overhead is
added due to the additional HEAD table.

WM+ by Xunxun, Binxing, Lei, and Yu
(2005) merged Aho-Corasick (AC) and Wu-
Manber algorithms to improve the shift table.
WM+ algorithm derived a prefix automata
scanning from AC instead of the ordinary hash
table based pattern matching. In addition, a
filtering algorithm was used along with the
finite automata to skip the bad characters in
order to speed up the search. Unfortunately,
for longer patterns lengths the
consumption of WM+ is significantly larger
than WM. On top of that, the finite automata
construction adds a considerable overhead.

memory

Older Snort versions implemented Aho-
Corasick, lot of
performed on optimizing AC automata. Liu,
Chen, Wu, and Wu (2011) proposed a finite
automata with extended

and a researches were

character set to

reduce the number of states, which is the main

© 2016 ADFSL

disadvantage of AC. They wused auxiliary
variables to compress the number of states
while maintaining one memory access per byte.

Newer versions of Snort opted out to
implement a modified Wu-Manber (MWM)
(Beale, Baker, Esler, & Northcutt, 2007). WM
is more attractive because of the smaller
memory requirements and better performance
for longer strings. That is possible because
WM is conservative in that the maximum shift
possible is m-B+1, which depends on the
minimum string length. MWM examines the
suffixes of the block in order to change the
default shift value. The modified WM can have
a larger shift equivalent to the block size if the
no pattern contains any block suffixes.

To overcome the degrading performance as
the number of signatures
Wang, and Xue (2014) proposed a new
enhanced Wu-Manber. They optimized WM by
minimizing number of candidate patterns in
the HASH table and using binary search to
look for candidate patterns in the index table
to cut the searching time. Experimental results
showed that in case of large pattern sets (>
3x10°), the enhanced algorithm is more
efficient than the classical WM, MWM, and
TFD algorithms. This is due to the fact that in
the enhanced algorithm, the hash table was
well balanced and the binary search helped
reduce the search time.

Zhang (2016) modified WM to suit
matching short bit
communication protocols. The algorithm added
a new GSSHIFT table to determine the shift
distance when the SHIFT table returns zero.
They achieved speedup, over WM, of 1.6 times
for 5 bit patterns. However, the algorithm
scaled very poorly with string’s length, with no
improvement for strings longer than 64 bits.

Finally, Lee, Woo, and An (2016) modified
WM using multiple sub-patterns on multi-core
CPU. However, the modified algorithm had

increases, Peng,

streams for wireless

Page 7

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

performance for large number of
and did not

proportional to the number of cores used.

poor

signatures improve time

This paper presents Exhaust: a modified
Wu-Manber with negligible
overhead. Exhaust is designed specifically to

version of
speed up pattern matching for intrusion
detection systems to match higher network
speeds. The main contribution is to insert only
one Bloom filter to wither out unnecessary
hash table searches (Aldwairi, & Al
Khamaiseh, 2015). It results in a considerable
improvement on the overall performance with
minimal overhead. The rest of the paper is
organized as follows. Section 2 explains the
basic knowledge required to understand the
problem. It explains Snort rules in full details,
pattern matching algorithms, Wu-Manber and
Bloom filters theory. Section 3 describes
Exhaust workings and details the
initialization and search phases.
brings formal and
experimental validation of the proposed
algorithm using actual traffic traces and attack
signatures.

2. BACKGROUND

This section explains Snort and
format. An example of actual Snort rules and
attack signatures is presented. Subsection 2
presents a

inner
Section 4

forward a complete

its rules

matching algorithms
overview and provides a thorough WM
explanation with preprocessing and
examples using real Snort signatures. Finally, a
brief
forwards.

pattern
search

introduction to Bloom filters is set

2.1 Snort

Snort is a popular open source IDS from
Sourcefire which has recently been acquired by
CISCO. We’re mostly concerned with Snorts’
rules that contain attack signatures. The rules
are in plaintext and describe set of conditions
for the packet’s header/payload to match. The

Page 8

rules’ headers field specifies the action to be
taken and provides values for the protocol
type, source and destination IP addresses and
port numbers. The options field contains more
than twenty-four keyword and value pairs,
such as: msg for the alert message, sid for
signature identification number, priority gives
rules’ severity level, and class-type to
categorize rules. The rules options also contain
several content, uricontent and pcre keywords
that specify attack signatures (Beale, Baker,

Esler, & Northcutt, 2007).

Figure 1 shows a redacted Snort v2.8 rule
from ddos.rules rule set. You can easily extract
the attack “gOrave”’, from the
content keyword. The rule is very easy to read:
fire an alert if any external TCP packet going
to any local machine on port 27665 while
containing the string “gOrave”. This rule
detects a well-known old DDoS attack called,
Trin00 (Dittrich, 2015).

(Kharbutli, Aldwairi, & Mughrabi (2012)
identified pattern matching to
attack signatures in the packet payload, as the
main bottleneck. Despite Snort using the
fastest pattern matching available, it still lags
behind increasing network access speeds.

signature,

locate the

alert tcp $SEXTERNAL NET any ->
$HOME_NET 27665 (msg:"DDOS Trin00
Attacker to Master default
password"; content:"gOrave";
classtype:attempted-dos; sid:234)

Figure 1. A sample Snort rule

Snort relies on exact pattern matching
algorithms and does mnot wuse
expressions for encoding signatures. Pattern
matching is classified into either single or
multiple pattern matching. Single pattern
matching must scan the packet once for each
signature in the dataset,
counterproductive. They are not used in IDS,
but it is a good introductory example to

regular

which makes it

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

pattern matching. Boyer-Moore (BM) is one of
the most common single pattern matching
algorithms. In an effort to locate a match, it
places the pattern and packet side by side and
shifts the pattern by one position in the case of
mismatch. In the event of a match it moves to
match the next character from the pattern
with subsequent character from the packet.
The algorithm is fairly simple and inefficient,
because the search time grows linearly with the
packets’ lengths. Several
improvements over BM exist such as good and
bad character heuristics as well as Boyer-
Moore-Horspool (Boyer, & Moore, 1977).

and patterns’

On the other
matching algorithms preprogram all patterns
into a table or tree and match all patterns at
the same time. The additional preprocessing
stage is the obvious drawback, but this pales in
comparison to the
traversing the packet once. Aho-Corasick and
Wu-Manber are two of the fastest multiple
pattern algorithms to date.

hand, multiple pattern

savings attained from

In the preprocessing phase, AC builds a
trie based state machine from the set of
patterns to be matched (Aho, & Corasick,
1975). AC search time is linearly proportional
to the searched packet length and is not
affected by the number of characters in the
signatures. However, AC preprocessing time
and complexity increases exponentially with
the number of characters, which makes it ideal
only for short signatures. Moreover, the state
machine needs to be rebuilt every time a new
pattern is added to the signatures database.
Unfortunately, AC memory requirements scale
exponentially with
signatures. Wu-Manber algorithm on the other
hand, is based on hash tables, which makes it
more attractive option compared to AC for
longer signatures (Wu, & Manber, 1994).

2.3. Wu-Manber algorithm

increasing number of

© 2016 ADFSL

Wu-Manber relies on the same principles
used in Boyer-Moore algorithm (Boyer, &
Moore, 1977), but adds a block of B characters
and new data structure for more efficient
matching. Like all multiple pattern matching
algorithms, WM has two stages: preprocessing
and search. The preprocessing stage of the
algorithm starts by computing the minimum
length m of all patterns that are available
beforehand. Then it defines a block of B
characters used for matching window shifts.
The block size is recommended to be either
two or three. Then the algorithm builds three
tables during pattern preprocessing: shift,
hash, and prefix

The shift table 1is constructed by
computing the shift value for each substring of
size B taken from the first m characters of the
pattern. The shift table is a hash table where
the key is the signature substring and its value
is computed using the equation shift [key/=m-
¢, where ¢ denotes the right most location in
the pattern substring. The default value of this
table is defined by the equation shift [key] =
m-B~+1. The shift value represents the number
of maximum characters to skip forward when a
mismatch occurs. The character blocks that
have a shift value of zero indicate a probable
match. All patterns that share those zero shifts
probable matches are programmed into the
hash table. The main purpose of the prefix
table is to make finding probable matches in
the hash table faster by hashing the prefixes of
those patterns. Additionally, it is used to
distinguish between the patterns that have the
same suffix but differ in the prefix.

The search starts by dividing the network
traffic traces into sliding window of size B.
Each time the search string of size B returns a
zero shift value when traversing the shift table,
the algorithm accesses the hash table and
searches the list of patterns associated with the
key to find the match.

Page 9

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

An example with actual signatures is
presented to better understand the algorithm.
Table 1 shows the shift table for the following
patterns extracted from the Snort FTP rule set
{RMD, XMKD, MDTM, MKD} for block size
of two characters, B=2. The minimum pattern
length is three characters, m=3 and the default
shift value is m—B +1, which equals 3-2+1 =
2. Take the block “DT”, which exists in pattern

“MDTM”. The shift value is m — ¢, where ¢ is

the rightmost occurrence of DT in any pattern,
hence, shift [DT] is 3-2=1. On the other hand,
take block “MD”, which can be found in two
patterns “RMD” and “MDTM”. The shift [MD]
is 3-3=0 taken from pattern “RMD” and not
3-2=1 as in pattern “MDTM”. Figure 2 (a)
shows the hash table, which holds pointers to
the patterns that
matching signatures.

contain the probable

[l

M| D r|11|
K D'—>|X M|x|D
M|EK|D

|X M|K|D t

M|K| D
()]
D|T i_. M| DT M

S LA e B b

Step RTDTMXDMETDDT 5 shift

output

false alarm, shift=2

{(XMKD;, {MKDj

—»
LS — S A — R]

Figure 2 (a). Wu-Manber hash table; (b)) Wu-Manber search phase

Figure 2 (b) shows the step-by-step search
stage over the following hypothetical packet
“RTDTMXMKDDTS” with a
window of three characters. In step one, WM
examines the first search window: “RTD”. The

matching

two-character suffix for the search windows
“TD” is hashed to find the index to access the
shift table. The shift value for {TD} is two;
WM then shifts the search window by two to
become “DTM?”. In step two, the hash value for
the block “TM” is =zero, which means a
probable match. Therefore, WM searches the
hash table with the same index from hashing
“TM”. No match is found and that was a false
alarm. The default shift of two is applied
which makes the next search window “MXM”.
In step three the shift for “XM” is two making
the next search window “MKD”. In step four,
the shift value is zero for “KD”, the hash table
is searched and two matches are found
{XMKD} and {MKD}. A shift of two is
applied and the shift for “DT” is one. Step six,

Page 10

ends the search with the window reaching the
end of packet.

WM search time does mnot surge
significantly as the number and size of
signatures increase. On the contrary, the

average case performance beats all competing

algorithms for longer signatures. However,
while the overhead introduced by preprocessing
scales linearly with size and numbers of
signatures, it is still negligible compared to the

search time.

Table 1.

WM-Manber Shift Table
BC MD KD MK ™ DT Others
Shift 0 0 1 0 1 2

2.4. Theory of Bloom filters

Bloom filters rely on a long binary vector
where a set of patterns can be programmed
and reprogrammed efficiently. The filter runs a
few hash functions on a set of patterns and

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

sets the corresponding bits to the resulting
hash This
membership information on the programmed
patterns and consumes a lot less space as
opposed to the original dataset. The Bloom
vector can easily be probed to verify
Simply run the hash
functions on the new pattern and check the
corresponding bits. If they are not set then the
Bloom filters provides a 100% assurance that
the pattern is not a member of the original
patterns dataset programmed into the vector.
However, if the bits are set this means that

values. vector represents

membership. same

there is a chance the pattern is a member of
the original set (Bloom, 1970). That is, false
negatives are zero, which is exactly what we
need to verify a packet is clean without
performing expensive hash table search. On the
other hand, Bloom filters false positives rate, f,
is given by Eq. (1).

f=(1- —)k (1)

Where, n is the strings
programmed into the Bloom filter, s represents
the vector size and k£ is the hash functions
The false positives rate can be
reduced by increasing the values of s and k to
be appropriate for the strings number n. In
addition, the value of s has to be larger than
the given size of the string set, n.

number of

number.

It is possible to have multiple strings
result in setting overlapping bits. Therefore,
deleting a string would be an issue, because it
resets the corresponding bits, which might
happen to be set by another string. Counting
Bloom filters (Fan, Cao, Almeida, & Broder,
2000) maintain a counter for each bit in the
bitmap corresponding to the number of
patterns that cumulatively set that bit.
Consequently, when a new pattern is inserted
or an old pattern is deleted the counter
corresponding to its hash values is incremented
or decremented. When the counter reaches
zero, the bit is cleared.

© 2016 ADFSL

3. METHODOLOGY

We propose Exhaust: EXclude HAsh table
Unnecessary Search Time. We wuse the
counting Bloom filters 100% exclusion property
to eliminate unnecessary hash table searches.
Remember that most of network traffic is
benign and naturally it does not contain any
malicious signatures. Therefore, if we program
the Bloom filter with substrings, of size B,
from the pattern prefixes from the hash table
entries, then we can query the filter before we
search the hash table. Querying the Bloom
filter is a lot faster than searching the table.
This means we can save the time to search the
hash table for all clean traffic and we incur the
cost of running two hash functions. Remember
that a zero shift value from the shift table does
not necessarily mean a definite match. On the
contrary, quite often zero shifts are false
alarms caused by the small WM block size of
two or three. This small block size makes it
more coincidental that the search window and
the signature end up with the same suffix.
Those false alarms can be handled faster if a
Bloom filter is used to exclude those blocks
that are not in the hash table, cutting the time
to perform unnecessary searches for the large
hash table.

Therefore, the Bloom filter provides a more
accurate mechanism to determine probable
matches and help skip the majority of zero
shifts caused by benign traffic. We will prove
later that this significantly improves the WM
algorithm’s performance while adding a very
small memory overhead for the Bloom filter
and a negligible preprocessing time.

Algorithm 1 presents Exhaust
preprocessing pseudo code, which is similar to
WM algorithm except for the additional Bloom
filter programming steps. First, the algorithm
starts by determining the minimum pattern
length, m. Then Exhaust populates the shift
table with the default shift value, of m — B +

Page 11

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

1. Both the shift and hash tables are accessed
by the same hash function index calculated on
the character block. Next, it computes the shift
values for all block substrings (z) of size B
used to fill the shift table. If the shift value is
zero, the corresponding entries in the hash and

prefix tables are entered. Additionally,
Exhaust programs the last B characters of
pattern into the Bloom filter. The

programming is simply running the selected
hash functions on substring of size B and
setting the corresponding bits in the Bloom
vector.

Algorithm 2 present Exhaust’s search
stage, where a sliding a window of size (w) is
passed over the packet. sliding
window the index (i) for shift table is
calculated by running a hash function on the
suffix of B characters. If the shift/i/ value is
not zero then slide the window by the shift

amount.

On the other hand, if the shift [i/ value is
zero then we must search the hash and prefix
tables to verify and find the match. The Bloom
filter reduces the search time, by computing
two hash functions on the B character suffix
and examining the corresponding bits in the
Bloom vector. If the Bloom vector membership
is negative, then we skip the hash table search
and move to the next sliding window. If the
Bloom filter membership is positive then we
must search the hash and prefix tables to
verify the match.

The Bloom filters do not have false
negatives, which make them perfect to exclude
strings from the hash table. However, they
have false positives, which need to be reduced

For each

to maximize the number of times Exhaust
skips the hash table. Therefore, we use two
distinct and pairwise independent hash
functions: SDBM and SAX. SDBM (Partow,
2015) hash is an algorithm used in the open
SDBM project. It has a good
distribution for different datasets and when

source

Page 12

there is a high wvariance in the dataset
members. For a character ¢, the hash value is
calculated as shown by Eq. (2). SAX, on the
other hand, is simple hash function proposed
by Ramakrishna and Zobel (Ramakrishna, &
Zobel, 1997). It is very fast because of the use
of the common operations of shift, ADD and

XOR as shown by Eq. (3).
HAR = ¢ + (hash < 6) + (hash «< 16) — hash (2)
hash = ¢ + (hash < 5) + (hash > 2) 3)

Algorithm 1 Exhaust Initialization
1: procedure Initialize

2: for each pattern (P) in signatures set

3 ifB<len(P)<m

4: m € len(P)

5: end for

6.

7

8

fil SHIFT[[]¢ m-B+1
for every substring (x) of size B
for each pattern (P)

9: if X € any P with last occurrence of q
10: SHIFT[i] € m—q
11: if SHIFT[i] = 0
12: fill(HASH)
13: fill(PREFIX)
14: Bloom vector € hashFcns(x)
15: end for
16: end for

17: end procedure
18: procedure Initialize
19: for each pattern (P) in signatures set

Algorithm 2 Exhaust Search
1: procedure Search

2: for each sliding w until the end of packet

3: if HASH(hashFcns(last block of w)) I= 0

4: shift w by HASH(hashFcns(last block of w))

5: else if w le Bloom vector

6: shift w by 1

7: else

8: search HASH and PREFIX tables for exact match
9: end for

0:

~

end procedure

4. RESULTS AND
ANALYSIS

We evaluate Exhaust’s performance through

simulations wusing actual Snort rules and
extremely malicious traffic traces representing
worst-case scenario. Subsection 1 presents the
details of the testing process and environment.

Subsection 2 lays out the metrics to be

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

measured. Subsection 3 explains how Snort
attack signatures are extracted and cleansed,
while Section 4 analyzes the traffic traces.
Subsection 5 measures the number of times the
hash table search is skipped and compares the
Exhaust runtime to WM.

measures the overhead in
time

Subsection 6

terms of
preprocessing and memory
Subsection 7 suggests solutions to reduce the
Bloom filters false positives to further improve
Exhaust’s performance. Finally, Subsection 8
analyzes the algorithm complexity and

provides formal proof.

4.1. Test methodology and
environment

usage.

We perform the on a PC
workstation with Intel Core 2 duo processor,
running at 1.83 GHz, with a L1 cache of 32
KB, L2 cache of 2 MB, and 1 GB of main
memory. We use Microsoft Visual Studio 2008
running on 32-bit Microsoft Windows 7
Professional.

experiments

To evaluate the algorithm’s performance,
we use actual network traffic traces and Snort
rules. The signatures and packets are stored
and read offline from files. Each experiment is
and the average is
reported. Certain experiments require varying
the number of signatures or characters. To be
able to achieve that, signatures from different
Snort rules classes are combined together to
form eight sets of patterns. The first set
contains 500 patterns from Specific-Threats
class. The second set includes 1000 signatures
composed of the previous 500 in addition to
another 500 from Backdoor class and other
classes. We incrementally pile signatures to
end up with eight sets containing signatures
ranging between 500 and 4000.

repeated five times

4.2. Evaluation metrics

The best metrics to evaluate the performance
enhancement is the run time and speedup over

© 2016 ADFSL

WM We exert every effort to
accurately measure time by averaging five

algorithm.

readings. However, since time measurements
are not bullet proof we believe that counting
the number of times we skip the hash table is a
better metric. Therefore, we define the HAC
and HSC metrics to measure the number of
times Exhaust skips the hash table search.
Where, HAC is the hash table access count
and HSC is the hash table skips count. An
access means that the Bloom filter gives a
probable match, that is, it fails to avoid hash
table search. A skip happens when the Bloom
filter successfully skips the hash table search.
Naturally, the higher the HSC the better
because of the savings from skipping the hash
table search as opposed to just computing two
hash functions.

In addition, to better understand the
performance improvements we calculate the
hash table access ratio (HAR), and the hash
table skip ratio (HSR). The normalized ratios
are calculated according to Eq. (4) and Eq.
(5). Moreover, to measure the Bloom filter
overhead we report the added preprocessing
time and memory. Finally, we analyze the false
positives resulting from adding the Bloom
filter.

HAR = —24¢ (4)
HAC+HSC

HSR = 28 (5)
HAC+HSC

4.3. Signatures extraction

We develop a script to extract the values of
content keywords from Snort 2.8.4.1
database released in July 2009 (Snort rules,
n.d.). We elected to use this version because it
contains more attack signatures (9,945 rules)
as opposed to the 2017 Snort v2.9 community
rules. The latter includes only 3518 rules,
because of the cleansing performed after
Cisco's Talos participated in authoring Snort
rules. We believe release 2.8.4.1 serves as a
worst-case test dataset for Exhaust.

rules

Page 13

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

We only extract signatures from content
and wuricontent keywords as the pcre keyword
contains regular expressions and not an exact
match. If a rule contains more than one
content keyword, the script merges those
patterns with space character as a delimiter.
All signatures are subsequently converted into
hexadecimal equivalent to the ASCII codes.
This way Exhaust is able to handle all 256

possibilities including nonprintable characters.

4.4. Traffic analysis

We use DEFCON17 Capture the Flag (CTF)
game packet traces from 2009 (DEFCON
Organization, n.d.). Capture the Flag is a
hacker game where teams compete to capture
computers of other teams while defending their
own computers. The traces from the game are
collected and made available to the public. We
use those traces to gauge the worst-case
performance of the new algorithm.

Our analysis shows that 51.62% of all
packets in the 78 CTF traces have payload. Of
those traces, we pick the ten that contains the
highest percentage of packets with payload to
represent the worst case. Table 2 shows the
most malicious traces with total number of
packets, number of packets with payload, and
the percentage. The percentage of malicious
content for the picked traces averages 57%
which will result in a lot of signature matches.
The numbers in Table 2 exclude fragmented
packets.

Page 14

Table 2. Most Malicious Traffic

Trace Number of Packets with Percentage

No Packets Payload
8 671143 383233 57%
13 683770 398615 58%
14 676657 389705 58%
46 494466 280123 57%
49 331508 188722 57%
50 326101 190173 58%
51 299746 168660 56%
52 277840 159299 57%
53 275483 155846 57%
54 311546 178480 57%

Average 57%

4.5. Speedup

First, we measure the HAC and HSC. That is
the number of times the hash table is accessed
and skipped. Figure 3 (a) shows the hash table
access and skip counts for increasing number of
signatures for trace number 8. Obviously, as
the as the number of attack
increases, there will be more matches within
the trace. Therefore, the number of hash tables
accesses There is
noticeable increase in savings as the number of
number of signatures increases.

signatures

and skips increases.

A more accurate picture is provided by
Figure 3 (b), which presents the HAR and
HSR for the same traffic trace. That is, the
normalized hash table access and skip ratios.
On average the hash table is skipped between
2.6% and 13.7% of the time with an average
savings of 10.6%. The
conclusion to draw from the figure is that the
skip percentage is not correlated to the number
other Exhaust
performance remains fixed regardless of the
number of attacks it searches for.

most important

of signatures. In words,

Next, we fix the number of signatures at
3500 and plot the HAR and HSR in Figure 4

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

(a). It is evident that the skip ratio is highly
dependent on the traces’ contents. HSR varies
significantly from 0.6% for trace 46 to 39.1%
for trace 52. This is completely dependent on
the nature of packets and attacks within each
trace. To better understand this, we focus on
traces 46 and 52, with the lowest and highest
savings, respectively. Figure 4 (b) shows the
access and skip counts for trace 52 for varying
number of characters. It can be clearly seen
that the HAC and HSC counts increase as the
number of characters increases, which confirms
the earlier finding reported by Figure 3 (a).
Furthermore, we zoom in to one packet and
plot the HAC and HSC versus varying number
of characters in Figure 5 (a). The skip count
increases

exponentially as the number of

characters in the packet payload increases.

Before shifting our attention to measuring
runtime and speedup, which are easier for
readers to comprehend, it is worth mentioning

that the preprocessing overhead time is

incurred only once during Bloom vector
programming. The overhead resulting from the
query of Bloom filter search is too insignificant
to measure. We will discuss the preprocessing
overhead in the next subsection. The search
time might be affected by: the processor speed,
memory size and cache hierarchy as well the
number of signatures used. To assess the
Figure 5 (b)
compares Exhaust search time to WM. We use
all Snort signatures and present columns for
each of the ten most malicious traces. On
average for all traces, Exhaust is 33% faster
than WM, with reported 5.972s
compared to 8.912s for WM.

worst-case improvements,

runtime

Finally, Figure 6 confirms the earlier
findings that Exhaust is not affected by
varying number of signatures as opposed to
AC where runtime increases linearly. The
figure plots runtime for traces 14 and 52 for
different number of signatures. The savings are
consistent with earlier findings.

3000 -
2500 - =HAC ®HSC
2000 -
1500 -

1000 -

HAC and HSC

500 -

500 1000 1500 2000 2500 3000 3500 4000

Number of Signatures

signatures for trace 08

1 - = HAR
0.9 -
0.8 1
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

® HSR

HAR and HSR

500 1000 1500 2000 2500 3000 3500 4000

Number of Signatures

Figure 8 (a). HAC and HSC for varying number of signatures for trace 08; (b)) HAR and HSR for varying number of

© 2016 ADFSL

Page 15

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

HAR and HSR Ratios

8 13

for trace 52

EHAR

EHSR

EHAC mHSC

3500 -
3000 -
2500 -
2000 -
1500 -
1000 -

2500 5000 7500 10000 12500 15000 17500 20000

HAC and HSC

n
S
=]

=]

14 46 49 50 51 52 53 54

Traces Number of Characters

Figure 4 (a). HAR and HSR for different traces using 3500 signatures; (b) HAC and HSC vs. number of characters

traces

50 - EHAC mHSC EWM = Exhaust
45 - 10
40 -
35 - 8
30 -
25 - 2 6
P

20 E 4
15 - g
10 - &,

: 0

250 500 750 1000 1250 1448 8 13 14 46 49 50 51 52 53 54
Number of Characters Traces

Figure 5 (a). HAC and HSC vs. number of characters for a single packet; (b) Exhaust runtime and WM for different

Page 16

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

Run Time (s)

14 (Exhaust)

14 (WM)

Traces

1500

u1000
= 1500
2000
u 2500
3000
3500
= 4000

52 (Exhaust) 52 (WM)

Figure 6. Runtime of Exhaust and WM for traces 14 and 52

4.6. Preprocessing overhead

The Bloom filter introduces minimal overhead
in both the preprocessing and search stages.
During preprocessing, there is the time to run
the aforementioned hash functions and setting
the bits in the Bloom vector. Figure 7 (a)
compares the preprocessing time of Exhaust
and WM for increasing number of signatures.
The largest measured overhead is 62ms, which
is equivalent to only 1.08% increase. On
average the overhead is 50ms, which is
equivalent to 0.8% increase. The gap between
the two curves slightly increases as the number
of signatures increases. We can safely conclude
that Exhaust overhead time
affected by increasing number of signatures.

is minimally

To measure the memory usage overhead
introduced by the Bloom filter we use MS
Windows Task Manager to estimate the
memory consumed by Exhaust. Although the
numbers are bloated due to Windows Task
Manager’s own overhead but they still give a
clear idea about the memory increase. Figure 7
(b) compares Exhaust and WM memory usage
in MB for increasing number of signatures.
The memory scaling is the same for Exhaust

and WM with linear increase with more

© 2016 ADFSL

signatures. The worst-case memory overhead is
1,308KB equivalent to 0.33%. The average
overhead is 1,285KB equivalent to 0.32%.

To further prove that linear increase in
memory usage with increasing signatures is a
good trend, Figure 8 (a) plots the memory
usage in MB for both Exhaust and Aho-
Corasick against increasing number of
signatures. The state Aho-
Corasick as the number of signatures increase,
results sharper exponential
increase as can be clearly seen. Exhaust is

explosion in

in a memory
superior to AC when it comes to memory
scaling.

4.7. Reducing false positives

The filter provides 100% certainty (i.e. true
negatives), which saves execution time. True
positives (TP) are not important because that
simply means we had to search the hash table.
It is important to stress that introducing the
Bloom filter does not affect the accuracy of
WM. False positives simply mean we do not
save on execution time. Figure 8 (b) shows the
FPs probability given by Eq. (1) for increasing
number of signatures. For such a large vector
the FPs probability is insignificant with a
maximum of 17,

Page 17

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

5.88 1
5.86
5.84 A
5.82 A
5.80 A
5.78 A
5.76 A
5.74 1
5.72 1
5.70

e WM === Exhaust

Preprocessing Time (s)

500 1000 1500 2000 2500 3000 3500 4000

Number of Signatures

Exhaust and WM for varying number of signatures

40.1 1

emfums WM === Exhaust

40.0 -

39.9 A

39.8

39.7 A

Memory Consumption (MB)

39.6 A

39.5 -

500 1000 1500 2000 2500 3000 3500 4000

Number of Signatures

Figure 7 (a). Preprocessing time of Exhaust and WM for varying number of signatures; (b) Memory usage for

100 -
% g A C e=fi==Exhaust
)
= 80 -
=
S 70 -
£
2 60 -
=
=]
&) 50 -
z
=]
£ 40 A
D
=
30

Number of Signatures

probability versus the number of signatures

500 1000 1500 2000 2500 3000 3500 4000

1.2E-05 -
£ 10E-05 -
Z
2
S 8.0E-06 -
[-M
2
:g 6.0E-06 -
£
> 4.0E-06 -
1]
=
=
2.0E-06 -
0.0E+00 -

500 1000 1500 2000 2500 3000 3500 4000

Number of Signatures

Figure 8 (a). Memory usage for Exhaust compared to AC for varying number of signatures; (b) False positives

4.8. Complexity Analysis

To illustrate the added complexity of Exhaust
algorithm, we must consider both the original
WM algorithm and the extra cost for adding
the Bloom filter. Let N be the size of the text,
P the number of patterns, m the size of one
pattern, k£ the number of hash functions used
in the Bloom filter, and assume that M=mP is
the total size of all patterns.

The size of a substring block B that is used
to address the shift table is defined as
B=logc2M, where c is the size of the alphabet.
In the preprocessing phase the shift table
construction time is O(M), since that each B

Page 18

block of any pattern is considered once and it
consumes constant time on average. On the
other hand, the Bloom filter programming time
is O(k) because each hash function is used to
address every programmed pattern. The search
phase time for WM in either the case of
nonzero shift value or the case of zero shift
value is O(BN/m), due to the suggested lemma
proofed by Wu and Manber which says, “The
probability that a random string of size B
leads to a shift value of 7, 0< i < m-B+1,is < 4
m’, and the benefit from prefix table extra
filtering that makes the probability of false
positives

extremely small. The complexity

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

incurred from the Bloom filter querying is O(k)
(Wu, & Manber, 1994).

5. CONCLUSIONS

There exists a need to speed up intrusion
detection systems. The main bottleneck is the
pattern matching part of the problem. There
has been a lot of research into new pattern
matching algorithms
speeding up
architectures are fast, but they suffer from

and architectures for
intrusion detection. Hardware

high cost and power requirements as well as
Software based IDSs
remain more popular and dominate the IDSs

configurability issues.
market, but requires
faster pattern matching. Wu-Manber is one of
the fastest multiple pattern
algorithms used for intrusion detection but

increasing signatures

matching

falls short of achieving the required speed.

We proposed Exhaust, a new modified Wu-
Manber based pattern matching algorithm for
intrusion The
algorithm benefits from Bloom filters exclusion

detection systems. new
property to reduce the number of expensive
hash table searches. The hash table can grow
extremely large as the number of patterns

grows.

The metrics we use to evaluate the speedup
are the hash table skips ratio and execution
time. We evaluate the algorithm with worst
case traffic and find that Exhaust greatly
improves the speed of WM at minimal cost. At
best the hash table is skipped 39.1% of the
time and 10.6 % on average. Exhaust reduces
the running time by 33% on average for worst
case traffic. The worst-case preprocessing time
overhead is 1.1% and the memory overhead is
0.33%. We also show that the new algorithm
has insignificant false positives probability and
minor added complexity.

ACKNOWLEDGMENTS

This work was supported in part by a grant

from Jordan University of Science and

© 2016 ADFSL

Technology School of Graduate Studies and in
part by Zayed University Research Office,
Research Incentive Fund grant # R17060.

Page 19

JDFSL V11N4

Bloom Filters Optimized Wu-Manber for Intrusion Detection

REFERENCES

Roberts, L. (2000). Internet growth trends.
IEEE Computer Magazine Internet watch
column 2000.

Zheng, K., Cai, Z., Zhang, X., Wang, Z., Yang,
B. (2015). Algorithms to speedup pattern
matching for network intrusion detection

systems, Computer Communications, 62,
47-58.

Aldwairi, M. (2006). Hardware-efficient
pattern matching algorithm and

architectures for fast intrusion detection.
Available NCSU Theses and
Dissertations Institutional Repository (id
1840.16/3558).

from

(2015).
Applying KSE-test and K-means clustering
towards

Jirachan, T., & Piromsopa, K.

scalable unsupervised intrusion

detection. Proceedings of the 12th
International Joint Conference on
Computer Science and Software

Engineering (JCSSE), (82-87). IEEE.

Aldwairi, M., Khamayseh, Y., & Al-Masri, M.
(2015). Application of artificial bee colony
for intrusion detection systems. Security
and Communication Networks, 8(16), 2730-
2740. doi:10.1002/sec.588.

Roesch, M. (1999). Snort - lightweight
intrusion detection for networks.

Proceedings of the 13th USENIX Systems

Administration Conference (LISA ’99).
Seattle, WA.

Snort. (2016). Network Intrusion Detection &
Prevention ~ System. Retrieved from

https://www.snort.org/.

Lam, V.T., Mitzenmacher, M., & Varghese, G.
(2010). scalable logging for
intrusion prevention systems. Proceedings
of the 7th USENIX

Carousel:

conference on

Page 20

Networked systems design and
implementation (NSDI'10) (pp. 24-39).
Berkeley, CA, USA: USENIX Association.

Antonatos, S., Anagnostakis, K. & Markatos,
E. (2004). Generating realistic workloads
for network intrusion detection systems.
SIGSOFT Software FEngineering Notes.
29(1), 207-215.

Aldwairi, M., & Alansari, D. (2011). Exscind:
fast pattern matching for
detection using exclusion and

intrusion
inclusion
filters. Proceedings of the Next Generation
Web Services Practices (NWeSP) (24-30).
Salamnca, Spain: IEEE.
doi:10.1109/NWeSP.2011.6088148

Aldwairi, M., Conte, T., & Franzon P. (2004).
Configurable String Matching Hardware for
Speeding up
Proceedings of the

Intrusion Detection.
Workshop — on
architectural support for security and anti-
virus (WASSA), in conjunction with

ASPLOS XI. Boston, MA.

Gharaee, H., Seifi, S. & Monsefan, N. (2014).
A survey of pattern matching algorithm in
intrusion detection system. Proceedings of

the 7th International Symposium on
Telecommunications (IST) (946-953), Iran.

Dharmaprikar, S., Krishnamurthy, P., Sproull,

T. S., & Lockwood, J. W. (2004). Deep
packet inspection using parallel bloom
filters. IEEE Micro, 24(1), 52-61.

Yang, D., Xu, K. & Cui, Y. (2006). An

improved Wu-Manber multiple patterns
matching algorithm. Proceedings of the
25th IEEE International
Computing, and Communications
Conference (IPCCC), (680-686).

Performance,

© 2016 ADFSL

Bloom Filters Optimized Wu-Manber for Intrusion Detection

JDFSL V11N4

Sunday, D. (1990). A very fast substring
search algorithm. Communications of the
ACM, 33(8), 132-142.

Xunxun, C., Binxing, F., Lei, L., & Yu, J.
(2005). WM+: An optimal multi-pattern
string matching algorithm based on the
WM algorithm. Proceedings of the 6th
International Workshop on Advanced
Parallel Processing Technologies (APPT)
(515-523). Hong Kong, China.

Liu, C., Chen, A., Wu, D., & Wu, J. (2011). A
DFA with extended character-set for fast
deep packet inspection. Proceedings of the

2011 International Conference on Parallel
Processing (ICPP)(1-10).

Beale, J., Baker, A., Esler, J. & Northcutt, S.

(2007). Snort: IDS and IPS toolkit.
Burlington, MA: Syngress Publishing,
Elsevier.

Peng, Z., Wang, Y. & Xue, J. (2014). An
Improved Multi-pattern Matching
Algorithm for Large-Scale Pattern Sets.
Proceedings of the
Conference on Computational Intelligence
and Security (CIS) (197-200).

Zhang, W. (2016). An Improved Wu-Manber
Multiple Patterns Matching Algorithm.
Proceedings of the 2016 IEEE International
Conference on Electronic Information and
Communication (ICEICT
2016)(286-289).

Lee, J. K. Woo, J., & An, J. H. (2016).
Improved Pattern Matching Method for
Intrusion Detection Systems under DDoS

Attack. Indian Journal of Science and
Technology, 8(25), 1-4.

Aldwairi, M., & Al-Khamaiseh, K. (2015).
Exhaust: Optimizing Wu-Manber Pattern
Matching for Intrusion Detection using

Proceedings of the 2nd

World Symposium on Web Applications

and Networking — (WSWAN’2015)(1-6).

Tenth International

Technology

Bloom Filters.

© 2016 ADFSL

Sousse, Tunisia: IEEE.

doi:10.1109/WSWAN.2015.7209081

Dittrich, D. (2015, May 15). The DoS Project's
trinoo distributed denial of service attack
tool analysis. University of Washington.
Retrieved
http://staff.washington.edu/dittrich /misc/

from

trinoo.analysis.

Kharbutli, M., Aldwairi, M., & Mughrabi, A.
(2012). Function and Data Parallelization
of Wu-Manber Pattern Matching for
Intrusion Detection Systems. Network
Protocols and Algorithms, 4(3), 46-61.

Boyer, R. S. & Moore, J. S. (1977). A fast
string searching algorithm.
Communications of the ACM, 20(10), 762
772.

Aho, A. & Corasick, M. (1975). Efficient string
matching: an aid to bibliographic search.
Communications of the ACM, 18, 333-340.

Wu, S., & Manber, U. (1994). Fast algorithm
for multi-pattern searching. Technical
Report TR94-17. University of Arizona at

Retrieved

http://webglimpse.net /pubs/TR94-17.pdf.

Bloom, B. H. (1970). Space/time trade-offs in
hash coding with allowable errors.
Communications of the ACM, 13(7), 422
426.

Fan, L., Cao, P., Almeida, J. & Broder, A.
(2000). Summary cache: a scalable wide-
area web cache sharing protocol.
IEEE/ACM Transactions on Networking,
8(3), 281-293.

Partow, A. (2015, May 15). General purpose
hash function algorithms. Retrieved from

Tuscon. from

http://www.partow.net /programming /hash

functions/.

Ramakrishna, M., & Zobel, J. (1997).
Performance in practice of string hashing

functions. Proceedings of the 5th

Page 21

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

International Conference on Database
Systems for Advanced Applications
(215—223).

Snort rules. (n.d.). Retrieved, May 15, 2015,
from Snort website, http://www.snort.org/.

DEFCON Organization. (n.d.). Retrieved, May
15, 2015, from DEFCON website,
http://www.defcon.org.

Page 22 (©) 2016 ADFSL

	Bloom Filters Optimized Wu-Manber for Intrusion Detection
	Recommended Citation

	Bloom Filters Optimized Wu-Manber for Intrusion Detection

