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hundreds of thousands of dollars, that is why 
software-based IDS running on PC 
workstations remain widely deployed. 
However, software-based systems are unable to 
keep up with the ever-increasing Internet speed 
(Zheng, Cai, Zhang, Wang, & Yang, 2015). 
Unlike IDSs, Intrusion prevention systems 
(IPS) are a new breed of proactive IDS that 
are deployed inline to detect malicious activity 
in real-time and take corrective action. IPSs 
can log the activities, alarm administrators, or 
drop connections. They have not been widely 
adopted due to users not favoring automatic 
dropping of sessions or packets.  

Intrusion detection systems are categorized 
based on the technique into: signature and 
anomaly-based (Aldwairi, 2006). Signature-
based intrusion detection systems detect 
known attacks by searching network traffic for 
attack signatures. They generally use 
traditional pattern matching algorithms and 
yield better speed and accuracy compared to 
anomaly detection. The signatures are 
manually written after security analysts study 
the captured attack or malware code looking 
for invariant parts. The manually developed 
signatures are a big disadvantage in terms of 
signatures accuracy and the fact that it takes a 
considerable amount of time to provide a 
signature after a new attack is detected 
(Jirachan, & Piromsopa, 2015). On the other 
hand, anomaly detection builds a profile of the 
normal system behavior during the training 
phase. It uses common machine learning 
classifiers to extract features from new traffic 
and classify them into benign or malicious. The 
profiles are based on statistical analysis to 
capture specific behavior patterns such as 
system calls. Proprietary rule based languages 
are used to capture those profiles in isolated 
setup. It is true that anomaly-based IDSs 
detect new attacks, however they are 
considerably slow and generate more false 
positives and negatives as opposed to 

signature-based (Aldwairi, Khamayseh, & Al-
Masri, 2015). 

Signature-based IDSs continue to dominate 
the market, with Snort being one of the most 
commonly deployed systems (Roesch, 1999). 
Snort (2016) has been the target of numerous 
studies and became the de facto among 
researchers working to speed up pattern 
matching algorithms for IDS. Simply, Snort 
inspects network traffic trying to match 
packets against predefined rules. It has many 
other capabilities such as packet capture and 
reassembly (Lam, Mitzenmacher, & Varghese, 
2010). However, this work is concerned only 
with pattern matching, which dominates 
Snorts performance. Antonatos, Anagnostakis, 
and Markatos (2004) found that pattern 
matching algorithms consume up to 70% of 
Snort running time. To make matters worse, as 
new attacks arise, the number of signatures 
grows exacerbating the performance issue. 
Snort rules examine the packets header and 
search the packets payload for attack 
signatures (Aldwairi, & Alansari, 2011). 
However, the majority of the rules contain one 
or more signatures. Almost 87% of Snort rules 
contain signatures to match against (Aldwairi, 
Conte, & Franzon, 2004). Therefore, there is 
still a need to speedup pattern matching for 
intrusion detection (Gharaee, Seifi, & 
Monsefan, 2014).  

  There is surge of studies to improve 
pattern matching for intrusion detection 
whether in hardware or software. 
Dharmaprikar, Krishnamurthy, Sproull, & 
Lockwood, (2004) proposed hardware parallel 
Bloom filters to exclude benign packets. But 
because Bloom filters only work with fixed 
length signatures, they were forced to use 
many parallel Bloom filters. Bearing in mind 
that Snort signatures lengths can be over 1000 
characters, this solution ends up being very 
expensive in terms of memory. We will show 
later that each Bloom vector can grow up to 
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1MB in size, having thousands of those is not 
quite efficient. It is worth pointing out that 
Bloom filters are used in a more efficient way 
in this paper. We program only the B 
character prefixes of the sparse hash table to 
avoid unnecessary expensive hash table 
searches. Consequently, one Bloom filter is 
used as opposed to one for each signature’s 
length in case of Dharmaprikar et al. (2004).  

Yang, Xu, & Cui (2006) improved Wu-
Manber (QWM) using Quick Search (QS) 
algorithm (Sunday, 1990) and mismatch 
information, to increase the shift values. Quick 
Search is basically used to find if a packet 
contains a prefix of an attack signature. If a 
prefix is found QWM then uses Wu-Manber 
(WM) to verify the match. To achieve that a 
fourth table is added, the HEAD table. The 
table decides if the first two characters of a 
matching window are the prefix of a pattern. 
QWM was designed to outperform WM for 
Chinese texts with large alphabets as opposed 
to network traffic with limited character set. In 
addition, a considerable memory overhead is 
added due to the additional HEAD table. 

WM+ by Xunxun, Binxing, Lei, and Yu 
(2005) merged Aho-Corasick (AC) and Wu-
Manber algorithms to improve the shift table. 
WM+ algorithm derived a prefix automata 
scanning from AC instead of the ordinary hash 
table based pattern matching. In addition, a 
filtering algorithm was used along with the 
finite automata to skip the bad characters in 
order to speed up the search. Unfortunately, 
for longer patterns lengths the memory 
consumption of WM+ is significantly larger 
than WM. On top of that, the finite automata 
construction adds a considerable overhead. 

Older Snort versions implemented Aho-
Corasick, and a lot of researches were 
performed on optimizing AC automata. Liu, 
Chen, Wu, and Wu (2011) proposed a finite 
automata with extended character set to 
reduce the number of states, which is the main 

disadvantage of AC. They used auxiliary 
variables to compress the number of states 
while maintaining one memory access per byte.  

Newer versions of Snort opted out to 
implement a modified Wu-Manber (MWM) 
(Beale, Baker, Esler, & Northcutt, 2007). WM 
is more attractive because of the smaller 
memory requirements and better performance 
for longer strings. That is possible because 
WM is conservative in that the maximum shift 
possible is m–B+1, which depends on the 
minimum string length. MWM examines the 
suffixes of the block in order to change the 
default shift value. The modified WM can have 
a larger shift equivalent to the block size if the 
no pattern contains any block suffixes. 

To overcome the degrading performance as 
the number of signatures increases, Peng, 
Wang, and Xue (2014) proposed a new 
enhanced Wu-Manber. They optimized WM by 
minimizing number of candidate patterns in 
the HASH table and using binary search to 
look for candidate patterns in the index table 
to cut the searching time. Experimental results 
showed that in case of large pattern sets (> 
3×105), the enhanced algorithm is more 
efficient than the classical WM, MWM, and 
TFD algorithms. This is due to the fact that in 
the enhanced algorithm, the hash table was 
well balanced and the binary search helped 
reduce the search time.  

Zhang (2016) modified WM to suit 
matching short bit streams for wireless 
communication protocols. The algorithm added 
a new GSSHIFT table to determine the shift 
distance when the SHIFT table returns zero. 
They achieved speedup, over WM, of 1.6 times 
for 5 bit patterns. However, the algorithm 
scaled very poorly with string’s length, with no 
improvement for strings longer than 64 bits. 

Finally, Lee, Woo, and An (2016) modified 
WM using multiple sub-patterns on multi-core 
CPU. However, the modified algorithm had 
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poor performance for large number of 
signatures and did not improve time 
proportional to the number of cores used. 

This paper presents Exhaust: a modified 
version of Wu-Manber with negligible 
overhead. Exhaust is designed specifically to 
speed up pattern matching for intrusion 
detection systems to match higher network 
speeds. The main contribution is to insert only 
one Bloom filter to wither out unnecessary 
hash table searches (Aldwairi, & Al-
Khamaiseh, 2015). It results in a considerable 
improvement on the overall performance with 
minimal overhead. The rest of the paper is 
organized as follows. Section 2 explains the 
basic knowledge required to understand the 
problem. It explains Snort rules in full details, 
pattern matching algorithms, Wu-Manber and 
Bloom filters theory. Section 3 describes 
Exhaust inner workings and details the 
initialization and search phases. Section 4 
brings forward a complete formal and 
experimental validation of the proposed 
algorithm using actual traffic traces and attack 
signatures. 

2. BACKGROUND 
This section explains Snort and its rules 
format. An example of actual Snort rules and 
attack signatures is presented. Subsection 2 
presents a pattern matching algorithms 
overview and provides a thorough WM 
explanation with preprocessing and search 
examples using real Snort signatures. Finally, a 
brief introduction to Bloom filters is set 
forwards. 

2.1 Snort 

Snort is a popular open source IDS from 
Sourcefire which has recently been acquired by 
CISCO. We’re mostly concerned with Snorts’ 
rules that contain attack signatures. The rules 
are in plaintext and describe set of conditions 
for the packet’s header/payload to match. The 

rules’ headers field specifies the action to be 
taken and provides values for the protocol 
type, source and destination IP addresses and 
port numbers. The options field contains more 
than twenty-four keyword and value pairs, 
such as: msg for the alert message, sid for 
signature identification number, priority gives 
rules’ severity level, and class-type to 
categorize rules. The rules options also contain 
several content, uricontent and pcre keywords 
that specify attack signatures (Beale, Baker, 
Esler, & Northcutt, 2007). 

Figure 1 shows a redacted Snort v2.8 rule 
from ddos.rules rule set. You can easily extract 
the attack signature, “gOrave”, from the 
content keyword. The rule is very easy to read: 
fire an alert if any external TCP packet going 
to any local machine on port 27665 while 
containing the string “gOrave”. This rule 
detects a well-known old DDoS attack called, 
Trin00 (Dittrich, 2015).  

(Kharbutli, Aldwairi,  & Mughrabi (2012) 
identified pattern matching to locate the 
attack signatures in the packet payload, as the 
main bottleneck. Despite Snort using the 
fastest pattern matching available, it still lags 
behind increasing network access speeds. 

 

 

 

 

2.2 Pattern matching for IDS 

Snort relies on exact pattern matching 
algorithms and does not use regular 
expressions for encoding signatures. Pattern 
matching is classified into either single or 
multiple pattern matching. Single pattern 
matching must scan the packet once for each 
signature in the dataset, which makes it 
counterproductive. They are not used in IDS, 
but it is a good introductory example to 

alert tcp $EXTERNAL_NET any -> 
$HOME_NET 27665 (msg:"DDOS Trin00 

Attacker to Master default 
password"; content:"gOrave"; 

classtype:attempted-dos; sid:234) 
 

Figure 1. A sample Snort rule 
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pattern matching. Boyer-Moore (BM) is one of 
the most common single pattern matching 
algorithms. In an effort to locate a match, it 
places the pattern and packet side by side and 
shifts the pattern by one position in the case of 
mismatch. In the event of a match it moves to 
match the next character from the pattern 
with subsequent character from the packet. 
The algorithm is fairly simple and inefficient, 
because the search time grows linearly with the 
packets’ and patterns’ lengths. Several 
improvements over BM exist such as good and 
bad character heuristics as well as Boyer-
Moore-Horspool (Boyer, & Moore, 1977). 

On the other hand, multiple pattern 
matching algorithms preprogram all patterns 
into a table or tree and match all patterns at 
the same time. The additional preprocessing 
stage is the obvious drawback, but this pales in 
comparison to the savings attained from 
traversing the packet once. Aho-Corasick and 
Wu-Manber are two of the fastest multiple 
pattern algorithms to date. 

In the preprocessing phase, AC builds a 
trie based state machine from the set of 
patterns to be matched (Aho, & Corasick, 
1975). AC search time is linearly proportional 
to the searched packet length and is not 
affected by the number of characters in the 
signatures. However, AC preprocessing time 
and complexity increases exponentially with 
the number of characters, which makes it ideal 
only for short signatures. Moreover, the state 
machine needs to be rebuilt every time a new 
pattern is added to the signatures database. 
Unfortunately, AC memory requirements scale 
exponentially with increasing number of 
signatures. Wu-Manber algorithm on the other 
hand, is based on hash tables, which makes it 
more attractive option compared to AC for 
longer signatures (Wu, & Manber, 1994). 

2.3. Wu-Manber algorithm 

Wu-Manber relies on the same principles 
used in Boyer-Moore algorithm (Boyer, & 
Moore, 1977), but adds a block of B characters 
and new data structure for more efficient 
matching. Like all multiple pattern matching 
algorithms, WM has two stages: preprocessing 
and search. The preprocessing stage of the 
algorithm starts by computing the minimum 
length m of all patterns that are available 
beforehand. Then it defines a block of B 
characters used for matching window shifts. 
The block size is recommended to be either 
two or three. Then the algorithm builds three 
tables during pattern preprocessing: shift, 
hash, and prefix 

The shift table is constructed by 
computing the shift value for each substring of 
size B taken from the first m characters of the 
pattern. The shift table is a hash table where 
the key is the signature substring and its value 
is computed using the equation shift [key]=m-
q, where q denotes the right most location in 
the pattern substring. The default value of this 
table is defined by the equation shift [key] = 
m-B+1. The shift value represents the number 
of maximum characters to skip forward when a 
mismatch occurs. The character blocks that 
have a shift value of zero indicate a probable 
match. All patterns that share those zero shifts 
probable matches are programmed into the 
hash table. The main purpose of the prefix 
table is to make finding probable matches in 
the hash table faster by hashing the prefixes of 
those patterns. Additionally, it is used to 
distinguish between the patterns that have the 
same suffix but differ in the prefix. 

The search starts by dividing the network 
traffic traces into sliding window of size B. 
Each time the search string of size B returns a 
zero shift value when traversing the shift table, 
the algorithm accesses the hash table and 
searches the list of patterns associated with the 
key to find the match.  



JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection 

Page 10    © 2016 ADFSL 

An example with actual signatures is 
presented to better understand the algorithm. 
Table 1 shows the shift table for the following 
patterns extracted from the Snort FTP rule set 
{RMD, XMKD, MDTM, MKD} for block size 
of two characters, B=2. The minimum pattern 
length is three characters, m=3 and the default 
shift value is m–B +1, which equals 3–2+1 = 
2. Take the block “DT”, which exists in pattern 
“MDTM”. The shift value is m – q, where q is 

the rightmost occurrence of DT in any pattern, 
hence, shift [DT] is 3–2=1. On the other hand, 
take block “MD”, which can be found in two 
patterns “RMD” and “MDTM”. The shift [MD] 
is 3–3=0 taken from pattern “RMD” and not 
3–2=1 as in pattern “MDTM”. Figure 2 (a) 
shows the hash table, which holds pointers to 
the patterns that contain the probable 
matching signatures. 

 

 
Figure 2 (b) shows the step-by-step search 

stage over the following hypothetical packet 
“RTDTMXMKDDTS” with a matching 
window of three characters. In step one, WM 
examines the first search window: “RTD”. The 
two-character suffix for the search windows 
“TD” is hashed to find the index to access the 
shift table. The shift value for {TD} is two; 
WM then shifts the search window by two to 
become “DTM”. In step two, the hash value for 
the block “TM” is zero, which means a 
probable match. Therefore, WM searches the 
hash table with the same index from hashing 
“TM”. No match is found and that was a false 
alarm. The default shift of two is applied 
which makes the next search window “MXM”. 
In step three the shift for “XM” is two making 
the next search window “MKD”. In step four, 
the shift value is zero for “KD”, the hash table 
is searched and two matches are found 
{XMKD} and {MKD}. A shift of two is 
applied and the shift for “DT” is one. Step six, 

ends the search with the window reaching the 
end of packet. 

WM search time does not surge 
significantly as the number and size of 
signatures increase. On the contrary, the 
average case performance beats all competing 
algorithms for longer signatures. However, 
while the overhead introduced by preprocessing 
scales linearly with size and numbers of 
signatures, it is still negligible compared to the 
search time. 
Table 1.  
WM-Manber Shift Table 

 
2.4. Theory of Bloom filters 

Bloom filters rely on a long binary vector 
where a set of patterns can be programmed 
and reprogrammed efficiently. The filter runs a 
few hash functions on a set of patterns and 

     
Figure 2 (a). Wu-Manber hash table; (b) Wu-Manber search phase 

BC MD KD MK TM DT Others 
Shift 0 0 1 0 1 2 
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sets the corresponding bits to the resulting 
hash values. This vector represents 
membership information on the programmed 
patterns and consumes a lot less space as 
opposed to the original dataset. The Bloom 
vector can easily be probed to verify 
membership. Simply run the same hash 
functions on the new pattern and check the 
corresponding bits. If they are not set then the 
Bloom filters provides a 100% assurance that 
the pattern is not a member of the original 
patterns dataset programmed into the vector. 
However, if the bits are set this means that 
there is a chance the pattern is a member of 
the original set (Bloom, 1970). That is, false 
negatives are zero, which is exactly what we 
need to verify a packet is clean without 
performing expensive hash table search. On the 
other hand, Bloom filters false positives rate, f, 
is given by Eq. (1). ݂ = ൬1 − ݁ିೖೞ ൰

                    (1) 

Where, n is the number of strings 
programmed into the Bloom filter, s represents 
the vector size and k is the hash functions 
number. The false positives rate can be 
reduced by increasing the values of s and k to 
be appropriate for the strings number n. In 
addition, the value of s has to be larger than 
the given size of the string set, n. 

 It is possible to have multiple strings 
result in setting overlapping bits. Therefore, 
deleting a string would be an issue, because it 
resets the corresponding bits, which might 
happen to be set by another string. Counting 
Bloom filters (Fan, Cao, Almeida, & Broder, 
2000) maintain a counter for each bit in the 
bitmap corresponding to the number of 
patterns that cumulatively set that bit. 
Consequently, when a new pattern is inserted 
or an old pattern is deleted the counter 
corresponding to its hash values is incremented 
or decremented. When the counter reaches 
zero, the bit is cleared. 

3. METHODOLOGY 
We propose Exhaust: EXclude HAsh table 
Unnecessary Search Time. We use the 
counting Bloom filters 100% exclusion property 
to eliminate unnecessary hash table searches. 
Remember that most of network traffic is 
benign and naturally it does not contain any 
malicious signatures. Therefore, if we program 
the Bloom filter with substrings, of size B, 
from the pattern prefixes from the hash table 
entries, then we can query the filter before we 
search the hash table. Querying the Bloom 
filter is a lot faster than searching the table. 
This means we can save the time to search the 
hash table for all clean traffic and we incur the 
cost of running two hash functions. Remember 
that a zero shift value from the shift table does 
not necessarily mean a definite match. On the 
contrary, quite often zero shifts are false 
alarms caused by the small WM block size of 
two or three. This small block size makes it 
more coincidental that the search window and 
the signature end up with the same suffix. 
Those false alarms can be handled faster if a 
Bloom filter is used to exclude those blocks 
that are not in the hash table, cutting the time 
to perform unnecessary searches for the large 
hash table. 

Therefore, the Bloom filter provides a more 
accurate mechanism to determine probable 
matches and help skip the majority of zero 
shifts caused by benign traffic. We will prove 
later that this significantly improves the WM 
algorithm’s performance while adding a very 
small memory overhead for the Bloom filter 
and a negligible preprocessing time. 

Algorithm 1 presents Exhaust 
preprocessing pseudo code, which is similar to 
WM algorithm except for the additional Bloom 
filter programming steps. First, the algorithm 
starts by determining the minimum pattern 
length, m. Then Exhaust populates the shift 
table with the default shift value, of m – B + 
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1. Both the shift and hash tables are accessed 
by the same hash function index calculated on 
the character block. Next, it computes the shift 
values for all block substrings (x) of size B 
used to fill the shift table. If the shift value is 
zero, the corresponding entries in the hash and 
prefix tables are entered. Additionally, 
Exhaust programs the last B characters of 
pattern into the Bloom filter. The 
programming is simply running the selected 
hash functions on substring of size B and 
setting the corresponding bits in the Bloom 
vector. 

Algorithm 2 present Exhaust’s search 
stage, where a sliding a window of size (w) is 
passed over the packet. For each sliding 
window the index (i) for shift table is 
calculated by running a hash function on the 
suffix of B characters. If the shift[i] value is 
not zero then slide the window by the shift 
amount.  

On the other hand, if the shift [i] value is 
zero then we must search the hash and prefix 
tables to verify and find the match. The Bloom 
filter reduces the search time, by computing 
two hash functions on the B character suffix 
and examining the corresponding bits in the 
Bloom vector. If the Bloom vector membership 
is negative, then we skip the hash table search 
and move to the next sliding window. If the 
Bloom filter membership is positive then we 
must search the hash and prefix tables to 
verify the match. 

The Bloom filters do not have false 
negatives, which make them perfect to exclude 
strings from the hash table. However, they 
have false positives, which need to be reduced 
to maximize the number of times Exhaust 
skips the hash table. Therefore, we use two 
distinct and pairwise independent hash 
functions: SDBM and SAX. SDBM (Partow, 
2015) hash is an algorithm used in the open 
source SDBM project. It has a good 
distribution for different datasets and when 

there is a high variance in the dataset 
members. For a character c, the hash value is 
calculated as shown by Eq. (2). SAX, on the 
other hand, is simple hash function proposed 
by Ramakrishna and Zobel (Ramakrishna, & 
Zobel, 1997). It is very fast because of the use 
of the common operations of shift, ADD and 
XOR as shown by Eq. (3). ܴܣܪ = ܿ + ሺℎܽݏℎ ≪ 6ሻ + ሺℎܽݏℎ ≪ 16ሻ − ℎܽݏℎ   (2) ℎܽݏℎ = ܿ + ሺℎܽݏℎ ≪ 5ሻ +  ሺℎܽݏℎ ≫ 2ሻ                 (3) 

 

 

4. RESULTS AND 
ANALYSIS 

We evaluate Exhaust’s performance through 
simulations using actual Snort rules and 
extremely malicious traffic traces representing 
worst-case scenario. Subsection 1 presents the 
details of the testing process and environment. 
Subsection 2 lays out the metrics to be 

 

Algorithm 1 Exhaust Initialization 
1: procedure Initialize
2: for each pattern (P) in signatures set 
3: if B < len(P) < m
4: m len(P)
5: end for 
6: fill SHIFT [i]  m – B + 1 
7:     for every substring (x) of size B 
8:          for each pattern (P) 
9:        if x ϵ any P with  last occurrence of q 

10: SHIFT[i]  m – q
11:     if SHIFT[i] = 0       
12: fill(HASH)
13: fill(PREFIX) 
14:     Bloom vector hashFcns(x) 
15:      end for 
16: end for 
17: end procedure
18: procedure Initialize
19: for each pattern (P) in signatures set 

 

 

Algorithm 2 Exhaust Search
1: procedure Search
2: for each sliding w until the end of packet 
3: if HASH(hashFcns(last block of w)) != 0 
4:       shift w by HASH(hashFcns(last block of w)) 
5:      else if w !ϵ Bloom vector 
6:         shift w by 1
7:      else
8:         search HASH and PREFIX tables for exact match
9: end for 

10: end procedure
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measured. Subsection 3 explains how Snort 
attack signatures are extracted and cleansed, 
while Section 4 analyzes the traffic traces. 
Subsection 5 measures the number of times the 
hash table search is skipped and compares the 
Exhaust runtime to WM. Subsection 6 
measures the overhead in terms of 
preprocessing time and memory usage. 
Subsection 7 suggests solutions to reduce the 
Bloom filters false positives to further improve 
Exhaust’s performance. Finally, Subsection 8 
analyzes the algorithm complexity and 
provides formal proof. 

4.1. Test methodology and 
environment 

We perform the experiments on a PC 
workstation with Intel Core 2 duo processor, 
running at 1.83 GHz, with a L1 cache of 32 
KB, L2 cache of 2 MB, and 1 GB of main 
memory. We use Microsoft Visual Studio 2008 
running on 32-bit Microsoft Windows 7 
Professional. 

To evaluate the algorithm’s performance, 
we use actual network traffic traces and Snort 
rules. The signatures and packets are stored 
and read offline from files. Each experiment is 
repeated five times and the average is 
reported. Certain experiments require varying 
the number of signatures or characters. To be 
able to achieve that, signatures from different 
Snort rules classes are combined together to 
form eight sets of patterns. The first set 
contains 500 patterns from Specific-Threats 
class. The second set includes 1000 signatures 
composed of the previous 500 in addition to 
another 500 from Backdoor class and other 
classes. We incrementally pile signatures to 
end up with eight sets containing signatures 
ranging between 500 and 4000. 

4.2. Evaluation metrics 

The best metrics to evaluate the performance 
enhancement is the run time and speedup over 

WM algorithm. We exert every effort to 
accurately measure time by averaging five 
readings. However, since time measurements 
are not bullet proof we believe that counting 
the number of times we skip the hash table is a 
better metric. Therefore, we define the HAC 
and HSC metrics to measure the number of 
times Exhaust skips the hash table search. 
Where, HAC is the hash table access count 
and HSC is the hash table skips count. An 
access means that the Bloom filter gives a 
probable match, that is, it fails to avoid hash 
table search. A skip happens when the Bloom 
filter successfully skips the hash table search. 
Naturally, the higher the HSC the better 
because of the savings from skipping the hash 
table search as opposed to just computing two 
hash functions. 

In addition, to better understand the 
performance improvements we calculate the 
hash table access ratio (HAR), and the hash 
table skip ratio (HSR). The normalized ratios 
are calculated according to Eq. (4) and Eq. 
(5). Moreover, to measure the Bloom filter 
overhead we report the added preprocessing 
time and memory. Finally, we analyze the false 
positives resulting from adding the Bloom 
filter. ܴܣܪ = ுுାுௌ                (4) ܴܵܪ = ுௌோுାுௌ                 (5) 

4.3. Signatures extraction 

We develop a script to extract the values of 
content keywords from Snort 2.8.4.1 rules 
database released in July 2009 (Snort rules, 
n.d.). We elected to use this version because it 
contains more attack signatures (9,945 rules) 
as opposed to the 2017 Snort v2.9 community 
rules. The latter includes only 3518 rules, 
because of the cleansing performed after 
Cisco's Talos participated in authoring Snort 
rules. We believe release 2.8.4.1 serves as a 
worst-case test dataset for Exhaust. 
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We only extract signatures from content 
and uricontent keywords as the pcre keyword 
contains regular expressions and not an exact 
match. If a rule contains more than one 
content keyword, the script merges those 
patterns with space character as a delimiter. 
All signatures are subsequently converted into 
hexadecimal equivalent to the ASCII codes. 
This way Exhaust is able to handle all 256 
possibilities including nonprintable characters. 

4.4. Traffic analysis 

We use DEFCON17 Capture the Flag (CTF) 
game packet traces from 2009 (DEFCON 
Organization, n.d.). Capture the Flag is a 
hacker game where teams compete to capture 
computers of other teams while defending their 
own computers. The traces from the game are 
collected and made available to the public. We 
use those traces to gauge the worst-case 
performance of the new algorithm. 

Our analysis shows that 51.62% of all 
packets in the 78 CTF traces have payload. Of 
those traces, we pick the ten that contains the 
highest percentage of packets with payload to 
represent the worst case. Table 2 shows the 
most malicious traces with total number of 
packets, number of packets with payload, and 
the percentage. The percentage of malicious 
content for the picked traces averages 57% 
which will result in a lot of signature matches. 
The numbers in Table 2 exclude fragmented 
packets. 

Table 2. Most Malicious Traffic 

 
 

4.5. Speedup 

First, we measure the HAC and HSC. That is 
the number of times the hash table is accessed 
and skipped. Figure 3 (a) shows the hash table 
access and skip counts for increasing number of 
signatures for trace number 8. Obviously, as 
the as the number of attack signatures 
increases, there will be more matches within 
the trace. Therefore, the number of hash tables 
accesses and skips increases. There is 
noticeable increase in savings as the number of 
number of signatures increases. 

A more accurate picture is provided by 
Figure 3 (b), which presents the HAR and 
HSR for the same traffic trace. That is, the 
normalized hash table access and skip ratios. 
On average the hash table is skipped between 
2.6% and 13.7% of the time with an average 
savings of 10.6%. The most important 
conclusion to draw from the figure is that the 
skip percentage is not correlated to the number 
of signatures. In other words, Exhaust 
performance remains fixed regardless of the 
number of attacks it searches for. 

Next, we fix the number of signatures at 
3500 and plot the HAR and HSR in Figure 4 

 

Trace 
No 

Number of 
Packets 

Packets with  
Payload Percentage 

8 671143 383233 57% 
13 683770 398615 58% 
14 676657 389705 58% 
46 494466 280123 57% 
49 331508 188722 57% 
50 326101 190173 58% 
51 299746 168660 56% 
52 277840 159299 57% 
53 275483 155846 57% 
54 311546 178480 57% 

Average  57% 
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4.8. Complexity Analysis 

To illustrate the added complexity of Exhaust 
algorithm, we must consider both the original 
WM algorithm and the extra cost for adding 
the Bloom filter. Let N be the size of the text, 
P the number of patterns, m the size of one 
pattern, k the number of hash functions used 
in the Bloom filter, and assume that M=mP is 
the total size of all patterns. 

The size of a substring block B that is used 
to address the shift table is defined as 
B=logc2M, where c is the size of the alphabet. 
In the preprocessing phase the shift table 
construction time is O(M), since that each B 

block of any pattern is considered once and it 
consumes constant time on average. On the 
other hand, the Bloom filter programming time 
is O(k) because each hash function is used to 
address every programmed pattern. The search 
phase time for WM in either the case of 
nonzero shift value or the case of zero shift 
value is O(BN/m), due to the suggested lemma 
proofed by Wu and Manber which says, “The 
probability that a random string of size B 
leads to a shift value of i, 0≤ i ≤ m-B+1, is ≤ ½ 
m”, and the benefit from prefix table extra 
filtering that makes the probability of false 
positives extremely small. The complexity 

         
Figure 7 (a). Preprocessing time of Exhaust and WM for varying number of signatures; (b) Memory usage for 
Exhaust and WM for varying number of signatures 
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Figure 8 (a). Memory usage for Exhaust compared to AC for varying number of signatures; (b) False positives 
probability versus the number of signatures 
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incurred from the Bloom filter querying is O(k) 
(Wu, & Manber, 1994). 

5. CONCLUSIONS 
There exists a need to speed up intrusion 
detection systems. The main bottleneck is the 
pattern matching part of the problem. There 
has been a lot of research into new pattern 
matching algorithms and architectures for 
speeding up intrusion detection. Hardware 
architectures are fast, but they suffer from 
high cost and power requirements as well as 
configurability issues. Software based IDSs 
remain more popular and dominate the IDSs 
market, but increasing signatures requires 
faster pattern matching. Wu-Manber is one of 
the fastest multiple pattern matching 
algorithms used for intrusion detection but 
falls short of achieving the required speed. 

We proposed Exhaust, a new modified Wu-
Manber based pattern matching algorithm for 
intrusion detection systems. The new 
algorithm benefits from Bloom filters exclusion 
property to reduce the number of expensive 
hash table searches. The hash table can grow 
extremely large as the number of patterns 
grows.  

The metrics we use to evaluate the speedup 
are the hash table skips ratio and execution 
time. We evaluate the algorithm with worst 
case traffic and find that Exhaust greatly 
improves the speed of WM at minimal cost. At 
best the hash table is skipped 39.1% of the 
time and 10.6 % on average. Exhaust reduces 
the running time by 33% on average for worst 
case traffic. The worst-case preprocessing time 
overhead is 1.1% and the memory overhead is 
0.33%. We also show that the new algorithm 
has insignificant false positives probability and 
minor added complexity. 

ACKNOWLEDGMENTS 
This work was supported in part by a grant 
from Jordan University of Science and 

Technology School of Graduate Studies and in 
part by Zayed University Research Office, 
Research Incentive Fund grant # R17060. 

 



JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection 

Page 20    © 2016 ADFSL 

REFERENCES 
Roberts, L. (2000). Internet growth trends. 

IEEE Computer Magazine Internet watch 
column 2000. 

Zheng, K., Cai, Z., Zhang, X., Wang, Z., Yang, 
B. (2015). Algorithms to speedup pattern 
matching for network intrusion detection 
systems, Computer Communications, 62, 
47-58. 

Aldwairi, M. (2006). Hardware-efficient 
pattern matching algorithm and 
architectures for fast intrusion detection. 
Available from NCSU Theses and 
Dissertations Institutional Repository (id 
1840.16/3558). 

Jirachan, T., & Piromsopa, K. (2015). 
Applying KSE-test and K-means clustering 
towards scalable unsupervised intrusion 
detection. Proceedings of the 12th 
International Joint Conference on 
Computer Science and Software 
Engineering (JCSSE), (82–87). IEEE. 

Aldwairi, M., Khamayseh, Y., & Al-Masri, M. 
(2015). Application of artificial bee colony 
for intrusion detection systems. Security 
and Communication Networks, 8(16), 2730-
2740. doi:10.1002/sec.588. 

Roesch, M. (1999). Snort – lightweight 
intrusion detection for networks. 
Proceedings of the 13th USENIX Systems 
Administration Conference (LISA ’99). 
Seattle, WA.  

Snort. (2016). Network Intrusion Detection & 
Prevention System. Retrieved from 
https://www.snort.org/. 

Lam, V.T., Mitzenmacher, M., & Varghese, G. 
(2010). Carousel: scalable logging for 
intrusion prevention systems. Proceedings 
of the 7th USENIX conference on 

Networked systems design and 
implementation (NSDI'10) (pp. 24–39). 
Berkeley, CA, USA: USENIX Association. 

Antonatos, S., Anagnostakis, K. & Markatos, 
E. (2004). Generating realistic workloads 
for network intrusion detection systems. 
SIGSOFT Software Engineering Notes. 
29(1), 207–215. 

Aldwairi, M., & Alansari, D. (2011). Exscind: 
fast pattern matching for intrusion 
detection using exclusion and inclusion 
filters. Proceedings of the Next Generation 
Web Services Practices (NWeSP) (24-30). 
Salamnca, Spain: IEEE. 
doi:10.1109/NWeSP.2011.6088148 

Aldwairi, M., Conte, T., & Franzon P. (2004). 
Configurable String Matching Hardware for 
Speeding up Intrusion Detection. 
Proceedings of the Workshop on 
architectural support for security and anti-
virus (WASSA), in conjunction with 
ASPLOS XI. Boston, MA. 

Gharaee, H., Seifi, S. & Monsefan, N. (2014). 
A survey of pattern matching algorithm in 
intrusion detection system. Proceedings of 
the 7th International Symposium on 
Telecommunications (IST) (946-953), Iran. 

Dharmaprikar, S., Krishnamurthy, P., Sproull, 
T. S., & Lockwood, J. W. (2004).  Deep 
packet inspection using parallel bloom 
filters. IEEE Micro, 24(1), 52–61. 

Yang, D., Xu, K. & Cui, Y. (2006). An 
improved Wu-Manber multiple patterns 
matching algorithm. Proceedings of the 
25th IEEE International Performance, 
Computing, and Communications 
Conference (IPCCC), (680–686).  



Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4 

© 2016 ADFSL   Page 21 

Sunday, D. (1990). A very fast substring 
search algorithm. Communications of the 
ACM, 33(8), 132–142. 

Xunxun, C., Binxing, F., Lei, L., & Yu, J. 
(2005). WM+: An optimal multi-pattern 
string matching algorithm based on the 
WM algorithm. Proceedings of the 6th 
International Workshop on Advanced 
Parallel Processing Technologies (APPT) 
(515–523). Hong Kong, China. 

Liu, C., Chen, A., Wu, D., & Wu, J. (2011). A 
DFA with extended character-set for fast 
deep packet inspection. Proceedings of the 
2011 International Conference on Parallel 
Processing (ICPP)(1-10). 

Beale, J., Baker, A., Esler, J. & Northcutt, S. 
(2007). Snort: IDS and IPS toolkit. 
Burlington, MA: Syngress Publishing, 
Elsevier. 

Peng, Z., Wang, Y.  & Xue, J. (2014). An 
Improved Multi-pattern Matching 
Algorithm for Large-Scale Pattern Sets. 
Proceedings of the Tenth International 
Conference on Computational Intelligence 
and Security (CIS) (197–200). 

Zhang, W. (2016). An Improved Wu-Manber 
Multiple Patterns Matching Algorithm. 
Proceedings of the 2016 IEEE International 
Conference on Electronic Information and 
Communication Technology (ICEICT 
2016)( 286-289). 

Lee, J. K. Woo, J., & An, J. H. (2016). 
Improved Pattern Matching Method for 
Intrusion Detection Systems under DDoS 
Attack. Indian Journal of Science and 
Technology, 8(25), 1-4. 

Aldwairi, M., & Al-Khamaiseh, K. (2015). 
Exhaust: Optimizing Wu-Manber Pattern 
Matching for Intrusion Detection using 
Bloom Filters. Proceedings of the 2nd 
World Symposium on Web Applications 
and Networking (WSWAN’2015)(1-6). 

Sousse, Tunisia: IEEE. 
doi:10.1109/WSWAN.2015.7209081 

Dittrich, D. (2015, May 15). The DoS Project's 
trinoo distributed denial of service attack 
tool analysis. University of Washington. 
Retrieved from 
http://staff.washington.edu/dittrich/misc/
trinoo.analysis. 

Kharbutli, M., Aldwairi, M., & Mughrabi, A. 
(2012). Function and Data Parallelization 
of Wu-Manber Pattern Matching for 
Intrusion Detection Systems. Network 
Protocols and Algorithms, 4(3), 46–61. 

Boyer, R. S. & Moore, J. S. (1977). A fast 
string searching algorithm. 
Communications of the ACM, 20(10), 762–
772. 

Aho, A. & Corasick, M. (1975). Efficient string 
matching: an aid to bibliographic search. 
Communications of the ACM, 18, 333–340. 

Wu, S., & Manber, U. (1994). Fast algorithm 
for multi-pattern searching. Technical 
Report TR94-17. University of Arizona at 
Tuscon. Retrieved from 
http://webglimpse.net/pubs/TR94-17.pdf. 

Bloom, B. H. (1970). Space/time trade-offs in 
hash coding with allowable errors. 
Communications of the ACM, 13(7), 422–
426. 

Fan, L., Cao, P., Almeida, J.  & Broder, A. 
(2000). Summary cache: a scalable wide-
area web cache sharing protocol. 
IEEE/ACM Transactions on Networking, 
8(3), 281–293. 

Partow, A. (2015, May 15). General purpose 
hash function algorithms. Retrieved from 
http://www.partow.net/programming/hash
functions/.  

Ramakrishna, M., & Zobel, J. (1997). 
Performance in practice of string hashing 
functions. Proceedings of the 5th 



JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection 

Page 22    © 2016 ADFSL 

International Conference on Database 
Systems for Advanced Applications 
(215−223). 

Snort rules. (n.d.). Retrieved, May 15, 2015, 
from Snort website, http://www.snort.org/.  

DEFCON Organization. (n.d.). Retrieved, May 
15, 2015, from DEFCON website, 
http://www.defcon.org.  

 

 


	Bloom Filters Optimized Wu-Manber for Intrusion Detection
	Recommended Citation

	Bloom Filters Optimized Wu-Manber for Intrusion Detection

