

SCHOLARLY COMMONS

National Training Aircraft Symposium (NTAS)

2020 - Perspectives: A Vision into the Future of Aviation

Mar 2nd, 8:00 AM - 9:30 AM

Student Pilot Perceptions of Flight Training

Ronald W. Bishop Central Queensland University, Australia, bishopr33@gmail.com

Talitha Best Ph.D. Associate Professor, Central Queensland University, Australia, t.best@cqu.edu.au

Jim Mitchell Ph.D. University of Western Sydney, Australia, j.mitchell@westernsydney.edu.au

Follow this and additional works at: https://commons.erau.edu/ntas

Bishop, Ronald W.; Best, Talitha Ph.D.; and Mitchell, Jim Ph.D., "Student Pilot Perceptions of Flight Training" (2020). *National Training Aircraft Symposium (NTAS)*. 4. https://commons.erau.edu/ntas/2020/presentations/4

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

2 Mar 2020

Student Pilot Perceptions of Mental workload during Flight Training

Ron Bishop, Central Queensland University Jim Mitchell, University Western Sydney Talitha Best, Central Queensland University

CRICOS: 00219C

Background

Proud to be from Florida and ERAU Alumni X3

Operations Superintendent

Mental Workload (MWL) Research

Previous Research

Cockpit design and pilot mental workload primarily in military and civilian transport aircraft (Cain, 2007,Gopher and Donchin, 1986, Hart and Staveland, 1988, Meshtaki, 1988, Reid and Eggemeier, et al. 1982,, Roscoe and Ellis, et al, 1978, Wilson, 2002)

General aviation- Mental Workload during flight training

(Dahlstrom and Nahlinder, 2009, Wilson, 2002, Wright & O'Hare, 2015)

Novice pilots flying glass cockpits during Recreational Aircraft during flight training

(Craig et al., 2005, Dahlstrom and Nahlinder, 2009, Harris et al., 1982)

Methodology/Participants

- Participants
- Location
- Environment

100 years ago

15 Years ago

Now

RESEARCH WITH IMPACT

CRICOS: 00219C

Recreational Aircraft Boeing 787

Improvements in cockpit displays and aircraft design are exposing novice pilots to advancements in technology that historically were only available to experienced fighter pilots and civilian transport pilots

RESEARCH WITH IMPACT

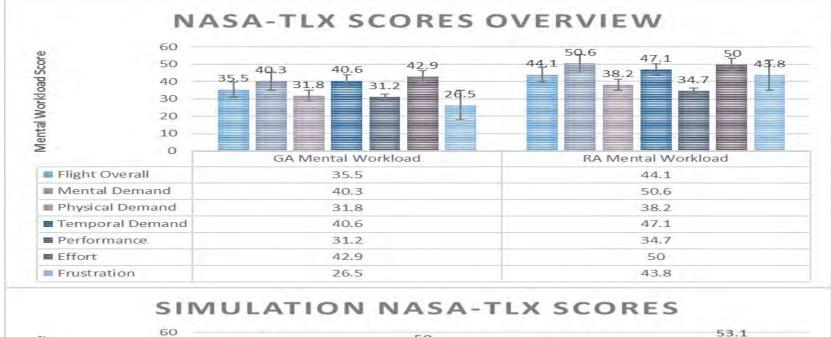
CRICOS: 00219C

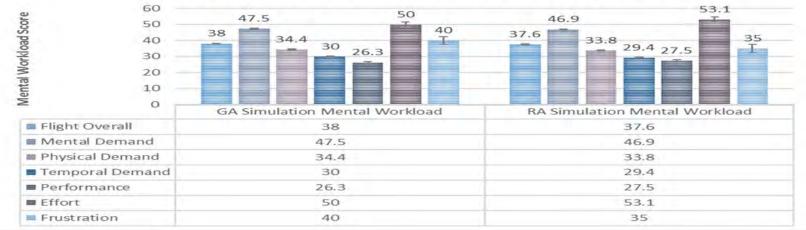
- Significance
- Hypothesis
- Research Question

Methods

- 17 Student pilots flew a circuit flight, with an instructor, in Light Sport Aircraft (Sling 2) equipped with a glass cockpit and a General Aviation (Cessna 172) analogue gauge cockpit
- 8 students flew a circuit simulation using a Redbird FMX Simulator configured as a GA analogue aircraft and LSA glass cockpit
- The NASA Task Load Index (NASA-TLX) pre/post circuit flight and simulator
- Interviews

Results


CRICOS: 00219C


- Recreational Aircraft (RA) MWL is 24% higher
- 'Frustration' 65% higher in RA during flight
- GA and RA Pair Sample t-test
- One way Anova
- Age
- Gender
- Flight Experience

RESEARCH WITH IMPA

Flight Results

CRICOS: 00219C

RESEARCH WITH IMPACT

Interview Theme Analysis

Flight Most important theme of each question analysis		
Question	GA	RA
Flight Assessment	Easy	Aircraft
Pilot MWL	Airplanes (aircraft)	Sling (aircraft)
Effects of MWL	Better	Instruments (glass cockpit)
Most MWL Phase	Downwind	Plane (aircraft)
Main Effect of Most MWL	Effect	Flying
Least MWL Phase	Base	Downwind
Main Effect of Least MWL	Relaxed	Figure
Suggestions/Improvement	Flight	Cockpit (glass cockpit)
Simulat	ion Most important theme of each quest	ion analysis
Question	GA	RA
Flight Assessment	Stressful	Cockpit
Pilot MWL	During	Cockpit
Effects of MWL	Airplane	Cockpit
Most MWL Phase	Gives	Caused
Main Effect of Most MWL	Doing	Completely
Least MWL Phase	Gave	Downwind
Main Effect of Least MWL	Re-focus	Flying
Suggestions/Improvement	Flight	Cockpit

CRICOS: 00219C

RESEARCH WITH IMPACT

Implications and Conclusions

- More MWL in RA Flight
- Glass Cockpit
- Interviews identified differences in themes and provided context
- Simulation

Conclusion

- More research
- Physiological measures
- Replication in RA, increased sample size, and other student year levels

Acknowledgements

- A big THANK YOU to my supervisors, Talitha Best and Jim Mitchell, for the motivation and support to complete this project
- Central Queensland University ethics
- Air Queensland
- Aviation Theory Centre for the use of the simulator
- Thank you to all the student participants for their support of this program
- My family for all their support and tolerance

References

- Cain, B., 2007. A review of the mental workload literature. Defence Research And Development Toronto (Canada).
- Craig, P.A., Bertrand, J.E., Dornan, W. and Gossett, S., 2005. Ab Initio Training in the Glass Cockpit Era: New Technology Meets New Pilots: A Preliminary Descriptive Analysis. In 2005 International Symposium on Aviation Psychology (p. 153).
- Dahlstrom, N. and Nahlinder, S., 2009. Mental workload in aircraft and simulator during basic civil aviation training. *The International journal of aviation psychology*, *19*(4), pp.309-325.
- Gopher, D. and Donchin, E., 1986. Workload: An examination of the concept.

RESEARCH WITH IMPACT

- Harris Sr, R.L., Tole, J.R., Ephrath, A.R. and Stephens, A.T., 1982, October. How a new instrument affects pilots' mental workload. In *Proceedings of the Human Factors Society Annual Meeting* (Vol. 26, No. 11, pp. 1010-1013). Sage CA: Los Angeles, CA: SAGE Publications.
- Hart, S.G. and Staveland, L.E., 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In *Advances in psychology* (Vol. 52, pp. 139-183). North-Holland.
- Meshkati, N., 1988. Heart rate variability and mental workload assessment. In *Advances in psychology* (Vol. 52, pp. 101-115). North-Holland.
- Reid, G.B., Eggemeier, F.T. and Nygren, T.E., 1982, October. An individual differences approach to SWAT scale development. In *Proceedings of the Human Factors Society Annual Meeting* (Vol. 26, No. 7, pp. 639-642). Sage CA: Los Angeles, CA: SAGE Publications.
- Roscoe, A.H. and Ellis, G.A., 1978. Assessing pilot workload. AGARD (Advisory Group for Aerospace Research and Development), (233).
- Wilson, G.F., 2002. An analysis of mental workload in pilots during flight using multiple psychophysiological measures. *The International Journal of Aviation Psychology*, *12*(1), pp.3-18.

CRICOS: 00219C

• Wright, S. and O'Hare, D., 2015. Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?. *Applied ergonomics*, 47, pp.292-299.

