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Crime scene investigation (CSI) is an involved process and ultimately limits 

long term access to the scene, which may be vital to commerce. Accordingly, 

investigators must comprehend the problems it can cause to the impedance of 

access, and indeed for the families of those involved. Motor vehicle accidents 

(MVA) are similarly affected and can delay traffic flow for hours as the site is 

reconstructed, data collected, and then the accident site is cleared (Struble, 2014). 

This is no different for CSI. The removal of this impedance to regenerate normal 

flow or daily operation falls upon public safety officials, primarily law 

enforcement. Reconstruction after data collection of these scene sites has evolved 

over time, but the goal has always remained the same; a rapid and detailed 

collection of all data, followed by clearance of the scene to restore normal life 

(Bullock, Hainje, Habib, Horton, & Bullock, 2019). Rapid data gathering has long 

been the challenge to this essential task, and over the years, the tools have evolved. 

As Unmanned Aircraft Systems (UAS) proliferate, their utility broadly 

spans many industries, and crime scene investigation is an area of promising results. 

The use of three-dimensional point clouds or two-dimensional orthogrammetric 

data (Ortho) is proving to work incredibly well as evaluative tools that can also 

stand up in court according to Law Enforcement (LE), from municipal through 

federal levels according to federal law enforcement agents (personal 

communication, 26 September 2019). Terrestrial laser scanners are tools for 

creating baseline models for comparison of datasets to other tools such as satellite 

imagery, SLR cameras, or UAS (Turner, Lucieer, & Wallace, 2014). The focus on 

UAS as a rapid collection platform is of great interest to LE, though as budgets can 

be a challenge, these agencies can be well informed through the benefit of this 

research when considering where to start looking for accurate data acquisition aerial 

platforms. 

Accurate data sets that can be quickly acquired and processed for timely 

assessment aids not only LE reporting and preparation of further legal adjudication 

but also for families looking for answers. Acquisition of UAS platforms for LE 

operations are affected by many factors like operational integration considerations 

and limited resources (Lee, 2016). Departments with limited budget options for 

UAS selection is a significant challenge where data accuracy is essential and 

available platform performance is broad. 

 

Purpose 

The purpose of this research was to compare multirotor UAS to determine 

if there were differences in accuracy and precision compared to a FARO terrestrial 

laser scanner in a crime scene reconstruction scenario. Also, to compare UAS to 

provide recommended best practices for selecting aircraft, flying heights, and flight 

patterns with the highest levels of accuracy. 
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UAS registered point clouds generated in Pix4Dmapper Pro from a DJI 

Mavic Pro, DJI Mavic 2 Enterprise Dual, DJI Inspire 1, DJI Inspire 2, DJI Phantom 

4 Professional, Parrot Anafi, and Parrot Bebop 2 flying at 82 feet, 100 feet, 150 

feet, 200 feet, and 250 feet respectively in a grid, double grid, circle, and double 

grid + circle pattern were compared to a FARO laser scanner point cloud using 

CloudCompare. The UAS point clouds RMS errors were calculated from 

CloudCompare when registered to the laser scanner pointcloud using the Aeropoint 

GCP positions as registration points to determine UAS point cloud accuracy. A 

M3C2 plugin in CloudCompare was used to calculate the precision errors between 

points in the UAS point clouds to the FARO point cloud, which was used for UAS-

to-UAS comparisons. 

 

Review of Relevant Literature 

Scene Reconstruction. There are many useful tools for scene reconstruction, and 

more important is to understand and interpret collected data to an acceptable level 

(Hosseinyalamdary, 2016). The generally accepted methodology for airborne CSI 

collection is from a preplanned autonomous flight at an altitude that can collect the 

most accurate data, returning the best results. Many factors are involved in this 

process; image overlap, sun angles, obstacle clearance, and flight safety elements 

all contribute to a viable product that can be used as supporting evidence (Mei, 

2019). Post-incident investigation requires the collection of data through accurate 

perspectives, essential for constructing point clouds or Orthos, and UAS technology 

continues its evolution in the ability to collect viable digital forensic results (Kovar 

& Bollo, 2018). The maneuverability of the UAS above a stationary target is a 

primary capability of the aerial platform and in congested areas (surface roads and 

vertical obstacles), this method of collection occurs rapidly as this research 

supports. As with an MVA, collisions cause much debris and depending on the 

energy transfer involved, can be linearly displaced, further complicating data 

collection (Kovar & Bollo, 2018; Araújo, Mendonça, Fontinele, & Oliveira, 2019). 

Analyzing CSI data is much harder and granular as the target data is much smaller. 

In most cases, LE officials investigating are generally able to look at a scene 

and with some or no witnessing feedback, quickly have a general idea of the 

situation (Katz & Halámek, 2016). This is possible because it requires skill sets in 

engineering, art, and of course, experience (Struble, 2014). The addition of an 

accurate three-dimensional perspective supports the use of these tools for incredible 

accuracy and confirmation. As enumerated by Lord Kelvin (1883), the knowledge 

of something came from measurement and expression in numbers. 

Clearing a scene quickly is vital for many reasons. The integration of UAS 

technology has enabled more rapid and accurate data collection for the 

investigator/reconstructionist (Thivierge, 2012; Katz & Halámek, 2016; Kovar & 

Bollo, 2018). The use of advances in technology and rendering three-dimensional 
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modeling can speed the process of accurate measurements of trajectories and marks 

(impact, gouge, scrub, skid, yaw) (Struble, 2014). The investigation must be 

unbiased, yet accurate with measurements of marks and deformation, all of which 

assist in the calculations of impact force, trajectories, and additional environmental 

evidence (Thivierge, 2012). Angles are important when reconstructing what 

happened as they help support investigative conclusions (Lyu, Huang, Wu, Duan, 

& Li, 2017). 

Breakthroughs for UAS CSI work continue. Courts have begun to accept 

three-dimensional point clouds as evidence as well as the data from the drone itself 

(Salamh, Karabiyik, & Rogers, 2019). Using aerial captured data in conjunction 

with ground-based imagery has also proved successful (Urbanová, Jurda, Vojtíšek, 

& Krajsa, 2017). Terrestrial and UAS based three-dimensional point clouds are 

used to create a digital fly-through video of crime scenes (FARO, n.d.; Pix4D, n.d.). 

As this technology proliferates, it is logical to assume advancements in digital 

forensic data collection and processing will follow. 

Platform Selection. For many LE entities, budgets are limited, and integration of 

advanced technology like UAS can be a significant challenge as indicated by a 

federal law enforcement agent (personal communication, 26 September 2019). 

Obtaining adequate systems requires practical consideration of what the agency is 

realistically capable of supporting, including cost, operational conditions, 

processing times, use restrictions, or point densities (Elsner et al., 2018). Based on 

the expanded use of UAS in many commercial applications such as building 

information management which calculates change management over time, or 

infrastructure inspections to identify impending failures, there is a need to capture 

data to compile for complete assessment accurately. This enhances the speed of 

business we see today where technology is integrated (Gabrlik, Cour-Harbo, 

Kalvodova, Zalud, & Janata, 2018). Resource decisions are quickly made, or 

components are acquired to negate possible system failures. Data collection tools 

must be able to collect accurate data very quickly and the data must be accessible. 

There are many viable UAS platforms available and for reasonable costs. Many are 

compatible with standard photogrammetry processing tools such as Pix4D, 

Precision Mapper, or Metashape. 

Point Cloud Accuracy. As the point cloud is a product of photogrammetry 

whereby remotely collected data (imagery) is compiled into an accurate 

representation of the scanned object, it is not without error. Accuracy is obtained 

through a best-obtained alignment of linear, planar, and spherical (or volumetric) 

structure (Dittrich, Weinman, & Hinz, 2017). Some of these structures contain 

noise, or have holes, and thus impart error into the final model. Researchers Fiolka, 

Rouatbi, and Bender (2017) have explored methodologies to address vertical and 

horizontal gaps in point clouds. Concurrently, researchers globally (Alidoost & 

Arefi, 2017; Dittrich, Weinman, & Hinz, 2017; Fiolka, Rouatbi, & Bender, 2017; 
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Gabrlik, Cour-Harbo, Kalvodova, Zalud, & Janata, 2018; Gabara & Sawicki, 2017; 

Grenzdörffer, Niemeyer & Frank, 2015; Slocum & Parrish, 2017) have been 

focused on studying, identifying, and overcoming these errors in recent years. The 

level of accuracy appears not only to be tied to the type of sensor used (LiDAR vs. 

RGB imagery) but also the ultimate costs of these sensors and UAS platforms 

collectively. 

 Several industry/government organizations have been involved in 

establishing conventional digital forensic investigation guidelines. These are the 

Association of Chief Police Officers and the National Institute for Science and 

Technology who established closely-related principles and guidelines for obtaining 

digital forensic evidence (Roder, Choo, & Le-Khac, 2018). Based on the available 

literature, there does not appear to be well-established standards for acquiring 

forensic information specifically with UAS. Reliance upon collected data for 

acceptance in court proceedings has been established according to federal law 

enforcement agents (personal communication, 26 September 2019). Pix4D 

published five use cases where UAS-acquired data was processed and used by 

public safety agencies for evidence purposes in court proceedings for public safety 

and emergency response (Pix4D, 2019). 

 Many factors relate to building accurate point clouds, not the least of which 

is collecting data with sufficient overlap. More overlap of imagery leads to more 

accuracy (Turner, Lucieer & Wallace, 2014). Process completion times are greatly 

affected by the number of images included in the dataset (Torres-Sánchez et al., 

2018), which was observed in this project. While these factors contribute to 

accuracy, it must be stated that the type of sensor used is essential. In this research, 

the higher resolution cameras (20-megapixels) on the DJI Phantom 4 Pro (P4P) and 

DJI Inspire 2 (I2) had smaller RMS errors compared to the 12-megapixel sensors 

of the other UAS examined. Other sensors, such as LiDAR, while the most 

expensive, were the most accurate (Elsner et al., 2018) based upon verified location 

accuracy. 

Three-Dimensional Laser Scanners. This research relied on the accuracy of laser 

scanning data from the FARO terrestrial scanner. In forensic examinations, 

terrestrial-based laser devices were found to be ideal systems to capture accurate 

data for investigations (Liberadski, Adamczyk, Witkowski, & Sitnik, 2018; Komar, 

Davy-Low, & Decker, 2012). They were capable of scanning in all light conditions 

and some could capture color imagery, were predominately portable, stand-

mounted sensors were resistant to environmental conditions (FARO, 2015; 

McFadden, 2018). Law enforcement entities using FARO were able to produce 

compelling presentations in 3D that have been accepted at trial and led to Grand 

Jury indictments (Archuleta, n.d.).  

 Laser scanners were unarguably capable of the most accurate acquisition of 

forensic data where scanners may be employed as this literature and research 
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shows, but are not without limitations. The cost of a FARO scanner system was 

between $30-50,000. Logistical support, processing capability, training, and 

operator qualifications can make a high-end product like a FARO, a resource-

intensive acquisition. In establishing operational costs, terrestrial-based systems 

can challenge a small municipal LE agency. These systems are labor-intensive in 

setup and movement when acquiring the requisite data.  

Contrast this with the use of an airborne platform whereby data collection 

can be completed in a matter of minutes. From arrival on site, setup, preflight, the 

aircraft can accomplish a slightly less accurate combination of datasets, then 

process in a similar time to a terrestrial system. During a recent homicide 

investigation Florida, a UAS was compared to traditional methods. There were 

81%-time savings (over nine person-hours saved) during the data acquisition and 

reconstruction process (Galante, 2018). Time savings is a value proposition to 

public safety organizations. The International Association of Fire Chiefs (2017) 

recommended analyzing the cost-benefit by public safety agencies to support 

justification from the savings opportunities during a procurement process. 

Sufficient aerial systems can be acquired for several thousand dollars and take the 

space of a small carry on. Of the aircraft examined in this research, cost varied from 

$500 for the Parrot Bebop 2 to $7,000 for the DJI Inspire 2 (B&H Photo, n.d.). 

 

Methods 

The research problem for this study was to determine if UAS point cloud 

data could be as accurate as terrestrial LiDAR data from a FARO laser scanner. 

Another goal of the research was to determine which UAS, flying altitude and flight 

pattern created the most accurate point cloud compared to a terrestrial LiDAR 

dataset. To understand these problems, the study used two research hypotheses. 

Hypotheses 

H10: There are no statistical differences in accuracy between UAS point clouds and 

a FARO point cloud. 

H11: There are statistical differences in accuracy between UAS point clouds and a 

FARO point cloud. 

H20: There are no statistical differences in point cloud accuracy by the UAS flown. 

H21: There are statistical differences in point cloud accuracy by the UAS flown. 

Study Area 

The study area consisted of a simulated crime scene involving damaged 

vehicles, located in Prescott, AZ, United States. The area consisted of six vehicles 

with a varying degree of damage to body part crimpling to and bullet holes in 

windshields, fenders, doors, and rocker panels to indicating the potential damage a 

vehicle may obtain during a crime, such as a vehicle chase or involvement in an 

active shooter incident. Figure 1 depicts the location of the study area. The field 

elevation was 4410 feet above mean sea level. 
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Figure 1. The geographical location of the study location and sample area. 

 

Sample Population 

The area consisted of a 1158m2 section containing the staged crime scene. 

A set of 11,235,328 points across the seven UAS using a confidence level of 95% 

and a small effect size of 0.10, yielded a post hoc achieved power of 1.00. The point 

cloud root mean square (RMS) errors were recorded from the UAS data compared 

to the FARO dataset. A combination of t-testing and analysis of variance was used 

to examine the mean differences between UAS and FARO point cloud points. As 

depicted in Figure 2, a shapefile was used as a processing area in Pix4Dmapper to 

confine the extents of the UAS point cloud area to ensure each UAS point cloud 

was examined over the same area.  
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Figure 2. Example point cloud from a DJI Mavic Pro at 200 feet AGL within an 1158 m2 

processing area. 

 

Limitations 

This research compared differences between UAS point clouds collected 

from multiple unmanned aircraft at multiple flying heights in multiple flying 

patterns and a terrestrial-based FARO laser scanner over a staged crime scene in 

Arizona. Other UAS or other types of terrestrial LIDAR sensors may have other 

capabilities or collected in other conditions that could affect similar comparison 

outcomes. Each UAS was flown sequentially over two days. The FARO scanner 

data was captured on a separate day. Although there was no movement in the scene 

between these days, different lighting conditions could have also affected the 

results. There were varying daylight conditions for each of the flights between one 

aircraft to the other, causing the sun angle to change between UAS and day of data 

collection. Ground Control Points (GCPs) were used in the UAS point clouds and 

a point cloud registration process, using the same GCPs as registration points, was 

performed in CloudCompare to minimize this variation; however, there may still 

be effects of the sun angle change not accounted for between flights.  

Remotely Sensed Data Collection 

The UAS data collection took place on October 21 and 22, 2019, using a 

DJI Mavic Enterprise Dual, DJI Mavic Pro, DJI Phantom 4, DJI Inspire 1, DJI 

Inspire 2, Parrot Anafi, and Parrot Bebop 2. Each UAS flew at 82 feet, 100 feet, 
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150 feet, 200 feet, and 250 feet AGL respectively. Additionally, each UAS flew a 

grid pattern, double grid pattern, and circle pattern at each flying altitude. The 

number of images varied between UAS, flying altitude, and flight pattern, as shown 

in Table 1. 

 

Table 1 

Quantity of Images for Each UAS at Each Altitude and Flight Pattern 

 

Flight Pattern M1P M2ED I1 I2 P4P Anafi PB2 

82 Feet Grid 45 102 35 45 39 32 23 

82 Feet Double Grid 85 338 55 119 88 100 43 

82 Feet Circle 36 50 71 36 35 45 10 

82 Feet Double & Circle 121 219 91 155 123 145 53 

100 Feet Grid 32 68 24 40 28 27 19 

100 Feet Double Grid 76 82 47 62 66 84 22 

100 Feet Circle 34 51 36 36 35 38 10 

100 Feet Double & Circle 110 66 83 98 101 122 32 

150 Feet Grid 18 44 15 24 15 15 16 

150 Feet Double Grid 47 64 26 47 37 40 29 

150 Feet Circle 36 46 36 36 35 26 11 

150 Feet Double & Circle 83 55 62 83 72 66 40 

200 Feet Grid 15 14 12 14 12 11 19 

200 Feet Double Grid 29 50 23 30 26 30 31 

200 Feet Circle 35 62 35 35 36 18 16 

200 Feet Double & Circle 64 56 58 65 62 48 47 

250 Feet Grid 12 12 9 15 12 7 8 

250 Feet Double Grid 23 16 11 30 49 23 8 

250 Feet Circle 35 72 35 24 59 19 15 

250 Feet Double & Circle 58 44 46 54 54 42 27 

Note. Values shown are the number of images. M1P is the DJI Mavic Pro, M2ED is the DJI Mavic 

2 Enterprise Dual; I1 is the DJI Inspire 1; I2 is the DJI Inspire 2 equipped with an X5S and 15mm 

1.7 ASPH lens; P4P is the DJI Phantom 4 Professional; Anafi is the Parrot Anafi; and BP2 is the 

Parrot Bebop 2. 

 

Five Aeropoints (Aeropoints, n.d.) were used as GCPs and were emplaced 

throughout the scene. All the data from all five points were uploaded to the 

Aeropoints server. Fully-Automated processing in correction-network-coverage-

area method of processing was used. The Aeropoints GNSS system connected to a 

virtual reference network at 40km away and had a mean-variance of 20 mm. All 

five GCPs were imported to Pix4Dmapper Pro and used as 3D GCPs. 
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The Pix4Dcapture mobile application software (Pix4D, version 4.3.31) was 

used to plan the UAS flights, shown in Figure 3, for all UAS except the DJI M2ED. 

The M2ED control station was a DJI Smart Controller, on which Pix4Dcapture 

would not run. For the M2ED, the embedded DJI mission flight planner as a part 

of the DJI Pilot app was used with a custom camera setting using the camera 

specifications of sensor size, sensor dimensions, and focal length from DJI (DJI, 

n.d.). The flight altitudes were set at 82 feet, 100 feet, 150 feet, 200 feet, and 250 

feet, respectively. The same 150-foot x 150-foot area was used for each grid and 

double grid pattern, while the circle flying pattern had a 190-foot x 184-foot area. 

Flight planning parameters were set with an 80% longitudinal and 70% lateral 

overlap ratio for the grid and double grid pattern. For the grid patterns, the camera 

depression angle was set at -90 degrees (nadir). For the double grid patterns, the 

angle was set to -70 degrees (oblique). An image capture angle of 10° was used for 

the circle patterns with the camera pointing to the center of the scene. The camera 

was set to trigger automatically.  

The DJI Mission Flight application for the M2ED was set to 80% 

longitudinal and 70% lateral overlap with a 25m margin. The camera depression 

angle was set to -90 degrees for the grid pattern, -60 degrees for the double grid 

pattern and the camera was pointed at the center of the scene for the circle patterns. 

The camera was automatically triggered. 
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Figure 3. Pix4Dcapture mission plan for the DJI Mavic Pro with 82 feet double grid pattern. 

 

FARO 

The ground data was collected on November 4th, 2019 using a FARO Focus 

S70 Laser Scanner. There were 20 scans taken around the scene from varying 

heights. Placement around the scene is shown in Figures 4 and 5. The system was 

set on ¼ resolution with three times quality giving a point distance of 6.1mm apart 

at 10m. At three times quality, the scan repeats three times to verify the location of 

each point giving greater accuracy to the rendered scans. Each scan took 66 pictures 

at the end to help with the color balance of the rendered scene. The images were 

also used to create the planar view which aided with registering the scans. The 

planar view was used to take measurements of the scene; however, the 

measurement data came from the underlying point cloud. In order to recreate the 

UAS images, the same five GCPs were used in the scene. 
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Figure 4. FARO scanner emplaced at the staged crime scene. Prescott, AZ. November 4, 2019. 

 

The scans were processed using FARO SCENE software (FARO, n.d.). The 

software took all the scans and images taken from the scene and built a three-

dimensional point cloud of the area. The software examined items in multiple scans 

using the laser data and the images it took to register or overlap the scans. SCENE 

also examined for targets throughout the scene to increase the accuracy of the 

registration. Targets were items added to the scene such as specific size reflective 

spheres or checkerboards. The GCPs were also used to increase the accuracy of the 

registration process. Manual verification of the registration was performed after the 

point cloud for the entire scene was generated. The laser scanner collection resulted 

in a point cloud of 184,381,887 points with a registration accuracy of 2.6mm. 

Registration accuracy was the same as the accuracy calculated by the SCENE 

software. 
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Figure 5. FARO Scanner placement in the sample area. 

 

Image Processing 

 Each set of UAS images was processed in Pix4Dmapper Pro separately. 

Table 2 reflects the Pix4Dmapper Pro processing options for all UAS point cloud 

datasets. A shapefile of the sample area boundaries was selected as a processing 

area to keep the UAS point clouds at the same dimension, regardless of UAS, flying 

altitude, or flight pattern. Using the same shapefile between all datasets enabled the 

exact geolocation extents of a processing area for all UAS datasets.  
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Table 2 

Pix4Dmapper Pro Processing Options 

 

Processing Option Setting 

Keypoints Image Scale Full 

Image Matching Pairs Aerial Grid or Corridor 

Targeted Number of Keypoints Automatic 

Calibration Method Standard 

Pointcloud Image Scale Original Image Size 

Pointcloud Density High 

Pointcloud Minimum Matches 3 

Generate Textured Mesh No 

Pointcloud Export XYZ, Merge Tiles Into One File 
Note. Processing options in Pix4D originated from the 3D Maps template, then tailored to 

only generate and export a pointcloud.  

 

Point Cloud Registration and Comparison 

After processing in Pix4D, the UAS point clouds were imported into the 

CloudCompare software. The FARO point cloud was also imported into 

CloudCompare. Each UAS point cloud was finely registered to the FARO point 

cloud, using the UAS point cloud as the alignment dataset and the FARO point 

cloud at the reference dataset. An RMS difference of 1.0e-5, 10% final overlap, 

50,000-point random sampling limit, rotation XYZ, and translation across Tx, Ty, 

and Tz were used as registration parameters. The final RMS error of each UAS 

point cloud registration was recorded. 

The points from each UAS point cloud were compared to the FARO, using 

the M3C2 plugin in CloudCompare (Lague, Brodu, & Leroux, 2013). The plugin 

was an algorithm using a method called Multiscale Model to Model Cloud 

Comparison (M3C2) (Lague, et al., 2013). The algorithm calculated distances of 

points between point clouds, taking into consideration three-dimensional variation 

in surface orientation and estimates (Lague, Brodu, & Leroux, 2013). According to 

James, Robson, and Smith (2017), the M3C2 algorithm is uniquely suited for 

calculating point cloud distances of point clouds generated by structure-from-

motion (SfM) photogrammetry software. Pix4Dmapper, which is an SfM-based 

photogrammetry software, was used in this research to generate the UAS point 

cloud data. 

To calculate the distances between points in the point clouds, each UAS 

point cloud was designated as cloud #1 and the FARO point cloud with an accuracy 

of 2.6mm (0.0085 feet) was designated as cloud #2. Cloud # 1 was subsampled at 

a rate of 0.811700, yielding a mean subsample of 19,509 core points in the UAS 

point clouds. Subsampling sped up the distance calculations, without significantly 
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affecting the measurement accuracy (CloudCompare, n.d.). The RMS error from 

the previous step was used in the M3C2 distance calculations for a confidence 

computation of each point. CloudCompare generated a subsampled file with the 

calculated distances from each UAS point cloud dataset to the FARO point cloud 

dataset. From these outputs, statistical analysis was performed to determine 

statistical differences between the UAS and FARO point cloud data as well we 

between UAS to develop a recommended best practice aircraft, flying altitude, and 

flight patterns with the most accurate results. 

 

Results 

 UAS registered point clouds generated in Pix4Dmapper Pro from a DJI 

Mavic Pro, DJI Mavic 2 Enterprise Dual, DJI Inspire 1, DJI Inspire 2, DJI Phantom 

4 Professional, Parrot Anafi, and Parrot Bebop 2 flying at 82 feet, 100 feet, 150 

feet, 200 feet, and 250 feet respectively in a grid, double grid, circle, and double 

grid + circle pattern were compared to a FARO laser scanner point cloud using 

CloudCompare. The UAS point clouds RMS errors were calculated within 

CloudCompare when registered to the laser scanner point cloud using the Aeropoint 

GCP positions as registration points to determine UAS point cloud accuracy. An 

M3C2 plugin in CloudCompare was used to calculate the precision errors between 

points of the UAS point clouds to the FARO point cloud, which was used for UAS-

to-UAS comparisons. 

UAS Point Cloud Differences to FARO Point Cloud 

A one-sample t-test was conducted to determine if statistically significant 

differences existed in RMS errors between UAS point clouds and the FARO point 

cloud. The UAS point cloud accuracy (M = 33.2mm, SD = 6.4mm), compared to 

the FARO point cloud t(139) = 56.5, p = 0.00. As depicted in Table 3, The test 

revealed that there was a significant difference in UAS point cloud accuracy 

compared to the FARO point cloud accuracy of 2.6mm. These results suggest there 

was enough evidence to reject the null hypothesis; there was a significant difference 

between each UAS point cloud and the FARO point cloud.  

 

Table 3 

One-Sample T-Test and CI: UAS Point Cloud RMSE when Registered to FARO 

Point Cloud 

N M SD SE Mean 

140 33.21 6.41 0.54 

Difference 95% CI for Difference  

30.61 (29.54, 31.68)   

T-Value DF p-Value  

56.54 139 0.000   

Note: Units are in millimeters. FARO point cloud accuracy was 2.6mm. 
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UAS Point Cloud Results by Flying Height 

A one-way ANOVA was conducted to compare the effect of the RMS error 

of UAS point clouds by flying height when registered to the FARO point cloud in 

CloudCompare. An analysis of variance showed an effect of UAS point clouds on 

FARO point cloud was significant, F (4, 135) = 6.66, p = 0.000, see Figure 6. As 

indicated in Table 4 and Figure 7, a post hoc Tukey test showed that two flying 

height groups (Group A: 82 feet, 100 feet, and 150 feet; Group B: 200 feet and 250 

feet) differed significantly at p < .05; however, there were was no significant 

difference by flying height within-group A. While not significant within-group A, 

the RMS error was smaller as the flying height decreased. 

 

 
Figure 6. RMS error (in millimeters along the Y axis) of UAS point clouds by flying height when 

registered to the FARO point cloud.  
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Table 4 

Grouping Information Using Tukey Method and 95% Confidence 

Flying Height N Mean (mm) Grouping 

82 Feet AGL 28 30.44 A   

100 Feet AGL 28 31.24 A   

150 Feet AGL 28 32.24 A   

200 Feet AGL 28 34.23 A B 

250 Feet AGL 28 37.72   B 

Note: Groups A and B are significantly different.  

 

 

 
Figure 7. Tukey test results showing the differences in RMS error between UAS flying heights. 

Differences are in millimeters.  

 

 To determine which flying height has the greatest precision to the FARO 

point cloud, a point distance information between UAS point clouds and the FARO 

point cloud was performed using the M3C2 plugin in CloudCompare. A 

comparison of point distances between the UAS point clouds and the FARO point 

cloud enabled a determination of which flying height most closely compared 

(greatest precision) to the FARO dataset. The subsampled core points from each 

UAS point cloud was grouped by flying height. The M3C2 plugin calculated the 
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distance from each point in the UAS point to the closest point in the FARO point 

cloud and assigned a distance value. 

 A one-way ANOVA was conducted to compare the effect of the calculated 

point distances of UAS points by flying height to the FARO points using the M3C2 

plugin in CloudCompare. An analysis of variance showed an effect of UAS point 

clouds on FARO point cloud was significant, F (4, 2739223) = 551.62, p = 0.000, 

see Figure 8. The test results indicate there was a significant difference in the 

calculated distance by flying height. The 100 feet flying height had the smallest 

mean difference in calculated points between the UAS-generated point clouds and 

the FARO point cloud.  

 

 
Figure 8. ANOVA test results showing the mean point distance calculation between UAS flying 

heights to the FARO points. Differences are in millimeters. Points higher in the chart reflect a 

smaller calculated mean distance by flying height.  

 

UAS Point Cloud Results by Flight Pattern 

A one-way ANOVA was conducted to compare the effect of the RMS error 

of UAS point clouds by flight pattern when registered to the FARO point cloud in 

CloudCompare. An analysis of variance showed an effect of UAS point clouds on 

FARO point cloud was significant, F (3, 136) = 4.21, p = 0.007, see Table 5. As 

shown in Figure 9, the point clouds with the double grid + circle flight pattern had 

the smallest RMS error when registered to the FARO point cloud. 
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Table 5 

Descriptive Statistics of UAS Point Cloud Accuracy (RMS Error) by Flight Pattern 

 

Flight Pattern N M SD 95% CI 

Double Grid + Circle 35 31.15 4.35 (29.076, 33.215) 

Circle 35 31.59 3.84 (29.524, 33.663) 

Double Grid 35 34.52 8.85 (32.45, 36.59) 

Grid 35 35.50 6.43 (33.43, 37.57) 
Note. Measurements are in millimeters.  

 

 

 
Figure 9. RMS error (in millimeters along the Y axis) of UAS point clouds by flight pattern when 

registered to the FARO point cloud.  

 

To determine which flight pattern had the greatest precision to the FARO 

point cloud, a point distance information between UAS point clouds and the FARO 

point cloud was performed using the M3C2 plugin in CloudCompare. A 

comparison of point distances between the UAS point clouds and the FARO point 

cloud enabled a determination of which flight pattern most closely compared 

(greatest precision) to the FARO dataset. The subsampled core points from each 

UAS point cloud was grouped by flight pattern. The M3C2 plugin calculated the 
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distance from each point in the UAS point to the closest point in the FARO point 

cloud and assigned a distance value. 

 A one-way ANOVA was conducted to compare the effect of the calculated 

point distances of UAS points by flight pattern to the FARO points using the M3C2 

plugin in CloudCompare. An analysis of variance showed an effect of UAS point 

clouds on FARO point cloud was significant, F (3, 2739224) = 1183.07, p = 0.000, 

see Figure 10. The test results indicate there was a significant difference in the 

calculated distance by flight pattern. The double grid + circle flight pattern had the 

smallest mean difference in calculated points between the UAS-generated point 

clouds and the FARO point cloud. 

 

 
Figure 10. ANOVA test results showing the mean point distance calculation between UAS flight 

pattern to the FARO points. Differences are in millimeters. Points higher in the chart reflect a smaller 

calculated mean distance by flight pattern.  

 

UAS Point Cloud Results by Aircraft 

A one-way ANOVA was conducted to compare the effect of the RMS error 

of UAS point clouds by aircraft model when registered to the FARO point cloud in 

CloudCompare. An analysis of variance showed an effect of UAS point clouds on 

FARO point cloud was significant, F (6, 133) = 4.17, p = 0.001, see Table 6. As 

shown in Figure 11, the point clouds from the P4P had the smallest RMS error when 

registered to the FARO point cloud. 
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Table 6 

Descriptive Statistics of UAS Point Cloud Accuracy (RMS Error) by Aircraft 

 

Aircraft N Mean StDev 95% CI 

P4P 20 29.27 2.25 (26.61, 31.92) 

I2 20 30.92 3.54 (28.27, 33.58) 

I1 20 31.54 4.51 (28.89, 34.20) 

M1P 20 33.41 5.36 (30.75, 36.07) 

Anafi 20 34.47 3.36 (31.82, 37.13) 

BP2 20 36.29 6.03 (33.63, 38.94) 

M2ED 20 36.44 11.75 (33.78, 39.09) 
Note. Measurements are in millimeters. P4P is the DJI Phantom 4 Professional; I2 is the DJI Inspire 

2 equipped with an X5S and 15mm 1.7 ASPH lens; I1 is the DJI Inspire 1; M1P is the DJI Mavic 

Pro; Anafi is the Parrot Anafi; BP2 is the Parrot Bebop 2; M2ED is the DJI Mavic 2 Enterprise Dual. 

 

 

 
Figure 11. RMS error (in millimeters along the Y axis) of UAS point clouds by aircraft when 

registered to the FARO point cloud.  

 

To determine which aircraft had the greatest precision to the FARO point 

cloud, a point distance information between UAS point clouds and the FARO point 

cloud was performed using the M3C2 plugin in CloudCompare. A comparison of 
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point distances between the UAS point clouds and the FARO point cloud enabled 

a determination of which aircraft most closely compared (highest precision) to the 

FARO dataset. The subsampled core points from each UAS point cloud was 

grouped by aircraft. The M3C2 plugin calculated the distance from each point in 

the UAS point to the closest point in the FARO point cloud and assigned a distance 

value. 

 A one-way ANOVA was conducted to compare the effect of the calculated 

point distances of UAS points by aircraft to the FARO points using the M3C2 

plugin in CloudCompare. An analysis of variance showed an effect of UAS point 

clouds on FARO point cloud was significant, F (6, 2739221) = 1030.45, p = 0.000, 

see Figure 12. The test results indicate there was a significant difference in the 

calculated distance by aircraft. The P4P had the smallest mean difference in 

calculated points between the UAS-generated point clouds and the FARO point 

cloud. 

 

 
Figure 12. ANOVA test results showing the mean point distance calculation between UAS aircraft 

model to the FARO points. Differences are in millimeters. Points higher in the chart reflect a smaller 

calculated mean distance by aircraft model.  

 

Conclusions and Recommendations 

aUAS point clouds were not as accurate as the FARO scanner point cloud. 

The mean UAS point cloud RMS error of 33.2 mm from seven different UAS flying 

at five different flying heights and four different flight patterns and was 
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significantly larger than the FARO point cloud accuracy of 2.6mm. The mean UAS 

point cloud density was 11,678 points per square meter, while the FARO point 

cloud had a density of 196,454 points per square meter. The mean UAS point 

spacing was 9.25mm, while FARO point spacing was 2.3mm. The UAS point 

clouds may still be accurate enough for forensic analysis at a crime scene or vehicle 

accident reconstruction. 

There was a significant difference in flying height on the accuracy of the 

UAS point clouds. Flying at 82 feet, 100 feet or 150 feet resulted in smaller RMS 

errors than flying at 200 feet or 250 feet. Flying at 100 feet AGL yielded the highest 

precision of calculated point distances compared to the FARO point locations. 

Although these data revealed that as the flying height decreased, the RMS accuracy 

of the point cloud increased, but not significantly between 82 feet, 100 feet, or 150 

feet. Additionally, flying at lower flying heights may not be practical over a crime 

scene because of obstacle clearance and other safety-related requirements. Based 

on these observations, a flying height of 100 feet AGL yielded the most precision 

and accuracy combined when compared to other flying heights. 

There was a significant difference in UAS point cloud accuracy by the flight 

pattern when comparing UAS point clouds to the FARO point cloud. The double 

grid + circle flight pattern had smaller RMS errors compared to the other patterns. 

Using a multi-flight pattern, such as the double grid + circle, enabled Pix4Dmapper 

photogrammetry software to create more oblique-oriented points in the UAS point 

cloud. More oblique-oriented points in the UAS point cloud aligned to the 

predominantly oblique-oriented points in the FARO point cloud, because the 

FARO scanner was ranged between three and ten feet off the ground. Based on 

these observations, flying a UAS in the double grid + circle flight pattern had the 

most accuracy and precision when comparing the calculated point location between 

the UAS point clouds to the FARO point cloud. 

There was a significant difference between UAS aircraft models when 

comparing RMS accuracy. The P4P had a smaller RMS error compared to other 

aircraft. The P4P also had the highest precision with the smallest calculated point 

location between the UAS point clouds and FARO point cloud. The Inspire 2 had 

nearly the same accuracy and precision as the P4P, indicating the potential of a 

higher resolution image sensor (20 megapixels for both the P4P and I2 aircraft 

sensors) to contribute to 1) an increased density of points in a point cloud, 2) an 

increased RMS accuracy during the registration process, and 3) greater precision 

when comparing the calculated point distances between UAS and FARO point 

clouds. Based on these observations, using a 20-megapixel equipped sensor in a 

UAS, such as the P4P or I2, is recommended for crime scene reconstruction data 

collection from a UAS. 

There was a substantial difference in the number of images captured, RMS 

accuracy and calculated point distance between the M2ED and other UAS equipped 

22

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 7 [2020], Iss. 1, Art. 6

https://commons.erau.edu/ijaaa/vol7/iss1/6
DOI: https://doi.org/10.15394/ijaaa.2020.1432



 
 

with rectilinear lenses (e.g., M1P, P4P, I1, I2, Anafi) at the same flying heights and 

similar flight patterns. Since the M2ED was controlled from the DJI Smart 

Controller control station, it was not possible to fly the M2ED using Pix4Dcapture 

as was the case for all other aircraft. Instead, the autonomous flight planning of the 

M2ED was performed using the DJI Pilot app. Further research is recommended to 

examine the differences of different flight planning software/ applications, such as 

Pix4Dcapture compared to DJI Pilot, and their contribution to RMS accuracy and 

calculated point differences. 

It is also recommended for further research to examine the differences of 

RMS accuracy and calculated point locations between UAS point clouds and FARO 

point clouds with UAS equipped with LIDAR technology rather than the use of 

photogrammetry from visual images. Laser scanning technology equipped on a 

UAS can potentially provide faster data collection compared to a terrestrial laser 

scanner, such as the FARO scanner. There may also be a difference in density of 

point cloud points or point spacing from a LIDAR equipped UAS compared to an 

RGB sensor. 
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