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Abstract 

Over the last decade, military unmanned aerial vehicles (UAVs) have experienced exponential growth and 

now comprise over 40% of military aircraft. However, since most military UAVs require multiple operators 

(usually an air vehicle operator, payload operator, and mission commander), the proliferation of UAVs has 

created a manpower burden within the U.S. military. Fortunately, simultaneous advances in UAV 

automation have enabled a switch from direct control to supervisory control; future UAV operators will no 

longer directly control a single UAV subsystem but, rather, will control multiple advanced, highly 

autonomous UAVs. However, research is needed to better understand operator performance in a complex 

UAV supervisory control environment. The Naval Research Lab (NRL) developed SCOUT™ (Supervisory 

Control Operations User Testbed) to realistically simulate the supervisory control tasks that a future UAV 

operator will likely perform in a dynamic, uncertain setting under highly variable time constraints. The study 

reported herein used SCOUT to assess the effects of task load, environment complexity, and automation 

reliability on UAV operator performance and automation dependence. The effects of automation reliability 

on participants’ subjective trust ratings and the possible dissociation between task load and subjective 

workload ratings were also explored. Eighty-one Navy student pilots completed a 34:15 minute pre-scripted 

SCOUT scenario, during which they managed three helicopter UAVs. To meet mission goals, they decided 

how to best allocate the UAVs to locate targets while they maintained communications, updated UAV 

parameters, and monitored their sensor feeds and airspace. After completing training on SCOUT, 

participants were randomly sorted into low and high automation reliability groups. Within each group, task 

load (the number of messages and vehicle status updates that had to be made and the number of new targets 

that appeared) and environment complexity (the complexity of the payload monitoring task) were varied 

between low and high levels over the course of the scenario. Participants’ throughput, accuracy, and 

expected value in response to mission events were used to assess their performance. In addition, participants 
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rated their subjective workload and fatigue using the Crew Status Survey. Finally, a four-item survey 

modeled after Lee and Moray’s validated (1994) scale was used to assess participants’ trust in the 

payload task automation and their self-confidence that they could have manually performed the 

payload task. This study contributed to the growing body of knowledge on operator performance within a 

UAV supervisory control setting. More specifically, it provided experimental evidence of the relationship 

between operator task load, task complexity, and automation reliability and their effects on operator 

performance, automation dependence, and operators’ subjective experiences of workload and fatigue. It also 

explored the relationship between automation reliability and operators’ subjective trust in said automation. 

The immediate goal of this research effort is to contribute to the development of a suite of domain-specific 

performance metrics to enable the development and/or testing and evaluation of future UAV ground control 

stations (GCS), particularly new work support tools and data visualizations. Long-term goals also include 

the potential augmentation of the current Aviation Selection Test Battery (ASTB) to better select future UAV 

operators and operational use of the metrics to determine mission-specific manpower requirements. In the 

far future, UAV-specific performance metrics could also contribute to the development of a dynamic task 

allocation algorithm for distributing control of UAVs amongst a group of operators. 

Keywords: unmanned systems, supervisory control, automation, task load, complexity, 

automation reliability, operator performance, automation dependence, trust, workload, fatigue, 

reaction time, accuracy, throughput 

 

 

 

 



UAV OPERATOR PERFORMANCE 6 

Table of Contents 
Acknowledgements ............................................................................................................. 2 

Copyright ............................................................................................................................ 3 

Abstract ............................................................................................................................... 4 

Purpose ................................................................................................................................ 9 

2 Review of the Literature ................................................................................................ 17 

2.1 Designing Automation for Performance ................................................................. 17 

2.2 Automation Reliability and Signal Detection Theory ............................................ 21 

2.3 Trust in Automation ................................................................................................ 32 

2.4 Environment Complexity ........................................................................................ 41 

2.5 Task Load and Subjective Workload ....................................................................... 44 

2.6 Situation Awareness and UAV Ground Control Station Design ............................. 48 

2.7 The Need for New Operator State and Performance Metrics ................................. 52 

2.8 Supervisory Control Testing Environments ............................................................ 54 

2.9 The Development of SCOUT ................................................................................. 58 

2.10 Literature Review Summary and Identified Gaps ................................................ 62 

3 Method ........................................................................................................................... 65 

3.1 Participants .............................................................................................................. 65 

3.2 Apparatus ................................................................................................................ 66 

3.3 Procedure ................................................................................................................ 67 



UAV OPERATOR PERFORMANCE 7 

3.4 Independent Variables ............................................................................................. 70 

3.5 Dependent Variables ............................................................................................... 75 

4 Results ............................................................................................................................ 78 

4.1. Overview ................................................................................................................ 78 

4.2 UAV Operator Performance .................................................................................... 80 

4.3 UAV Operator Subjective Workload ....................................................................... 95 

4.4 UAV Operator Subjective Fatigue ........................................................................ 103 

4.5 UAV Operator Automation Dependence ............................................................... 105 

4.6 UAV Operator Trust and Self-Confidence in Automation .....................................110 

5 Discussion .....................................................................................................................117 

5.1 Overview ................................................................................................................117 

5.2 Effects of Task Load ..............................................................................................117 

5.3 Effects of Automation Reliability ......................................................................... 120 

5.4 Changes in Subjective Workload and Fatigue ...................................................... 123 

5.5 Automation Dependence ....................................................................................... 125 

5.6 Trust in Automation .............................................................................................. 127 

6 Conclusion ................................................................................................................... 131 

7 Significance.................................................................................................................. 136 

References ....................................................................................................................... 138 

Appendix A: Supervisory Control Operations User Testbed (SCOUT) Operation ........ 151 



UAV OPERATOR PERFORMANCE 8 

A.1 Overview .............................................................................................................. 151 

A.2 Demographics and Initial Setup ........................................................................... 152 

A.3 Mission Training .................................................................................................. 155 

A.4 Mission Components and Planning...................................................................... 156 

A.4.1. UAV characteristics and capabilities. ........................................................... 156 

A.4.2. Target characteristics. ................................................................................... 158 

A.4.3. Route planning.. ........................................................................................... 160 

A.4.4. Route automation limitations. ...................................................................... 163 

A.4.5. Waypoints. .................................................................................................... 163 

A.4.6. Restricted operating zones (ROZs). ............................................................. 164 

A.5 Gameplay ............................................................................................................. 167 

A.5.1. Communication. ........................................................................................... 167 

A.5.2. Sensor orientation task ................................................................................. 170 

A.5.3. Reporting UAV position ............................................................................... 171 

A.5.4. Payload task. ................................................................................................ 173 

A.5.5. Fatigue and workload questionnaires. .......................................................... 175 

A.6 Summary .............................................................................................................. 177 

Appendix B: Low-Cost Eye Tracking............................................................................. 178 

B.1 Low-Cost Eye Tracking Systems ......................................................................... 179 
 



UAV OPERATOR PERFORMANCE 9 

THE EFFECT OF TASK LOAD, AUTOMATION RELIABILITY, AND ENVIRONMENT 

COMPLEXITY ON UAV SUPERVISORY CONTROL PERFORMANCE 
Purpose  

At present, multiple people are required to control most military unmanned aerial vehicles (UAVs); 

this has created a manpower burden that will be exacerbated as more unmanned systems come online. In 

2005, UAVs represented only 5% of the U.S. military’s aircraft inventory. By 2010, that percentage rose to 

41% (Gertler, 2012).  

 

Figure 1.1. DoD UAV inventory as of July 1, 2013. Reprinted from the “Unmanned Systems Integrated 
Roadmap,” by the Department of Defense (2013). Note. Group 1 = micro/mini tactical UAVs, group 2 = 
small tactical UAVs, group 3 = tactical UAVs, group 4 = persistent UAVs, and group 5 = penetrating UAVs. 
Please see DoD (2013) page six for more information about these categories.  
 

The DoD UAV inventory included 10,964 vehicles as of July 1, 2013 (Figure 1.1). This growth, 

along with parallel advances in UAV automation and interoperability, has catalyzed efforts to reduce the 
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manning requirements of UAV aircraft by moving from direct control of specific subsystems (e.g., payload 

and avionics) by multiple operators to single-operator supervisory control of multiple advanced, 

autonomous unmanned platforms. The shift toward supervisory control of unmanned systems is already 

underway; many operational unmanned systems feature waypoint navigation and mission management via 

maps (Sibley, Coyne, & Morrison, 2015).  

Most current military unmanned platforms require three operators. The operators maintain one of 

three distinct roles: Mission Commander (MC), Air Vehicle Operator (AVO), and Payload Operator (PO). 

The mission commander is responsible for mission management, requesting access to controlled airspace, 

and communicating with customers of the services provided by the UAV. They are also responsible for 

disseminating information to the AVO and PO. The AVO is responsible for navigation (usually by managing 

waypoints) and monitoring the health and status of the vehicle. The PO is responsible for managing the 

platform’s sensor suite and relaying relevant information to the MC and/or customer(s). 

The task loads of the three roles are highly variable and, due to increased automation 

during certain mission phases leading to significant downtime for one or more of the roles, 

frequently unbalanced across the course of the mission. For example, the AVO might not interact 

with an unmanned platform at all while it is loitering over an area of interest because loitering is 

automated. In contrast, the PO is constantly tasked while the UAV is over target, as they are 

responsible for moving the sensor from one object of interest to another (Sibley, Coyne, & 

Morrison, 2015).  

In addition to periods of unbalanced tasking, there are mission phases during which the 

entire crew is fully engaged. Close air support (CAS) missions, which are missions providing 

direct support to a ground unit engaged in combat, require significant human input and attention. 

The ground environment in a CAS mission is very fluid, with rapid and frequent changes in 
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friendly, enemy, and non-combatant locations. These entities cannot be identified exclusively 

with on-board sensors, so steady communication with the ground unit is often required. The 

ground commander’s objectives can change rapidly in response to enemy actions or other 

changes in the ground environment, necessitating further communication with ground forces. 

Though efforts to pass some information via datalink are underway and some systems reviewed 

by the Naval Research Lab during the development of SCOUT heavily relied on chat messaging 

systems, communication is still conducted mostly via voice radio with personnel of varying 

experience levels and knowledge of the situation at hand. Airspace deconfliction is an additional 

source of task load in CAS missions, during which numerous aircraft are often operating within a 

small area. UAV operators must avoid overflight of friendly positions during weapons delivery 

and must deconflict from ground launched weapons and weapons delivered from other aircraft 

(Eggers & Draper, 2006; J. Coyne, personal communication, August 8, 2018). 

Due to the high task load and dynamic, complex environment inherent to CAS missions, 

supervisory control of multiple UAVs by a single operator is not feasible for such missions. 

Mission management automation for CAS missions would require, at minimum, all of the 

aircraft, ground vehicles, personnel, weapons, tactical objectives, airspace, terrain, urban 

features, friendly, enemy, and non-combatants to be integrated in a digitized network. The 

creation of a networked data system sufficiently robust, detailed, and resistant to enemy 

exploitation to support a CAS mission is unlikely in the foreseeable future. The CAS 

environment benefits from the cognitive strengths and decision-making of human UAV 

operators, who are skilled at maintaining tactical SA and rapidly assessing and responding to 

ambiguous situations within the rules of engagement (Eggers & Draper, 2006). 
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On the other hand, Intelligence Surveillance and Reconnaissance (ISR) missions, the goal 

of which are to provide updated high-resolution imagery of predefined areas of interest, require 

minimal human input once the unmanned platform is airborne (Sibley, Coyne, & Sherwood, 2016).  

Most ISR mission targets are pre-planned, identified by accurate coordinates, and arrive at a 

manageable rate. Moreover, high-altitude ISR missions are often conducted at altitudes in excess 

of 60,000 feet, where most other aircraft cannot fly, few weather problems occur, and are beyond 

the range of many mobile threat systems. While the simulated ISR missions described herein 

feature rotary-winged UAVs operating at lower altitudes, the missions still take place in a 

relatively benign environment. While weather and surface-to-air threats become a concern at the 

altitudes at which rotary-winged aircraft operate, the simulated ISR missions, like most 

operational ISR missions, are still conducted within a well-defined environment subject to 

relatively few variations. Given the well-defined nature of the ISR mission environment, the 

essential mission tasks (e.g., navigation and aiming the sensor) are highly amenable to 

automation and ISR missions are thus an ideal use case for single-operator supervisory control of 

multiple unmanned systems (Eggers & Draper, 2006). 

However, at present, military UAVs are still manned by a team of three operators (or 

more), regardless of mission type. The inefficiency and inflexibility of the current UAV control 

paradigm has influenced the DoD’s desire to invert the ratio of operators to UAVs. Specifically, 

the 2015 Naval S&T Strategy calls for  

The development of a distributed system of heterogeneous unmanned systems relying on 

network-centric, decentralized control that is flexible in its level of autonomy, with the 

ability to get the right level of information to the right echelon at the right time. (ONR, 

2015, p. 28) 
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In the proposed decentralized network, groups of operators will share control of a large, 

distributed network of heterogeneous unmanned systems that are dynamically assigned based on 

theater mission requirements. Operators will no longer be statically assigned to a single task 

(e.g., payload operation) or vehicle, but will perform a common set of tasks for multiple 

heterogeneous platforms at different mission phases to accomplish mission objectives. This new 

paradigm is expected to increase both manning efficiency and flexibility (Sibley, Coyne, & 

Sherwood, 2016). For instance, flexible autonomy would allow for a hybrid approach of single 

and multiple aircraft control. The operator to vehicle ratio could be reduced for high task load 

combat missions, such as CAS, tactical reconnaissance (Tac Recce), Air Strike Control (ASC), 

and Combat Search and Rescue (CSAR). The most demanding of combat missions, such as 

CAS, might still require multiple operators to be assigned to each vehicle. Conversely, the 

operator to vehicle ratio could be increased for ISR missions, with a single operator assigned to 

multiple UAVs (Eggers & Draper, 2006).  

Although ISR missions take place under relatively benign and predicable conditions, they are still 

nevertheless complex. In order to support the successful implementation of this new UAV management 

paradigm, research is needed to better understand operator performance during UAV supervisory control 

operations, especially under the variable time pressure (periods of both task overload and underload are 

common) and complexity intrinsic to the setting. Since the long-term goal of this research effort is the 

development of specialized UAV operator performance and status metrics to enable the development and 

evaluation of new work support tools (e.g., automated decision aids and data visualizations) and personnel 

selection, studies should be conducted within a testing environment that replicates the operational 

environment as closely as possible. The Naval Research Laboratory (NRL) developed SCOUT™ 
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(Supervisory Control Operations User Testbed), a complex, realistic simulation environment, to fulfill this 

purpose (Sibley, Coyne, Avvari, Mishra, & Pattipati, 2016).  

In the study described herein, SCOUT was used to evaluate the effects of variable task load, 

environment complexity, and automation reliability on operators’ UAV supervisory control performance 

during a simulated ISR mission. More specifically, the study sought to support the following hypotheses:  

• Hypothesis 1: 

o Ho: There is no significant effect of task load, payload task complexity, and automation 

reliability on operators’ adjusted expected value on the UAV route-planning task. Expected 

value is defined as the sum of the products of each target’s value and the probability of its 

successful location. Adjusted expected value compares this value for each participant 

against the performance of the participant with the best plan. See section 3.5.1.1 for more 

detailed information on the calculation of expected value.  

o Ha: There is a significant effect of task load, automation reliability, and payload task 

complexity on operators’ adjusted expected value on the UAV route-planning task. 

• Hypothesis 2: 

o Ho: There is no significant effect of task load, payload task complexity, and automation 

reliability on operators’ accuracy on the payload task. 

o Ha: There is a significant effect of task load, payload task complexity, and automation 

reliability on operators’ accuracy on the payload task. 

• Hypothesis 3: 

o Ho: There is no significant effect of task load, payload task complexity, and automation 

reliability on operators’ throughput on the communication task. Throughput is a composite 
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measure that accounts for both accuracy and response time. See section 3.5.1.2 for more 

information on throughput and its calculation.  

o Ha: There is a significant effect of task load, payload task complexity, and automation 

reliability on operators’ throughput on the communication task. 

• Hypothesis 4: 

o Ho: There is no significant effect of task load, payload task complexity, and automation 

reliability on operators’ subjective workload.  

o Ha: There is a significant effect of task load, payload task complexity, and automation 

reliability on operators’ subjective workload. 

• Hypothesis 5: 

o Ho: There is no significant effect of task load, payload task complexity, and automation 

reliability on operators’ subjective fatigue.  

o Ha: There is a significant effect of task load, payload task complexity, and automation 

reliability on operators’ subjective fatigue. 

• Hypothesis 6: 

o Ho: There is no significant effect of task load, payload task complexity, and automation 

reliability on operators’ automation dependence. 

o Ha: There is a significant effect of task load, payload task complexity, and automation 

reliability on operators’ automation dependence. 

• Hypothesis 7: 

o Ho: There is no significant effect of automation reliability on operator’s subjective trust 

ratings of the automation.  
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o Ha: There is a significant effect of automation reliability on operator’s subjective trust 

ratings of the automation. 
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2 Review of the Literature 

2.1 Designing Automation for Performance 

Table 2.1 
Automation Functions and Human Cognition Equivalent 

Automation Function 
Class 

Level of Automation: 
Description 

Four-Stage Model 
Equivalent 

 

Information acquisition Low: mechanically 
moving sensors to scan 
and observe 

Sensory processing Positioning and 
orienting of sensory 
receptors, sensory 
processing, initial pre-
processing of data prior 
to full perception, and 
selective attention 

Moderate: organization 
of incoming 
information/priority list 
with raw data 
visible/preserved 
High: pre-filtered 
information brought to 
attention of operator 
(raw data not 
visible/preserved) 

Information analysis Low: algorithms to 
extrapolate a variable 
over time (i.e., 
prediction) 

Perception/working 
memory 

Rehearsal, integration, 
and inference 

Medium: integration of 
multiple input variables 
into a single value 
High: information 
manager that provides 
context-dependent 
summaries of data 

Decision and action 
selection 

Selection from decision 
alternatives and 
implementation of 
decision (for ten levels 
of automation, see Table 
2.2) 

Decision making Decision is made based 
on prior cognitive 
processing 

Action implementation Response selection Implementation of 
response/action 
consistent with prior 
decision 

Note. Adapted from “A Model for Types and Levels of Human Interaction with Automation,” by 
R. Parasuraman, T. B. Sheridan, and C. D. Wickens, 2000, IEEE Transactions on Systems, Man, 
and Cybernetics- Part A: Systems and Humans, 30(3), p. 287–289. Copyright 2000 by IEEE. 
 

According to Parasuraman, Sheridan, and Wickens (2000), automation refers to “the full 

or partial replacement of a function previously carried out by the human operator” (p. 287). They 

proposed that automation could be applied to four classes of functions, which parallel the four-

stage model of human information processing (Table 2.1). Automation can be applied to one 
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class of function (e.g., information acquisition), different combinations of functions (e.g., 

information acquisition and information analysis), or all four functions (Parasuraman, Sheridan, 

& Wickens, 2000).  

Table 2.2 
Sheridan and Verplank’s 10 Levels of Automation of Decision and Action Selection 
 Automation 

Level 
Description 

Low 1 The computer offers no assistance: human must take all decisions and 
actions 

 2 The computer offers a complete set of decision/action alternatives 
 3 Narrows the selection down to a few decision/action alternatives 
 4 Suggests one decision/action 
 5 Executes the suggested decision/action if the human approves 
 6 Allows the human restricted time to veto before automatic execution  
 7 Executes automatically, then necessarily informs the human 
 8 Informs the human only if asked 
 9 Informs the human only if it, the computer, decides to 
High 10 The computer decides everything, acts autonomously, ignoring the 

human 
Note. Adapted from “A Model for Types and Levels of Human Interaction with Automation,” by 
R. Parasuraman, T. B. Sheridan, and C. D. Wickens, 2000, IEEE Transactions on Systems, Man, 
and Cybernetics- Part A: Systems and Humans, 30(3), p. 287. Copyright 2000 by IEEE. 
 

Within these functions, automation can be designed to supplant human activity to varying 

degrees. The role of automation in a human-machine system can best be described as a 

continuum of levels, ranging from full manual performance by a human operator to fully 

automated “black box” systems (Table 2.2). When designing automation for a specific system, 

the system designers must consider the following questions: (1) To what class of function(s) 

should the automation apply? (2) What level of automation should be applied within each 

function? (3) How reliable is the automation? And (4) what are the potential consequences of the 

automated decision/action(s)? (Parasuraman, Sheridan, & Wickens, 2000). 

An important consideration for system designers in deciding on the function and level of 

automation in a human-machine system is the human performance consequences in the resulting 
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system. Particular types and levels of automation are evaluated by examining their human 

performance consequences, which include any potential impacts on: mental workload, situation 

awareness, complacency, and skill degradation. This requires a two-part process. First, initial 

research or modeling are needed to predict the upper and lower bounds of automation level; the 

upper bound is set at the level of automation at which human performance degrades relative to 

manual operation of the same task, and the lower bound is set at the point which automation at a 

given level is shown to improve human performance relative to manual operation of the task. 

Once the upper and lower bounds of automation level are determined for a specific system, the 

initial findings should be reevaluated while considering secondary criteria, most notably the 

reliability of the automation and the risk-level of the automated function (i.e., the severity of the 

consequences of the automated decision/action). Ideally, this process would continue in an 

iterative manner until the ideal automation level is determined, but real-world budget and 

timeline constraints could necessitate an abbreviation of the process (or even preclude it).  

Furthermore, other secondary factors that could come into play include ease of system 

integration, efficiency/safety trade-offs, liability issues, and the manufacturing and operating 

costs of the system itself (Parasuraman, Sheridan, & Wickens, 2000). 

Considering that the entire purpose of an ISR mission is to locate and image targets of 

interest, system designers are much more likely to set a liberal response criterion for automated 

visual search aids because there is relatively low risk associated with a false alarm (see section 

2.2 for more information on alert thresholds and signal detection theory). Unlike CAS missions, 

where a false alarm could result in erroneous weapons deployment (e.g., friendly fire or 

collateral damage), the risk associated with a false alarm on an ISR mission is relatively benign. 

From the perspective of system designers and other stakeholders, a miss on an ISR mission is 
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much more problematic because one or more missed critical targets can defeat the entire mission 

goal (e.g., Parasuraman, Sheridan, & Wickens, 2000). However, frequent false alarms are known 

to erode user trust in automation more so than misses (Bliss, 2003), and this erosion of trust can 

lead to the automation being underutilized with resulting increases in operator workload and 

decreases in operator performance.   

It is therefore much more realistic, and useful, to search for indicators of operator 

performance and state that are sensitive enough to discriminate between the human performance 

impacts of automated aids with relatively small differences in reliability, as it is unlikely that 

highly unreliable automation will be considered by system designers fine-tuning the alert 

threshold during testing and evaluation of new search task automation for use on ISR missions. 

Search aids designed for use in CAS missions, on the other hand, are much more likely to 

feature automation with a conservative response criterion because the consequences of a false 

alarm are potentially high. The Naval S&T Strategy (2015) calls for a distributed system of 

heterogeneous unmanned systems with dynamically changing levels of autonomy. As previously 

discussed, CAS missions require significant human input and attention; such missions presently 

require the full engagement of a three-operator team (the MC, the AVO, and the PO). Due to the 

high task load and dynamic, complex environment inherent to CAS missions, it is likely that 

such missions will require more direct operator control and will benefit from the resilience of 

human decision-making under conditions of uncertainty. Thus, for the foreseeable future, the 

manning requirement of UAVs engaged in CAS missions will remain high and automation 

appropriate for use under such conditions will likely fulfill information acquisition and analysis 

functions and will feature a relatively low LOA with preservation of raw data (Eggers & Draper, 

2006; Parasuraman, Sheridan, & Wickens, 2000). 



UAV OPERATOR PERFORMANCE 21 

2.2 Automation Reliability and Signal Detection Theory 

Automation reliability can be defined in terms of signal detection theory (SDT; Green & 

Swets, 1966; Zuniga, McCurry, & Trafton, 2014). SDT applies whenever a human operator or an 

automated system must discriminate between two possible states; in many cases, this task takes 

the form of discrimination between a signal (stimulus present) and noise (stimulus absent). For a 

given experimental trial, the human or computer decision-maker decides whether a signal is 

present or absent based on the value of a decision variable. If the decision variable is sufficiently 

high, a point defined by the value of the criterion, the decision-maker will indicate that a signal 

is present. Conversely, if the decision variable does not exceed the criterion, the decision-maker 

will indicate that a signal is absent (Nevin, 1969). 

The distribution of the decision variable across trials is the signal distribution, whereas 

the distribution for noise trials is the noise distribution. However, since noise is always present, 

the signal distribution could more accurately be described as the signal + noise distribution. The 

regions of the signal and noise distributions that fall above the criterion value are the hit rate and 

false alarm rate, respectively. The regions of the signal and noise distributions that fall below the 

criterion value are the miss and correct rejection rates, respectively.  
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Figure 2.1. Noise distribution (left), signal + noise distribution (right), and d-prime. Reprinted 
from “'Noisy Patients'—Can Signal Detection Theory Help?” by R. Oliver, O. Bjoertomt, R. 
Greenwood, and J. Rothwell, 2008, Nature Reviews Neurology, 4(6), p. 306. Copyright 2008 by 
Springer Nature Ltd.  
 

The discriminability of a signal, or d-prime (d’), is determined by both the degree of 

separation and the spread of the noise and signal distributions (Figure 2.1). More specifically, d’ 

is the sensitivity index statistic used in signal detection theory. Mathematically, d’ is defined as 

the separation between the signal and noise distributions divided by the spread of the 

distributions. The degree of separation will be larger for strong signals. The spread will be 

greater when there is less noise. A large spread and a large degree of separation will both result in 

less overlap between the signal and noise distributions. The degree of overlap is an inverse 

measure of sensitivity. A higher d’ indicates a smaller overlap between the signal and noise 

distributions, a greater sensitivity and, thus, an easier discrimination task (Macmillan, 2002).  
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Figure 2.2. Hit, miss, false alarm, and correct rejection regions given a liberal response criterion. 
Reprinted from “'Noisy Patients'—Can Signal Detection Theory Help?” by R. Oliver, O. 
Bjoertomt, R. Greenwood, and J. Rothwell, 2008, Nature Reviews Neurology, 4(6), p. 306. 
Copyright 2008 by Springer Nature Ltd. 
 

However, sensitivity is not the only factor to influence hit and false alarm rates. Hit and 

false alarm rates are influenced by two factors: sensitivity (the degree of overlap between the 

signal and noise distributions) and the location of the criterion (c). The location of the criterion 

changes with the decision-maker’s tendency to indicate either the presence or absence of a 

signal, or their response bias. Response bias is independent of sensitivity. Negative values of c 

indicate a liberal response bias, or a tendency to indicate that a signal is present (Figure 2.2). One 

is more likely to observe a liberal response bias when the costs of a miss are higher than the costs 

of a false alarm, which is likely the case for ISR missions. A positive c value indicates a 

conservative response bias, or tendency to indicate that a target is absent. Conservative response 
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biases are more commonly observed when the cost of a false alarm is higher than the cost of a 

miss. For example, any target-detection prior to live weapons fire in a CAS mission would likely 

involve a very conservative response criterion. However, the response criterion for a target 

detection task in an ISR mission, where the consequences of a false alarm are less severe but a 

missed target would be more problematic, is likely to be more liberal and prone to false alarms. 

Table 2.3  
Automation Reliability in Terms of Signal Detection Theory (SDT) 

AUTOMATION RELIABILITY SIGNAL 
PRESENT 

AUTOMATION 
RESPONSE 

SDT OUTCOME 

CORRECT FUNCTIONING (MORE RELIABLE) X X Hit 
  Correct Rejection 

ERROR (LESS RELIABLE) X  Miss 
 X False Alarm 

Note. Noise is always present, regardless of whether the signal itself is present or absent.  

As previously stated, automation reliability can be defined in terms of signal detection 

theory (SDT; Green & Swets, 1966; Zuniga, McCurry, & Trafton, 2014). Correct identification 

of a signal (e.g., a potential target) by the automation can be thought of as a hit, no response to 

noise in absence of a signal as a correct rejection, failure to respond to a signal as a miss, and 

erroneous response to noise in absence of a signal as a false alarm. Hits and correct rejections 

indicate correct automation functioning, while misses and false alarms indicate automation errors 

(Table 2.3). In the context of an automated system, sensitivity (d’) is a measure of the combined 

rate of hits and false alarms of the system. Sensitivity indicates the accuracy of the system in 

differentiating the signal from the noise. However, systems of equal sensitivity can exhibit very 

different response patterns depending on the response criterion (Zuniga, McCurry, & Trafton, 

2014). 

 In the study described herein, automation reliability is operationalized using SDT or, 

more specifically, as the percentage of correct responses (hits and correct rejections) for all trials. 

The automation employed in the high reliability condition has a 97.0% hit rate and 97.0% correct 
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rejection rate, which works out to an overall reliability of 97.0%. The automation in the low 

reliability condition possesses a more liberal response criterion; it has a 100.0% hit rate and 

85.0% correct rejection rate, which works out to an overall reliability of 92.5%. This is 

problematic for participants, who are penalized for false alarms. SCOUT’s sensor feed 

automation is generally subject to a more liberal response criterion (i.e., it is prone to a greater 

number of false alarms) since it is designed to simulate payload automation designed for an ISR 

mission.  

There has been a substantial amount of research conducted on the impact of automation 

reliability on operator performance. However, most of the current research has been focused on 

the reliability of information acquisition and information analysis automation (e.g., Chancey, 

Bliss, Yamani, & Handley, 2016; Parasuraman, Molloy, & Singh, 1993; Rice, 2009; Rovira, 

McGarry, & Parasuraman, 2007; Wickens & Dixon, 2007; Wickens, Dixon, Goh, & Hammer, 

2005; Dixon, Wickens, & McCarley, 2007) but relatively little attention has been paid to decision 

and action selection or action implementation automation (e.g., Calhoun et al., 2016; Ruff, 

Narayanan, & Draper, 2002). 

Generally, research has shown that operator performance is increased in systems 

employing diagnostic automation when said automation is 80% or more reliable and operator 

performance is largely unaffected by automation with a 70% to 80% reliability. However, 

automated aids less than 70% reliable begin to negatively impact operator performance (Dixon & 

Wickens, 2006; Hillesheim & Rusnock, 2016; Maltz & Shinar, 2003; Parasuraman & Manzey, 

2010; and Wickens & Dixon, 2007).  

According to Meyer (2001, 2004), false alarms and misses affect automation dependence 

via two independent processes that manifest in categorically different behaviors: compliance and 
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reliance. Operator response to a warning signal is referred to as compliance. Operator non-action 

in response to a silent system indicating normal operation (i.e., in absence of a warning signal) is 

referred to as reliance (Chancey, Bliss, Yamani, & Handley, 2017). Meyer (2001, 2004) proposed 

that reliance and compliance are independent functions of false alarm rate and miss rate, 

respectively. While miss rate does seem to only influence reliance, excessive false alarms seem 

to degrade both reliance and compliance. Dickson and Wickens (2006) investigated the 

independence of compliance and reliance in a multitask environment, a simulated UAV task, and 

found that automation false alarms negatively affected both operator compliance and reliance. 

Wickens, Dixon, Goh, and Hammer (2005) found similar evidence using eye tracking metrics in 

the same UAV supervisory control task. Dixon, Wickens, and McCarley (2007) found that miss-

prone automation did not affect operator compliance, but negatively affected concurrent task 

performance because the operator had to shift attention away from the concurrent task in order to 

catch potential automation misses. They also found that FA-prone automation negatively affected 

performance on the automated task due to reduced operator compliance, the “cry wolf” effect, 

and negatively affected performance on the concurrent task due to reduced operator reliance. The 

latter finding indicates that participants diverted their attention from the concurrent task to 

monitor the raw data in the automated task.  

In general, in dual-task paradigms, FA-prone automation has been found to affect both 

operator compliance and reliance and, as a result, concurrent task performance as much, if not 

more, than miss-prone automation. FA-prone automation, on the other hand, negatively impacts 

performance on the automated task more than miss-prone automation due to the “cry wolf” effect  

(Dixon, Wickens, & McCarley, 2007; Levinthal & Wickens, 2006; Wickens, Dixon, & Johnson, 

2005). However, the literature is inconsistent with regard to the ultimate effect of automation 
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bias on operator multi-task performance. As Levinthal and Wickens (2006) noted, many studies 

(e.g., Wickens, Dixon, Goh, & Hammer, 2005; Wickens, Dixon, & Johnson, 2005) involved 

physically demanding manual control of UAVs and, thus, a larger potential performance hit 

associated with task switching. In their study, which employed waypoint navigation and did not 

require participants to manually control the UAVs, miss-prone automation on a concurrent target 

identification task increased compliance and decreased reliance, and false-alarm prone 

automation decreased compliance and increased reliance. In addition, although Levinthal and 

Wickens (2006) found that false-alarm prone automation was potentially more disruptive due to 

its association with delayed response times to automation alerts consistent with the “cry wolf” 

effect, they ultimately found no effect of automation bias on concurrent UAV routing task 

performance. This is perhaps because the UAV task was less demanding than the full manual 

control required by Wickens, Dixon, Goh, and Hammer (2005) and Wickens, Dixon, and 

Johnson (2005), so participants could strategically allocate their attention between the automated 

target identification task and concurrent UAV routing task.  

Automation dependence and the reliance-compliance dichotomization at higher 

LOAs. However, although the literature agrees that excessive false alarms affect user 

compliance, usually operationalized as the response time to automated alerts, there is a 

possibility that operators’ compliance behavior with higher LOA aids, such as SCOUT’s level six 

veto automation, might be qualitatively different than the frequently studied levels four and five 

since LOAs six and above do not necessarily require human interaction with the system (Table 

2.2). Since human interaction with the automation is not required, response time is a poor 

indicator of automation compliance and reliance. In the instance of SCOUT’s automation, and 

other higher LOA aids, eye tracking measures could be used to gauge operator compliance and 
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reliance in absence of traditional performance metrics. Wickens, Dixon, Goh, and Hammer 

(2005) used visual scanning measures to assess user compliance and reliance on diagnostic 

automation during a simulated UAV supervisory control task. They found that miss-prone (60% 

reliable) automation reduced the percent dwell time (PDT) on the area of interest (AOI) 

representing the concurrent task and false-alarm prone automation (60% reliable) delayed the 

alert-driven shift in operator attention to the automated task AOI. The PDT that the eyes spent 

outside of the AOI representing the automated task was used as an indicator of reliance during 

periods of low workload. Visual scan response time (the time it took a participant’s gaze to return 

to the automated task in response to an auditory alert) was used as an indicator of compliance 

during periods of high workload. However, this study utilized automation with a LOA of four 

(Table 2.2) and thus always required user interaction with the automated system. 

In contrast, one would expect fundamentally different visual scanning behavior with level 

six and above automation, such as SCOUT’s veto automation. While the PDT spent outside of 

the automated task AOI would remain a valid measure of reliance, visual scanning behavior 

indicative of compliance would look quite different. An operator complying with the automaton 

would not shift their attention to the automated task AOI in response to an auditory alert because 

user interaction is not required. Rather, a shift in visual attention to the automated task AOI 

would be more indicative of low compliance and low operator dependence on the automation. In 

the case of veto automation and higher LOAs, the PDT spent outside of the automated task AOI 

would also indicate operator compliance in addition to reliance. Therefore, in the case of veto 

automation and higher LOAs, the cognitive distinction between reliance and compliance 

becomes inconsequential because the resulting operator behavior looks the same when eye 

tracking metrics are used. In the case of level six veto automation, traditional performance 
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metrics could only be used to gauge what could be termed non-compliance, operationalized as 

the percentage of time an automatically selected target is overridden by the operator after an 

auditory alert (and perhaps the RT to override, though there are potential confounds associated 

with RT in a multi-task environment). However, this definition of ‘non-compliance’ is muddled 

with reliance because, fundamentally, the operator is engaging in such behavior because they 

hesitate to rely on the automation to indicate a problem on the automated task.  

Therefore, when assessing operator interaction with veto automation and other higher 

LOAs, a more general measure of automation dependence is appropriate. Within SCOUT, 

automation dependence is operationalized as the percentage of responses that followed the 

automation’s recommendation. This is consistent with Calhoun et al.’s (2016) definition of 

automation dependence (which they termed “reliance”) for their study, in which they compared 

the effects of level five and level six automation on operator workload and performance on a 

UAV supervisory control task. Other studies involving veto automation exist (e.g., Liu, Wasson, 

& Vincenzi, 2009; Ruff, Narayanan, & Draper, 2002), but they are relatively uncommon. There 

appears to be a gap in the literature regarding the use of eye tracking data to examine operator 

dependence on automation at higher LOAs which, although not possible to employ in the present 

study due to technical constraints, is a potential topic for future research. Calhoun et al. (2016) 

attempted to use eye tracking metrics (including PDT on AOIs) to characterize operator 

dependence on level five and six automation, but experienced data quality problems.  

Table 2.4 
Summary of Low and High Reliability Operationalizations for Selected Automation Reliability 
Studies 

Study Low 
reliability 

High 
reliability 

Population Task Notes 

Calhoun et al. 
(2016) 

60% 86.7% 131 college students UAV 
supervisory 
control  

ALOA test bed 
used  
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Chancey, Bliss, 
Yamani, and 
Handley (2016) 

60% 90% 88 undergraduate 
students 

PC-based flight 
simulation with 
manual tracking 
and fuel 
management  

Multi-Attribute 
Task Battery 
(MATB II) used 
 

Dickson and 
Wickens (2006) 

67% 
(Ex. 1) / 60% 
(Ex. 2) 

100% (Ex. 
1) / 80% 
(Ex. 2) 

32 undergraduate 
and graduate 
students (including 
20 licensed pilots) 

UAV 
supervisory 
control 

 

Dixon, Wickens, 
and McCarley 
(2007)  

60% 100% 32 undergraduate 
students 

Concurrent two-
dimensional 
continuous 
compensatory 
tracking task and 
system (single 
gauge) 
monitoring task  

 

Levinthal & 
Wickens (2006) 

60% 90% 42 students Concurrent UAV 
management and 
tank-detection 
task  
 

SIL (Systems 
Integration Lab) 
UAV simulator 
used 

Parasuraman, 
Molloy, and Singh 
(1993) 

57.25% 87.5% 24 volunteers (10 
men, 14 women; 
age: 19–43; right 
handed; corrected-
to-normal vision) 

PC-based flight 
simulation with 
manual tracking 
and fuel 
management and 
automated 
system-
monitoring task 

Multi-Attribute 
Task Battery 
(MAT) used 

Rice (2009) 55%–95% in 5% increments 380 undergraduate 
students 

Visual search 
task using still 
aerial 
photographs 

Single-task 
environment; 
participant head 
position 
controlled with 
chin rest 

Rovira, McGarry, 
and Parasuraman 
(2007) 

60% 80% 18 undergraduate 
students 

Low-fidelity 
command and 
control (C2) 
sensor-to-shooter 
targeting 
simulation 

 

Ruff, Narayanan, 
and Draper (2002) 

95% 100% 12 volunteers (8 
men, 4 women; age: 
22–49; corrected-to-
normal vision; 
including two 
licensed pilots) 

UAV 
supervisory 
control 

UMAST (UAV 
Modeling and 
Analysis 
Simulator 
Testbed) ROV 
simulation 
software with 
UDAT 
(UMAST 
Decision 
Aiding Tool)  
used 
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Wickens, Dixon, 
Goh, and 
Hammer (2005) 

60% 100% 39 student pilots UAV 
supervisory 
control 

 

 

A paucity of small reliability manipulations. Furthermore, the majority of studies used 

unrealistically strong reliability manipulations, with two exceptions (Table 2.4). The first, Ruff, 

Narayanan, and Draper (2002), had only a 5% difference between their low and high automation 

reliability conditions. However, they found no main effect of reliability on operator performance, 

possibly due to limited power because of the relatively weak manipulation and/or the small 

sample size (n = 12). The second, Rice (2009), also employed a fine-grain reliability 

manipulation in a study wherein participants were tasked to locate a tank (or determine there was 

no tank). They were aided in their visual search by level four information analysis automation 

that varied in reliability from 95% to 55% in 5% increments. In addition to the reliability 

manipulation, the decision aid was biased either to produce only hits or only misses. However, 

while the results indicated a statistically significant increase in performance as the reliability of 

the decision aid improved, there was not a significant effect of automation bias on performance 

or a significant interaction effect for automation bias and reliability. While the primary purpose 

of Rice’s study was to use a state-trace analysis to determine whether a multiple-process theory 

of operator trust could explain the effects of automation errors on automation dependence—and 

to that effect it did succeed in showing that FA-prone and miss-prone automation differently 

affected operator’s reliance and compliance behavior—there was ultimately no effect of 

automation bias on operator performance. In addition, the study took place within a rigidly 

controlled single-task environment; visual angle and participant head position were controlled 

using a chin rest. While the high degree of control made sense for this particular study, there is 

still a current gap in the literature on the effects of smaller reliability manipulations on operator 
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performance and automation dependence-related behavior within a more realistic, complex, and 

noisy multi-task environment. It is still uncertain whether many commonly used (and some less 

commonly used, but promising) traditional and physiological performance metrics are sensitive 

enough to detect the effects of smaller reliability manipulations on operator performance and 

automation dependence-related behavior in a relatively noisy UAV supervisory control task. 

The 4.5% difference in the low and high reliability conditions in the SCOUT study 

described herein is much smaller than the 30%+ difference in correct vs. incorrect automation 

responses commonly seen in the literature. This was an intentional experimental design decision; 

competing real-world decision aids will most likely not have such extreme differences in 

reliability, so it will be useful to see if the proposed metrics are sensitive enough to detect a 

weaker manipulation. 

2.3 Trust in Automation 

 2.3.1 Trust from a stakeholder perspective. Lee and See (2004) define trust as “the 

attitude that an agent will help achieve an individual’s goals in a situation characterized by 

uncertainty and vulnerability” (p. 2). The proposed decentralized, flexible system of UAV control 

represents a significant change in how UAV operators must interact with autonomous systems, 

and what information they would require to support mission requirements. Underlying these 

considerations are two fundamental needs: the need to establish trust in automated UAV systems 

and the improvement of the trustworthiness of automated UAV capabilities. Trust in UAV 

automation must be built for initial stakeholders—system designers, testers, and policymakers—

to feel confident fielding an UAV system; the competence of its automation must be high and its 

limitations known. Likewise, future automated UAV subsystems only have operational value if 

commanders and operators have sufficient confidence in their reliability and resilience to deploy 
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them on missions. Improvements in the trustworthiness of automated capabilities will thus 

increase operational value (DSB, 2016).  

Unlike most commercial autonomous systems, which are designed for use in benign 

environments, autonomous systems designed for military application must be able to function in 

complex, unpredictable environments with the possible presence of adversaries intent on 

defeating their normal operation. In such high-stakes environments, it is critical that the operator 

be able to trust the automation. One barrier to trust is that automation lacks human-analog 

sensation, perception, and decision making. The different sensors and data sources that inform 

the automation’s decision-making processes are not the same as those of its human operator, and 

it could therefore be operating on different contextual assumptions. Moreover, machine learning, 

reasoning, and decision-making can take vastly different paths to that of humans, which could 

lead human operators to question the trustworthiness of their machine partners (DSB, 2016). 

The formation of human trust in automation begins at design time, with the establishment 

of what the automation can and cannot handle. Additionally, the system design should include 

real-time indicators of automation trustworthiness so that the operator can deal with variations in 

automation reliability when the operational environment exceeds the original design envelope or 

assumptions of the automated system. However, a basic awareness of systemic and/or 

environmental changes is not enough; the automation must be able to adapt to these changes. It 

must also effectively communicate changes in its own state and the environmental effects on its 

reliability to its human operator. System design should include sufficient anticipatory indicators 

so that the system is predictable and, should the environment exceed the design envelope of the 

automation, allows the operator to intervene in a timely and effective manner (DSB, 2016). 
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The building of stakeholder trust in new automation is yet another reason why a new 

suite of UAV operator performance metrics is needed: to establish the human performance 

impacts of new automation and its reliability, both to increase stakeholder buy-in and trust in the 

system and to inform the development of anticipatory aids and real-time indicators of automation 

reliability.  

2.3.2 Trust an indicator of automation use: Do operators always notice poor 

reliability? Much of the literature postulates that automation reliability is an important factor of 

human use of automated systems because of its influence on operator trust; unreliable 

automation lowers human trust and can thus negate the benefits of implementing automation in 

the first place (Bliss, Gilson, & Deaton, 1995; Dixon & Wickens, 2006; Dixon, Wickens, & 

Chang, 2005).  

As previously stated, Lee and See (2004) define trust as “the attitude that an agent will 

help achieve an individual’s goals in a situation characterized by uncertainty and vulnerability” 

(p. 2). While the “agent” can also refer to another person, for this discussion it shall refer to 

automation that interacts with the environment on behalf of the operator. Automated systems 

may be underutilized or disabled due to operator mistrust, as is the case with systems that give 

frequent false alarms (Parasuraman, Sheridan, & Wickens, 2000). There is evidence that false 

alarms are more damaging to operator trust than misses (Bliss, 2003) and that misses and false 

alarms affect operator trust differently (Dixon & Wickens, 2006; Dixon, Wickens, & McCarley, 

2007; Meyer, 2001, 2004; Rice, 2009).  
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Figure 2.3. The relationship between beliefs, attitudes, intentions, and behaviors according to the 
theory of planned behavior. Adapted from “Attitudes and the Attitude-Behavior Relation: 
Reasoned and Automatic Processes” by I. Ajzen and M. Fishbein, 2000, European Review of 
Social Psychology, 11(1), 1–33. Copyright 2000 by Taylor & Francis.  
 

However, these hypothesized independent types of trust, trust in signals and trust in non-

signals, are inferred based upon two qualitatively different behavioral manifestations of 

automation dependence, i.e., reliance and compliance (Meyer, 2001, 2004), which are subject to 
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potential confounds. While some studies have shown that trust does affect automation 

dependence and can be measured consistently, it does not completely determine dependence. In 

fact, as Lee and See (2004) noted in their review of automation trust and dependence literature, 

the recent surge of studies has produced many confusing and seemingly conflicting findings. One 

issue is that the literature employs different operational definitions of trust and is inconsistent on 

whether trust is a belief, attitude, intention, or behavior. Lee and See suggest Ajzen and 

Fishbein’s (1975, 1980) theory of reasoned action as a helpful framework to reconcile these 

conflicting definitions of trust. The expanded version of this framework, the theory of planned 

behavior (Ajzen, 1988, 1991), is presented in Figure 2.3. Within this framework, trust affects 

automation dependence as an attitude rather than a belief, and trust is not the sole mediating 

factor between operator beliefs about automation characteristics and their behavior. Defining 

trust as an intention or behavior invites the possibility of confounding its effect on surveyed 

intent or observable behavior with other factors, such as workload, situation awareness, 

perceived risk, and operator self-confidence (Lee & Moray, 1994; Lee & See, 2004; Parasuraman 

& Riley, 1997).  

Lee and Moray (1992) found that, under certain conditions, operator reliance on 

automation did not correspond to changes in their trust. Their follow-up study provided evidence 

that, in addition to trust, operators’ self-confidence in their ability to manually control an 

automated system predicted their dependence on the automation. They found that, in general, 

operators depend on automation when their trust in the automation exceeds their self-confidence 

that they could perform the task manually. Most operators in the study first adopted a 

predominantly manual control strategy and reported high self-confidence in their ability to 

manually control the system until a fault interrupted their manual control strategy. The fault led 
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to increased use of the automation, decreased self-confidence, and increased trust in the 

automated system. Furthermore, the operators tended to prefer either fully manual or fully 

automated control and their automation dependence displayed inertia (i.e., they were reluctant to 

change their automation use even when their trust and self-confidence changed). Individual 

biases also influenced the choice of fully manual or fully automated control, though operators 

generally preferred manual control.  

However, the simulated process control plant “microworld” used in the study was much 

simpler than its corresponding commercial system. The authors noted that their findings might 

not scale to more complex systems, where a greater number of factors may influence operator 

reliance on the automation. For example, intermediate LOAs blur the distinction between fully 

manual and automatic control and thus may limit the generalizability of Lee and Moray’s (1992) 

study to environments that employ mid-level LOAs, such as SCOUT. In addition, the 

participants in Lee and Moray’s study were given a manageable task load so they could manually 

control all the pumps if they so desired. In a complex, time-pressured, multi-task environment, 

participants may not be able to complete all tasks without the assistance of an automated aid and 

may shed tasks to the automation due to time pressure.  

Operator workload has been shown to affect operator reliance on automation. Because of 

this, while the traditional view of human factors professionals has been that humans should 

always have the ultimate decision-making authority in human-machine systems (e.g., Billings, 

1991, 1997; Woods & Roth, 1988), Moray, Inagaki, and Itoh (2000) suggest that automation 

should have the final authority in time-critical situations, provided the performance payoff of 

using the automation outweighs the cost of potential automation errors, because an operator may 

not have time to engage the automation. The design of SCOUT’s level six automation is a 
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compromise between these two viewpoints. In absence of user interaction, the automation will 

carry out its recommended action, but the operator has access to the raw data and is able to 

override the automation within a limited time frame. This design is appropriate for the 

occasionally time-critical, relatively low-risk ISR mission environment.  

Initial experimentation within the SCOUT environment has indicated that participants 

may not even be cognizant of the reliability of the automated aid and, thus, whether or not they 

can trust it (C. Sibley, personal communication, December 20, 2017). A survey based on Lee and 

Moray’s (2004) validated subjective assessment of trust and self-confidence was administered as 

part of the present study to test this assumption. Operator task loads, and their ratings on the 

associated subjective workload metric, seem to be a far better predictor of automation 

dependence than their subjective ratings of trust in the automated aid. It is thus possible that, 

given a sufficiently complex and time-pressured multi-task environment, operators will depend 

on automation irrespective of its reliability and their trust in it. If this is the case, behavioral 

indicators of automation dependence, such as operator percent agreement with the automation, 

should increase during periods of high task load. In future studies, eye tracking metrics could 

also indicate increased automation dependence during periods of high task load; operators will 

spend less time (PDT) monitoring the AOI associated with the automated task even if their 

increased dependence is not reflected in their subjective trust and self-confidence ratings.  

This hypothesis is consistent with the automation complacency literature. Automation 

complacency occurs in multi-task environments, when manual tasks compete with the automated 

task for the operator’s attention. There is presently no consensus on the definition of 

complacency, but Parasuraman and Manzey (2010) cite the following core set of features 

between the various operationalizations: (1) human operator monitoring of an automated system 
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is involved; (2) the frequency of such monitoring is lower than some standard or optimal value; 

and (3) as a result of substandard monitoring, there is some directly observable effect on system 

performance, usually that a system malfunction, anomalous condition, or outright failure is 

missed (p. 382). Automation-related complacency has been implicated as a major contributing 

factor to aviation accidents (Funk et al., 1999). 

A number of studies have used eye tracking metrics to examine attention allocation in 

systems under manual and automated control and found a relationship between automation 

complacency and reduced visual attention to the primary information sources feeding the 

automation that must be monitored (Baghieri & Jamieson, 2004; Metzger & Parasuraman, 2005; 

Wickens, Dixon, Goh, & Hammer, 2005).  

However, evidence of automation complacency has also been obtained using more 

traditional performance metrics such as participants’ response time and/or accuracy following an 

automation failure. These measures are easier to implement and are not subject to the data 

quality problems that often plague eye-tracking studies. Parasuraman, Molloy, and Singh (1993) 

operationalized complacency as the “failure to respond to an automation malfunction” (p. 17). 

More specifically, they characterized it as a combination of the mean probability of malfunction 

detection, the mean malfunction detection response time, and the number of false alarms made 

on the Multiple Task Battery (MATB) (Comstock & Arnegard, 1992). The MATB is multitask 

testing environment that includes a two-dimensional compensatory tracing task, an engine fuel 

management task, and an engine-monitoring task. The engine-monitoring task, which involves 

monitoring a cluster of four gauges to detect malfunctions, is supported by automation of 

variable reliability. They found that automation with consistent (as opposed to variable) 

reliability over time is more likely to induce complacency in a multitask environment. This 
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finding is consistent with Langer’s (1989) concept of premature cognitive commitment, which 

she defined as the condition whereby one accepts and commits to “an impression or a piece of 

information at face value, with no reason to think critically about it” (p. 22). This rigid 

commitment that a person forms in response to conditions surrounding initial exposure to 

information can limit their subsequent use of said information (Chanowitz & Langer, 1981). In 

other words, participants exposed to automation of consistent reliability are more likely to 

develop a premature cognitive commitment about the efficacy of said automation and are thus 

more likely to become complacent. Participants exposed to automation of inconsistent reliability 

are less likely to develop a premature cognitive commitment and should possess a more open 

attitude toward the efficacy of the automation.  

 Parasuraman et al. (1993) found that the consistency of automation reliability over time 

was a greater contributing factor to participant complacency than initial reliability or absolute 

reliability level. On the other hand, it is possible that a statistically significant effect for absolute 

reliability level was not observed simply due to low power. Participants did, in fact, detect more 

automation failures in the low reliability condition, though the difference was not statistically 

significant. Bagheri and Jamieson (2004) replicated the study and found that participants 

detected significantly more automation failures when automation reliability was low.  

Parasuraman et al. (1993) also found that high task load exacerbated automation 

complacency and detection of automation failures was significantly worse in a multitask 

environment. Their findings suggest that complacency is not a passive state into which an 

operator falls, but rather an active reallocation of attention away from the automated task to other 

manual tasks in instances of high workload (Parasuraman & Manzey, 2010). Complacency is 

reduced when the reliability of the automated system is low and variable, but still persists even at 
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low levels of reliability relative to manual performance (Bagheri & Jamieson, 2004; May, 

Molloy, & Parasuraman, 1993 as cited in Parasuraman & Manzey, 2010; Parasuraman, Molloy, 

& Singh, 1993).  

2.4 Environment Complexity 

Unmanned systems, like other complex systems, consist of many interacting components, 

the aggregate activity of which is nonlinear (Joslyn & Rocha, 2000). Nonlinear systems cannot 

be understood by studying each of their multiple subunits individually and treating the global 

system as the net value of the subunits. Superposition does not hold for nonlinear systems 

because the components of these systems interact (Goldberger, 2006). In other words, the whole 

of the system is not equal to the sum of its parts. “Agents residing on one scale start producing 

behavior that lies one scale above them. “[Just as] ants create colonies, urbanites create 

neighborhoods, [and] simple pattern-recognition software learns how to recommend new books,” 

numerous socio-technical components— stakeholders (e.g., operators and customers); vehicles 

and their subsystems; interacting friendly, hostile, and non-combatant entities; terrain features 

and manmade boundaries; weather and other atmospheric factors; operational environment 

characteristics; etc.—coalesce into the complex working environment of a UAV supervisory 

control operator.  

This movement from low-level causality to higher-level sophistication is known as 

emergence (Johnson, 2012, p. 18). At each new level of complexity, new properties of the UAV 

supervisory control environment will emerge and additional research will be required to 

understand these unexpected characteristics and behaviors. In the words of Karl Marx, as a 

system increases in scale and complexity, “quantitative differences become qualitative ones” (as 

cited in Anderson, 1972, p. 396).  
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Phenomena can be described as weakly emergent or strongly emergent with respect to 

low-level causality. Weakly emergent phenomena are unexpected based upon the rules governing 

the behavior of low-level agents, but are nevertheless deducible in principle. In contrast, strongly 

emergent phenomena cannot be explained or predicted based upon the rules governing the 

behavior of low-level agents (Chalmers, 2006). The existence of strong emergence is 

controversial. Some believe that strong emergence is merely an artifact of humans’ limited 

capacity to calculate and predict complex phenomena. However, regardless of whether strong 

emergence is existent or artifact, the point is that, at this time, it cannot be accounted for using 

reductionist methods (Pariès, 2006). It is therefore extremely unlikely that the aggregate activity 

of the future UAV supervisory control system will be fully predicable with respect to the rules 

governing its numerous socio-technical components.  

Unfortunately, while the SCOUT environment as a whole is complex and subject to 

weakly emergent system behavior, one weakness of the current iteration is the lack of a 

manipulable subtask that produces emergent phenomenon in isolation. In future versions of 

SCOUT, weather might be incorporated into the route-planning task so that experimenters have a 

cleaner way to manipulate task complexity.  

At present, however, the closest approximation to manipulating subtask complexity in 

SCOUT is the manipulation of the degree of uncertainty inherent in the payload (target 

identification) task. While the code behind the payload feed follows logical, predicable rules 

(i.e., the participant will not contend with emergent system behavior), the experimenter can still 

manipulate the amount of information, or number of target factors, that a participant must 

consider to effectively discriminate targets.  
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Although there is a substantial amount of literature on the relationship between 

automation reliability and operator performance, less attention has been paid to the role of task 

complexity, or even task difficulty. There is some evidence that task complexity or difficulty 

increases operator behaviors associated with automation dependence and decreases performance; 

the evidence is mixed, however, possibly due to the various unquantifiable ways that task 

complexity and/or difficulty is operationalized.  

McFadden, Giesbrecht, and Gula (1998) found that operators were more reliant on an 

automated cue when the automated task became more difficult. Liu and Wickens (1987), on the 

other hand, did not find a significant effect of task difficulty on decision accuracy in either a 

single-task or dual-task environment. The study involved the manipulation of the difficulty of 

both a spatial and verbal decision task in single and dual task environments. The dual task 

environment incorporated a one-dimensional compensatory tracking task. The spatial task 

involved predicting future enemy position based on vectors that indicated current enemy 

position. In the difficult version of the task, both the direction and position of the vectors were 

relevant. In the easy version of the task, only the position of the vector was relevant. A 

concurrent verbal-arithmetic task also varied in difficulty. Only positive numbers were used in 

the easy condition, but the difficult condition utilized both positive and negative numbers.  

Maltz and Shinar (2003), however, found that operator reliance on an automated aid 

correlated significantly with task difficulty. They also found that the automated aid interfered 

with performance on an easy task but aided performance on a more difficult task. In this study, 

participants were asked to locate military vehicles on still images of various terrains. The images 

were slightly blurred to increase uncertainty. The easy version of the task involved locating the 

vehicles in visible color images. The difficult version of the task involved locating the vehicles 
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on monochrome infrared images. Performance on the task was operationalized as an operator’s 

probability of target detection and their false alarm rate. The performance of a control group was 

used to infer that locating vehicles within the monochrome infrared images was indeed more 

difficult than in the color image condition. However, the exact degree to which the tasks differed 

in difficulty is unknown.  

In an effort to explicitly quantify the complexity of the SCOUT payload task, the 

complexity of target discrimination in the low and high complexity conditions will be calculated 

using Shannon entropy. Shannon’s Information Entropy is a measure of information content in a 

given random sequence of information produced by a stochastic source of data. It could be 

thought as the uncertainty or unpredictability of the information in the data sequence. More 

specifically, for a discrete random variable 𝑋𝑋 with possible values {𝑥𝑥1, 𝑥𝑥2 … … 𝑥𝑥𝑛𝑛} and 

probability mass function 𝑃𝑃(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 1, 2, … , 𝑛𝑛, the Shannon entropy is defined as in Equation 1.1 

below (Teixeira, Matos, Souto, & Antunes, 2011). 

𝐻𝐻(𝑋𝑋) = −∑𝑃𝑃(𝑥𝑥𝑖𝑖) log2 𝑃𝑃(𝑥𝑥𝑖𝑖)                                                  (1.1) 

Information entropy can also be used as a measure for the complexity contained in a 

sequence data of a random variable. Although different from Kolmogorov Complexity in terms 

of calculation, there are some equivalencies between these two measures; the expected value of 

Kolmogorov complexity equals Shannon entropy, up to a boundary (Teixeira, Matos, Souto, & 

Antunes, 2011). 

2.5 Task Load and Subjective Workload 

 In the experiment described herein, participants are exposed to variable task load and its 

effects on performance are assessed. For the purposes of this study, task load is defined as the 

number of tasks assigned to an operator per unit of time. This definition is conceptually similar 
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to utilization, or the percent of time an operator is busy. Cummings and Nehme (2009), who 

defined workload as utilization, found evidence of a parabolic utilization-performance curve 

analogous to the Yerkes-Dodson relationship. While the original Yerkes-Dodson curve and its 

associated research focused on stimulus strength and learning, a similar relationship between 

arousal and performance was later identified (Hebb, 1955). 

 

Figure 2.4. Workload-performance relationship. Reprinted from “Modeling the Impact of 
Workload in Network Centric Supervisory Control Settings,” by M. L. Cummings and C. E. 
Nehme, 2009, 2nd Annual Sustaining Performance Under Stress Symposium.  
 

In general, Cumming and Nehme’s (2009) utilization-performance curve indicates that 

operators perform best under moderate levels of utilization. High and low levels of utilization 

will degrade performance (Figure 2.4).  

While task load (defined as the number of tasks per unit time) and utilization are 

relatively cut-and-dry concepts, the factors contributing to operators’ subjective experiences of 

mental workload are not as straightforward. In fact, there is no universally accepted definition of 

workload despite decades of research on the subject (Cain, 2007). Proposed operational 
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definitions continue to disagree about its source(s), mechanism(s), consequence(s), and 

measurement (Huey & Wickens, 1993). The proposed aspects of workload seem to fall within 

three broad categories: the amount of work and number of things to do, time and the particular 

aspect of time one is concerned with, and the subjective psychological experiences of the human 

operator (Cain, 2007; Lysaght, Hill et al., 1989). 

One common definition of subjective mental workload is a "participant's direct estimate 

or comparative judgment of the mental or cognitive workload experienced at a given moment" 

(Luximon & Goonetilleke, 2001, p. 230). Subjective mental workload can be assessed using a 

variety of rating techniques. Arguably the most ubiquitous of these ratings is the NASA Task 

Load Index (NASA-TLX). The NASA-TLX assesses workload across six dimensions: mental 

demand, physical demand, temporal demand, performance, effort, and frustration (Hart & 

Staveland, 1988). Twenty-step bipolar scales are used to obtain a score, which ranges from 0 to 

100, for each dimension. Then, in a pairwise comparison task, the participant selects which of the 

six dimensions are most relevant to workload in the task being measured across all pairs of the 

six dimensions. The results of this task then determine the weighting each of the six dimensions 

receives when they are combined into a global score (Rubio et al., 2004; Schnell et al., 2014). 

While the NASA-TLX has good reliability and validity, the pairwise comparisons increase the 

time and effort needed to administer the rating technique.  

Due to time constraints and the desire for an absolute assessment of workload rather than 

a relative assessment of different workload factors, the experimenters chose not to use the 

NASA-TLX to assess subjective workload. Instead, the Crew Status Survey (CSS) was 

employed.  



UAV OPERATOR PERFORMANCE 47 

The CSS was originally developed by the Air Force School of Aerospace Medicine 

(Samn & Perelli, 1982) and later revised and verified by the Air Force Flight Test Center (Ames 

& George, 1993). It is designed to reduce time for crews in a field research setting to report 

subjective workload and fatigue data. The CSS consists of two seven-point, forced-choice Likert-

type scales. Each point on both scales is anchored and higher numbers indicate a greater feeling 

of subjective workload or fatigue (Samn & Perelli, 1982). The CSS assesses four components of 

subjective workload: activity level, system demands, time loads, and safety concerns. However, 

although the scale anchors reflect a multidimensional concept of workload, raters must implicitly 

integrate the various workload factors into a unidimensional workload rating ranging from one 

(least workload) to seven (most workload) (Ames & George, 1993). 

According to Ames & George (1993), the CSS is appropriate for use in situations where 

an absolute assessment of workload is needed (rather than a relative assessment), where an easy 

to understand scale is needed, where minimal participant training time is available, and where the 

collected data may be analyzed using statistical procedures requiring interval quality data. 

It is important to note, however, that performance and subjective measures of workload 

can dissociate under certain conditions, such as when an operator invests greater resources to 

improve their performance of a resource-limited task (i.e., they try harder). In multitask 

environments, such as SCOUT, time-sharing between concurrent tasks or between display 

elements could also place additional demands on working memory (Yeh & Wickens, 1988). 

Therefore, the effects of task load on performance might not be mirrored by its effect on 

subjective workload ratings or, if utilized, common physiological indicators of mental effort 

(e.g., heart rate variability or pupil diameter). If an operator tries harder than average on the 
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SCOUT task and performs well, their subjective workload ratings might be high, but so will their 

level of performance.  

2.6 Situation Awareness and UAV Ground Control Station Design 

The future UAV supervisory control paradigm envisioned by the DoD will require a 

single operator to control multiple UAVs. These UAVs will be semi-autonomous, meaning that 

they will have the capacity to make certain higher-order decisions independent of operator input 

and predefined mission plans. This means that, while the “stick and rudder” tasking of a UAV 

operator might decrease, their new supervisory role introduces a new source of workload in the 

form of rapid judgment of the appropriateness of decisions and actions made by the automation 

and the projection of their impact on overall mission objectives. Operators, who must monitor an 

increasing number of automated systems, will thus be challenged to remain “in the loop” through 

long periods of nominal operations while remaining poised to engage in short bursts of time-

sensitive contingency operations when the automated systems encounter a situation beyond the 

scope of their design and either respond inappropriately or fail (Ruff et al., 2004). In other words, 

human supervisors of highly automated systems often struggle to intervene in system control 

loops and assume manual control when environmental conditions exceed the design of the 

automation; the resulting situation awareness and performance decrement is known as out-of-

the-loop (OOTL) performance (Kaber & Endsley, 2003; Kessel & Wickens, 1982; Young, 1969).  

Unfortunately, there are documented instances of increases in the automation of manned 

systems causing significant fluctuations in operator workload, loss of situation awareness, and 

decrements in performance (i.e., in OOTL performance). According to Parasuraman, Sheridan, 

and Wickens (2000), issues associated with automation management include task allocation 
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between operator and system, human vigilance decrements, clumsy automation, limited system 

flexibility, mode awareness, trust/acceptance, failure detection, and automation biases.  

UAV ground control stations, like most modern operator interfaces, can produce large 

amounts of data on both the status of various subsystems and the external environment. The 

problem with modern operator interfaces is rarely a paucity of information. Rather, poorly 

designed UAV ground control stations (GCSs) and other supervisory control interfaces are 

notorious for inundating operators with data while making it difficult to find the information they 

need for good task performance and decision-making (Endsley, 2000). For example, the human 

factors problems plaguing the Predator GCS were succinctly described by Col. John Dougherty, 

an MQ-1 Predator operations commander with the North Dakota National Guard: “Too many 

screens with too much information, folks.” The predator GCS, which was originally a technology 

demonstration project, was rushed into widespread use once its value became apparent. 

However, because of its rushed development cycle and requirements creep, subsystems were 

added piecemeal, each with its own unique, user-unfriendly display window (Freedberg, 2012). 

The subsystem windows can be opened on top of each other, resulting in substantial display 

clutter and reduced salience of mission-critical information. It is thus difficult for operators to 

locate information needed for decision-making under dynamic operational constraints, let alone 

correctly integrating and interpreting said information. It is becoming widely recognized that 

“more data does not equal more information” and the indiscriminate introduction of automation 

and “intelligent systems” generally exacerbates degraded operator SA and OOTL performance 

rather than mitigating it (Endsley, 2000; Endsley & Kiris, 1995).  

The enhancement of operator SA is a major design goal for developers of operator 

interfaces, automation concepts, and training programs (Endsley, 2000). Ruff et al. (2004) 



UAV OPERATOR PERFORMANCE 50 

propose using multiple levels-of-automation (LOAs) to keep the operator “in the loop” for 

optimal SA, workload, and decision-making during a supervisory control task. The pervasiveness 

of automation can vary across a continuum of levels ranging from no automation (i.e., fully 

manual performance by the human operator) to completely automated systems that require no 

human input during nominal operations. While higher LOAs might allow a single operator to 

control more vehicles, they also tend to remove the operator from the loop and can result in poor 

performance in response to automation errors. While more intermediate LOAs would limit the 

number of UAVs a single operator could control, Ruff et al. (2004) hypothesize that such “an 

intermediate LOA could improve performance and SA, even as system complexity increases and 

automation fails” (p. 219). Some research supports this hypothesis (e.g., Ruff, Narayanan, & 

Draper, 2002), while others (e.g., Endsley & Kaber, 1999) cite additional factors that can impact 

the benefit of LOA, such as whether the task involves option selection versus higher-level 

cognition. These results indicate a need for more research investigating LOAs in different task 

environments (Ruff et al, 2004).  

Situation awareness (SA) is a ubiquitous concept that is often discussed in both the 

commercial and military aviation communities and the human factors field as though its meaning 

were self-evident.  However, as a psychological construct, SA is not readily observable and is 

thus difficult to operationally define. As one may expect, there is no definitive operational 

definition of SA and many divergent—and sometimes even conflicting—definitions of SA have 

surfaced in the literature (Adams, Tenney, & Pew, 1995; Uhlarik & Comerford, 2002). Some of 

these definitions are more general, while others are more domain-specific (Dominguez, 1994; 

Endsley, 2000). 
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Just as there are many ways to operationally define SA, there are many ways to measure 

it. These measures, which are based upon different theoretical constructs of SA and thus utilize 

different operational definitions of SA, can be divided into three general categories: (a) explicit 

(e.g., SAGAT); (b) subjective (e.g., SART, SA-SWORD); and (c) implicit measures of SA (e.g., 

PPI) (Schnell et al., 2014; Uhlarik & Comerford, 2002). 

Endsley’s (1988a) definition of SA is a well-accepted general definition that has been 

found to be applicable across a wide variety of domains. According to this definition, SA is “the 

perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future” (p. 97).  

The first level of SA, “perception of the elements in the environment within a volume of 

time and space,” involves the perception of the status, attributes, and dynamics of relevant 

elements in the environment. A UAV operator, for instance, might perceive the status of their 

assigned vehicles, targets of interest, environmental features such as elevated terrain or restricted 

airspace, and any relevant characteristics of these features (e.g., allegiance, location, capabilities, 

speed, shape, size, and color). The second level of SA, comprehension of the current situation, 

involves an operator integrating and interpreting the disparate elements perceived in level one to 

form a holistic picture of the environment and an understanding of significance of objects and 

events in regard to mission goals.  For example, a UAV operator on an ISR mission might note a 

cluster of high-priority targets of interest and recognize the implications for that geographical 

location and its importance to enemy objectives. The third level of SA, projection of future 

status, refers to an operator’s ability to project the future actions of the elements in the 

environment in the near term. For example, a UAV operator might recognize a pattern in the 

characteristics of the targets of interest that they are imaging and their location relative to 
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geographical features and other areas of interest. They can then use this information to anticipate 

the location of future targets so they can effectively allocate their assigned UAVs (which might 

have different speeds, capabilities, and ranges) to meet mission goals (Endsley, 1995).  

2.7 The Need for New Operator State and Performance Metrics 

The DoD and its NATO allies are working toward developing a Common Control Station 

(CCS) to replace existing stove piped, proprietary UAV GCSs, which are more costly (due to 

redundant procurement and training efforts) and limit innovation. The CCS, and other future 

ground control stations, will employ a service-oriented architecture (SOA), or a modular UAV 

control design that enables services to be easily replaced (Chanda et al., 2010; Sibley, Coyne, and 

Morrison, 2015). NATO’s proposed functional architecture for UAV control systems and its required 

communication protocols are outlined in Standardization Agreement (STANAG) 4586 (NATO, 2012).  

STANAG 4586 also discusses the need for interface standardization, but stops short of specifying how the 

common control interface should look. The DoD released a style guide to provide system designer 

recommendations for how to display information within a UAV control station (OSD, 2012).  However, it is 

still uncertain what information needs to be displayed, which is of critical concern as more systems become 

automated and humans are moved further OOTL (Sibley, Coyne, & Morrison, 2015). 

The transition to multiple-UAV supervisory control will require a suite of new 

capabilities; these include better data visualization and decision support, alerting, and monitoring 

tools. These new automated tools, as with all proposed automated UAV subsystems, must be 

robust and their effects on the system predictable. Their actions must be clear and directly 

observable by human operators. They must possess sufficient self-awareness to know when they 

are operating at or near the limits of their design assumptions or operational boundaries, and they 

must be capable of providing real-time estimates of their reliability in response to dynamic 
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mission conditions. All these factors are critical to the establishment of operator trust in any new 

system, capability, or tool. A comprehensive set of metrics needs to be identified in order to 

adequately assess the potential benefits and costs of these new technologies. This set of metrics 

is especially important since novel capabilities are likely be introduced over time.  

Each year the DoD funds new tools to improve warfighter performance but, despite large 

investments, their operational utility is often questioned. Operator and mission performance 

metrics must be identified to quantify the impact of new tools on mission success and operator 

performance. Performance metrics within UAV operations are dependent on the mission context 

(e.g., phase of flight and mission priorities). Without the use of carefully operationalized and 

documented mission performance metrics and a common nomenclature for documenting the 

specific mission context, accurate comparison across different UAV team control structures or 

system interfaces would not be possible (Coyne, Sibley, & Morrow, 2015). 

However, one caveat that should be noted regarding the current study and other UAV 

performance research efforts that employ traditional performance-based measures of accuracy 

and response time is that such measures will provide only a partial assessment when evaluating 

human performance issues in supervisory control tasks. This is because multiple-UAV control, 

like most supervisory control tasks, involves extended periods of monitoring where traditional 

performance data are not available. In other words, response time and accuracy measures are not 

available, let alone representative of good operator performance, when an operator spends the 

majority of the time their UAVs are enroute or loitering over areas of interest monitoring their 

moving map and payload feeds. Good performance under these conditions involves the 

maintenance of SA rather than direct interaction with the system. The development of 

performance measures for monitoring periods is an especially important topic for future research 
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considering the increased likelihood of degraded SA given the future unmanned vehicle control 

paradigm of increased automation. Studies have shown degraded SA can increase the time it 

takes an operator to re-engage with a system and react to sudden, critical mission events (Coyne, 

Sibley, & Morrow, 2015; Endsley & Kaber, 1999).    

2.8 Supervisory Control Testing Environments 

Two of the current challenges within supervisory control research for unmanned vehicles 

are that multiple UAV supervisory control systems do not yet exist within the DoD and the future 

Concept of Operations (CONOPS) is not well defined. Since concurrent control of multiple 

UAVs does not yet exist in any operational context, the research community has developed 

several test beds to simulate some of the different types of tasks an operator might have to 

conduct; the two most frequently used platforms are the Adaptive Levels of Automation (ALOA) 

and the Research Environment for Supervisory Control of Heterogeneous Unmanned Vehicles 

(RESCHU) test beds (Johnson, Leen, & Goldberg, 2007; Nehme, 2009). These tools have 

provided some valuable initial information on some of the potential benefits and challenges 

associated with different types and levels of automation within supervisory control (e.g., 

Calhoun, Draper & Ruff, 2009). 

The Research Environment for Supervisory Control of Heterogeneous Unmanned 

Vehicles (RESCHU) is an online UAV and unmanned underwater vehicle (UUV) supervisory 

control test bed developed by the Human and Automation Laboratory at MIT. RESCHU’s 

simulated ground control interface consists of a map display, camera window, vehicle control 

panel that displays vehicle health and mission information, and a mission timeline that gives the 

estimated time of arrival to areas of interest.  
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The RESCHU test bed is particularly valuable for research focused on how vehicle team 

heterogeneity affects operator performance. In RESCHU, operators can control a team consisting 

of up to three types of vehicles: a high altitude long endurance (HALE) UAV, a medium altitude 

long endurance (MALE) UAV, and a UUV. The vehicles have variable speeds (UUVs are slower 

than UAVs) and capabilities (HALE UAVs are used to locate new targets within an area of 

interest, while MALE UAVs and UUVs are used to acquire these pre-determined targets) 

(Nehme, 2009).  

In addition, RESCHU can be used to conduct research focused on trust in automation 

since it employs a sub-optimal route planner. The route planner, by sometimes failing to assign 

the best paths and vehicle-target assignments, seeks to replicate the performance of real-world 

automation and serves as an additional source of operator workload since operators must 

reassign vehicles. 

Moreover, two different versions of RESCHU were recently employed to assess the effect 

of UAV control architectures on operator workload and performance. The vehicle-based 

RESCHU interface employs a centralized control architecture in which a single operator 

individually tasks multiple UAVs. The task-based RESCHU interface employs a decentralized 

architecture that requires the operator to convey high-level goals (i.e., a task list) to an automated 

mission and payload manager, which then decides how to best to distribute the tasks among 

multiple UAVs. In general, decentralized control schemes are favored because they eliminate the 

UAV operator and their ground control station as a single point of system failure and are more 

robust to delayed operator action and lapses in situation awareness. However, decentralized 

control schemes are generally less resilient to unexpected events and emergent system behavior. 
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Given the limitations of both control architectures, it is likely a hybrid mix will be best for 

operational use (Cummings, Bertucelli, Macbeth, & Surana, 2014). 

Table 2.5 
Sheridan and Verplank’s 10 Levels of Autonomy and their Availability in ALOA 
Level Description of System Output Type ALOA Task(s) 
10 The computer decides everything, 

acts autonomously, ignoring the 
human 

Fully 
Automatic 

Weapon release authorization, 
image analysis, allocation, and 
autorouting 

9 Informs the human only if it, the 
computer, decides to 

  

8 Informs the human only if asked   
7 Executes automatically, then 

necessarily informs the human 
Automatic 
with feedback 

Weapon release authorization, 
image analysis, and autorouting 

6 Allows the human a restricted 
time to veto before automatic 
execution 

Veto Weapon release authorization, 
image analysis (single and multiple 
options), and autorouting (single 
and multiple options) 

5 Executes that suggestion if the 
human approves 

Consent Weapon release authorization, 
image analysis (single and multiple 
options), and autorouting (single 
and multiple options) 

4 Suggests one alternative   
3 Narrows the selection down to a 

few 
Multiple 
options 

 

2 Offers a complete set of 
decision/action alternatives 

 Image analysis and autorouting 

1 Offers no assistance; human must 
take all decisions and actions 

Manual Weapon release authorization, 
image analysis, allocation, and 
autorouting 

Note. Adapted from (1) “A Model for Types and Levels of Human Interaction with Automation,” 
by R. Parasuraman, T. B. Sheridan, and C. D. Wickens, 2000, IEEE Transactions on Systems, Man, 
and Cybernetics- Part A: Systems and Humans, 30(3), p. 287. Copyright 2000 by IEEE. (2) 
“Testing adaptive levels of automation (ALOA) for UAV supervisory control (No. AFRL-HE-WP-
TR-2007-0068),” by R. Johnson, M. Leen, and D. Goldberg, 2007. Copyright 2007 by the Air 
Force Research Laboratory. 

 
The ALOA test bed was designed by the Air Force Research Laboratory to assess the effect 

of a range of levels of autonomy on an operator’s multiple-vehicle supervisory control 

performance. The levels of autonomy implemented in ALOA are based on Sheridan and Verplank’s 

10 Levels of Autonomy (Table 2.5). Within the ALOA test bed, the level of automation for four 
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tasks can be set by the experimenter, dynamically controlled by the operator, or automatically 

adapted by the system in real time according to a workload-based, performance-based, or time-

based technique; the four automated tasks include: weapon release authorization, image analysis, 

task allocation, and autorouting.  

One strength of the ALOA test bed is that its design leverages UAV controller interview 

data to help operators maintain situation awareness of the mission, vehicle status, and environment. 

The ALOA interface includes a chat window that presents the rules of engagement (ROE) and 

mission updates, a scrolling ticker that displays warnings and system updates, color-coded vehicle 

Health and Status Indicators, a map display, and visual and aural Pop Up Threat Indicators. ALOA 

also includes planning tools to help users decide on a route; reallocate tasks; assess potential 

impacts of new threats; and avoid pop-up threats, such as surface-to-air missile (SAM) shots 

(Johnson, Leen, & Goldberg, 2007). 

 One of the limitations of the RESCHU and ALOA test beds, however, is that the tasking 

was developed to be quickly learned and tested on untrained populations. As such, the complexity 

is lacking in some of the tasking and is not especially representative of the tasks a current or future 

operator would be performing (i.e., decision making under uncertain contexts). Additionally, most 

supervisory control research has focused on scenarios with sustained high levels of workload 

where participants complete six to seven tasks per minute (e.g., Kidwell, Calhoun, Ruff & 

Parasuraman, 2012). For this reason, although the high degree of LOA control within ALOA makes 

the test bed very useful for investigating future adaptive automation strategies, its reliance on pop-

up threats limits its ecological validity. As previously discussed, the task demands for current UAV 

operators are highly variable and increased automation leads to significant downtime during 

certain mission phases. Likewise, future multiple-vehicle supervisory control operators are also 
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expected to experience significant downtime due to increased automation. Similarly, the goal of 

RESCHU’s surveillance-type missions is to detect and identify as many targets as possible. The 

mission performance metric used is the total number of correctly identified targets normalized by 

the total number of possible targets for the mission. This consistent level of tasking provides a near 

continuous measurement of performance that, while ideal for research, does not reflect the real 

environment. This task level only represents a narrow range of UAV mission contexts. There are 

many contexts in which a UAV operator will have limited interaction and must sustain their 

attention and SA for extended periods of time.  

Assessing levels of automation and display formats within a single mission context limits 

the generalizability of the supervisory control research results to future operations. To apply 

existing scientific knowledge of supervisory control towards future systems, it is essential to 

assess tools and concepts within realistic, synthetic environments that can model the broad range 

of scenarios and contexts an operator would actually encounter (e.g., denied/degraded 

communications, sustained monitoring, and target-asset allocation under uncertain conditions). 

2.9 The Development of the Supervisory Control Operations User Testbed (SCOUT) 

The Naval Research Laboratory (NRL) developed SCOUT to begin to address some of 

these research needs. SCOUT was iteratively designed based on input and feedback from current 

UAV operators. UAV operators at Yuma proving grounds in Arizona were interviewed and asked 

to describe the challenges, common errors, and system abnormalities that they experienced while 

controlling contemporary UAVs. In addition, they were asked to envision future UAV 

supervisory control operations, with emphasis placed on how the aforementioned challenges, 

errors, and abnormalities might manifest in this environment. SCOUT was designed to abstract 

out the components of contemporary UAV control and to represent some of the challenges faced 
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by current UAV operators in order simulate the tasks in which a future UAV operator might 

engage while supervising multiple vehicles.  

During a SCOUT scenario, participants manage three heterogeneous helicopter UAVs. In 

order to meet mission goals, they must decide how to best allocate the UAVs to locate targets 

while simultaneously completing a number of subtasks, including maintaining communication 

with command and intelligence personnel via chat, updating UAV parameters, and monitoring 

their sensor feeds and airspace. Points are assigned to various actions based on their mission 

priority and the goal is to obtain as many points as possible.  

 
Figure 2.5. SCOUT route planning (left) screen. 

SCOUT is available in both single-monitor and dual-monitor configurations. In the dual-

monitor set-up, the left screen is primarily used for route planning (Figure 2.5). The Target 

Information table and UAV Route Builder boxes provide operators with estimated search times 

for each target, their point values (which indicate mission priority), their deadlines, the size of 
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their search areas, and the percent of those areas that can be covered by each UAV before the 

target deadlines. Each SCOUT mission involves a variable degree of uncertainty. Operators do 

not know the exact location of the targets within their search areas. They might find a target after 

searching only 1% of its search area, but they could also be required to search 100% of its search 

area to locate it. Moreover, the entire search area might not be traversable by the target deadline 

(when the intelligence expires and the location estimate becomes too uncertain to be useful). A 

SCOUT mission with a greater degree of uncertainty would generally involve targets with large 

search areas and short deadlines.  

Additional sources of uncertainty include whether operators will be granted access to 

restricted operating zones (ROZs), which are indicated by the outlined and/or red-shaded areas 

on the moving map display, and the closeness of distractor targets to the actual target on the 

simulated payload task. 

 
Figure 2.6. SCOUT vehicle status (right) screen.  
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The simulated payload task is located on the right screen along with other vehicle-centric 

information, such as fuel status, altitude, and speed. In the sample mission shown in Figure 2.6, 

Eagle 83 is searching for Periscope 1, which looks like a circle. In this case, the distractor targets 

(triangles and squares) are quite distinct from the target of interest. Additional uncertainty and 

complexity could be introduced into the scenario by using distractor targets closer in appearance 

to the actual target.  

The complexity of a SCOUT scenario can be further altered by changing the degree of 

heterogeneity between the vehicles, increasing or decreasing the number of targets and/or variety 

of targets types on the moving map display, designing scenarios where there is or is not an 

obvious ideal route, and increasing or decreasing the overall detail of the payload task and the 

number of dimensions upon which targets and distractor targets differ. The high degree of 

flexibility in determining mission uncertainty and complexity, and the ability to create time 

pressure using target and message-response deadlines, make SCOUT an ideal test bed in which 

to study UAV operator performance, decision-making, and risk-taking under realistic operational 

conditions: complex, information-rich, and sometimes time-pressured.  

In upcoming versions of SCOUT, a decision support tool will be available to help 

operators plan their routes. The support tool will consider the acceptability of risk for a given 

mission when deciding on a route plan to present for operator approval.  

SCOUT can also be used to study operator behavior, SA, and performance in response to 

variable automation reliability and the resulting trust-in-automation issues that could arise. The 

payload task is equipped with level six (veto) automation with customizable hit and false alarm 

rates. When enabled, the automation highlights potential targets and, after giving the operator 

time to deselect erroneous selections, selects said targets. Since selecting an incorrect target (e.g., 
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a circle instead of a square) results in lost points, reliance upon automation with a liberal 

response criterion could result in a significant point loss. On the other hand, reliance on 

automation with a conservative response criterion could result in the operator missing a target 

altogether.  

Behind the scenes, SCOUT gathers and synchronizes all task/mission performance data 

with detailed information on the user’s behavior and interactions with the system. If desired by 

the experimenter, SCOUT can also synchronize physiological data, such as eye gaze data, pupil 

size, heart rate, and respiration rate. SCOUT currently supports SmartEye Pro, GazePoint, 

EyeTribe, and Tobii EyeX eye tracking systems (Sibley, Coyne, & Thomas, 2016). 

2.10 Literature Review Summary and Identified Gaps 

In summary, there is a substantial body of literature on the effect of automation reliability 

on operator performance in single and multi-task environments. However, most of the existing 

research involves manipulating the reliability of level five information acquisition and analysis 

automation or lower (Parasuraman, Sheridan, & Wickens, 2000; Sheridan & Verplank, 1978). 

Few research efforts have focused on the effects of decision and action selection or action 

implementation automation of level six or higher on operator performance (e.g., Calhoun et al., 

2016). Implementation of mid-level automation is likely, if not necessary, to enable supervisory 

control of multiple UAVs by a single operator in the relatively low-risk and predictable ISR 

mission environment.  

Since level six (veto) automation does not require manual user confirmation of each 

selection, operational definitions of operator performance and automation dependence common 

to the literature must be reconsidered; certain prevalent performance metrics, such as response 

time, are not necessarily indicative of performance and/or automation dependence. The work 
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described herein seeks to build on the work of Calhoun et al. (2016) and further develop 

performance metrics that more accurately reflect operator performance in a supervisory control 

environment involving veto automation. 

In addition, most existing studies involve artificially large reliability manipulations. 

While Rice (2009) and Ruff, Narayanan, and Draper (2002) implemented small reliability 

manipulations, their studies took place within a highly controlled single-task environment and 

were limited in power due to a small sample size, respectively.  Moreover, since the purpose of 

an ISR mission is to image targets and the risk associated with a false alarm is relatively benign, 

system designers are much more likely to set the beta (i.e., alert threshold) so that the automation 

has a more liberal response criterion. Most existing studies characterize ‘unreliable’ automation 

as either unrealistically conservative (i.e., miss-prone) and/or generally unreliable to the point 

where it would likely not be used operationally (e.g., 60% reliable).   

Research is needed to develop metrics that are sensitive enough to discriminate between 

the impacts of automated aids with smaller, more realistic reliability differences on human 

operator performance, as such metrics will be useful for the development, testing, and evaluation 

of future automated aids for UAV ground control stations.  

Furthermore, while many studies have looked at the effect of trust on automation 

dependence, anecdotal evidence from prior studies using SCOUT indicate that its multitask 

environment is sufficiently complex and time-pressured enough that operators may depend on 

the payload task automation irrespective of its reliability and their trust in it. In fact, anecdotal 

evidence also indicates they might not even be cognizant of the automation’s reliability. This 

anecdotal evidence is consistent with the automation complacency literature and the study herein 

attempts to formally establish whether participants’ subjective trust and self-confidence ratings 
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reflect their degree of automation dependence. Based on initial anecdotal findings, and the 

findings of related studies, task load is likely a better predictor of automation dependence in 

multitask environments.  

In contrast to the effects of automation reliability and task load on operator performance, trust, and 

automation dependence, relatively little attention has been paid to the effects of task environment 

complexity on operator performance (e.g., Maltz & Shinar, 2003). In addition, prior studies involved 

the comparison of qualitatively different low and high complexity tasks and did not seek to 

explicitly quantify the difference in complexity between experimental conditions. The research 

described herein seeks to expand on this limited body of research and investigates the use of 

Shannon entropy as a means to explicitly quantify the complexity of a search task.  

This study also investigates the effect of task load on participants’ subjective workload 

and fatigue ratings. Subjective workload could dissociate from traditional performance metrics if 

operators invest greater resources to improve their performance of a resource-limited task, in 

other words, if they try harder (Yeh & Wickens, 1988). 

Perhaps most importantly, while the majority of previous studies used undergraduate 

students, the general population and, less commonly, civilian pilots, this research investigates the 

effects of task load, environment complexity, and automation reliability on UAV supervisory 

control performance within a very unique population: student naval aviators and naval flight 

officers. 

In conclusion, the research described herein attempts to address the following identified 

gaps in the literature: (1) the effects of task load, environment complexity, and automation 

reliability on operator performance, which have not been investigated together; (2) the effects of 

veto automation reliability on operator performance and the unique challenges of measuring 
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performance and automation dependence behavior in that environment; and (3) the effect of task 

complexity on operator performance and the quantification of complexity using Shannon 

entropy. This study will also seek to provide additional empirical evidence for the dissociation 

between task load and subjective workload and fatigue ratings.  

This study seeks to build on existing work by the Naval Research Laboratory, which is 

focused on the development of a sensitive suite of performance and user state metrics that can be 

used for future development, testing, and evaluation of UAV ground control stations; automation; 

decision support tools; data visualizations; and personnel selection. Finally, this research will 

investigate all of the above within a highly unique population: Student Naval Aviators (SNA) and 

Student Naval Flight Officers (SNFOs). SNAs/SNFOs tend to be a highly homogenous and 

range-restricted population relative to undergraduate university students, who are the usual 

subjects of such research. 

3 Method 

3.1 Participants 

Participants in this study included 81 Student Naval Aviators (SNAs) and Student Naval 

Flight Officers (SNFOs) at the Naval Aerospace Medical Institute (NAMI) in Pensacola, Florida. 

The group included both male (n = 71), female (n = 9), and unspecified gender (n = 1) 

participants, who averaged 23.8 years in age (range: 21–30 years). Of the participants who 

reported their visual acuity, most possessed uncorrected or corrected vision of 20/20 or better (n 

= 61), and all but one had corrected or uncorrected vision of 20/40 or better. The remaining 

participant had 20/50 vision. Ten participants did not report their visual acuity, but all can be 

assumed to possess visual acuity above the minimum required for an SNFO, which is 20/20 

corrected (U.S. Navy, 2018). A small number of participants wore contacts (n = 2) or glasses (n = 
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5) during the experiment. The majority of participants were right eye (n = 65) and right hand (n = 

75) dominant, but there was a solid minority of left eye (n = 16) and left hand (n = 6) dominant 

participants. Participants spent an average of 17.4 hours a month gaming (SD = 23.987), and 

reported their subjective skill levels as follows: novice (n = 34), intermediate (n = 29), and expert 

(n = 18). Two participants reported previous commercial or military UAV operational experience. 

None of the participants currently have, or have ever had, a pilot’s license.  

 

 

 

 

 

3.2 Apparatus 

3.2.1. SCOUT.  
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Figure 3.1. The single-screen SCOUT GUI variant. 

The Supervisory Control Operations User Testbed (SCOUT), developed by the Naval 

Research Laboratory (NRL), is a realistic simulation environment for assessing single operator 

performance monitoring multiple unmanned aerial vehicles (UAVs). It is designed to replicate 

the complexity, noise, and uncertainty associated with military UAV control. In addition, it 

includes tasks representative of current operators' primary roles: route planning, airspace 

management, communication, and monitoring (Coyne & Sibley, 2015b) (Figure 3.1).  

During a SCOUT mission, participants manage three heterogeneous helicopter UAVs. To 

meet mission goals, they must decide how to best allocate the UAVs to locate targets while 

simultaneously completing several subtasks, including maintaining communication with 

command and intelligence personnel via chat, updating UAV parameters, and monitoring their 

sensor feeds and airspace. Points are assigned to various actions based on their mission priority 

and the goal is to obtain as many points as possible. 

The single-screen SCOUT variant was run on 14 custom PC workstations, each equipped 

with a 25-inch Acer monitor with a display resolution of 2560 x 1440. Participants sat 

approximately 65 cm. from the display. For a more detailed walkthrough of the SCOUT test bed 

and its subtasks, please see the continuation of this section in Appendix A.  

3.3. Procedure 

Table 3.1 
Experiment Schedule 

TIME 
(HRS:MIN:SEC) 

ACTIVITY 

0:15:00 Informed consent, demographic survey, and SCOUT setup 
and orientation* 

0:30:00 Interactive SCOUT training 
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0:13:45 SCOUT practice scenario 
0:48:00 SCOUT experimental scenario 
0:03:00 Trust in automation survey (paper version) 
0:00:00 Debrief (paper form) 
1:49:45 TOTAL  

Note. * = Although instructions were provided on-screen, the experimenter verbally walked 
participants through the setup tasks.  

 
3.3.1. Overview. The experiment utilized a 2x2x2 mixed MANOVA design. The 

reliability of the payload task automation was treated as a between-subjects factor. Task load and 

task complexity were treated as within-subjects factors. Dependent variables included the 

following subtask performance measures: maximum expected value (per block) on the UAV 

routing task, accuracy on the payload (i.e., target identification) task, and throughput for 

information and vehicle/target update requests from Command and Intelligence personnel. 

Additional dependent variables included participant responses to the Crew Status Survey, a 

subjective fatigue and workload questionnaire; participant responses to a subjective self-

confidence and trust in automation survey; and percent agreement with the payload task 

automation, which served as an indicator of automation dependence. These dependent variables 

are described in further detail in section 3.5. The entire experiment, including participant training 

and debriefing, took just under two hours to complete and followed the schedule outlined in 

Table 3.1. 

3.3.2. Demographic survey. After completing all necessary informed consent and data 

release documentation, participants completed a short demographic survey. The survey requested 

participants to report the following: age, gender, hours per month spent playing video/computer 

games, gaming skill level (novice, intermediate, or expert), whether they wore glasses or 

contacts (during the experiment), dominant hand, dominant eye, visual acuity, 

commercial/military UAV operational experience, and whether they had a pilot’s license.  
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3.3.3. SCOUT training. Each participant completed approximately 30 minutes of 

interactive training on the operation of SCOUT. The training was fully automated and self-paced, 

though written instructions indicated that participants should aim to complete the training in 

about 30 minutes. The training included a text-based walkthrough of the test bed with guided 

practice and covered such topics as UAV capabilities, route planning, communication, airspace 

monitoring, and target searching.  

3.3.4. SCOUT practice scenario. After completing the 30-minute training course, 

participants completed a 13:35 minute practice scenario designed to ensure adequate baseline 

knowledge of SCOUT. During the training period and practice scenario, participants were 

encouraged to ask the experimenter for clarification on any aspect of the test bed or its operation 

that they found unclear.  

3.3.5. The SCOUT experimental scenario. Once participants finished the practice 

scenario and asked the experimenter for additional clarification on the SCOUT controls (if 

needed), they proceeded to an approximately 48-minute SCOUT experimental scenario. The 

experimental scenario consisted of an untimed planning period (which typically took participants 

up to 10 minutes) followed by a 34:15 minute mission with five 45-second workload/fatigue 

freeze probes. During the planning period, the participant formulated the best plan for sending 

their three helicopter UAVs to five possible target areas. The goal of each scenario was to obtain 

as many points as possible.   

Table 3.2 

Point Values Associated with Various User Actions 

Action Points 
Located target Variable (0 – 3000) 
Answered Command or Intel information request 25 
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Made requested UAV/target status update 25 
Updated UAV directional sensor 100 
Reported UAV position at 5 min. ± 1 min. to target arrival 100 
Reported UAV position at 5 min. ± 2 min. to target arrival 50 
Selected potential target 25 
Missed potential target 0 
Selected distractor target -25 
Incurred ROZ without approval Variable (-3000 – 0) 

 
Once the scenario began, in order to score points, participants responded to text 

communications from command and intelligence personnel, made updates to UAV and target 

parameters on request, reported UAV position when five minutes out from a target search area 

and—for the largest point gains—located targets by their deadlines. To successfully locate a 

target, participants had to monitor the sensor feed of the searching UAV once it arrived over the 

target search area. The Crew Status Survey, a brief workload and fatigue questionnaire, was 

administered during five task freezes but did not offer a point reward (Ames & George, 1993).  

New targets appeared over the course of each scenario, which meant participants 

had to continually re-plan if they wished to maximize their points. However, participants 

had to simultaneously monitor their airspace since points were lost if they incurred a 

Restricted Operating Zone (ROZ) without permission. To avoid losing points, 

participants were required to request access prior to crossing a ROZ boundary. See Table 

3.2 for a summary of the point values associated with different user actions.  

3.4 Independent Variables 

3.4.1. Automation reliability. At the beginning of the experiment, participants were 

randomly sorted into a low automation reliability group (n= 40) and a high automation reliability 

group (n= 41). As previously stated, SCOUT included a sensor monitoring component. Once a 
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UAV arrived at a target, participants had to monitor that UAV's sensor feed in order to locate the 

target, which was surrounded by distractors. To assist participants with locating targets, SCOUT 

included automation that selected potential target matches; selected targets were enclosed in a 

brown box. In cases of automation error, the participant could manually deselect the target before 

reached the bottom of the sensor feed to avoid losing points. Participants received 25 points for 

each correctly identified potential target, but lost 25 points for each erroneously selected 

distractor target. Missed potential targets did not result in point loss.  

Table 3.3 
Hits, Misses, False Alarms, and Correct Rejections for Low and High 
Automation Reliability Conditions 
Automation 
Reliability 

Hit  Miss False Alarm Correct Rejection 

High (97%) 97.0%  3.00% 3.00% 97.0% 
Low (92.5%) 100%  0.00% 15.0% 85.0% 

 In the high automation reliability condition, the automation was 97% reliable and was 

capable of effectively discriminating between potential targets and distractors. More specifically, 

the automation had a 97.0% hit rate (correct selection of a potential target), a 3.00% miss rate 

(failure to select a potential target), a 3.00% false alarm rate (erroneous selection of a distractor), 

and a 97.0% correct rejection rate (correct dismissal of a distractor). 

In the low automation reliability condition, the automation had a liberal response 

criterion and was thus false-alarm prone. The automation, which was 92.5% reliable, required the 

participant to manually deselect numerous false alarms (i.e., erroneously selected distractor 

targets) to avoid point loss. More specifically, the automation had a 100% hit rate (correct 

selection of a potential target), a 0.00% miss rate (failure to select a potential target), a 15.0% 

false alarm rate (incorrect selection of a distractor), and an 85.0% correct rejection rate (correct 

dismissal of a distractor) (Table 3.3). Since erroneously selected false alarms were indicated by 



UAV OPERATOR PERFORMANCE 72 

an auditory alert, this condition resulted in excessive alerts and potential participant annoyance, 

distraction, and disruption of performance. 

Table 3.4 
Experimental Scenario Timeline 

Scenario Variant Block 1  
(0:00–8:33) 

Block 2 
(8:34–17:07) 

Block 3 
(17:08–25:41) 

Block 4 
(25:42–34:15) 

Alpha*/Echo† Low C/Low TL Low C/High TL High C/Low TL High C/High TL 

Bravo*/Foxtrot† Low C/High TL Low C/Low TL High C/High TL High C/Low TL 

Charlie*/Golf† High C/Low TL High C/High TL Low C/Low TL Low C/High TL 

Delta*/Hotel† High C/High TL High C/Low TL Low C/High TL Low C/Low TL 

FWP1 FWP2 FWP3 FWP4 FWP5 

 Note: * = high automation reliability; † = low automation reliability; C  = complexity; TL = task 
load; FWP = Fatigue and Workload Probe/CSS. Times listed for each block represent scenario 
clock time and thus do not include the time allotted for task freezes.  
 

Within the low and high automation reliability groups, task load and task complexity 

were varied between low and high levels during the experimental scenario. The experimental 

scenario was pre-scripted in eight versions, using a Latin Square design, to account for order 

effects; while the rates at which targets and messages appeared differed over time between 

scenario variants, they were otherwise as identical as possible (Table 3.4).  

3.4.2. Task load.  

Table 3.5 
Message and Target Frequency for Low and High Task Load Conditions    
TASK 

 
MESSAGES (MIN. AND SEC.) TARGETS (MIN. AND SEC.) 

  Number Frequency ± 

 

Number Frequency ± 

 
LOW 3 2:51 0:34 1 8:33 1:43 
HIGH 32 0:16 0:03 4 2:08 0:26 

Note. The frequency is an average. Actual times varied up to 20%. 
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Operator task load was manipulated by increasing or decreasing both the frequency of 

new targets and the frequency of messages from Command and Intelligence. In a low task load 

block, participants received chat messages from Command or Intelligence every 2:51 minutes, 

on average. In addition, only one new target appeared on the moving map display (approximately 

midway through the block). In a high task load block, participants received chat messages, on 

average, every 16 seconds. Four new targets appeared on the moving map display (every two 

minutes and eight seconds, on average). All times varied, at random, up to 20% to avoid 

participant detection of a pattern. See Table 3.5 for a summary of these times. 

 

 

 

3.4.3. Task complexity.  

    
Figure 3.2. Sample low and high complexity sensor pictures. In the high complexity condition 
(right), large targets are 30% larger than small targets.  
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In low task complexity trials, participants were required to identify a target amidst 

distractor targets that differed from it on one dimension: shape (circle or square). For example, 

participants could be prompted to locate Merchant 1, a circle amongst square distractors. In a 

high task complexity trial, participants were required to identify a target surrounded by 

distractors that differed from it on three dimensions: shape (circle or square), color (gray or 

white), and size (small and large). For example, participants could be asked to locate Periscope 1, 

a large, gray square. Figure 3.2 shows an example of low and high complexity sensor pictures. 

The precise difference in task complexity between the low and high payload complexity 

conditions was operationalized using Shannon entropy (Teixeira, Matos, Souto, & Antunes, 

2011). As previously discussed, the payload task involved the discrimination of three target 

features, each with two possible values: 

Shape (A) = {circle, square} ={𝑎𝑎,𝑎𝑎′} 

Color (B) = {gray, white} ={𝑏𝑏, 𝑏𝑏′} 

Size (C) = {big, small} = {𝑐𝑐, 𝑐𝑐′} 

Therefore, there were eight possible states of the target: 

𝑥𝑥1 = 𝑎𝑎𝑎𝑎𝑎𝑎 

𝑥𝑥2 = 𝑎𝑎𝑎𝑎𝑎𝑎′ 

𝑥𝑥3 = 𝑎𝑎𝑎𝑎′𝑐𝑐 

𝑥𝑥4 = 𝑎𝑎𝑎𝑎′𝑐𝑐′ 

𝑥𝑥5 = 𝑎𝑎′𝑏𝑏𝑏𝑏 

𝑥𝑥6 = 𝑎𝑎′𝑏𝑏𝑏𝑏′ 

𝑥𝑥7 = 𝑎𝑎′𝑏𝑏′𝑐𝑐 

𝑥𝑥8 = 𝑎𝑎′𝑏𝑏′𝑐𝑐′ 
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Table 3.6 
Target Feature Probabilities for the Low Complexity Payload Task  

 𝑷𝑷(𝒙𝒙𝒊𝒊) 
𝒙𝒙𝟏𝟏 = 𝒂𝒂𝒂𝒂𝒂𝒂 0 
𝒙𝒙𝟐𝟐 = 𝒂𝒂𝒂𝒂𝒂𝒂′ 0 
𝒙𝒙𝟑𝟑 = 𝒂𝒂𝒂𝒂′𝒄𝒄 0 
𝒙𝒙𝟒𝟒 = 𝒂𝒂𝒂𝒂′𝒄𝒄′ 0.5 
𝒙𝒙𝟓𝟓 = 𝒂𝒂′𝒃𝒃𝒃𝒃 0 
𝒙𝒙𝟔𝟔 = 𝒂𝒂′𝒃𝒃𝒃𝒃′ 0 
𝒙𝒙𝟕𝟕 = 𝒂𝒂′𝒃𝒃′𝒄𝒄 0 
𝒙𝒙𝟖𝟖 = 𝒂𝒂′𝒃𝒃′𝒄𝒄′ 0.5 

 
Table 3.7 
Target Feature Probabilities for the High Complexity Payload Task  

 𝑷𝑷(𝒙𝒙𝒊𝒊) 
𝒙𝒙𝟏𝟏 = 𝒂𝒂𝒂𝒂𝒂𝒂 0.125 
𝒙𝒙𝟐𝟐 = 𝒂𝒂𝒂𝒂𝒂𝒂′ 0.125 
𝒙𝒙𝟑𝟑 = 𝒂𝒂𝒂𝒂′𝒄𝒄 0.125 
𝒙𝒙𝟒𝟒 = 𝒂𝒂𝒂𝒂′𝒄𝒄′ 0.125 
𝒙𝒙𝟓𝟓 = 𝒂𝒂′𝒃𝒃𝒃𝒃 0.125 
𝒙𝒙𝟔𝟔 = 𝒂𝒂′𝒃𝒃𝒃𝒃′ 0.125 
𝒙𝒙𝟕𝟕 = 𝒂𝒂′𝒃𝒃′𝒄𝒄 0.125 
𝒙𝒙𝟖𝟖 = 𝒂𝒂′𝒃𝒃′𝒄𝒄′ 0.125 

Table 3.6 and Table 3.7 display the probability of occurrence of targets with each 

combination of features in the low and high complexity payload task, respectively. The 

probabilities assume that the target features have an equal probability of appearing on the 

payload display, which is indeed the case.  

Thus, for the low complexity payload task, the information entropy is 

𝐻𝐻(𝑋𝑋) = −∑𝑃𝑃(𝑥𝑥𝑖𝑖) log2 𝑃𝑃(𝑥𝑥𝑖𝑖) = −0.5 ∗ log2(0.5) ∗ 2 = 1                      (3.1) 

For the high complexity payload task, the information entropy is  

𝐻𝐻(𝑋𝑋) = −∑𝑃𝑃(𝑥𝑥𝑖𝑖) log2 𝑃𝑃(𝑥𝑥𝑖𝑖) = −0.125 ∗ log2(0.125) ∗ 8 = 3                  (3.2) 

3.5. Dependent Variables 

3.5.1. Performance. Performance measures included maximum expected value per block 

on the UAV routing task, accuracy on the payload task, and throughput for information and 

vehicle/target update requests from Command and Intelligence. Ideally, throughput would also 
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be used to assess performance on the payload task but, due to a data-logging problem, reaction 

time for the task is unavailable. However, since there is significant range restriction on the 

reaction time of the payload task because targets only appear on the feed for seven seconds (in 

contrast to the full minute participants have to respond to Command and Intelligence), the impact 

of the reaction time data loss should be minimal. Points, although displayed to the operator for 

motivational purposes, is a composite measure that takes into consideration all the previous 

factors, and is thus not included in the analysis. 

3.5.1.1. UAV routing task. Performance on the UAV routing task is defined as an 

operator’s adjusted expected value, which is calculated by block using the following formula: 

𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =  𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
  =  

∑�(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝)�

∑�(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑔𝑔)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔)�
                                (3.3) 

EVmaxp = maximum expected value per block for a given participant, or the sum of the 

products of each assigned target’s point value and the percentage of the target searchable by its 

deadline 

EVmaxg = the maximum expected value per block that was achieved by any participant 

(i.e., the participant with the highest EV for that block) 

3.5.1.2. Chat communication task. Performance on the communication task is defined by 

operators’ throughput. Throughput is a composite measure equal to the number of correct task 

responses (e.g., the number of correctly answered chat messages) divided by the cumulative 

reaction times, both correct and incorrect (Thorne, 2006).  

3.5.1.3. Payload task. Performance on the payload task is defined by percent accuracy, 

according to the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  �𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝+𝐶𝐶𝐶𝐶𝑝𝑝
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏+ 𝐶𝐶𝐶𝐶𝑏𝑏

�  100                                               (3.4) 
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p = participant selections (including agreement with automated selections and overrides) 
b = baseline (selections made by the automation prior to human operator interference) 
 
According to this formula, accuracy is the sum of the hits and correct rejections made by 

a human operator working in conjunction with the automation divided by the sum of the hits and 

correct rejections made by the automation prior to human operator interference. Higher accuracy 

scores indicate better performance. An accuracy score of 100% indicates that the participant 

exhibited the same accuracy as the automation if it were left to perform the task without any user 

interference. An accuracy score greater than 100% indicates that the participant performed better 

than the automation. In other words, they overrode the automation on at least one occasion to 

improve its performance. The greater their accuracy score over 100%, the more automation 

errors the participant successfully caught and corrected. Conversely, if a participant’s accuracy 

score falls below 100%, it means they performed worse than if they had left the automation to 

handle the task in isolation and they erroneously deselected targets that were correctly identified 

by the automation.  

3.5.2. Automation dependence. An operators’ dependence on the payload task automation was 

operationalized as their percent agreement with the automation, or the percentage of their responses that 

followed the automation’s recommendation. A percent agreement score under 100% indicated that a 

participant did not always follow the recommendation of the automation and manually selected and/or 

deselected potential targets previously identified by the automation before it could execute its decision. A 

score of 100% indicated that a participant always followed the automation.  

3.5.3. Subjective measures of operator state.  

3.5.2.1. Crew status survey (CSS). The Crew Status Survey was used to assess operator fatigue 

and workload (Ames & George, 1993). Participants rated their current level of fatigue on a seven-point scale 

that ranged from one (fully alert) to seven (completely exhausted). Next, participants rated both the average 
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and maximum level of workload they experienced during the past work period (since the beginning of the 

scenario or the last questionnaire, whichever came last) on a seven-point that ranged from one (nothing to 

do) to seven (overloaded). 

3.5.2.2. Trust in automation survey. A brief four-question Likert-type survey was 

administered upon completion of the SCOUT experimental scenario. The survey, modeled after 

Lee and Moray’s validated (1994) scale, is used to rate an operator’s trust in an automated 

system and their self-confidence that they could perform the same task manually. The purpose of 

this survey was to gauge whether participants in the low and high automation reliability groups 

noticed a difference in the reliability of the automated target selection and if their trust and self-

confidence were accordingly impacted.  

4 Results 

4.1. Overview 

The purpose of this study was to assess the effect of task load, environment complexity, 

and automation reliability on UAV operators’ performance, subjective workload and fatigue, 

automation dependence, and trust in the automation.  

The data analysis aims to support answers to the following questions: 

• Do differences in task load, environment complexity, and automation reliability affect 

participants’ task performance? Task performance is defined as adjusted expected value 

on the UAV routing task, accuracy on the automated payload task, and throughput on the 

chat communication task.  

o Accuracy was used in place of throughput to assess performance on the automated 

payload task. Due to data loss, response times were unavailable and throughput 

could not be calculated. However, the impact on results was minimal because 
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response time was range restricted on the payload task; participants only had 

seven seconds to react to each target. 

• Do differences in task load, environment complexity, and automation reliability affect 

participants’ subjective workload? 

• Do differences in task load, environment complexity, and automation reliability affect 

participants’ subjective fatigue? 

• Do differences in task load, environment complexity, and automation reliability affect 

operators’ automation dependence? 

• Do differences in automation reliability affect participants’ subjective ratings of trust in 

the automation? (I.e., do participants notice a difference in the reliability of the 

automation?) 

With the exception of the analysis of the subjective trust rating data, which was 

conducted using t-tests, all analyses were performed using either a mixed analysis of variance 

(ANOVA) or a linear mixed-model (LMM) approach. The mixed ANOVA was employed in all 

cases where less than 5% of the data were missing because it is ubiquitous, easy to use, and, 

most importantly, appropriate for the study design. However, an LMM approach was used 

instead of ANOVA when more than 5% of the data were missing because mixed-effects models 

are much more robust against missing data than ANOVA as long as the data are missing at 

random (MAR) (Gueorguieva & Krystal, 2004). In all cases where an ANOVA was used, an 

equivalent LMM analysis was run on the same data set as a precaution. Although the results of 

these redundant LMM analyses are not reported herein, the results were very similar to the 

results obtained with the ANOVA and the significance and/or non-significance of the variables 

did not change for any of the analyses. 
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4.2 UAV Operator Performance 

4.2.1. Routing task performance (adjusted expected value). Participant performance 

on the UAV routing task was assessed using their adjusted expected value, or the sum of the 

products of the point values and searchable by deadline percentages of all targets a participant 

assigns to their three UAVs during each experimental block divided by the maximum expected 

value per block that was achieved by the participant with the highest EV for that block.  

The Little's MCAR test for these variables resulted in χ2 = 29.129 (df = 17; p = 0.033), 

which indicates the data is missing not at random (MNAR). Further examination of the data 

revealed that more data was missing for the high task load blocks (8.6–11.1%) than the low task 

load blocks (1.2–6.2%). None of the 81 participants included in the analysis dropped out of the 

study, so these “missing” values are not truly missing and, in fact, indicate that participants 

simply did not assign any new targets to their UAVs during that block.  It is possible that 

participants, when task saturated, did not notice new targets appearing on the moving map or 

chose not to spend time assigning them to UAVs and, thus, received an expected score of zero for 

that block. It is also possible that non-optimal decision-making during the prior block resulted in 

their UAVs being out of range of new targets. If that were the case, participants might have been 

reluctant to expend the time to assign futile targets to their UAVs when they could otherwise 

attend to alternate tasks to gain points. Since an identifiable pattern exists in the missing data, the 

data are missing not at random (MNAR) and the results of this analysis should be interpreted 

with a degree of caution.  

Adjusted expected value scores were not normally distributed, as assessed by the 

Kolmogorov-Smirnov test (p < 0.05). However, since values for skewness and kurtosis between -
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2 and +2 are acceptable to demonstrate normal univariate distribution (George & Mallery, 2009), 

the analysis was continued without data transformation for easier interpretation.  

Figure 4.1. Adjusted expected values by experimental block. Adjusted expected values for the 
unreliable automation group (100% hit rate, 15% false alarm rate) are displayed on the left and 
adjusted expected values for the reliable automation group (97% hit rate, 3% false alarm rate) are 
displayed on the right. 
 

There were 24 outliers in the data, as assessed by inspection of a boxplot (Figure 4.1). 

The outliers were kept in the analysis because they are genuinely unusual values and not the 

result of measurement or data entry errors. The outliers do not have an appreciable effect on the 

analysis as assessed by a comparison of the results with and without the outliers.  
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A restricted maximum likelihood linear mixed-model (REML LMM) analysis was run on 

the adjusted expected value data. The LMM approach was used instead of a mixed ANOVA 

because LMM is able to accommodate missing data and simply imputing the missing data to run 

the GLM is not appropriate. Expectation-Maximization (EM) imputation is not ideal when more 

than 5% of the data is missing, particularly when there is a pattern to the missing data, as is the 

case here (Schafer, 1999; Tabachnick and Fidell, 2013). Multiple imputation, in theory, could be 

used to impute the missing data prior to running a GLM analysis, but there is no agreed upon 

method in the literature to pool multiply imputed datasets for a 2 x 2 x 2 mixed ANOVA. Thus, a 

LMM analysis is the most appropriate choice for this dataset.  

Adjusted EV ~ Task Load + Task Complexity +  
Automation Reliability + (1|Participant)  + (1|Block) + ε                                              (4.1) 
 
As previously stated, an REML LMM analysis was run to assess adjusted expected value 

as a function of task load, task complexity, and automation reliability. Task load, task complexity, 

and automation reliability (and their two-way interaction terms) were entered into the model as 

fixed factors. Fixed factors are those where all levels of interest are controlled for by the study 

design. Participant ID was included in the model as a random factor (i.e., a “grouping variable”) 

to resolve the violation of non-independence of observations by assuming a different “baseline” 

adjusted expected value for each participant since repeated measures in a mixed design are not 

independent. Experimental block was added as an additional random factor to account for by-

block variation in adjusted expected values, which are also not independent (Magezi, 2015; 

Winter, 2013). This information is summarized in Equation 4.1, which also includes a general 

error term “ε.” 

There was homogeneity of variances, as assessed by Levene's test for equality of 

variances (p > 0.05).  
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Multiple models (compound symmetry; first order autoregressive, AR(1); and 

unstructured) were fit, and one was ultimately selected, via a penalized likelihood approach. 

More specifically, the BIC (Bayesian information criterion) and AIC (Akaike information 

criterion) were compared for various models and the model with the lowest BIC and AIC values 

was selected. Since Type I error control was considered a higher priority than loss of power, the 

AIC value was given more weight when the BIC and AIC diverged. Selecting an overly 

simplified model inflates the Type I error rate and lower BIC values tend to be associated with 

less complex models. Conversely, overly complex models, which are penalized by BIC and 

characterized by higher BIC values, result in loss of power (Guerin & Stroup, 2000; Seltman, 

2018). 

The selected model utilized an unstructured covariance structure (Gurka, Edwards, & 

Muller, 2011). Mauchly’s test of sphericity was not assessed because sphericity or compound 

symmetry was not assumed in the model. However, even if sphericity was assumed, there are 

only two levels of both within-subjects factors. Therefore, there would only be one paired 

difference for each and the assumption of sphericity would automatically be met. 

None of the two-way interactions for route task performance were significant. First, there 

was no statistically significant simple two-way interaction between complexity and 

reliability, F(1, 75.795) = 0.005, p = 0.946, partial η2 = 0.000. Second, there was also no 

statistically significant simple two-way interaction between task load and reliability, F(1, 70.186) 

= 0.007, p = 0.932, partial η2 = 0.000. Finally, there was no statistically significant simple two-

way interaction between complexity and task load, F(1, 78.819) = 0.003, p = 0.356, partial η2 = 

0.011. 
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Figure 4.2. Main effect of task load on adjusted expected value on the UAV routing task. 
 

However, there was a statistically significant main effect of task load, F(1, 69.586) = 

9.688, p = 0.003, partial η2 = 0.1222 (Figure 4.2). As participant task load increased, their 

performance on the UAV routing task increased. Participants’ adjusted expected values for the 

UAV routing task were significantly better in the high task load condition (M = 59.39, SD = 

19.89) than the low task load condition (M = 53.97, SD = 21.58). The main effects of payload 

task complexity, F(1, 75.531) = 0.053, p = 0.818, partial η2 = 0.001, and payload task automation 

reliability, F(1, 74.059) = 1.428, p = 0.236, partial η2 = 0.019, on participants’ adjusted expected 

values for the concurrent UAV routing task were not significant.  

4.2.2. Payload task performance (accuracy). Participant performance on the payload 

task was assessed using their percent accuracy, or the sum of the hits and correct rejections made 

by the participant working in conjunction with the automation divided by the sum of the hits and 

correct rejections made by the automation prior to participant interference. Higher accuracy 

scores indicate better performance.  

The Little's MCAR test obtained for these variables resulted in χ2 = 29.275 (df = 17; p = 

0.032), which indicates the data are MNAR. Further examination of the data revealed that 
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substantially more data are missing for the low task load blocks (13.6–22.2%) than the high task 

load blocks (1.2–3.7%). This pattern most likely exists because fewer new targets appeared 

during the low task load blocks. Since there are fewer opportunities to assign targets to UAVs, 

and thus fewer active target searches that could take place during a low task load block, it is 

more likely that poor planning could result in no target searches occurring at all during that 

period.  

Participants’ percent accuracy was not normally distributed, as assessed by the 

Kolmogorov-Smirnov test (p < 0.05). A square-root transformation was applied to the data to 

correct a moderate negative skew (Tabachnick & Fidell, 2013). However, the accuracy score 

distributions for the low and high task load conditions remained slightly leptokurtic (kurtosis 

values of 2.049 and 3.195, respectively). All other skewness and kurtosis values fell between the 

-2 and +2 range acceptable to demonstrate normal univariate distribution after transformation 

(George & Mallery, 2009).  



UAV OPERATOR PERFORMANCE 86 

 
Figure 4.3. Payload task accuracy by experimental block. Accuracy values for the unreliable 
automation group (100% hit rate, 15% false alarm rate) are displayed on the left and accuracy 
values for the reliable automation group (97% hit rate, 3% false alarm rate) are displayed on the 
right. This data was square-root transformed. 
 

There were 45 outliers in the data, as assessed by inspection of a boxplot (Figure 4.3). 

The outliers were kept in the analysis because they are genuinely unusual values and not the 

result of measurement or data entry errors. The outliers do not have an appreciable effect on the 

analysis as assessed by a comparison of the results with and without the outliers.  

An REML LMM analysis was run to assess the square-root transformed payload percent 

accuracy data as a function of task load, task complexity, and automation reliability. As with the 
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analysis of the adjusted expected value data above, the LMM approach was used instead of a 

mixed ANOVA because LMM is able to accommodate missing data. 

Percent Accuracy ~ Task Load + Task Complexity +  
Automation Reliability + (1|Participant)  + (1|Block) + ε                                              (4.2) 
 
Task load, task complexity, and automation reliability (and their two-way interaction 

terms) were entered into the model as fixed factors. Participant ID and experimental block were 

included in the model as random factors (Magezi, 2015; Winter, 2013). This information is 

summarized in Equation 4.2, which also includes the general error term “ε.” 

There was homogeneity of variances, as assessed by Levene's test for equality of 

variances (p > 0.05).  

Multiple models (compound symmetry; first order autoregressive, AR(1); and 

unstructured) were fit via a penalized likelihood approach or, more specifically, through 

comparison of their BIC and AIC values (Seltman, 2018). Although the AR(1) covariance 

structure produced a smaller AIC value, the selected model utilized an unstructured covariance 

structure since its BIC value was smaller and minimization of potential Type I error was desired 

(Guerin & Stroup, 2000; Gurka, Edwards, & Muller, 2011). Mauchly’s test of sphericity was not 

assessed because sphericity or compound symmetry was not assumed in the model. However, 

even if sphericity was assumed, there are only two levels of both within-subjects factors. 

Therefore, there would only be one paired difference for each and the assumption of sphericity 

would automatically be met. 
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Figure 4.4. Reliability and task load interaction for payload task accuracy. This data was square-
root transformed. 
 

There was a statistically significant simple two-way interaction between reliability and 

task load, F(1, 71.776) = 7.804, p = 0.007, partial η2 = 0.098 (Figure 4.4). However, there were 

no statistically significant simple two-way interactions between reliability and complexity, F(1, 

70.828) = 0.015, p = 0.903, partial η2 = 0.000, or complexity and task load, F(1, 72.783) = 

0.897, p = 0.347, partial η2 = 0.012. 

 
Figure 4.5. Main effect of automation reliability on payload task accuracy. This data was square-
root transformed. 
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 Figure 4.6. Main effect of task load on payload task accuracy. This data was square-root 
transformed. 
 

The main effects of automation reliability, F(1, 74.407) = 13.782, p = 0.000, partial η2 = 

0.156 (Figure 4.5), and task load, F(1, 71.821) = 9.688, p = 0.000, partial η2 = 0.799 (Figure 4.6), 

were also significant. There was no significant main effect for payload task complexity, F(1, 

64.665) = 0.342, p = 0.561, partial η2 = 0.005. 

Participant’s percent accuracy on the payload task generally improved when aided by 

reliable automation (M = 4.65, SD = 1.539) and worsened when aided by unreliable automation 

with a liberal response criterion (M = 3.66, SD = 1.671). In addition, their percent accuracy was 

inversely related to their task load; their percent accuracy was higher when their task load was 

low (M = 4.94, SD = 1.450), and lower when their task load was high (M = 3.49, SD = 1.573). 

Moreover, there was a significant interaction between task load and automation 

reliability. Unreliable automation caused a more marked performance decrement when 

participant task load increased from low (M = 4.646, SE = 0.195) to high (M = 2.863, SE = 

0.201). This decrease in payload task accuracy due to an increase in task saturation from low (M 

= 5.373, SE = 0.194) to high (M = 4.097, SE = 0.199) was partially mitigated by more reliable 

automation.  
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4.2.3. Communication task performance (throughput). Participant performance on the 

chat communication task was operationalized as their throughput. Throughput is a composite 

measure equal to the number of correctly answered chat messages divided by the cumulative 

reaction time of all responses, both correct and incorrect (Thorne, 2006).  

The Little's MCAR test obtained for these variables resulted in χ2 = 6.425 (df = 3; p = 

0.093), which indicated the data were missing completely at random (MCAR). Since less than 

5% of the data were MCAR, the missing values were imputed using EM.  

A 2x2x2 mixed ANOVA was run to understand the effects of task load, payload task 

complexity, and payload task automation reliability on participants’ throughput for the chat 

communications task. Throughput values were not normally distributed, as assessed by the 

Kolmogorov-Smirnov test (p < 0.05). However, since values for skewness and kurtosis between -

2 and +2 are acceptable to demonstrate normal univariate distribution (George & Mallery, 2010), 

the analysis was continued without data transformation for easier interpretation. 
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Figure 4.7. Chat communications throughput by experimental block. Throughput values for the 
unreliable automation group (100% hit rate, 15% false alarm rate) are displayed on the left and 
throughput values for the reliable automation group (97% hit rate, 3% false alarm rate) are 
displayed on the right. 
 

There were two outliers in the data, as assessed by inspection of a boxplot (Figure 4.7). 

The outliers were kept in the analysis because they were genuinely unusual values and not the 

result of measurement or data entry errors. The outliers did not have an appreciable effect on the 

analysis as assessed by a comparison of the results with and without the outliers.  

Levene's test for equality of variances was significant (p < 0.05), indicating that the 

assumption of homogeneity of variances was violated. Mauchly’s test of sphericity was not 
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assessed because there were only two levels of both within-subjects factors. Therefore, there was 

only one paired difference for each and the assumption of sphericity was automatically met. 

 
Figure 4.8. Effect of task complexity on communication task throughput values of participants 
working with unreliable payload task automation.  
 

There was a statistically significant three-way interaction between reliability, task load, 

and complexity, F(1, 79) = 4.832, p = 0.031, partial η2 = 0.058. Participants working in 

conjunction with unreliable payload task automation performed similarly on the chat 

communication task, regardless of overall task load, when the complexity of the payload task 

was low, although participants given a high task load (M = 0.045, SE = 0.004) performed slightly 

better on the communication task than those given a low task load (M = 0.044, SE = 0.006).  
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When the complexity of the payload task increased, participants relying on unreliable 

automation during a period of high task load experienced a performance drop on the 

communication task (M = 0.041, SE = 0.004). On the other hand, when task load was low, their 

performance actually improved on the communication task when the payload task became more 

complex (M = 0.057, SE = 0.005). Overall, when the payload task automation was less reliable, 

the difference in performance on the communication task was much more pronounced when the 

complexity of the payload task was high (Figure 4.8). 

 
Figure 4.9. Effect of task complexity on communication task throughput values of participants 
working with reliable payload task automation.  
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Conversely, participants working with reliable payload task automation performed 

similarly on the communication task, regardless of task load, when the payload task was more 

complex, although participants given a high task load (M = 0.047, SE = 0.004) performed 

slightly better than those given a low task load (M = 0.046, SE = 0.005).  

When the complexity of the payload task decreased, participants working in conjunction 

with reliable automation experienced a performance drop on the communication task when task 

load was high (M = 0.043, SE = 0.004). On the other hand, when task load was low, their 

communication performance improved as the payload task became less complex (M = 0.053, SE 

=0.006). Overall, when the payload task automation was more reliable, the difference in 

performance on the communication task was much more pronounced when the complexity of the 

payload task was low (Figure 4.9). However, given the relative scarcity of chat messages in the 

low condition, this three-way interaction should be interpreted with caution. 

There was no statistically significant simple two-way interaction between complexity and 

reliability, F(1, 79) = 0.592, p = 0.444, partial η2 = 0.007. There was no statistically significant 

simple two-way interaction between task load and reliability, F(1, 79) = 0.296, p = 0.588, partial 

η2 = 0.004. There was no statistically significant simple two-way interaction between complexity 

and task load, F(1, 79) = 0.153, p = 0.697, partial η2 = 0.002.  
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Figure 4.10. Main effect of task load on chat communications task throughput.  
 

However, there was a statistically significant main effect of task load, F(1, 79) = 6.897, p 

= 0.010, partial η2 = 0.080 (Figure 4.10). As participant task load increased, their performance on 

the chat communications task decreased. Participants’ throughput for the chat communications 

task was lower in the high task load condition (M = 0.044, SD = 0.002) than the low task load 

condition (M = 0.050, SD = 0.003). The main effects of payload task complexity, F(1, 79) = 

0.096, p = 0.797, partial η2 = 0.001, and payload automation reliability, F(1, 79) = 0.005, p = 

0.943, partial η2 = 0.000, were not significant.  

4.3 UAV Operator Subjective Workload 

The CSS was used to assess participants’ average and maximum subjective workload for 

each experimental block (Ames & George, 1993). Participants rated both their average and 

maximum workload on a seven-point scale that ranged from one (nothing to do) to seven 

(overloaded). For more detail on these scales, see Figure A.20 in Appendix A.  

The Little's MCAR test obtained for the CSS data resulted in χ2 = 28.134 (df = 24; p = 

0.254), which indicated the data were MCAR. Since only a small percentage of data were 

missing (1.2%), missing values were filled using EM.  

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

Low High

T
hr

ou
gh

pu
t

Task Load



UAV OPERATOR PERFORMANCE 96 

4.3.1. Mean subjective workload. A three-way mixed ANOVA was run to understand 

the effects of operator task load (low and high), task environment complexity (low and high), and 

automation reliability (low and high) on operators’ mean subjective workload ratings. Operators 

rated their subjective mean workload on an anchored seven-point scale, which ranged from one 

(nothing to do) to seven (overloaded).  

Mean workload ratings were not normally distributed, as assessed by the Kolmogorov-

Smirnov test (p < 0.05). However, since values for skewness and kurtosis between -2 and +2 are 

acceptable to demonstrate normal univariate distribution (George & Mallery, 2009), the analysis 

was continued without data transformation for easier interpretation.  

 
Figure 4.11. Participant workload ratings by experimental block. The workload ratings for the 
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unreliable automation group (100% hit rate, 15% false alarm rate) are displayed on the left and 
the workload ratings for reliable automation group (97% hit rate, 3% false alarm rate) are 
displayed on the right.  
 

There were four outliers in the data, as assessed by inspection of a boxplot (Figure 4.11). 

The outliers were kept in the analysis because they were genuinely unusual values and not the 

result of measurement or data entry errors. The outliers did not have an appreciable effect on the 

analysis as assessed by a comparison of the results with and without the outliers.  

The assumption of homogeneity of variances was violated for the high complexity / low 

task load experimental block, as assessed by Levene's test for equality of variances, F(1,79) = 

4.396, p = 0.039. Thus, one cannot assume equal variances between groups. Mauchly’s test of 

sphericity was not assessed because there were only two levels of both within-subjects factors. 

Therefore, there was only one paired difference for each and the assumption of sphericity was 

automatically met. 

There was no statistically significant three-way interaction between reliability, task load, 

and complexity, F(1, 79) = 0.000, p = 0.992, partial η2 = 0.000. There was no statistically 

significant simple two-way interaction between complexity and reliability, F(1, 79) = 3.292, p = 

0.073, partial η2 = 0.040. There was no statistically significant simple two-way interaction 

between task load and reliability, F(1, 79) = 2.966, p = 0.089, partial η2 = 0.036. There was no 

statistically significant simple two-way interaction between complexity and task load, F(1, 79) = 

2.015, p = 0.160, partial η2 = 0.025.  
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Figure 4.12. Main effect of task load on participants’ mean workload ratings.  
 

While there were no significant interactions, there was a statistically significant main 

effect of task load, F(1, 79) = 57.103, p = 0.000, partial η2 = 0.420 (Figure 4.12). As participant 

task load increased, their average workload ratings increased. Participants’ average workload 

ratings were significantly higher in the high task load condition (M = 3.844, SD = 1.121) than the 

low task load condition (M = 2.966, SD = 1.010). However, although the difference in average 

workload ratings between the low and high task load blocks is significant, it should be noted that 

the effect size is relatively small. These values correspond to a mean difference of one point on 

the seven-point scale and workload ratings of (4) “busy, challenging but manageable, adequate 
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time available” and (3) “moderate activity, easily managed, considerable spare time,” 

respectively.  

 
Figure 4.13. Main effect of automation reliability on participants’ mean workload ratings. The 
left and right bars display the results for the low (100% hit rate, 15% false alarm rate) and high 
(97% hit rate, 3% false alarm rate) automation reliability groups, respectively.  
 

There was also a statistically significant main effect of reliability, F(1, 79) = 5.609, p = 

0.020, partial η2 = 0.066 (Figure 4.13). Participants’ average workload ratings were significantly 

higher in the low reliability automation condition (M = 3.624, SD = 1.276) than the high 

reliability automation condition (M = 3.190, SD = 1.066). However, as was the case for the main 

effect of task load, it should be noted that the effect size for the automation reliability main effect 
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is relatively small; the difference between the low and high reliability groups is less than half a 

point on the seven-point scale.  

In summary, increased task load and reduced automation reliability both result in modest 

increases in participant’s subjective mean workload.  

4.3.2. Maximum subjective workload. A three-way mixed ANOVA was run to 

understand the effects of operator task load (low and high), task environment complexity (low 

and high), and automation reliability (low and high) on operators’ subjective maximum 

workload. Operators rated their maximum workload on an anchored seven-point scale, which 

ranged from one (nothing to do) to seven (overloaded).  

Maximum workload ratings were not normally distributed, as assessed by the 

Kolmogorov-Smirnov test (p < 0.05). However, since values for skewness and kurtosis between -

2 and +2 are acceptable to demonstrate normal univariate distribution (George & Mallery, 2009), 

the analysis was continued without data transformation for easier interpretation.  
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Figure 4.14. Maximum workload ratings by experimental block. The workload ratings for the 
unreliable automation group (100% hit rate, 15% false alarm rate) are displayed on the left and 
the workload ratings for reliable automation group (97% hit rate, 3% false alarm rate) are 
displayed on the right.  
 

There were 12 outliers in the data, as assessed by inspection of a boxplot (Figure 4.14). 

The outliers were kept in the analysis because they were genuinely unusual values and not the 

result of measurement or data entry errors. The outliers did not have an appreciable effect on the 

analysis as assessed by a comparison of the results with and without the outliers.  

There was homogeneity of variances, as assessed by Levene's test for equality of 

variances (p > 0.05). Mauchly’s test of sphericity was not assessed because there were only two 
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levels of both within-subjects factors. Therefore, there was only one paired difference for each 

and the assumption of sphericity was automatically met. 

There was no statistically significant three-way interaction between reliability, task load, 

and complexity, F(1, 79) = 1.248, p = 0.267, partial η2 = 0.016. There was no statistically 

significant simple two-way interaction between complexity and reliability, F(1, 79) = 1.294, p = 

0.259, partial η2 = 0.016. There was no statistically significant simple two-way interaction 

between task load and reliability, F(1, 79) = 0.493, p = 0.485, partial η2 = 0.006. There was no 

statistically significant simple two-way interaction between complexity and task load, F(1, 79) = 

0.664, p = 0.418, partial η2 = 0.008.  

 
Figure 4.15. Main effect of task load on participants’ maximum workload ratings.  
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However, there was a statistically significant main effect of task load, F(1, 79) = 54.465, 

p = 0.000, partial η2 = 0.408 (Figure 4.15). As participant task load increased, their subjective 

maximum workload ratings increased. Participants’ subjective maximum workload ratings were 

significantly higher in the high task load condition (m = 4.608, s = 1.379) than the low task load 

condition (m = 3.702, s = 1.215). These values correspond to a small, approximately one-point 

difference in ratings of (5) “very busy, demanding to manage, barely enough time” and (4) “busy, 

challenging but manageable, adequate time available,” respectively.  

Unlike the mean subjective workload ratings, there was no statistically significant main 

effect of reliability on subjective maximum workload ratings, F(1, 79) = 3.917, p = 0.051, partial 

η2 = 0.047. Likewise, the main effect of complexity was not significant, F(1, 79) = 0.022, p = 

0.882, partial η2 = 0.000. 

4.4 UAV Operator Subjective Fatigue 

In addition to workload, the CSS was also used to assess participants’ subjective fatigue 

for each experimental block (Ames & George, 1993). Participants rated their fatigue on a seven-

point scale that ranged from one (fully alert) to seven (completely exhausted). Please see Figure 

A.19 in Appendix A for more detail on the fatigue rating scale. As stated above, the small 

percentage of missing CSS data (1.2%) was imputed using EM. 

A three-way mixed ANOVA was run to understand the effects of operator task load (low 

and high), task environment complexity (low and high), and automation reliability (low and 

high) on operators’ subjective fatigue.  

Fatigue ratings were not normally distributed, as assessed by the Kolmogorov-Smirnov 

test (p < 0.05). However, since values for skewness and kurtosis between -2 and +2 are 
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acceptable to demonstrate normal univariate distribution (George & Mallery, 2009), the analysis 

was continued without data transformation for easier interpretation.  

 
Figure 4.16. Fatigue ratings by experimental block. The fatigue ratings for the unreliable 
automation group (100% hit rate, 15% false alarm rate) are displayed on the left and the fatigue 
ratings for reliable automation group (97% hit rate, 3% false alarm rate) are displayed on the 
right.  
 

Inspection of a boxplot indicated that there were no outliers in the data (Figure 4.16). The 

assumption of homogeneity of variances was violated for the high complexity / high task load 

experimental block, as assessed by Levene's test for equality of variances, F(1,79) = 4.931, p = 

0.029. Thus, one cannot assume equal variances between groups. Mauchly’s test of sphericity 

was not assessed because there are only two levels of both within-subjects factors. Therefore, 
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there is only one paired difference for each and the assumption of sphericity is automatically 

met. 

There was no statistically significant three-way interaction between reliability, task load, 

and complexity, F(1, 79) = 0.023, p = 0.880, partial η2 = 0.000. There was no statistically 

significant simple two-way interaction between complexity and reliability, F(1, 79) = 0.597, p = 

0.442, partial η2 = 0.008. There was no statistically significant simple two-way interaction 

between task load and reliability, F(1, 79) = 1.202, p = 0.276, partial η2 = 0.015. There was no 

statistically significant simple two-way interaction between complexity and task load, F(1, 79) = 

0.757, p = 0.387, partial η2 = 0.009.  

Unlike the workload ratings, there was no statistically significant main effect of task load 

on fatigue ratings, F(1, 79) = 1.817, p = 0.182, partial η2 = 0.022. The main effects for reliability, 

F(1, 79) = 0.014, p = 0.840, partial η2 = 0.001, and complexity, F(1, 79) = 1.324, p = 0.253, 

partial η2 = 0.016, were also not significant. Task load, payload task complexity, and the 

reliability of the payload task automation did not affect participants’ experience of fatigue.  

4.5 UAV Operator Automation Dependence  

 Participants’ degree of automation dependence was defined as the percentage of their 

responses that followed the recommendation of the payload automation. A lower percent 

agreement score indicated that a participant more frequently overrode the potential targets 

selected by the automation or manually selected additional potential targets. 

The Little's MCAR test obtained for these variables resulted in χ2 = 26.012 (df = 17; p = 

0.074), which indicated that the data were MCAR. In other words, there was no pattern to the 

missing data. However, listwise deletion of missing values was not ideal since 10.2% of the data 

were missing (Little, 1988). This missing data can be attributed to blocks where, due to planning 
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decisions made in that block and the prior block, no searches took place. None of the missing 

data was due to attrition.  

Participants’ percent agreement was not normally distributed, as assessed by the 

Kolmogorov-Smirnov test (p < 0.05). A log transformation was applied to the data to correct its 

negative skew (Tabachnick and Fidell, 2013).  After transformation, the skewness and kurtosis 

values fell between the -2 and +2 range acceptable to demonstrate normal univariate distribution 

(George & Mallery, 2009).  

 
Figure 4.17. Participant percent agreement with automation by experimental block. The percent 
agreement of participants in the unreliable automation group (100% hit rate, 15% false alarm 
rate) is displayed on the left and the percent agreement of participants in the reliable automation 
group (97% hit rate, 3% false alarm rate) is displayed on the right. This data was log 
transformed.  
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There were 36 outliers in the data, as assessed by inspection of a boxplot (Figure 4.17). 

The outliers were kept in the analysis because they were genuinely unusual values and not the 

result of measurement or data entry errors. The outliers did not have an appreciable effect on the 

analysis as assessed by a comparison of the results with and without the outliers.  

An REML LMM analysis was run to assess the log transformed percent agreement data 

as a function of task load, task complexity, and automation reliability. As with prior analyses, the 

LMM approach was used instead of a mixed ANOVA because LMM is able to accommodate 

missing data. 

Percent Agreement ~ Task Load + Task Complexity +  
Automation Reliability + (1|Participant)  + (1|Block) + ε                                              (4.3) 
 
Task load, task complexity, and automation reliability (and their two-way interaction 

terms) were entered into the model as fixed factors. Participant ID and experimental block were 

included in the model as random factors (Magezi, 2015; Winter, 2013). This information is 

summarized in Equation 4.3, which also includes the general error term “ε.” 

Levene’s test was significant for the high complexity, low task load experimental block 

(p > 0.05), so homogeneity of variances cannot be assumed.  

Multiple models (compound symmetry; first order autoregressive, AR(1); and 

unstructured) were fit via a penalized likelihood approach or, more specifically, through 

comparison of their BIC and AIC values (Seltman, 2018). The selected model utilized an 

unstructured covariance structure since its BIC and AIC values were smaller (Seltman, 2018). 

Mauchly’s test of sphericity was not assessed because the model did not assume sphericity or 

compound symmetry. However, even if sphericity was assumed, there were only two levels of 
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both within-subjects factors. Therefore, there would only be one paired difference for each and 

the assumption of sphericity would automatically be met. 

 

Figure 4.18. Reliability and task load interaction for participants’ percent agreement with the 
payload task automation. This data was log transformed. 
 

There was a statistically significant simple two-way interaction between reliability and 

task load, F(1, 69.242) = 4.035, p = 0.048, partial η2 = 0.055 (Figure 4.18). There were no 

statistically significant simple two-way interactions between reliability and complexity, F(1, 

77.530) = 0.090, p = 0.764, partial η2 = 0.001, or complexity and task load, F(1, 68.164) = 

1.153, p = 0.287, partial η2 = 0.017. 
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Figure 4.19. Effect of automation reliability on participants’ percent agreement with the 
automation. This data was log transformed. 
 

There was also a significant main effect of automation reliability, F(1, 76.563) = 10.128, 

p = 0.002, partial η2 = 0.117 (Figure 4.19). However, neither the main effect for task load, F(1, 

68.968) = 0.020, p = 0.887, partial η2 = 0.000, nor the main effect for payload task complexity, 

F(1, 71.539) = 0.535 p = 0.467, partial η2 = 0.007, were significant.  

Overall, participants agreed with the unreliable automation more often (M = 0.917, SD = 

0.379) than the reliable automation (M = 0.640, SD = 0.488), a surprising finding given that 

participants were penalized for false alarms and the unreliable automation had a liberal response 

criterion (i.e., it was prone to false alarms). However, there was also a significant interaction of 

automation reliability and task load that should be considered.  

Although participants generally tended to rely on the unreliable, false alarm-prone 

automation more often, task load had more bearing on their reliance on said unreliable 

automation relative to the reliable automation. While the effect size of this interaction was quite 

small, participant reliance on the reliable automation was slightly more stable between periods of 

low (M = 0.681, SD = 0.067) and high (M = 0.631, SD = 0.057) task load. Conversely, 
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participants working in conjunction with the unreliable automation relied on it slightly more 

often when task saturated (M = 0.952, SD = 0.057), but tended to override it slightly less often 

when their task load was low (M = 0.895, SD = 0.068).  

4.6 UAV Operator Trust and Self-Confidence in Automation  

A brief four-question Likert-type survey was administered at the end of the study. 

Responses were missing for one participant (n = 80). The survey, modeled after Lee and Moray’s 

validated (1994) scale, asked participants to rate their trust in the payload task automation and 

their self-confidence that they could manually perform the same target search task. The purpose 

of this survey was to gauge whether participants in the low and high automation reliability 

groups noticed a difference in the reliability of the payload task automation and if their trust and 

self-confidence were accordingly impacted.  

4.6.1. Trust rating. Participants were asked: “To what extent did you trust (i.e., believe 

in the accuracy of) the sensor feed automation to select correct targets and enclose them in brown 

boxes in this scenario?” An independent samples t-test was run to assess whether there was a 

significant difference in participants’ trust of the sensor feed automation in the low and high 

automation reliability conditions. 

There were no outliers in the data, as assessed by inspection of a boxplot. The data was 

not normally distributed, as assessed by the Kolmogorov-Smirnov test (p < 0.05). However, 

since values for skewness and kurtosis between -2 and +2 are acceptable to demonstrate normal 

univariate distribution (George & Mallery, 2009), and the independent-samples t-test is fairly 

robust to deviations from normality, the analysis was continued without data transformation for 

easier interpretation. There was homogeneity of variances, as assessed by Levene's test for 

equality of variances (p = .938).  
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Figure 4.20. Mean trust ratings of participants by automation reliability. The left and right bars 
display the results for the low (100% hit rate, 15% false alarm rate) and high (97% hit rate, 3% 
false alarm rate) automation reliability groups, respectively.  
 

Although participants in the low reliability condition (M = 6.500, SD = 2.013) trusted the 

automation to select correct targets and enclose them in brown boxes slightly more than 

participants in the high reliability condition (M = 6.385, SD = 1.969), the difference between the 

two groups was not statistically significant, M = 0.115, 95% CI [-0.772, 1.00], t(78) = 

0.257, p = .797, d = 0.058 (Figure 4.20).  

4.6.2. Reliance rating. Participants were asked: “To what extent did you rely (i.e., 

actually use) the automatically selected targets in this scenario?” An independent samples t-test 
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was run to assess whether there was a significant difference in participants’ perceived reliance on 

the sensor feed automation in the low and high automation reliability conditions. 

There were three outliers in the data, as assessed by inspection of a boxplot. The outliers 

were kept in the analysis because they were genuinely unusual values and did not have an 

appreciable effect on the analysis. The data was not normally distributed, as assessed by the 

Kolmogorov-Smirnov test (p < 0.05). However, since values for skewness and kurtosis between -

2 and +2 are acceptable to demonstrate normal univariate distribution (George & Mallery, 2009), 

and the independent-samples t-test is fairly robust to deviations from normality, the analysis was 

continued without data transformation for ease of interpretation. There was homogeneity of 

variances, as assessed by Levene's test for equality of variances (p = 0.631).  
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Figure 4.21. Mean reliance ratings of participants by automation reliability. The left and right 
bars display the results for the low (100% hit rate, 15% false alarm rate) and high (97% hit rate, 
3% false alarm rate) automation reliability groups, respectively.  
 

Participants in the high reliability condition (M = 7.110, SD = 2.652) reported relying on 

the automation more to select correct targets than those in the low reliability condition (M = 

6.290, SD = 2.672). However, the difference between the two groups was not statistically 

significant, M = -0.820, 95% CI [-2.005, 0.365], t(78) = -1.378, p = .631, d = 0.308 (Figure 

4.21). 

4.6.3. Self-confidence rating. Participants were asked: “To what extent were you self-

confident that you could successfully select all the correct targets that appear in your sensor feeds 

if they were not pre-selected and enclosed in brown boxes by the automation in this scenario?” 
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An independent samples t-test was run to assess whether there was a significant difference in 

participants’ self-confidence that they could manually perform the automated task (i.e., select 

targets) between the low and high automation reliability conditions. 

Inspection of a boxplot revealed no outliers in the data and the data were normally 

distributed, as assessed by the Kolmogorov-Smirnov test (p > 0.05). There was homogeneity of 

variances, as assessed by Levene's test for equality of variances (p = .859).  

 
Figure 4.22. Mean self-confidence ratings of participants by automation reliability. The left and 
right bars display the results for the low (100% hit rate, 15% false alarm rate) and high (97% hit 
rate, 3% false alarm rate) automation reliability groups, respectively.  
 

Participants in the high reliability condition (M = 5.598, SD = 2.984) were slightly more 

self-confident that they could select targets manually than participants in the low reliability 
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condition (M = 5.462, SD = 3.023). However, the difference between the two groups was not 

statistically significant, M = -0.136, 95% CI [-1.473, 1.201], t(78) = -0.203, p = .859, d = 0.045 

(Figure 4.22).  

4.6.4. Perceived performance improvement rating. Participants were asked: “To what 

extent do you think the sensor feed automation pre-selecting targets and enclosing them in brown 

boxes improved your performance in this scenario compared to your performance if you were to 

select all targets manually?” A Welsh t-test was run to assess whether there was a significant 

difference in participants’ perceived performance improvement due to the sensor feed automation 

(relative to manual performance) between the low and high automation reliability conditions. 

There was one outlier in the data, as assessed by inspection of a boxplot. The outlier was 

kept in the analysis because it was a genuinely unusual value and did not have an appreciable 

effect on the analysis. The data was not normally distributed, as assessed by the Kolmogorov-

Smirnov test (p < 0.05). However, since values for skewness and kurtosis between -2 and +2 are 

acceptable to demonstrate normal univariate distribution (George & Mallery, 2009), and the 

independent-samples t-test is fairly robust to deviations from normality, the analysis was 

continued without data transformation for ease of interpretation. A Welch t-test was employed 

because the assumption of homogeneity of variances was violated, as assessed by Levene's test 

for equality of variances, p = .006 (Howell, 2010; Welch, 1947). 
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Figure 4.23. Mean perceived improvement ratings of participants by automation reliability. The 
left and right bars display the results for the low (100% hit rate, 15% false alarm rate) and high 
(97% hit rate, 3% false alarm rate) automation reliability groups, respectively.  
 

Participants in the low reliability condition (M = 8.276, SD = 1.626) felt that the payload 

task automation improved their performance relative to fully manual performance more than 

participants in the high reliability condition (M = 7.524, SD = 2.754). However, the difference 

between the two groups was not statistically significant, M = -0.752, 95% CI [-.2557, 1.760], 

t(65.70) = 1.490, p = .141, d = 0.333 (Figure 4.23). 
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5 Discussion 

5.1 Overview 

Numerous studies have examined the effects of task load and automation reliability on 

operators’ UAV supervisory control performance, subjective workload, and automation 

dependence. Although comparatively few, there have also been studies investigating the effects 

of task complexity on UAV supervisory control performance and automation dependence. 

However, the present study is the first to examine the combined effects of these three factors—

task load, task environment complexity, and automation reliability—on operator performance, 

subjective workload, and automation dependence. Furthermore, the present study examined the 

effects of these factors on a very unique population: student naval aviators (SNAs) and Student 

Naval Flight Officers (SNFOs). SNAs/SNFOs tend to be a highly homogenous and range-

restricted population relative to undergraduate university students, who are the usual subjects of 

such research.  

5.2 Effects of Task Load 

The first goal of the present study was to determine whether differences in task load, task 

environment complexity, and automation reliability affected participants’ performance. 

Participants’ UAV supervisory control performance was assessed using three performance 

metrics, one for each of the three primary subtasks within the SCOUT test bed. First, 

participants’ UAV routing performance was assessed by their adjusted expected value on the 

task. Second, participants’ target identification performance on the automated payload task was 

assessed by their percent accuracy. Finally, participants’ performance on the chat 

communications task was assessed by the throughput of their responses to messages from 

Command and Intelligence.  
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Overall, participant task load significantly impacted their performance on all three of the 

subtasks. High task load resulted in overall reduced performance on the automated payload and 

chat communications tasks. In contrast, high task load resulted in improved UAV routing 

performance. The improved UAV routing performance could be due to the relatively low 

frequency of new targets, even in the high task load condition, relative to chat messages and 

payload task automation errors. In each high task load block, three new targets appeared versus 

32 chat messages. Thus, even in the high task load condition, the UAV routing task was 

relatively manageable. In the low task load condition, only one new target appeared, which could 

have resulted in reduced performance consistent with the parabolic utilization-performance curve 

analogous to the Yerkes-Dodson relationship (Cummings & Nehme, 2009).  

These results could also reflect a multiple resource theory (MRT) model of workload 

(Wickens, 1984, 2002, 2008), which would assume that the UAV routing task employed different 

information processing resources than the concurrent chat communications and payload tasks, 

thereby facilitating efficient parallel processing and task sharing. However, since all of the 

SCOUT subtasks relied heavily on visual modalities of processing, the results are more easily 

explained by single resource theory (SRT) and reduced resource demand: participants offloaded 

some of their tasking onto the payload automation to increase their available resources, and 

therefore performance, on the UAV supervisory control task and this effect was magnified in the 

high task load condition. Dixon, Wickens, and Chang (2003) found that offloading tasking onto 

automation improved UAV routing performance in a dual-task environment.  

In addition, even though all subtasks were presented with equal importance during 

training, it is possible that participants allocated more resources (i.e., effort) to the UAV routing 

task during the high task load blocks because, in some ways, it was the “unofficial primary task.” 
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First, performance on the UAV routing task directly impacted performance on the concurrent 

payload task. A participant could not search a target if they did not first assign a UAV to that 

target, and poor route planning resulted in fewer active searches and thus fewer opportunities to 

earn points. Second, the UAV task was the most salient task: it took up the majority of the screen, 

it was colorful, it involved the presentation of attention-grabbing stimuli (e.g., surfaced enemy 

submarines), and it included the most direct representation of the UAVs themselves. Research 

has demonstrated a moderate to strong positive linear relationship between task salience and 

perceived task importance (Colvin, Funk, & Braune, 2005). Relatively stable primary task 

performance and reduced “secondary” (chat communications and payload task) performance 

resulting from increased task load is consistent with the literature (Dickson, Wickens, & Chang, 

2003). Finally, the UAV routing task was anecdotally considered more engaging by participants 

due to its “puzzle-like” nature, so there could have been a “fun factor” that contributed to 

participant prioritization of the UAV routing task.  

All that being said, interpretation of the main effect of task load on participant 

performance might be misleading, as the multiple significant interactions between task load, task 

complexity, and automation reliability suggest. While payload task complexity and the reliability 

of the payload task automation did not seem to affect participants’ UAV-routing performance, the 

same could not be said for the payload task and the chat communications task.  

Both increased task load and decreased automation reliability resulted in a significant 

decrease in participant performance on the automated payload task. In addition, there was a 

significant interaction between payload task reliability and task load on participants’ payload task 

performance, with unreliable automation associated with a more marked performance decrement 
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when participant task load was high. The availability of reliable automation seemed to partially 

mitigate the impact of increased task load on participant payload task performance.  

5.3 Effects of Automation Reliability 

While increased automation reliability improved participant performance on the 

automated subtask itself, it also affected concurrent task performance, namely performance on 

the chat communications task. There was a significant three-way interaction between 

participants’ overall task load, the complexity of the payload task, and the reliability of the 

payload task automation on participants’ chat communication performance. When payload task 

automation was unreliable (due to a liberal response criterion), participants’ communication 

performance was largely unaffected by changes in task load as long as the concurrent payload 

task remained relatively simple (although participants communicated slightly better when overall 

task load was high). When the payload task became more complex and the payload task 

automation remained unreliable, however, there was a more pronounced performance drop on the 

communication task when overall task load increased. On the other hand, when the payload task 

was relatively simple and payload task automation was reliable, there was a more pronounced 

performance drop on the communication task when overall task load increased. When the 

payload task became more complex and the payload task automation remained reliable, however, 

participants’ communication performance was largely unaffected by changes in task load 

(although participants communicated slightly better when overall task load was high). 

Overall, when the payload task automation was less reliable, there was a pronounced 

decrease in performance on the concurrent communication task attributable to increased overall 

task load when the complexity of the payload task was high. However, concurrent 

communication task performance was relatively unaffected by changes in overall task load when 
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payload task complexity was low (Figure 4.4). Conversely, when the payload task automation 

was more reliable, concurrent communication task performance was relatively unaffected by 

changes in overall task load when payload task complexity was high. However, there was a 

pronounced decrease in performance on the concurrent communication task attributable to 

increased overall task load when the complexity of the payload task was low (Figure 4.5). That 

being said, this three-way interaction should be interpreted with some caution given the relative 

scarcity of chat messages in the low condition. However, this range restriction is less of a 

concern since throughput was employed as a performance index instead of accuracy; the range of 

possible accuracy values would have been much more limited.  

The results of previous studies have been mixed on whether or not automation, 

particularly false-alarm prone automation, affects concurrent task performance. The non-

automated concurrent tasks in the present study were the UAV routing task and the chat 

communications task. The reliability of the payload task automation did not affect concurrent 

UAV-routing performance, which is consistent with the findings of Levinthal and Wickens 

(2006), who employed similar, less physically demanding waypoint navigation. On the other 

hand, performance on the concurrent chat communication task was the result of a complex three-

way interaction between overall task load, the complexity of the automated payload task, and the 

reliability of the payload task automation. There was not a significant main effect for payload 

task automation reliability on concurrent chat communication performance. The present study 

suggests that simply concluding that decreased automation reliability and/or bias toward false 

alarms results in decreased concurrent task performance might be oversimplifying the problem. 

Operator performance on concurrent tasks was either unaffected by automation reliability or also 

influenced by the complexity of the automated task and operators’ current task load.  
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However, the results of the present study were consistent with the literature when it came 

to performance on the automated task itself. The literature states that false-alarm prone 

automation affects performance on the automated task more than miss-prone automation. Indeed, 

the false-alarm prone, unreliable automation condition resulted in significantly decreased 

participant performance on the automated payload task. However, the performance decrease was 

probably not the result of the “cry wolf” effect (i.e., reduced compliance) simply because 

participants were not required to comply with the veto automation (Dixon, Wickens, & 

McCarley, 2007; Levinthal & Wickens, 2006; Wickens, Dixon, & Johnson, 2005). Moreover, 

since the false-alarm prone automation was also 4.5% less reliable, this decrease in performance 

could also be due to the general decrease in reliability rather than the change in automation bias, 

as some studies have found a significant effect of automation reliability but not bias on operator 

performance (e.g., Rice, 2009). However, it could also be a combination of both.  

Furthermore, it is possible that a three-way interaction could have been detected for 

payload task performance as well, if throughput were used as the task performance measure 

instead of accuracy. Conceptually, throughput is a corrected rate measure giving the number of 

correct responses per unit of discretionary time (i.e., time used by the participant for processing 

and responding). Throughput is considered a more sensitive performance measure to parallel 

changes in speed and accuracy since the product of such changes will be magnified. In addition, 

throughput is known to be more stable than accuracy and response time, which tend to fluctuate 

across trials in sessions where the speed-accuracy trade-off phenomenon is observed (Thorne, 

2006). Unfortunately, due to a data logging error, response times for the payload task were not 

captured and throughput could not be calculated. However, since response time on the payload 

task was quite range restricted (participants had only seven seconds to override the automation), 
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it is more likely that the throughput measure would be little (if any) more sensitive than accuracy 

or that accuracy would exhibit significantly more variability. Nevertheless, the failure to capture 

and analyze throughput values for all relevant tasks is both a limitation of the current study and a 

possible direction for future research.  

Despite this limitation, it is nevertheless clear that task load, task environment 

complexity, and automation reliability all contribute to participants’ UAV supervisory control 

performance and their interactions can, at times, be quite complex. Looking at the effects of 

these variables in isolation might lead to the oversimplification and misinterpretation of their 

effects on UAV supervisory control performance.  

Furthermore, it should be noted that a significant difference in automated task 

performance and a significant three-way interaction between task load, automated task 

complexity, and automation reliability on concurrent task performance were obtained with a 

relatively small automation reliability manipulation, although the corresponding effect sizes were 

proportionally small. While Rice (2009) and Ruff, Narayanan, and Draper (2002) implemented 

small reliability manipulations, their studies took place within a highly controlled single-task 

environment and were limited in power due to a small sample size, respectively.  Nevertheless, 

the performance variables employed in the present study were sensitive enough to pick up these 

differences despite the relative noise of the SCOUT testing environment, and are thus 

operationally viable.  

5.4 Changes in Subjective Workload and Fatigue 

The second goal of this study was to determine whether differences in task load, task 

environment complexity, and automation reliability affected participants’ subjective workload 

and fatigue ratings, as assessed by the CSS (Ames & George, 1993). Each participant rated his or 
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her mean workload, maximum workload, and fatigue at the end of each of the four experimental 

blocks. Unfortunately, due to a data logging error, baseline fatigue and workload ratings were not 

captured at the beginning of the experimental scenario for half of the participants, so delta scores 

are not available.  

Participants’ subjective mean workload increased in response to both higher task load and 

lower payload task automation reliability. However, the increase due to both factors was small. 

The increase in participants’ subjective mean workload due to increased task load corresponded 

to a mean difference of one point on the seven-point workload scale, or workload ratings of (3) 

“moderate activity, easily managed, considerable spare time” and (4) “busy, challenging but 

manageable, adequate time available” for the low and high task load blocks, respectively. The 

increase in participants’ subjective mean workload due to decreased payload task automation 

reliability corresponded to less than a one-point difference on the seven-point workload scale 

but, when rounding was applied, corresponded to workload ratings of four and three for the low 

and high automation reliability blocks, respectively.  

Unlike mean workload ratings, which modestly increased in response to both higher task 

load and decreased automation reliability, maximum workload ratings were only affected by 

changes in task load. Participants’ maximum workload ratings increased with overall task load, 

with a small, approximately one-point difference in ratings of (4) “busy, challenging but 

manageable, adequate time available” and (5) “very busy, demanding to manage, barely enough 

time” between the low and high task load blocks, respectively.  

However, although significant, the small magnitude of the difference in subjective 

workload ratings between the low and high task load blocks, and between the average and 

maximum workload ratings within each block, suggests that subjective workload ratings might 
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be influenced by additional factors other than task load. Even in the low task load blocks, 

participants’ average and maximum subjective workload ratings were relatively high: three and 

four, respectively. This elevated baseline workload could be attributed to the fact that, in 

multitask environments like SCOUT, time-sharing between concurrent tasks or between display 

elements can place additional demands on working memory even when task load is relatively 

low. It is also possible that participants simply tried harder when task load was low and the 

environment seemed more manageable (Yeh & Wickens, 1988). It is also possible that one of the 

three additional workload components other than time loads assessed by the CSS (activity level, 

system demands, and safety concerns) could have contributed to the relatively elevated and 

stable workload ratings. Future research should incorporate a subjective measure of effort to 

investigate the possible dissociation between participants’ task load and subjective workload 

ratings due to increased effort.  

Unlike subjective workload, participants’ subjective fatigue was not affected by changes 

in task load, task environment complexity, or payload task automation reliability. Participants’ 

mean subjective fatigue rating was three (“okay; somewhat fresh”) across all experimental 

blocks. The SCOUT experimental scenario might not have been long enough to induce fatigue.  

5.5 Automation Dependence 

The third goal of the present study was to determine whether differences in task load, task 

environment complexity, and automation reliability affected participants’ automation 

dependence. Overall, participants agreed with the unreliable (92.5%) automation more than the 

reliable (97.0%) automation. Even though the automation in both conditions was relatively 

reliable compared to other studies, this finding was still somewhat surprising given that 

participants were penalized for false alarms and the unreliable automation had a liberal response 
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criterion (i.e., it was prone to false alarms). In fact, the finding that participants agreed with the 

false-alarm prone automation more often directly contradicts much of the automation reliance-

compliance literature. According to the literature, in dual-task paradigms, false-alarm prone 

automation affects compliance and reliance (which are two behavioral manifestations of 

automation dependence) as much, if not more so, than miss-prone automation (Dixon, Wickens, 

& McCarley, 2007; Levinthal & Wickens, 2006; Wickens, Dixon, & Johnson, 2005).  

However, the interpretation of the main effect of automation reliability on participants’ 

automation dependence (i.e., their percent agreement with the payload task automation) could be 

misleading since there was a significant interaction between automation reliability and task load. 

Although participants generally tended to rely on the unreliable, false alarm-prone automation 

more often, their dependence on said unreliable automation was more affected by task load 

relative to the reliable automation. That being said, the effect size of this interaction was quite 

small. The log-transformed mean difference of participant reliance on the reliable (97%) 

automation during the high and low task load blocks was 0.050, and the log-transformed mean 

difference of participant reliance on the unreliable (92.5%) automation during the high and low 

task load blocks was 0.057. 

Nevertheless, since participants agreed with the unreliable, false-alarm prone automation 

more often than the reliable automation, it is clear that increased automation reliability does not 

necessarily result in increased automation dependence. In fact, while the effect of automation 

reliability on automation dependence was significant, the effect size was small and participants 

generally agreed with the automation a large percentage of the time regardless of its reliability: 

89.5% of the time in the low reliability condition versus 91.5% in the high reliability condition. 

Perhaps most surprisingly, there was no main effect of task load on automation dependence. 
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Participants tended to depend on the automation to a high degree regardless of their current task 

load (90.4% and 90.6% in the low and high task load blocks, respectively). This generally high 

automation dependence is consistent with anecdotal evidence from prior SCOUT studies that 

suggests that its multitask environment is sufficiently complex and time-pressured enough that 

operators may depend on the payload task automation irrespective of its reliability and their trust 

in it.  

5.6 Trust in Automation 

There is a substantial body of literature that postulates that automation reliability is an 

important factor of human use of automated systems because of its influence on operator trust, 

and that unreliable automation lowers operator trust, which results in underutilization of the 

automation (Bliss, Gilson, & Deaton, 1995; Dixon & Wickens, 2006; Dixon, Wickens, & Chang, 

2005; Dixon, Wickens, & McCarley, 2007; Meyer, 2001, 2004; Rice, 2009). Indeed, while some 

studies have shown that trust does affect automation dependence, trust is not the sole determining 

factor of automation use. As Lee and See (2004) noted in their review of the automation trust and 

dependence literature, studies on the topic have produced many confusing and seemingly 

conflicting findings, which are probably at least partially attributable to the different 

operationalizations of trust and the confounding of its effect with other factors, such as workload, 

situation awareness, perceived risk, and operator self-confidence (Lee & Moray, 1994; Lee & 

See, 2004; Parasuraman & Riley, 1997). Lee and Moray (1992) found that, under certain 

conditions, operator reliance on automation did not correspond to changes in their trust. Instead, 

operators depended on automation when their self-reported trust in the automation exceeded their 

self-reported self-confidence that they could manually perform the automated task. 
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In fact, previous anecdotal evidence indicated that participants might not have even been 

cognizant of the reliability of the automation in prior SCOUT studies. Thus, the final goal of the 

present study was to determine whether differences in automation reliability affected 

participants’ subjective ratings of trust in the automation. Did participants in the low and high 

reliability conditions notice the difference in the reliability of the payload task automation? If so, 

were their trust and self-confidence ratings impacted? 

Participants’ trust in the payload task automation and their self-confidence that they could 

perform the payload task manually were assessed with a four-item survey modeled after Lee and 

Moray’s validated (1994) scale. Participants’ trust ratings for the payload task automation did not 

significantly differ between the low and high automation reliability groups, suggesting that 

participants did not notice the 4.5% between-group difference in automation reliability. However, 

although the difference in trust ratings between the low and high automation reliability groups 

was not significant, participants’ mean trust ratings were generally somewhat low: 6.50 and 6.39 

for the low and high automation reliability groups, respectively, on a 10-point scale, with higher 

ratings indicating a greater degree of trust. Thus, participants in both the low and high reliability 

groups were somewhat skeptical of the payload task automation. Yet, despite this skepticism, 

their automation dependence (percent agreement with the automation) remained quite high 

across the board.  

Since participants were skeptical of the automation’s reliability, automation bias 

(operators’ tendency to over-rely on automation) was clearly not the phenomena behind 

participants’ high degree of automation dependence. Rather, the findings of this experiment 

appear to be more consistent with the related concept of automation complacency. Automation 

complacency is characterized by observably substandard monitoring of an automated task under 
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conditions of multiple-task load, when manual tasks compete with the automated task for the 

operator's attention (Baghieri & Jamieson, 2004; Metzger and Parasuraman, 2005; Parasuraman 

& Manzey, 2010; Parasuraman, Molloy, & Singh, 1993; Wickens, Dixon, Goh, & Hammer, 

2005). Participants likely reallocated their attention away from the automated payload task to the 

manual UAV-routing and chat communication tasks to increase their overall performance, a 

strategy that led to high levels of automation dependence (Parasuraman & Manzey, 2010). 

In fact, automation reliability did not significantly affect participants’ self-reported 

reliance on the automation. Participants in the high automation reliability group reported relying 

on the automation slightly more often than participants in the low automation reliability group, a 

finding that would have directly contradicted the percent agreement scores if the difference 

between the two groups’ self-reported reliance had been statistically significant. Nevertheless, 

although not directly comparable, participants’ self-reported automation reliance ratings were 

relatively low compared to their percent agreement scores, suggesting that participants might 

have underestimated their dependence on the payload task automation. Participants’ automation 

reliance ratings were 6.29 and 7.11 out of 10, with higher scores indicating a greater degree of 

reliance, for the low and high automation reliability groups, respectively.  

In addition, automation reliability did not significantly affect participants’ confidence that 

they could perform the payload task manually. However, participants’ middling self-confidence 

ratings (mean ratings of 5.46 and 5.60 out of ten for the low and high reliability groups, 

respectively) suggest that they were generally not that confident that they could correctly identify 

potential targets without automation. It is therefore not surprising that participants reported 

relatively large perceived performance improvements due to the payload task automation. 

Perceived performance improvements for the low and high automation reliability groups were 
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8.28 and 7.52 out of 10, respectively. However, the perceived performance difference between 

the groups was not significant.  

In summary, automation reliability did not significantly affect participants’ subjective 

trust in the payload task automation, reliance on the automation, self-confidence that they could 

perform the payload task manually, or perceived improvement attributable to the automation. 

However, participants’ ratings, considered in the context of their performance data, indicated that 

they were generally somewhat skeptical of the automation, but depended on it anyway (although 

they underestimated their degree of dependence). In addition, participants were only moderately 

confident in their ability to perform the payload task manually and generally felt that the payload 

task automation improved their performance. This overall picture suggests that participants were 

willing to unload some of their task load onto the automation, even though they were aware it 

was imperfect, in an effort to improve their overall performance on a resource-limited task. 

Perhaps most importantly, participants in the low and high reliability groups did not seem to 

notice the 4.5% between-group difference in automation reliability or, at the very least, their trust 

was not affected by this difference. While the non-significant difference in trust ratings could be 

attributed to the small reliability manipulation, the significant difference in between-group 

percent agreement scores suggests that this is not the case and self-reported trust might not 

reflect actual automation dependence behavior.  

These results are consistent with Lee and Moray (1992), who found that operator 

dependence on automation did not necessarily correspond to changes in their trust alone. Rather, 

operators depended on automation when their trust in the automation exceeded their self-

confidence that they could perform the task manually, which was indeed the case here. The 

concerns of Lee and Moray (1992) that their findings might not generalize to more complex 
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systems, intermediate LOAs, and less manageable task loads do not seem to be valid for the 

present study and their results do generalize, at the very least, to the SCOUT environment. 

 

 

 

 

 

 

 

 

 

 

 

 

6 Conclusion 

In conclusion, participant task load significantly impacted their performance on all three 

of the subtasks. High task load resulted in overall reduced performance on the automated 

payload and chat communications tasks, but improved participants’ UAV routing performance, 

indicating that they prioritized the perceived primary task when their task load became less 

manageable. However, the present study gave evidence for the roles task environment 

complexity and automation reliability also play in UAV supervisory control performance. By 

considering these factors together along with task load, multiple significant interactions were 

revealed. While payload task complexity and the reliability of the payload task automation did 
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not affect participants’ performance on the concurrent UAV-routing task, significant interactions 

were found for the concurrent communications task and for the automated payload task itself.  

Participant performance on the automated payload task was negatively impacted as a 

result of both increased task load and decreased automation reliability. In addition, while 

unreliable automation with a liberal response criterion led to a more pronounced performance 

decrement during periods of high task load, reliable automation partially mitigated the impact of 

increased task load on payload task performance. In addition, participant performance on the 

chat communications task was affected by concurrent task characteristics. More specifically, 

participant performance on the communications task was the result of an interaction between 

their overall task load, the complexity of the concurrent payload task, and the reliability of the 

payload task automation. 

By considering the effects of participant task load, task environment complexity, and 

automation reliability on UAV supervisory control performance together, the present study 

sought to contribute to the field’s understanding of their effects on UAV supervisory control 

performance. By eschewing the typical reductionist approach and embracing a comparatively 

“noisy” design, the experimenters were able to identify multiple interactions between an 

operator’s task load, the complexity of the task, and the reliability of their automation on their 

UAV supervisory control performance. In addition, the “noisy” design enabled the experimenters 

to test the operational viability of certain UAV supervisory control performance metrics and 

found that they were sensitive enough to detect the results of smaller, more realistic automation 

reliability and bias manipulations in a noisy testing environment. 

In addition, increased task load and reduced automation reliability both resulted in 

modest increases in participant’s subjective mean workload. Increased task load resulted in a 
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modest increase in participants’ subjective maximum workload, but the effect of automation 

reliability was not significant. None of the factors—task load, task environment complexity, or 

automation reliability—had an appreciable effect on operator fatigue. While subjective workload 

ratings did not completely dissociate from the performance metrics, its relatively small variation 

suggests that additional factors affected participants’ subjective experience of workload. Future 

research should incorporate a subjective measure of effort to investigate whether “trying harder” 

is a primary reason behind this partial dissociation.  

Furthermore, though participants surprisingly agreed more frequently with the unreliable, 

false-alarm prone automation, they generally exhibited a high degree of automation dependence. 

In fact, they agreed with the automation over 90% of the time regardless of its reliability. Thus, it 

is clear that increased automation reliability does not necessarily result in increased automation 

dependence. In addition, automation reliability had no effect on operators’ subjective trust or 

reliance on the payload task automation or perceived improvement attributable to the 

automation. 

This generally high automation dependence, as well as the failure of participants’ self-

report measures to reflect the between-group difference in automation reliability despite 

differences in their actual dependence behavior, suggests that self-reported trust might not reflect 

actual automation dependence behavior. Furthermore, this observation is consistent with both the 

finding that operators depend on automation when their trust in the automation exceeds their 

self-confidence that they can manually perform the task, and anecdotal evidence from prior 

SCOUT studies that suggests that its multitask environment is sufficiently complex and time-

pressured enough that operators may depend on the payload task automation irrespective of its 

reliability and their trust in it. The overall picture presented by participants’ subjective and 
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performance data suggests that, while they were skeptical of the automation, they were willing to 

unload some of their task load onto it in an effort to improve their overall performance on a 

resource-limited task. This finding, of course, has significant implications for the implementation 

of any automation in UAV supervisory control environments. Due to a combination of 

automation complacency and conscious strategizing to maximize their performance on a 

resource-limited task, operators seem to generally depend on automated aids to a high degree. 

Thus, automation should be implemented judiciously and with careful weighting of its benefits 

versus the consequences of its potential failure states. 

The most significant limitation of the present study was the characterization of 

automation dependence as percent agreement. This metric does not allow one to fully parse the 

effects of automation dependence and bad performance, particularly when an operator is 

undertasked and is primarily monitoring. For example, during a low task load block, a participant 

could have frequently monitored the payload task sensor feeds but failed to notice and correct 

any automation errors, thus not depending on the automation but rather just performing poorly. 

Under the current operational definition of automation dependence, percent agreement with the 

automation, they would be identified as exhibiting a high degree of automation dependence. It is 

possible that the weakness of this operational definition could have contributed to the failure to 

find a significant effect of task load on automation dependence.  

Another limitation of the present study was the examination of only two levels of each 

independent variable. If a suitably sized pool of participants becomes available, future studies 

could examine the performance effects of a wider spectrum of task loadings and/or degrees of 

task complexity. Moreover, the present study only looked at two levels of reliability. Future 

studies could examine a wider range of reliability and/or automation bias manipulations. 
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In addition, the CSS, which employs single-item workload and fatigue measures, was 

used to obtain participants’ subjective workload and fatigue ratings. Single-item measures are 

popular because they are quick and easy to administer. The use of single-item workload and 

fatigue measures was necessary in the present study due to time constraints. However, 

methodologists often advocate multiple-item measures because single-item measures cannot 

provide a reliable measure of relatively complex constructs. Moreover, while single-item 

measures allow for the estimation of test-retest reliability, the internal-consistency reliability of 

the measure cannot be determined (Loo, 2002). While the revised CSS provides the experimenter 

with interval level data and correlates well with other workload measures like the NASA-TLX, 

the implementation of a more diagnostic multiple-item workload and fatigue measure would be 

preferable for future studies, time permitting (Charlton, 2002). 

Furthermore, concurrent SCOUT studies have utilized low-cost eye tracking to gain a 

richer picture of operator state, particularly during periods of low task load when traditional 

performance metrics are limited. However, the eye trackers are prone to data quality problems 

that have so far limited their viability (Appendix B). Nevertheless, NRL is working on cost-

effective solutions to improve the performance of the low-cost eye trackers. Future studies could 

employ the eye trackers to track participant gaze data as an additional measure of automation 

dependence. More specifically, percent dwell time (PDT) outside of the payload task area of 

interest (AOI) could be used as an indicator of automation dependence during extended 

monitoring periods.  

Finally, this study utilized a highly unique and specialized group of participants, SNAs 

and SNFOs. Future research could focus on comparing their SCOUT UAV supervisory control 

performance to other populations: gamers, private pilots, etc. At present, it is still unknown 
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whether there is any benefit to selecting aviators to be UAV pilots, and the answer to this 

question could have significant budgetary and training pipeline implications. Moreover, the 

experimenters have the ability to track participants’ performance as they progress through 

primary flight training at Naval Air Station Pensacola. It is possible that SCOUT performance, or 

performance on particular SCOUT subtask(s), could add predictive validity to the Aviation 

Selection Test Battery (ASTB), the primary test used by the U.S. Navy, Marine Corps, and Coast 

Guard to select officer aviation program applicants (NMOTC, 2018). At present, the test still 

heavily weighs “stick-and-rudder” manual flight skills. SCOUT, as a supervisory control task, 

could add additional predictive validity as cockpit systems become more automated and multi-

tasking, monitoring, and systems management become more critical to aircrew performance. 

 

 

7 Significance 

The findings of this study contributed to the growing body of knowledge and research on operator 

performance within a UAV supervisory control setting. In the future, this body of knowledge could inform 

personnel selection and enable the development, testing, and evaluation of future task-specific performance 

metrics, work support tools, and training. In particular, this study evaluated the effect of operator task load, 

task complexity, and automation reliability on UAV supervisory control performance using minimally 

intrusive or non-intrusive performance metrics (e.g., throughput in response to mission events) and 

subjective ratings. The most immediate goal of this research was to contribute to the development of a suite 

of performance metrics sensitive enough to be useful for the development and evaluation of future UAV 

ground control stations. In addition, understanding how task load and task complexity affect operator 

performance could inform mission-specific manpower requirements (e.g., a given mission may be more or 
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less complex, or more or less risk sensitive, and should be manned accordingly). Furthermore, it could 

contribute to a dynamic task allocation algorithm for distributing control of UAVs among a group of 

operators based on their current task load, task complexity, and mission requirements. In addition, since real-

world automation is never 100% accurate, understanding how reliable and unreliable automation influences 

operator performance and decision making under variable levels of task load and complexity is of critical 

importance.  
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Appendix A: Supervisory Control Operations User Testbed (SCOUT) Operation 

A.1 Overview 

 
Figure A.1. The single-screen SCOUT GUI variant. 

The Supervisory Control Operations User Testbed (SCOUT), developed by the Naval 

Research Laboratory (NRL), is a realistic simulation environment for assessing single operator 

performance monitoring multiple unmanned aerial vehicles (UAVs). It is designed to replicate 

the complexity, noise, and uncertainty associated with military UAV control. In addition, it 

includes tasks representative of current operators' primary roles: route planning, airspace 

management, communication, and monitoring (Coyne & Sibley, 2015b) (Figure A.1).  

During a SCOUT mission, participants manage three heterogeneous helicopter UAVs. To 

meet mission goals, they must decide how to best allocate the UAVs to locate targets while 

simultaneously completing several subtasks, including maintaining communication with 

command and intelligence personnel via chat, updating UAV parameters, and monitoring their 
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sensor feeds and airspace. Points are assigned to various actions based on their mission priority 

and the goal is to obtain as many points as possible.  

A.2 Demographics and Initial Setup 

Figure A.2. Workflow Manager (Embry-Riddle variant). Completed tasks are indicated by a 
green checkmark. Subsequent tasks are grayed out until the participant completes all prior tasks.  
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A.2.1 Workflow manager. After completing all necessary informed consent and data 

release documentation, participants begin the SCOUT setup process through the Embry-Riddle 

variant of the Workflow Manager (Figure A.2.). The workflow manager guides them step-by-step 

through a basic demographic survey, a SCOUT tutorial, and a practice scenario before they 

engage in the main experimental mission. If the experiment were to utilize eye tracking, the 

workflow manager also includes options for eye tracker set-up, an eye tracker fixation accuracy 

test, and baseline tests to gauge pupil diameter change in response to changes in workload and 

screen luminance that can be enabled.   
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Figure A.3. Demographic survey. 
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 A.2.2. Demographic survey. After opening the Workflow Manager, the first form each 

participant will fill out is a basic demographic survey (Figure A.3). The survey requests 

information about participant gender, gaming experience, vision, hand and eye dominance, and 

manned and unmanned aircraft piloting experience. The experimenter will show participants how 

to determine their dominant eye at the beginning of the session. More specifically, they will be 

instructed to extend their arms out in front of them and form a triangle with the thumbs and 

fingers of both their hands. They will then be asked to focus on a distant object (at least 10 ft. 

away) through the triangle with both eyes open. Next, they will be prompted to close each eye, 

one at a time, while keeping their focus on the distant object. The eye that is open when the 

distant object remains centered within the triangle is their dominant eye. If the distant object 

moves out of the frame of the triangle, the eye that is currently open is their non-dominant eye.  

A.3 Mission Training 

Figure A.4. SCOUT training walkthrough. The walkthrough is generalized for use with multiple 
concurrent studies. For this reason, Vader 11 appears as a MQ-8B Fire Scout during training.  
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 Once baseline testing is completed, participants are trained on the operation of SCOUT. 

Training is conducted via a self-paced walkthrough of the test bed, which should take 

approximately 30 minutes to complete (Figure A.4). The training employs a series of 39 slides to 

instruct participants on the operation of various aspects of the SCOUT interface. When 

appropriate, visual indicators are used to either direct participants’ attention to specific areas of 

interest on the GUI or to guide them to complete various actions.  

After the training walkthrough, participants complete an approximately 13:45 practice 

mission that includes one 45-second workload and fatigue probe. Participants are encouraged to 

ask the experimenter for clarification on any aspect of the SCOUT test bed and its operation, if 

needed, before continuing on to the experimental scenario.  

A.4 Mission Components and Planning 

A.4.1. UAV characteristics and capabilities. 

 

 

Figure A.5. UAV ownship icons.  

During a SCOUT mission, participants have control over three heterogeneous helicopter 

UAVs: Eagle 83, Viper 26, and Vader 11. These UAVs are differentiated on the moving map 

display by color and name label (Figure A.5).  



UAV OPERATOR PERFORMANCE 157 

Table A.1 
UAV Capabilities for Simulated SCOUT ISR Mission 

UAV CALL 
SIGN 

DESIGNATION CRUISE 
SPEED 
(KTS) 

MAXIMUM 
SPEED 
(KTS) 

PAYLOAD 
TYPE 

PAYLOAD 
RANGE 
(KM) 

EAGLE 83 MQ-8B Fire 
Scout 

80  85 EO/IR 1.5 

VIPER 26 MQ-8C Fire 
Scout 

115  135 EO/IR 0.75 

VADER 11 RQ-10A Kestrel 210 225 EO/IR 1.2 

 

Eagle 83 is an MQ-8B Fire Scout, Viper 26 is a MQ-8C Fire Scout, and Vader 11 is a 

fictional unmanned transverse rotor helicopter called the “RQ-10A Kestrel.” Fire Scouts are used 

for reconnaissance though, as multi-mission aircraft, they can also be used for ground support. 

The primary purpose of the fictional RQ-10A is reconnaissance. These three heterogeneous 

UAVs will be assigned to participants in a simulated SCOUT Intelligence Surveillance and 

Reconnaissance (ISR) mission. The payload of each of these UAVs includes a simulated electro-

optical (EO/IR) sensor that will be used to search for targets on the ground. See Table A.1 for a 

summary of UAV capabilities.  

The fuel status of each UAV is displayed below its sensor feed. The participant will be 

asked to provide information about various fuel states through chat communication, but is 

informed during training that each UAV has enough fuel to complete each mission. The fuel will 

burn normally, but will automatically refill once empty. Participants will not have to refuel at any 

point or worry about running out of fuel. 
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A.4.2. Target characteristics. 

Table A.2 
Select Symbols from MIL-STD-2525D Symbol Set 

 SYMBOL  MEANING  

FRIENDLY 
 

Friendly Carrier 

 
Friendly Cruiser 

 
Friendly Destroyer 

 
Friendly Replenishment Ship 

NEUTRAL  
 

Neutral Merchant Ship 

UNKNOWN 
 

Unknown Merchant Ship  

 
Unknown Surfaced 
Submarine 

 
Unknown Surface Target 

HOSTILE 
 

Hostile Carrier 

 
Hostile Cruiser 

 
Hostile Destroyer 

 
Hostile Surfaced Submarine 

 
Hostile Replenishment Ship 
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Hostile Surface-to-Air (SAM) 
Missile Site 

 
Hostile Merchant Ship 

 

Targets are displayed on the moving map using a simplified subset of the MIL-STD-

2525D symbol set (Table A.2) (DoD, 2014). The color of the symbols gives the operator a 

cursory idea of the allegiance of the target; blue is friendly, green is neutral, yellow is unknown, 

and red is hostile. Beyond the color, the symbol itself informs the operator of target type and 

mission priority. Mission priority is also reflected by a target’s point value. For example, a 

hostile surfaced submarine will be worth far more points than a neutral merchant ship. Generally, 

red icons indicate targets of the greatest mission priority and point value followed by yellow 

icons, green icons, and blue icons.  

 
Figure A.6. Visualization of search area size. 

The precise latitude and longitude of each target is uncertain. The search area of each 

target is represented on the map by a surrounding white circle (Figure A.6). Some search areas 

are quite large, but others are so small that they are hidden by the MIL-STD-2525D icon. Each 

target exists somewhere within its search area, but the time that it will take to completely search 

increases as a function of the size of the search area. 



UAV OPERATOR PERFORMANCE 160 

A.4.3. Route planning. The SCOUT scenario begins with a planning period, which is 

untimed but should take participants approximately five to ten minutes to complete. During the 

planning period, participants decide where to send their three assigned UAVs to search five 

mission-relevant target areas. Each mission-relevant target has an associated point value, which 

is indicative of its mission priority. There are additional targets on the map at the beginning of 

the scenario, but they are not relevant to the UAV mission and are thus not assigned a point value 

(e.g., friendly forces).  

Figure A.7. The Target Information table.  

The Target Information table displays the point value and deadline for each target (Figure 

A.7). The target deadline represents the point at which the intelligence (i.e., the approximate 

location of the target) is no longer valid. To receive points, the participant must locate a target by 

its deadline.  

In addition to displaying the point value and deadline of each target, the Target 

Information table shows the “min.” and “max.” search times for each UAV. The min. time is the 

clock time at which the UAV will arrive at the target search area. The max. time is the clock time 
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at which the UAV will have searched 100% of the target search area. A participant can click on 

the headers in the Target Information table to sort targets by their points and deadlines. These 

times will update during gameplay as the UAV is moving. 

Depending on where the target is located within its search area, it could take a participant 

any amount of time between the min. and max. clock times to find it. Since Vader 11 has the 

fastest cruise speed, it will reach target search areas faster than Eagle 83 and Viper 26. Although 

Eagle 83 is the slowest UAV and will take the longest to arrive at a given search area, it has the 

greatest sensor range so it will be able to cover the target search area faster once it arrives. If the 

deadline of a target precedes its max. search time, there is a chance that the target might not be 

located. For example, Viper 26 will finish searching 100% of Destroyer 1 at clock time 39:19. 

However, the deadline of Destroyer 1 is 37:15. Therefore, unless Destroyer 1 was located within 

the percentage of the search area covered by 37:15, it will not be located.  

 
Figure A.8. UAV route builder boxes.  

Once the participant makes a cursory decision on where they want to send their UAVs, 

they can assign targets to the vehicles by dragging the targets from the Target Information table 

to the UAV Route Builder Boxes (Figure A.8). Unlike the min. times in the Target Information 

table, which display the time of arrival were a UAV immediately directed to a target, the UAV 

Route Builder boxes display the time of arrival at each target based on the UAV’s current route 

plan. For example, per the route assigned to Vader 11, the UAV will pass through Waypoint 0 
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before arriving at Skunk 1 at 18:22. According to the Target Information table, Vader 11 will 

search 100% of Skunk 1 by 30:56. Since the deadline of Skunk 1 is 48:45, it will be able to 

complete the search well before the target deadline. The Searchable by Deadline column in Vader 

11’s Route Builder Box confirms that the UAV can search 100% of the target before its deadline. 

After Vader 11 searches 100% of Skunk 1, it will move onto the next target, Skunk 3. It will 

arrive at Skunk 3 at 48:21 and will cover 61% of the search area before the target deadline at 

50:02. If Skunk 3 is not located by 50:02, Vader 11 will automatically break off the search and 

move on to Waypoint 1. If no subsequent target is assigned, Vader 11 will loiter at Skunk 3’s 

former location.  

The arrival times in the Route Builder Box are subject to change since the arrival times 

for targets with one or more preceding stops assume the UAV will search all prior targets until 

their deadlines are up or until 100% of their search area is covered, whichever comes first. Since 

a target might be located after only a small percentage of its search area is covered, the estimated 

arrival times could be later than is achievable. Participants should keep this in mind as they plan.  

During gameplay, new targets will become available for the participant to pursue. The 

participant should check the Target Information table frequently so they do not miss any new 

targets and opportunities to score points. When a new target appears, the Target Information table 

will inform them how quickly each of their UAVs can get to that target area if they were to go 

immediately there. Participants may replan accordingly, possibly changing their original route. 

The Route Builder Boxes are also useful tools for participants to refine their route plan. 

Participants can delete targets (by hitting the “Delete” key) or change the target order (by using 

the arrows on their keyboard) to see how it affects the time of arrival and Searchable by Deadline 
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percentages for each assigned target. This will help them determine their optimal route, which 

will vary according to how much risk they are willing to take pursuing different targets. 

A.4.4. Route automation limitations. Although the route builders are valuable tools, 

participants are advised during training that SCOUT UAV routing automation is imperfect. It is 

thus important for the participant to monitor their route plan and UAVs to make sure they are 

behaving as expected. Common automation errors include: (1) a UAV drawing a path to a target 

that has expired, (2) a UAV continuing to loiter at an expired or located target (this usually 

occurs if the target was the last in the participant’s route plan), and (3) a target’s estimated time 

of arrival not updating in the route builder if the participant changes target order in the Route 

Builder mid-search. If any of these errors occur, or if route paths for a UAV appear odd for any 

reason, the participant can quickly reset the route by deleting and adding targets back into the 

Route Builder box. 

A.4.5. Waypoints. 

 
Figure A.9. Waypoint drop-down menu.  

SCOUT includes route automation that will send each UAV to its next assigned target 

when its current target is either located or expires, whichever comes first. If a subsequent target 

is not assigned, the UAV will loiter at its current position. Nevertheless, there may be instances 

in which a participant might want to modify the course of a UAV; they can accomplish this by 

dropping a waypoint. To drop a waypoint, the participant must click on the map where they wish 
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to place the point and select “Add Point” (Figure A.9). They can then select their new waypoint 

from the drop-down menu at the bottom of the appropriate UAV Route Builder Box and click 

“Add Point.” 

A.4.6. Restricted operating zones (ROZs). 

Table A.3 
Restricted operating zone (ROZ) types 

ROZ TYPE 
    

PERMISSION 
REQUIRED 

No Yes Yes Yes 

ACCESS GRANTED Always Always Always Never 

 

The areas that are outlined in red, green, and blue on the map are restricted operating 

zones (ROZs). Any time that a UAV path crosses through a red or green-outlined ROZ, the 

participant must request access for the UAV to fly through that area. If a UAV’s path intersects a 

red-filled ROZ boundary, the participant must navigate around the area by dropping waypoints 

since access will never be granted to red-filled ROZs. Participants do not need to request access 

to blue outlined areas, as they represent friendly airspace (Table A.3).  
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Figure A.10. ROZ incursion point (no access granted).  

Participants may request access to ROZs during the planning phase; they do not have to 

wait until the game is in play. If a UAV will intersect a ROZ on the way to its next target, a ROZ 

incursion point icon will appear at the intersection of its flight path and the ROZ boundary. If this 

icon is a red circle with an “X” cutout, the participant must request access to enter the ROZ 

(Figure A.10). If a UAV enters a restricted zone without prior approval, the participant will lose a 

large number of points. 

Table A.4 
ROZ incursion point icons 

ICON 
   

ACCESS Not requested / Denied Pending Granted 

 
Participants can request access to enter a ROZ by clicking on the ROZ incursion point  

icon and then clicking “Request” in the resulting pop-up box. The icon will then turn yellow to 

signify that the request has been submitted and is pending approval. If the icon turns green, 

permission to enter the ROZ was obtained. If the icon returns to red, the participant does not 
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have permission to enter the ROZ and must navigate around it by dropping waypoints (Table 

A.4). Note that approval or denial is only given during gameplay, so if a participant requests 

ROZ access during the planning phase, they must wait until the mission clock starts to see 

whether their request has been approved or denied. The ROZ incursion point icon will remain 

yellow until that point. If a participant is refused assess to a ROZ, they will need to maneuver 

around that airspace to avoid losing points.  

 
Figure A.11. Moving map display after route planning.  

In summary, participants can use a combination of information from the moving map 

display, the Target Information table, and the UAV Route Builder boxes to formulate the best 

plan for sending their UAVs to targets and maximizing their points. Figure A.11 shows the 

moving map display at the end of a hypothetical planning period.  
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A.5 Gameplay 

Once the participant is satisfied with their route plan, they may click the “Begin” button 

to start the mission. During the mission, the participant will be required to monitor and make 

status updates to their assigned UAVs, maintain communication with command and intelligence 

personnel, and locate the targets on the sensor feeds when they are within search range. 

Additionally, participants will likely need to adjust their mission plan as new targets of interest 

appear.  

A.5.1. Communication.  

 
Figure A.12. Communication boxes. 

Within the two communication boxes, participants receive messages from Command and 

Intelligence (Figure A.12). In the left box, participants receive messages from Command. 

Messages from Command will prompt them to make updates to vehicle statuses or to provide 

vehicle-related information over chat. In the right box, participants receive messages from 

Intelligence. Intelligence messages either query the participant for target-related information or 

provide information to help them locate targets faster, such as updates on search radius size or, 

occasionally, providing exact target coordinates.  
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Table A.5 
Command chat messages 

Message Required Action(s) Points 

Provide heading of 
[randomized UAV] 

Estimate heading of asset or click on 
specified asset in the moving map display 
and note the heading listed the pop-up box. 
Enter value into Command chat box and hit 
“enter” 

25 

Provide current speed of 
[randomized UAV] 

Enter speed, no unit required, into Command 
chat box. Hit “enter” 25 

Provide fuel range of 
[randomized UAV] 

Enter speed, no unit required, into Command 
chat box. Hit “enter” 25 

Provide remaining fuel (%) for 
[randomized UAV] 

Enter remaining fuel percent, no unit 
required, into Command chat box. Hit 
“enter” 

25 

Increase altitude of 
[randomized UAV] by [random 
integer between 1 and 150, but 
must be between 100 and 
service ceiling of UAV] 

Add specified integer to current altitude. 
Input new value into speed entry field, no 
unit required, and hit “enter” 

25 

Decrease altitude of [UAV] by 
[random integer between 1 and 
150, but must be between 100 
and service ceiling of UAV] 

Subtract specified integer from current 
altitude. Input new value into speed entry 
field, no unit required, and hit “enter” 

25 

Aim [randomized UAV]'s 
sensor at [nearby target] 

Aim UAV’s sensor at target within the 
UAV’s Sensor Orientation Tab. Detailed 
instructions follow in Section A.5.2 

100 

 
Table A.6 
Intelligence chat messages 

Message Required Actions(s) Points 

Provide point value of [active 
target] 

Enter point value into Command chat box. 
Hit “enter.” 25 

Provide search radius of 
[active target] 

Click on target on moving map or target 
name in the Target Info. Table. Retrieve 
radius value from bottom right of display. 

25 



UAV OPERATOR PERFORMANCE 169 

Enter value into Intelligence chat box and hit 
“enter” 

[Active target] update - set 
search radius to [value to the 
tenth decimal place, usually 
lower than current value] 

Click on target on moving map or target 
name in the Target Info. Table. Input new 
value into radius entry field at the bottom of 
the right screen, no unit required, and hit 
“enter” 

25 

Provide latitude of [active 
target] 

Click on target on moving map or target 
name in the Target Info. Table. Retrieve 
latitude value from bottom right of display. 
Enter latitude, no unit required, into 
Intelligence chat box. Hit “enter” 

25 

Provide longitude of [active 
target] 

Click on target on moving map or target 
name in the Target Info. Table. Retrieve 
longitude value from bottom right of display. 
Enter longitude, no unit required, into 
Intelligence chat box. Hit “enter” 

25 

[Active target] update - set 
latitude and longitude to [true 
target latitude to thousandths 
decimal place] and [true target 
longitude to thousandths 
decimal place] 

Click on target on moving map or target 
name in the Target Info. Table. Input new 
value into latitude entry field at the bottom of 
the right screen, no unit required, and hit 
“enter” Input new value into longitude entry 
field, no unit required, and hit “enter.” 
Optionally reduce radius value to zero and 
hit “enter” to obtain up-to-date route times 

25 (latitude) + 
25 (longitude) 

Note. Intel will never request information on expired targets. 

Participants receive points if they correctly respond to a message within one minute, 

either by providing the correct value in the appropriate chat field or by correctly updating the 

appropriate vehicle or target parameter. Possible message types from Command and Intelligence 

and their associated point rewards are provided in Table A.5 and Table A.6, respectively. If a 

participant fails to respond to a message, or responds after a minute has elapsed, they will not 

receive points. 
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A.5.2. Sensor orientation task 

 
Figure A.13. Sensor orientation task. 

 
Occasionally, Command will ask a participant to “Aim [randomized UAV]'s sensor at 

[nearby target].” To aim the sensor, the participant must first click on the Sensor Orientation Task 

tab of the specified UAV, located at the top of its Sensor Video Feed, to display its payload tool 

(Figure A.13). The participant may then hover over the aiming tool with their mouse, moving the 

mouse in a circular motion until the sensor’s directional wedge is aimed at the requested target.  
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Figure A.14. Sensor orientation task operator feedback.  

Once the participant is satisfied that the sensor is aimed in the correct direction, they may 

click on the dark gray directional wedge. A yellow outline around the wedge indicates the 

direction is locked in. If the participant wishes to change the direction, they can do so by clicking 

on the wedge again to release it. If they are happy with their current selection, they may click on 

the submit button to input their answer. If the wedge turns green, they selected the correct 

direction within 20 degrees of error and will receive 100 points. If it turns red, they did not select 

the correct direction and will not receive points (Figure A.14).  

A.5.3. Reporting UAV position. Once a UAV is within approximately five minutes of its 

estimated time of arrival to its next scheduled target, as shown in the “Time of Arrival” column 

of the UAV Route Builder box (Figure A.12), the participant should report the position of the 

UAV to Command to receive additional points. In addition to the “Time of Arrival” in the Route 

Builder box, which is reported in mission clock time, the participant can view the countdown to 

target arrival for each of their UAVs by clicking on any of the UAV icons on the map. A pop-up 

box will appear showing “ETA” as a countdown to target arrival. 
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Figure A.15. UAV ETA report feature.  

 

 
Figure A.16. UAV ETA report automatic text to Command.  
 

To report a UAV’s position, the participant must click its icon on the map and select 

“Report” from the drop-down box (Figure A.15). A text message with the UAV’s estimated ETA 

will automatically be sent to Command and can be seen in the chat field (Figure A.16). If the 

participant reports the UAV’s position within four to six minutes of its arrival, they will receive 

100 points. If the participant reports their UAV’s location a little too soon (up to seven minutes 

before its arrival) or a little too late (up to three minutes before its arrival), they will receive 50 

points. They will not receive points for reporting a UAV’s position at any other time. 
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A.5.4. Payload task. A synthetic voice alert, “started searching [target name],” will alert 

the participant when a UAV begins to search for a target. When the participant hears this alert, 

they must begin to monitor the searching UAVs simulated sensor feed. 

 
Figure A.17. Less complex payload task.  
 

SCOUT includes automated target identification to assist participants in locating the 

target of interest. This tool will preselect potential targets, which are then outlined in brown 

(Figure A.17). The participant has until the target reaches the bottom of the sensor feed to 

deselect any target selections with which they do not agree. Depending on the experimental 

condition, this automated tool will either be quite reliable or unreliable (subject to a liberal 

response criterion). Although the unreliable automation variant will preselect all potential targets, 

it will also erroneously preselect a number of distractor targets that will result in point loss unless 

the participant corrects the false alarms while they are still displayed in the sensor feed. 

Incorrectly selected distractor targets are indicated by an auditory alert, so the potential for 

participant distraction and annoyance is higher in the unreliable condition.  

In less complex sensor pictures, the target of interest varies across one dimension: shape. 

The target of interest could be a circle or a square. In Figure A.17, the participant is searching for 

Periscope 1, which is a circle. The participant must click on all the potential targets—all the 
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circles—as they appear while ignoring distractor squares. Only one circle is Periscope 1, but the 

participant must click on all potential targets, all the circles, to maximize their chance of locating 

Periscope 1.   

 
Figure A.18. More complex payload task.  
 

In more complex sensor pictures, the target of interest varies across three dimensions: 

shape (circle or square), color (gray or white), and size (large or small). In Figure A.18, the 

participant is searching for Periscope 1, which is a small white circle. The participant must click 

on all potential targets, all the small white circles, to maximize their chance of finding Periscope 

1.  

A synthetic voice alert, “[target name] has been located,” will alert the participant once 

they locate the target. At this point, the sensor feed will go blank as the UAV departs the target 

area. If the participant misses the target, they will be given multiple additional chances to find it. 

If they keep missing the target, their UAV will continue to search the target search area until the 

target deadline is reached. At that point, the UAV will automatically break off the search and 

move on to its next target or waypoint if one is assigned in its Route Builder. If a subsequent 

target or waypoint is not assigned, it will loiter above the expired target until it is directed to 

another target or waypoint. 
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A.5.5. Fatigue and workload questionnaires. 

 
Figure A.19. Fatigue probe.  

There will be several times throughout the mission where the mission clock will stop and 

a new screen, a fatigue and workload questionnaire, will appear. This quick, subjective 

assessment is based on the Crew Status Survey (Samn & Perelli, 1982). The first page of the 

pop-up screen asks the participant to rate their current level of fatigue on a seven-point scale 

from “fully alert” (1) to “completely exhausted” (7) (Figure A.19). The participant may make 
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their selection by clicking on the radio button that corresponds to their current level of fatigue. 

Once they finish, they may click “next” to move to the second page. 

 
Figure A.20. Workload probe. 

 
The second page asks participants to estimate both their average and maximum workload 

on a seven-point scale from “nothing to do” (1) to “unmanageable” (7) (Figure A.20). They may 

make their selection by clicking on the radio button that corresponds to the average amount of 

workload they have experienced since the last probe or the beginning of the mission, whichever 

came last. Once they finish, they may click “submit” to return to the mission. They may resume 



UAV OPERATOR PERFORMANCE 177 

the mission right away by clicking the “resume” button; otherwise, the mission will resume 

automatically after a 10-second pause.  

A.6 Summary 

Each participant will complete one walkthrough training mission, a 13:45 practice 

mission, and one 34:15 experimental mission with five 45-second workload/fatigue freeze 

probes. Before each mission block (apart from the training walkthrough), they will engage in an 

untimed planning period. Although the planning period is not time pressured, it takes most 

participants about five to 10 minutes to complete. Participants should use a combination of 

information from the moving map, the Target Information table, and the UAV Route Builder 

boxes to formulate the best plan for sending their UAVs to targets and maximizing their points. 

Once the participant has decided on a plan and hit the “begin mission” button, the 

mission clock will start. Throughout each mission, the participant must continually replan based 

on new targets that show up, doing their best to monitor payload feeds, answer information 

requests, and make status updates with the goal of maximizing their points.  
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Appendix B: Low-Cost Eye Tracking 

Supervisory control often involves extended periods of monitoring and, during such 

periods of low task load, traditional performance metrics (e.g., accuracy and response time) 

might not be available or even be representative of good performance. One solution for gathering 

a more complete picture of operator performance is to augment traditional metrics of mission 

performance with eye tracking metrics, such as pupil diameter. Research has shown a direct 

relationship between pupil diameter in millimeters and workload (Beatty, 2000). Pupil dilation in 

response to mental activity is a well-established phenomenon in neuropsychology. The German 

neurologist, Oswald Bumke, wrote in 1911: 

Every active intellectual process, every psychical effort, every exertion of attention, every 

active mental image, regardless of content, particularly every affect just as truly produces 

pupil enlargement as does every sensory stimulus. (Hess, 1975, pp. 23–24).  

However, it was not until 1964 that the task-evoked pupillary response was first used as a 

tool to investigate human cognitive processing and mental effort. Hess and Polt (1964) claimed 

that pupillary dilations indicate mental effort after observing a direct relationship between the 

difficulty of mental arithmetic problems and the magnitude of participants’ pupil dilation during 

the problem-solving period. This relationship between the magnitude of pupil dilation and task 

demand or difficulty was subsequently observed in a variety of contexts: arithmetic (Bradshaw, 

1968b; Payne, Perry & Harasymin, 1968); short-term memory tasks of varying load (Kahneman 

& Beatty, 1966); pitch discriminations of varying difficulties (Kahneman & Beatty, 1967); 

standard tests of "concentration" (Bradshaw, 1968a); sentence comprehension (Wright & 

Kahneman, 1971); paired-associate learning (Colman & Paivio, 1970; Kahneman & Peavler, 

1969); imagery tasks with abstract and with concrete words (Paivio & Simpson, 1966, 1968; 
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Simpson & Paivio, 1968), and the emission of a freely selected motor response instead of an 

instructed response (Simpson & Hale, 1969) (as cited in Kahneman, 1973).  

Kahneman proposed the task-evoked pupillary response as the primary measure of 

processing load in his effort theory of attention (Beatty, 1982; Kahneman, 1973). He justified the 

use of the physiological measure based on the strong empirical support for the direct relationship 

between pupil dilation and task demands (specifically, by citing the prior list), concluding that 

“the key observation that variations of physiological arousal accompany variations of effort 

shows that the limited capacity [to perform mental work] and the arousal system must be closely 

related.” (Beatty, 1982; Kahneman, 1973, p. 10). Kahneman stated that a physiological measure 

of mental effort must be sensitive to both between-task and within-task variations. Not only 

should such a measure be able to order tasks by difficulty (since more difficult tasks usually 

require greater mental effort), but it should also reflect transient variations in participants’ effort 

during task performance.  

There is ample empirical support for the sensitivity of pupil diameter as a measure of 

momentary within-task variations in cognitive effort. Sibley, Coyne and Baldwin (2010) used 

pupil diameter to assess mental effort within a simulated UAV training task and found that pupil 

diameter decreased as performance increased.  

B.1 Low-Cost Eye Tracking Systems 

Historically, the high cost of eye tracking systems has limited the use of the technology in 

Human Factors research. High-end eye tracking systems range from $15,000 to over $80,000. 

However, in recent years, a number of low-cost eye tracking solutions have become available. 

These systems, which range from $100 to $500, are designed for use with single displays and 

offer a streamlined setup process.  
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Table B.1 
Technical Specifications for Three First-Generation Low-Cost Eye Tracking Systems  
 Gazepoint GP3 Eye Tribe Tobii EyeX 
Cost $495 $99 $139 
Sampling Rate 60 Hz 30/60 Hz 60 Hz (estimated) 
Visual Angle 0.5°–1.0° 0.5°–1.0° – 
Max. Display Size 24 in. 27 in.  27 in.  
Eye Position Data Left and Right Left and Right Combined 
Pupil Size Data Pixels Pixels None 

Note. Eye Tribe defaults to a 30 Hz sampling rate and Coyne and Sibley (2016) experienced 
issues with duplicate packets at 60Hz. 

 

The first generation of low cost eye trackers includes the Tobii EyeX, Gazepoint GP3, 

and Eye Tribe. The Gazepoint GP3 and the Eye Tribe collect data on gaze position and pupil size 

for both eyes.1 The Tobii EyeX, however, only provides gaze position averaged across both eyes. 

Moreover, the EyeX was designed for entertainment purposes and, unfortunately, the user 

agreement does not permit data collection and analysis. A summary of the technical 

specifications for these three systems is provided in Table B.1. 

The two best indicators of eye tracking data quality, and thus the quality of the eye 

tracking systems themselves, are the accuracy and precision of the gaze data. Accuracy, which is 

sometimes referred to as offset, is the difference between the true and measured gaze direction. 

Accuracy is measured in visual angle which is 0.5°–1.0° for both the Gazepoint GP3 and Eye 

Tribe systems, according to the manufacturers. Precision refers to the consistency of calculated 

gaze points when the true gaze direction is held constant. The precision of an eye tracker is 

typically measured using an artificial eye in order to estimate the magnitude of system noise or 

error. Gazepoint and Eye Tribe have not published precision figures, but researchers have 

experimentally estimated their precision. Ooms, Dupont, Lapon, & Popelka (2015) found that the 

                                                 
1 Pupil data was collected in pixels here, but the updated version of the Gazepoint GP3 can report pupil diameter in 
millimeters.  
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gaze accuracy and precision of Eye Tribe was comparable to the SMI RED 250, an established, 

high-end system. 

Gazepoint (Mean Error = 140.48 Pixels)       Eye Tribe (Mean Error 100.3 Pixels) 

 
Figure B.1. Accuracy and precision for Gazepoint (left) and Eye Tribe (right) eye tracking 
systems on a 24-inch 1900 x 1200 display. 
 

Similarly, Coyne, Sibley, and Sherwood (2016) found that gaze data collected using the 

Eye Tribe and Gazepoint GP3 systems was of sufficient accuracy and precision to be useful for 

Human Factors research and, on 24-inch or smaller displays, tracked gaze position almost as well 

as the high-cost Smart Eye Pro system. On the 24-inch 1900 x 1200 display used in the 

experiment, one degree of visual angle equated to approximately 49 pixels. Thus, the mean 

visual angle was 2.87 degrees for the Gazepoint GP3 and 2.05 degrees for the Eye Tribe (Figure 

B.1).  

Though these experimental figures represent a higher degree of error than the values 

provided by the manufacturers suggest, they are inflated by lower gaze accuracy in the corners of 

the display. Inaccuracy in the corners is often less problematic since they are not often 

considered areas of interest. Moreover, the eye tracker set up represents the “worst case 

scenario”; placement of the eye trackers and their tripods was not controlled. Additional testing 

of the Gazepoint system with its optional VESA mount, focused on a smaller area of the display 

(the middle 90%), yielded a reduced visual angle of 1.60 degrees with minimal filtering. This 
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finding suggests that these systems are capable of more accurate data collection if their position 

is fixed center and level with respect to the monitor. 

Table B.2 
Low-Cost Eye Tracker Data Quality with Three Filters Applied 
Filter Applied System Mean Error Percent Usable Data 
One Good Eye Gazepoint GP3 140.48 94% 

Eye Tribe 100.30 79% 
Two Good Eyes Gazepoint GP3 133.58 83% 

Eye Tribe 91.67 64% 
Two Good Eyes and < 
200 

Gazepoint GP3 95.35 69% 
Eye Tribe 82.48 60% 

 

However, Coyne et al. (2016) found that the low-cost systems experienced more frequent 

data quality problems relative to the Smart Eye Pro. Depending on the filter applied, up to 40% 

of data were lost. Table B.2 lists the percent usable data remaining after three increasingly 

selective filters were applied to the raw gaze data: (1) minimal, in which packets with at least one 

good eye were included; (2) both eye, in which only packets with good quality reported for both 

left and right gaze position were included; and (3) both eye distance, which included only 

packets with good quality left and right gaze position within two degrees of visual angle. 

Funke et al. (2016) compared the accuracy and precision of Tobii EyeX and Eye Tribe to 

that of three more costly eye tracking systems: Seeing Machines faceLAB, Smart Eye Pro, and 

Smart Eye Aurora. Like Coyne et al. (2016), they found that, while the accuracy and precision of 

the low-cost systems were comparable to the more expensive systems, data collection with the 

Tobii EyeX and Eye Tribe resulted in fewer usable gaze estimate data points due to more 

frequent data quality problems. They cautioned that missing data could affect estimates of the 

number and duration of fixations, saccadic rates, and blinks, all of which are commonly used in 

Human Factors research. Thus, researchers should carefully consider the relative strengths and 
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weaknesses of the various systems and their suitability for their specific research effort (Funke et 

al., 2012; Holmqvist, Nystrom, & Mulvey, 2012).  

One notable weakness of low-cost eye tracking systems is their relatively low sampling 

frequency (30–60 Hz) relative to high-cost systems (often 250 Hz and above), which limits their 

suitability for research where rapid eye movements are of interest (Ooms et al., 2015). For 

example, experimenters who conduct reading research often track saccades; saccades are the 

ballistic, conjugate eye movements that occur between fixations, such as those that characterize 

eye movement while reading. The speed of these eye movements necessitates the use of a more 

expensive, high-speed system with sampling rates of 500 Hz or more to get meaningful data 

(Poole & Ball, 2006; Rayner & Pollatsek, 1989). Fortunately for Human Factors researchers, the 

60 Hz sampling rate of many low-cost eye trackers is sufficient for human-computer interaction 

and usability studies, including those which would typically occur in UAV supervisory control 

test beds. 

 

Figure B.2. Pupillary response to increasing screen luminance (left) and workload (right) as 
measured by the Gazepoint GP3 and Eye Tribe systems. Note. Reprinted from “Investigating the 
use of Two Low Cost Eye Tracking Systems for Detecting Pupillary Response to Changes in 
Mental Workload,” by Coyne and Sibley (2016). Reprinted with permission. 
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While a number of studies have investigated the accuracy and precision of gaze data 

collected using low-cost eye trackers, less is known about the ability of these devices to collect 

non-gaze behaviors, such as pupil size. Coyne and Sibley (2016) found the Eye Tribe and 

Gazepoint GP3 systems sufficiently sensitive to capture changes in pupil size in response to both 

screen luminance and mental effort on a digit span task (Figure B.2). 

However, unlike the Smart Eye Pro and similar high-cost systems that measure pupil size 

in millimeters, both low-cost systems output pupil size in pixels. The pixel-counting method of 

measurement is potentially problematic because a participant’s observed pupil size, the number 

of pixels their pupils occupy in the camera image, can be confounded by their gaze angle and 

head position. However, this problem can be mitigated by software that uses an ellipse-fitting 

method to measure pupil size; the ellipse-fitting method defines pupil size as the length of the 

major axis of an ellipse fitted to the pupil image and is thus not affected by perspective distortion 

(Klinger, 2008; Wang, 2011). Both Eye Tribe and Gazepoint have recently released low-cost 

systems capable of measuring pupil size in millimeters.  

Overall, while low-cost eye trackers are not quite as accurate and experience more 

frequent data quality problems relative to high-end systems, research suggests that these devices 

may be able to provide meaningful data in applied settings. 
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