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ABSTRACT

Lossless compression of memory dumps from virtual machines that run malware samples is considered with
the goal of significantly reducing archival costs in dynamic-malware-analysis applications. Given that, in
such dynamic-analysis scenarios, malware samples are typically run in virtual machines just long enough to
activate any self-decryption or other detection-avoidance maneuvers, the virtual-machine memory typically
changes little from that of the baseline state, with the difference being attributable in large degree to the
loading of additional executables and libraries. Consequently, delta coding is proposed to compress the
current virtual-machine memory dump by coding its differences with respect to a predicted memory image
formed by loading the same executables and libraries into the baseline memory. Experimental results reveal
a significant improvement in compression efficiency as compared to straightforward delta encoding without
such predictive executable/library loading.

Keywords: compression, malware analysis, virtual machine, delta coding

1. INTRODUCTION

Malware—malicious computer code of all types, in-
cluding viruses, worms, bots, and trojans—is an
ever-increasing threat to personal, corporate, and
government computing systems alike. Particularly
in the corporate and government sectors, the attri-
bution of malware—including the identification of
the authorship of malware as well as potentially the
malefactor responsible for an attack—is of growing
interest. Such malware attribution is often enabled
by the fact that malware authors build on the work
of others through the use of generators, libraries, and
borrowed code. Determining malware phylogeny—
the evolutionary history of and the derivative rela-
tions between malware—is consequently an endeavor
of increasing importance. In some cases, it may be
possible to simply analyze the source code or binary
executable program of a malware sample; however,
such static analysis is easily defeated by more so-
phisticated code that actively avoids detection. Such
malware often employs self-modifying code (Egele,
Scholte, Kirda, & Kruegel, 2012), as in the case of an
encrypted malware file that self-decrypts upon exe-
cution in memory. Consequently, there is a growing
focus on the dynamic analysis of malware which in-

volves executing a malware sample and determining
the actions it takes after some period of operation
(Egele et al., 2012). In most cases, such dynamic
analysis occurs in a virtual machine, or “sandbox,”
in order to confine the malware to an environment
in which it can do no harm to real systems (Farmer
& Venema, 2005).

In sandbox-driven dynamic analysis of malware, a
virtual machine is typically run starting from some
known, malware-free baseline state. The malware is
injected into the virtual machine, and the machine is
allowed to run for some period of time during which
the malware presumably activates. The machine is
then suspended, and the current machine memory is
dumped to disk. The process may then be repeated
for other malware samples, each time starting from
the baseline state. Subsequent analysis procedures
may then attempt to identify, classify, or otherwise
analyze the malware based on the dumped memory
image.

Stored in raw form on the disk, the dumped mem-
ory file is the same size as the virtual-machine mem-
ory; for virtual machines running modern operating
systems, such memory would likely be no less than
512 MB but could be up to several GBs. If the cor-
responding memory dumps are to be retained for
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repeated analysis—as is likely to be required in or-
der to determine a phylogeny for a large database of
malware samples—lossless compression of the mem-
ory dumps is necessary to prevent explosive disk us-
age. For example, the VirusShare project1 maintains
a database of over 19 million malware samples; run-
ning these in a virtual machine with 512 MB of mem-
ory would require of 9 petabytes (PB) of storage to
retain the memory dumps.

In this paper, we develop a scheme for the lossless
compression of memory dumps resulting from the
repeated execution of malware samples in a virtual-
machine sandbox. Rather than compress each mem-
ory dump individually, we capitalize on the fact that
memory dumps stem from a known baseline virtual-
machine state and code with respect to this baseline
memory. Additionally, to further improve compres-
sion efficiency, we exploit the fact that a significant
portion of the difference between the baseline mem-
ory and that of the currently running machine is the
result of the loading of known executable programs
and shared libraries. Experimental results on a col-
lection of virtual-machine memory dumps demon-
strate a significant improvement over the straight-
forward compression of each memory dump indepen-
dently. We detail our proposed compression scheme
in the remainder of the text.

2. BACKGROUND
Any number of generic lossless compression al-
gorithms could be applied to a virtual-machine
memory-dump file to significantly reduce its size.
Some obvious choices include algorithms from
the Lempel-Ziv (Ziv & Lempel, 1977, 1978) and
Burrows-Wheeler (Burrows & Wheeler, 1994) fam-
ilies of algorithms, as implemented by programs
such as gzip (LZ77) and bzip2 (Burrows-Wheeler).
However, given the short amount of time that the
virtual machine has typically been run in a dynamic-
malware-analysis scenario—effectively just enough
time for the malware under analysis to activate it-
self (including any self-extraction, self-decrypting,
or self-decompression)—it is likely that memory has
changed little from the baseline state. While there
may have been a few new processes started and a few
libraries loaded—along with corresponding mem-
ory allocations and data initializations—overall, the
dumped memory file will likely have most mem-
ory locations unchanged from the baseline machine’s
memory. Indeed, Fig. 1 depicts a map of all memory
locations that have changed when an example mal-
ware sample is run in a 512-MB virtual machine;

1http://virusshare.com/

specifically, we see that only 15% of the memory
has changed, although we do observe that the dif-
ferences between the current and baseline memories
are widely distributed throughout the entire mem-
ory space. In such a situation, delta encoding—the
compression of the differences between two files—is
likely to significantly outperform any single-file com-
pression approach.

Although there have been a number of lossless
delta-encoding algorithms proposed in the past, per-
haps those that are in the most widespread use are
based on the VCDIFF (Korn, MacDonald, Mogul,
& Vo, 2002) standard. Effectively, the VCDIFF
standard prescribes delta encoding using an LZ77
variant in which the reference (or “source” dataset),
which is available to both the encoder and the de-
coder, prepends the dataset to be encoded (the
“target” dataset), such that LZ77 string matching
can reference into the source dataset. More specif-
ically, the target dataset is partitioned into non-
overlapping target windows, and each target win-
dow is encoded by prepending a source window and
performing LZ77-style string matching on the con-
catenated string starting from the beginning of the
target dataset. The source window can come from
either the source dataset or earlier in the target
dataset; since the VCDIFF standard specifies only
a file format, specific methodology for string match-
ing and window selection are left to the encoder im-
plementation to determine. Here, we focus on the
open-source xdelta32 implementation of VCDIFF.

The xdelta3 encoder relies on a substantial de-
gree of similarity between the source and target
datasets in order to outperform the LZ77 compres-
sion of the target dataset alone. As is evident from
Fig. 1, we expect that, in our malware-analysis appli-
cation, xdelta3 encoding of a virtual-machine mem-
ory dump using the baseline machine’s memory as
the source dataset will result in a compressed file sig-
nificantly smaller than that of gzip applied directly
to the memory dump by itself. Indeed, for the spe-
cific dataset considered in Fig. 1, gzip produces a
compressed file of size 139 MB, while xdelta3 yields
a 25-MB file. In the next section, we consider steps
that may be taken to improve the performance of
xdelta3 in our malware-analysis application even
further.

3. PROPOSED APPROACH
Some of the differences between the memory dump
after a period of malware execution and the start-
ing baseline memory state can be attributed to data

2http://xdelta.org/
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Figure 1. Map of differences between the baseline
memory map and the current memory map after
malware execution (baseline virtual machine #41,
malware dataset #139992); number of bytes of dif-
ference = 80,661,129 (15.0% of the 512-MB mem-
ory). White = byte unchanged from baseline; black
= byte different from baseline.

that was effectively created by the various processes,
including the malware, running on the system. How-
ever, some of the memory differences are due to the
loading of additional executable and shared-library
files into the system. On Windows-based systems,
such executable programs (EXEs) and dynamic-link
libraries (DLLs) are stored in the Portable Exe-
cutable (PE) format (Microsoft, 2013), a modifica-
tion of Unix’s Common Object File Format (COFF).
We can make the memory of the baseline machine
more closely resemble that of the currently run-
ning machine—thereby increasing the efficiency of
xdelta3 coding—by simulating the loading of these
PEs into the baseline memory, a process that can
be done identically in both the encoder and the de-
coder.

Specifically, the open-source tool for memory
forensics, volatility3 (Ligh, Case, Levy, & Wal-
ters, 2014), is used to determine the running EXEs
and loaded DLLs in both the baseline and current
memory dumps. Parsing the process and library lists
produced by volatility, an encoder can determine
which programs and libraries are new to the cur-
rent machine memory with respect to the baseline,
load these new PEs into the baseline memory, and
finally use this updated memory as the source for
xdelta3 coding of the current memory dump. De-
tailed operation of the resulting encoder and decoder
is described below.

3.1 Encoder

The encoder compresses the memory dump (the cur-
rent memory) from the currently running virtual

3http://www.volatilityfoundation.org/

machine using delta encoding with respect to the
predicted memory, the latter of which is produced
by loading new PEs into the baseline virtual ma-
chine’s memory dump (the baseline memory). The
new PEs are those that are in the current mem-
ory but not in the baseline memory. The new PEs
are loaded from the virtual disk which is the vir-
tual hard drive shared by both the baseline and cur-
rent virtual machines; the loading is accomplished
by copying virtual-memory pages from the PE file
into physical-memory pages in the baseline memory.
More specifically, the encoder follows the following
steps:

1. Run volatility commands pslist and
dlllist on the baseline memory to determine
lists of baseline EXEs and DLLs, respectively.

2. Run volatility commands pslist and
dlllist on the current memory to determine
lists of current EXEs and DLLs, respectively.

3. Parse the EXE/DLL lists to determine the new
PEs that are in the current memory but not in
the baseline memory.

4. To produce the predicted memory from the
baseline memory, for each new PE (EXE or
DLL) do:(a) Determine the ID of the process corre-

sponding to the new PE (for a DLL, this is
the process into which the DLL has been
loaded; for an EXE, it is the process as-
signed to the EXE itself) along with the
base address where the new PE is loaded
into the virtual-memory address space of
the corresponding process.

(b) For the process corresponding to the new
PE, run the volatility command memmap

on the current memory to extract the
virtual-to-physical memory map of the
process.

(c) Copy the new PE from its correspond-
ing file on the virtual disk into the base-
line memory; specifically, for each virtual-
memory page in the PE file:

i. If the page is resident in the current
memory, copy the page from the PE
file to the baseline memory using the
virtual-to-physical mapping retrieved
in Step 4(b).

ii. Record the source page location in
the PE file, the destination page loca-
tion in physical memory, and the page
length (the page copy information).

5. Output header information, including path-
names of new PEs to load and a list of all page
copies for each PE.

c© 2017 ADFSL Page 43



JDFSL V12N1 Compression of Virtual-Machine Memory in Dynamic ...

6. Perform xdelta3 coding using the current
memory as the target and the predicted mem-
ory as the source.

In Step 4(c), we assume that the virtual disk used
for both the baseline as well as the currently running
virtual machine is available to the encoder so that
it can access the PEs to perform the page copies.
Normally, this virtual disk will be a file stored at
some known location alongside the baseline-memory
and current-memory dumps. For the VMware vir-
tual machines used here, the encoder employs the
vmware-mount command to mount the VMDK-
format virtual disk via a loopback device, permitting
the encoder to read PE files from the Windows 7 in-
stallation resident on the virtual disk.

3.2 Decoder

The decoder produces the same predicted memory
as used by the encoder by loading the new PEs into
the baseline memory. While the decoder has access
to the baseline memory, it does not know the current
memory, or, consequently, the virtual-to-physical
map of the processes corresponding to the new PEs.
Therefore, to duplicate the page copies that the en-
coder used to produce the predicted memory, the
decoder relies on the list of page copies stored in the
header of the compressed file. Like the encoder, the
decoder loads the new PEs from the virtual-disk file
stored alongside the baseline memory. The specific
process is as follows:

1. Read the header from the compressed file.

2. To produce the predicted memory from the
baseline memory, for each new PE (EXE or
DLL) do:(a) Copy the new PE from its corresponding

file on the virtual disk into the baseline
memory; specifically, for each page copy
listed in the header, do:

i. Copy the corresponding page in the
PE file into the designated location in
the baseline memory.

3. Perform xdelta3 decoding of the current mem-
ory (the target) using the predicted memory as
the source.

3.3 Implementation

Both the encoder and decoder of the proposed ap-
proach, which we call VMMZ, are implemented pri-
marily in C with a small portion written in Perl to
handle parsing of output from volatility. In ad-
dition to dependence on volatility and xdelta3,
VMMZ is built on QccPack4 (Fowler, 2000).

4http://qccpack.sourceforge.net/

4. EXPERIMENTAL
RESULTS

Our test dataset consists of 14 different baseline vir-
tual machines, each possessing 512 MB of RAM and
installed with a 32-bit version of Windows 7. Us-
ing the cuckoo malware-analysis sandbox5, each vir-
tual machine was run for approximately 4 minutes
with a malware sample injected into the virtual ma-
chine. Afterwards, the virtual-machine memory was
dumped as a 512-MB file to disk for malware analysis
at some subsequent time. Our test dataset consists
of a total of 67 memory dumps corresponding to 67
different malware samples, with between 3 and 8 dif-
ferent samples being run in each of the 14 baseline
machines. Total storage required for the resulting
67 memory dumps is 33.5 GB.

Table 1 tabulates the results of various compres-
sion approaches applied to these memory dumps.
The memory dumps are given a 6-digit number
(“File #”) corresponding to which malware sample
was run in the virtual machine; Table 1 also indi-
cates the number (“Base #”) of the corresponding
baseline machine which served as the starting point
for the malware execution.

Table 1 indicates the sizes of files output by vari-
ous compression algorithms applied to the virtual-
machine memory dumps. In these results, gzip

is simply applied directly to the memory dump in
question, while the proposed approach (VMMZ) and
xdelta3, both being delta encoders, compress each
memory dump with respect to its corresponding
baseline virtual-machine memory. Table 1 also in-
dicates the average compressed-file size across all 67
memory dumps as well as execution times for both
encoding and decoding. We see that, while the pro-
posed VMMZ approach is slower, it significantly out-
performs the other two compressors in terms of com-
pression: at 34 MB, the average file size for VMMZ
is approximately 20% smaller than that of xdelta3
(42 MB on average), and 79% smaller than that of
gzip (163 MB on average).

5. RELOCATABLE CODE
AND FIXUPS

Typically, PE files are divided into multiple sections,
some of which have special meanings that are recog-
nized by linkers and loaders (Microsoft, 2013). By
convention, these special sections are designated by
known section names in the PE header, for example,
the .data section (initialized data), the .rdata sec-
tion (read-only initialized data), the .text section

5http://cuckoosandbox.org/
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Table 1. Compressed-file sizes and execution times for the proposed algorithm (VMMZ) as well as xdelta3
(XD3) and gzip (GZIP). Results conducted on a 2.1-GHz i7-4600U system with 8 GB memory.

Size (MB) Size (MB)
File # Base # VMMZ XD3 GZIP File # Base # VMMZ XD3 GZIP

139992 41 18 25 139 140105 52 14 25 143
140106 41 30 38 150 140390 52 28 38 157
140403 41 41 52 162 140485 52 29 52 158
140537 41 34 44 156 140541 52 13 44 142
140389 45 33 42 160 139997 53 57 42 189
140458 45 12 18 141 140035 53 59 18 190
140484 45 13 20 143 140083 53 25 20 161
139996 46 47 55 179 140150 53 33 55 166
140054 46 46 52 177 140402 53 33 52 166
140515 46 39 44 175 140488 53 61 44 191
140061 47 23 31 157 140516 53 69 31 200
140080 47 29 39 164 140491 54 23 39 150
140126 47 18 24 150 140524 54 31 24 157
140384 47 19 29 156 140544 54 29 29 155
140456 47 23 31 156 140057 55 36 31 161
140534 47 33 41 164 140394 55 32 41 158
140545 47 17 22 149 140494 55 31 22 159
140151 49 31 41 160 140513 55 32 41 159
140522 49 30 41 160 139993 57 36 41 161
140538 49 28 37 157 140399 57 42 37 168
139991 50 50 60 175 140495 57 26 60 155
140032 50 45 55 171 140546 57 31 55 156
140453 50 47 57 173 140395 58 29 57 156
140489 50 49 59 175 140517 58 32 59 158
140514 50 55 66 180 140547 58 32 66 156
140082 51 25 29 161 139995 59 29 29 158
140122 51 13 16 150 140079 59 26 16 152
140154 51 65 73 193 140107 59 30 73 157
140388 51 59 69 188 140127 59 15 69 145
140459 51 59 68 189 140397 59 31 68 158
140490 51 61 69 190 140461 59 28 69 156
140525 51 56 64 187 140520 59 28 64 158
140039 52 15 23 145 140542 59 31 23 159
140058 52 27 37 157

VMMZ XD3 GZIP
Average size (MB) 34 42 163

Encoding time (sec) 172 8.94 14.7
Decoding time (sec) 22.7 1.06 3.41
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(executable code), and the .reloc section (image
relocations). While sections hold special meaning
for linkers and loaders, the proposed VMMZ com-
pression framework as described above is agnostic to
section type, loading every physically resident page
from every section into the baseline memory. How-
ever, in the case of relocatable executable code, such
section-agnostic loading causes some compression in-
efficiency.

Specifically, PEs are rarely loaded at the virtual-
memory addresses for which they are compiled, re-
quiring a .reloc section that lists all the memory
addresses (or “fixups”) in the executable code (the
.text section) which must be relocated during load-
ing before the PE is executed. In our delta-encoding
application, performing these fixups when loading a
PE into baseline memory would result in a predicted
memory that would be closer to the current memory,
resulting in improved xdelta3 encoding. Unfortu-
nately, while the decoder has access to the fixups
in the .reloc section of the PE file, these fixups
are expressed in terms of virtual-memory addresses
which must be translated to physical-memory ad-
dresses during loading. Permitting the decoder to
be able to perform these fixups would consequently
require storing the virtual-to-physical mapping for
the fixups in the header of the compressed file. Our
empirical investigations have revealed that this ad-
ditional header overhead would likely outweigh any
improvement in xdelta3 encoding that would re-
sult from including the fixups in the predicted mem-
ory. Consequently, our proposed VMMZ coder loads
executable-code .text sections as is without per-
forming the fixups that would be done in a real sys-
tem by a linker/loader.

6. CONCLUSIONS

In this paper, we have considered the lossless com-
pression of virtual-machine memory dumps for a tar-
get application of dynamic malware analysis. Typ-
ically, in such dynamic analysis, malware samples
are run in a virtual machine just long enough to
activate; consequently, memory dumps from the
currently running virtual machine are substantially
identical to that of the baseline machine, with the
difference being attributable in a large degree to the
loading of various executable programs and dynam-
ically linked libraries. By duplicating the loading
of these executables and libraries into the baseline
memory, our proposed approach produces a predic-
tion of the current memory from which delta encod-
ing is performed, resulting in a significant improve-
ment in compression performance over straightfor-

ward delta coding alone. In experimental results for
a body of malware samples, the proposed approach
outperformed the widely used xdelta3 delta coder
by approximately 20% and the popular generic gzip
coder by 79%.
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