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ABSTRACT  
The issue of the volatility of virtual machines is perhaps the most pressing concern in any digital 
investigation.  Current digital forensics tools do not fully address the complexities of data 
recovery that are posed by virtual hard drives.  It is necessary, for this reason, to explore ways to 
capture evidence other than those using current digital forensic methods.  This should be done in 
the most efficient and secure manner, as quickly, and in a non-intrusive way as can be 
achieved.  All data in a virtual machine is disposed of when that virtual machine is destroyed, it 
may not therefore be possible to extract and preserve evidence such as incriminating images prior 
to destruction.  Recovering that evidence, or finding some way of associating that evidence with 
the virtual machine before its destruction, is therefore crucial. In this paper, we present a method 
of extracting evidence from a virtual hard disk drive in a quick, secure and verifiable manner, 
with a minimum impact on the drive thus preserving its integrity for further analysis.  

Keywords: Virtual Machine, Digital Forensics, Virtual Machine Forensics, Virtual Hard Drive

INTRODUCTION 
It is very rare to find a crime scene where a 
digital device of some kind has not been 
used.  Whether it is a tablet computer, a 
phone or perhaps portable digital storage 
device like a USB key or external hard drive, 
and whether they are Unix, Linux or Windows 
based systems these are devices that can be 
taken possession of for examination [1].  The 
data they contain can be catalogued, classified, 
extracted and subject to detailed 
examination.  They constitute a physical 
connection between their user or owner, those 
data they contain and how those data were 
used in a crime.  The real, physical nature of 
these devices is invaluable to an investigator, 
but is absent where a virtual machine (VM) is 

involved, yet the goal of an examiner remains 
the same - to secure as much evidence as 
possible [2].  

How evidence is collected is important to 
its integrity and the subsequent conduct of any 
investigation.  What happens to that evidence 
after collection is crucial, how it is saved, how 
it is handled and processed, and how it is 
related to an offence or misconduct is vitally 
important to an investigation.  Traditional 
digital forensics has developed, tried, and 
tested methods of achieving these goals and 
tools have been developed for these 
purposes.  Applying these to VM forensics may 
involve developing, or enhancing these tools or 
methods further, or designing new tools to take 
account of the absence of physical hardware.  
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A VM possesses all the characteristics of 
true hardware [3] - the virtual hard drive 
(vHDD) is formatted to the specifications of 
the operating system being used, the virtual 
RAM (vRAM) has all the expected attributes 
that true RAM has, as do the other virtual 
devices associated with a VM, e.g. NICs, USB 
controllers, graphics processors, 
etc.  Nonetheless recovering evidence from a 
VM is more difficult not only because we are 
investigating one process of the host operating 
system (OS), but also because of the volatility 
of a VM.  Evidence in a VM can be lost easily 
when it is moved [6] or deleted.  

The 'throwaway' nature of VMs also allows 
their use as anti-forensics tools, as discussed by 
Barrett and Kipper in [6].  They further 
propose that in future a truly disposable OS 
may be created for single session use, using 
hypervisor functions and applications moved to 
the Web to create that OS, and dismantled 
completely when shut down.  This prospect 
will defeat any forensics tool not in a position 
to capture the OS and data, prior to shut 
down - nothing being left to analyse after the 
session is finished.  

Cloud computing provides users with a 
flexibility that traditional computing lacks.  It 
allows organisations to manage their 
computing needs on an on-demand basis, 
rather than a lead-in time of perhaps weeks or 
months if installing physical hardware.  It 
allows a company to balance its workload very 
quickly, maintain secure images of their data, 
and ensure resilience against hardware failure 
[4].  This business model enables costs to be 
controlled - you pay for what you use.  Cloud 
computing models, such as SaaS 1, DaaS, IaaS 
all rely on virtualisation to deliver their 
services [5].  These components form the basis 
of cloud computing, including distributed 

                                                            
1  Software as a service, Desktop as a Service, 
Infrastructure as a Service 

computing and high speed bandwidth [6].  Our 
focus is on virtualisation in cloud 
computing.  Cloud computing, and the ability 
to create a computing instance when required, 
pose Law Enforcement (LE) with a difficult 
investigation model.  The multi-tenancy [7] 
nature of much of cloud computing and the 
sharing of resources, adds to the investigation 
more difficulties.  

In this paper, we propose a method of 
gathering evidence from a VM's vHDD, reduce 
the data size being gathered, and minimise 
intrusion on a suspect VM.  In the case of 
remote acquisition of a VM's data, physical 
access to the hardware that a VM resides on is 
difficult, but will not be necessary in the 
context of what we propose.  The paper is 
organised as follows:  Firstly we outline what 
technologies are currently available to carry 
out a digital forensic examination on a VM.  In 
section 2 we examine how to best gather data 
from a vHDD.  We then describe our approach 
to VM forensics and how we implement 
it.  Section 4 looks at how best to optimise 
software execution, evidence gathering, and the 
consequences of these for both the suspect and 
investigator.  We support our optimisation 
techniques with metrics of execution times 
before and after optimisation.  Finally, we will 
conclude by outlining further research.  

2.  VIRTUAL MACHINES 

VM technologies fall into two categories - Type 
I and Type II virtual machines, the distinction 
between these lies in the presence of an 
underlying OS.  Type I virtualisation involves 
a hypervisor (VMM) using a thin layer of code 
to allocate resources in real-time.  They run 
directly on the hardware and are commonly 
known as 'bare-metal' hypervisors, examples 
include XenServer from Citrix, ESXi from 
VMware and Hyper-V from Microsoft.  They 
reduce the overhead needed by the hypervisor 
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itself, and provide good performance, 
availability and security.  

Type II hypervisors run as an application 
on top of an operating system.  They are very 
popular and are usually used to emulate 
another OS within the OS that the hypervisor 
is running, e.g. running Windows within Linux, 
or vice versa.  These are more usually found on 
home computer systems and where security 
and efficiency is less critical, examples include 
Oracle VirtualBox, Microsoft VirtualPC and 
VMware. 

2.1 VM Forensics - Current State 
of Art 

VMs were introduced in the 1960's [8] but 
declined in demand, due mainly to the decline 
in popularity of mainframes and the wider 
accessibility of personal computers [27].  Their 
recent re-emergence and use by different 
entities, has brought with it many challenges 
for Law Enforcement [9].  VM digital forensics 
is similar to that of traditional digital forensics, 
such as log analysis and data capture and 
analysis, but recovering those data from a 
cloud VM can pose a challenge.  Methods and 
tools exist to recover data from traditional 
computer systems and their hard drives, but 
although the principles are essentially the 
same, collecting evidence from a vHDD can be 
more problematic.  

In a traditional digital investigation 
capturing the data on a hard drive involves 
capturing the suspect computer and seizing 
and removing the hard drive for analysis, 
however, seizing the hard drive, both physical 
and virtual, that a VM uses is less 
straightforward.  If the VM is operating in the 
cloud through a service provider, accessing the 
physical hard drive could involve removing it 
from the data centre, and then examining 
it.  This is likely to take time, running the risk 
of data being altered, removed, deleted or 
destroyed.  It may also expose other users’ 

data on the hard drive, causing privacy 
concerns, furthermore there are also very few 
tools to assist in investigating a live vHDD, 
apart from LibVMI [15].  If the VM is 
operating on a desktop machine, in VirtualBox 
or KVM/QEMU, for instance, it may not be 
possible to gain access to the virtual drive.  

2.2  VM Introspection 

The most important VM forensics technology 
developed to date has been Virtual Machine 
Introspection (VMI) [10].  VMI uses the virtual 
machine manager (VMM) to view what is 
happening inside a VM.  It was originally 
introduced as a method of implementing 
intrusion detection systems, allowing a VM to 
be monitored from outside to assess what is 
happening inside, but is now used extensively 
in the forensic investigation of VMs.  

VMI describes how a VMM administrator 
can inspect that is occurring inside a VM, to 
view the VM memory, its processes, its 
network settings, its installed OSes, 
applications and services.  This powerful 
feature of VMI has allowed criminal 
investigations of VMs to take place and data 
to be captured, which would otherwise have 
been lost.  

Nance et al. [11] describes VMI as falling 
into two categories - those that monitor a VM 
and those that interfere with a VM.  Using 
VMI to monitor the runtime state of a VM 
effectively allows such monitoring to take place 
from outside the guest system being monitored, 
without the knowledge of that guest system 
[11].  Furthermore, without knowledge of VMI 
monitoring it is therefore not possible to 
prevent it, nor is it possible to interfere with 
that monitoring [11].  Interference, on the 
other hand, comprises a different set of 
circumstances, for instance when VMI 
interferes with a VM it responds to some 
condition in the VM that requires a response, 
such as a detected threat, by terminating the 
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affected process.  This interference with the 
guest system may alter data, this should be 
avoided as any change to the system being 
inspected could effectively alter evidence and 
thus possibly provide a different outcome to 
that of an unaltered system.  This will have 
consequences for any evidence recovered and 
may cause that evidence to be ruled as 
inadmissible.  VMI does not affect a VM's 
performance in any other way, as it does not 
use any of the VM's resources.  

2.2.1  Semantic Awareness 

The semantic gap that exists between raw data 
and its natural language representation, is 
recognised as the greatest challenge facing 
virtual machine forensics [30].  Nance et al. 
[11] describe semantic awareness as the VM's 
knowledge of its guest operating system (OS), 
and by Joshi et al. [28] as the level of 
abstraction used by a virtual 
machine.  Bridging that gap is not a trivial 
process and is made more difficult by the 
failure of the OS being inspected to follow 
certain semantic expectations, it is very much 
dependent upon the OS following the known 
data structures and syntax of that OS.  By 
failing to follow those structures and syntaxes 
Bahram et al. [13] described how to subvert 
VMI in such a way that any data recovered 
through VMI renders those data to be 
questionable.  This can be achieved through 
the simple assumption that data on the suspect 
system conforms with the expected data 
structures and syntax of that kernel and by 
not adhering to that assumption those data 
can become subverted.  This means that to 
evade VMI a completely different view of the 
system can be presented to VMI, than that 
which is seen by the user.  This approach can 
cause reversal of that obfuscation to be 
computationally very complex and very 
expensive, and without prior knowledge of how 
that is achieved, it would make tools such as 
The Volatility Framework of little use in 

analysing those subverted memory 
files.  Compromisation can be achieved by 
various means, including using a rootkit, 
possibly causing in any data being recovered 
from that OS being rendered unsound, with 
significant implications for the value of 
evidence gathered from those data.  

2.2.2 The Volatility Framework 

The Volatility Framework [14] is used in 
forensic memory analysis.  It provides an 
analysis platform for a wide range of file types, 
including core dumps, from various OSes, 
including Linux kernels from 2.6.11 to 4.2.3, 
OS X from 10.5.x to 10.11.x and most 
Windows OS's from Windows XP SP2 to 
Windows 10, and various virtual machine 
monitors (VMMs), including VMware and 
VirtualBox.  Linux core dumps can be dumped 
into ELF files which can be parsed using 
Volatility.  However, accessing the vHDD is 
not possible using Volatility, as it is a memory 
inspection tool.  

Another very useful memory acquisition 
and inspection tool is LibVMI [15].  This is a 
tool that allows reading from and writing to a 
VM's memory.  It was developed for the Xen 
VMM, but has been extended to other 
VMMs.  As Volatility was originally intended 
for use on static memory images the developers 
of LibVMI extended its functionality to live 
memory address spaces by writing a Python 
wrapper for Volatility for use by LibVMI 
[15].  Although this is a powerful addition to 
the digital forensic examiners toolkit it is very 
likely to suffer a latency issue between when 
data are present in RAM and the when 
LibVMI captures them.  This could cause data 
to be swapped out of memory, or be 
overwritten before LibVMI captures those 
data.  

 

 



Forensic Analysis of Virtual Hard Drives JDFSL V12N1 

© 2017 ADFSL   Page 51 

2.2.3  Best Practice Guidelines 

The Association of Chief Police Officers of the 
UK (ACPO) [16], ISO Standard 27037 [17], U. 
S. Department of Justice Office of Justice 
Programmes National Institute of Justice [18] 
and the EU publication Guidelines on Digital 
Forensic Procedures for OLAF Staff [19] have 
set guidelines to be followed when examining 
digital evidence.  

The ACPO have published four simple 
principles to be followed, Principles 1 and 2 are 
most relevant to our work.  Briefly described, 
these are: Principle 1 expressly disallows 
changes to original data, Principle 2 describes 
how data should only be accessed by a 
qualified person, but allows an examiner to 
explain the reasons for any action taken that 
may have changed the original data, this is 
important in the context of VM forensics and 
our approach to this. These principals have 
been accepted as best practice by the Courts in 
the UK, Ireland and Canada, and have 
influenced the drafting of the EU OLAF 
guidelines. 

3.  COLLECTING DATA 
FROM A VHDD 

There are many tools and collection of tools 
available to examine data on a physical hard 
drive, e.g. EnCase [20], the SANS Investigative 
Forensics Toolkit [21], FTK [22], TSK [23], 
these have varying degrees of 
functionality.  What they all have in common 
is that they require that the hard disk be 
available to be examined, or an image of that 
hard disk, something not necessarily possible 
where a cloud VM is concerned.  It is possible 
to obtain an image of a vHDD when a VM is 
captured while still live, but the volatility of 
VMs can still make this a difficult 
process.  Typically, VM data are captured 
through a snapshot of the VM via the VMM. 
It preserves the VM at a specific time, but is 

limited in that it is a fixed image and will fail 
to capture data subsequent to the snapshot. 
Also the VM must be live when taking a 
snapshot rather than the scenario in digital 
forensics of a standard computer where off-line 
capture is possible.  

The ACPO Good Practice Guide for 
Digital Evidence and the US Department of 
Justice Special Report of April 2004[18] are 
two very relevant reports and were written to 
contribute to a framework for ensuring 
gathered evidence and the methods used to 
recover that evidence, meet a minimum 
standard.  They were originally intended to 
guide examination of standard computer 
systems, but these guidelines equally apply to 
VMs.  

When data are recovered from a VM they 
can be processed in the same manner as those 
recovered from standard systems.  In our 
proposal, we calculate and recover the md5 
signatures of data and propose using these 
signatures to match against data sets of hash 
signatures of known files.   Matching the 
recovered hashes against those in repositories 
such as the National Software Reference 
Library (NSRL) can identify the files in 
question where those hash signatures exist in 
the library.  This method of file identification 
is efficient, because files are identified by 
means of using a hash signature.  In our 
proposal, we generate MD5’s of found files, by 
doing this we reduce data to be recovered from 
several MB to 32B.  This has advantages in 
reducing the bandwidth necessary to transmit 
data, and reducing the volume of data to be 
stored prior to transmission or recovery.  By 
identifying suspect data through their MD5 
hash we can flag those files we need to recover 
and alert an investigator to their 
presence.   Any alteration to the original data, 
prior to generating an MD5 hash, will result in 
a different hash signature to that which would 
have been generated with original data.  This 
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could be addressed through sub-file forensics, 
but this is not examined this in this research. 

4.  EVIDENCE SEARCH 
THROUGH INJECTED CODE 

Our approach to VM forensics involves 
injecting executable forensic software into a 
VM and executing that software.  In their 
paper, Tobin and Kechadi [24] described how 
code injected into a VM could be used to 
execute known benevolent code to carry out 
digital forensics in that VM, they elaborated 
on some benefits of doing this.  In this paper 
part of this proposal is implemented and the 
results are described.  

We have built a simple search engine for 
this purpose, which will have minimal impact 
on the host system in terms of processor time 
consumed, and other resources necessary, e.g. 
RAM and bandwidth.  This engine will simply 
search a virtual drive, or partition, for pre-
defined file types, for example jpegs or 
documents, and create an MD5 hash of each 
file found that satisfies the search criteria.  
The hash signature is then saved to a separate 
file for extraction by VMI software.  This 
approach allows very fast searching of a hard 
drive, reduces the volume of data for 
extraction and minimises interaction with the 
host system.  

Evidence integrity can be compromised by 
writing to a hard drive.  Preventing this 
happening in a digital forensics laboratory 
invariably means interfacing a write-blocker 
between the hard drive and the forensics 
tool.  Using a write-blocker is not possible in 
the VM forensics approach we propose.  To 
solve this problem we have written a software 
write-blocker for use with this search 
engine.  We create a small RAM disk, we then 
install the tool into that RAM disk, execute it 
from there and save all data found to files 
within the RAM disk.  This prevents any data 
being written to the vHDD, preserving the 

vHDD, and because the RAM disk is a 
reserved area of RAM there are no changes to 
RAM data.  The small size of the RAM disk 
used, 8 MiB, has very little impact on the VM 
and its performance.  

We believe our approach has some 
important advantages.  First it significantly 
scales down the volume of data needed to be 
extracted, second it provides an investigator 
with a forensically sound fingerprint of a file 
used, or distributed.  Code can be tailored to 
suit any purpose required, it can be customised 
to search for and recover files, and export them 
or save them for extraction by VMI software, 
and by using the OS semantics this can help 
bridge the semantic gap.  It can help escape 
kernel data structure manipulation as outlined 
by Bahram et al [13] by identifying the means 
of such manipulation, and speed of execution 
may avoid loss of VM data through shutdown 
or power-off.  

Using the hash signature to help identify 
files reduces the volume of data for recovery to 
32 B per file, from a jpeg of approximately 5 
MB, a reduction in data size of approx. 1.5 x 
104 , giving a very significant reduction in data 
volume to be extracted.   This will result in 
extraction of a much smaller data footprint, 
reduce the bandwidth necessary and minimise 
the risk of corruption.  

Providing an md5 signature of a file allows 
that file to be matched against databases of 
hash signatures of known files.  The NIST 
National Software Reference Library (NSRL), 
among others, currently provide a Reference 
Data Set against which md5 signatures can be 
referenced and their corresponding files 
identified.  This is a very fast and secure 
method of identifying files.  Furthermore, the 
hash signatures can be used to identify files 
recovered from other computers and suspected 
to have originated from the system being 
inspected.  
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Overcoming the semantic gap is not a 
trivial matter, it is expensive and 
computationally complex.  Using software 
injected into an OS, in the manner we 
describe, and executing that software natively 
on the suspect machine, we are using the 
original data in the file system, the semantics 
of the target OS and the data structures of 
that OS.  By accessing the file data present on 
the system, we can recover those files of 
interest, we should not need to convert data 
from its raw state to its natural language 
representation, nor should we have a need to 
address the data structures.  This is a very 
significant advantage to our approach, as it 
helps reduce the time needed to examine a 
system, saves investigator time and reduces the 
volume of data to be recovered.  

We also overcome the subversion 
techniques described by Bahram et al [13].  In 
the same way as we describe overcoming the 
semantic gap, we also use the kernel data 
structures of a compromised operating system 
to our advantage, by processing data inside 
that compromised system.  We must be very 
cautious that by using a compromised OS we 
run a significant risk of compromising data 
recovered, but it is possible to determine the 
method of manipulation used and by doing so 
it should be possible to reverse it and recover 
uncompromised data.  

Speed of execution is important whether 
inspecting a standard computer system or a 
VM.  A standard computer will have a hard 
drive which can be removed and data 
recovered from it, but a VM will have no such 
physical drive, it does not have a persistent 
physical data store.  This is compounded by 
the volatility of VMs and their storage, delete 
the VM and everything within the VM is lost.  
By alerting a user to external activity on their 
VM this can quickly result in the destruction 
of the VM and loss of all data.  It is therefore 
important to use code that executes quickly.  

5. EXPERIMENT 
We describe here what experiments we carried 
out, and which test data we used. 

5.1  Code Optimisation 

Optimising code execution is best achieved 
through careful design of the algorithms, 
making use of the available hardware, reducing 
interaction with the user and selective 
targeting of data for processing.  We have used 
CPU affinity to make the best use of the 
available CPUs, and CPU cache, by pinning 
our tools to one CPU and timing execution.  

5.2  Test Environment 

To build our software engine and the 
investigation environment we used 
KVM/QEMU v1.3.2 running on Sabayon 
Linux v15.11, kernel 4.2.0 and created a VM 
using the same Sabayon Linux version as the 
host system.  We used an Intel i7 processor, at 
1.7 GHz, with 4 GB RAM, and an SSD at 540 
MB/sec read speed.  We used a relatively low 
power processor to mirror as closely as possible 
the performance of an Amazon Web Services 
T2 medium EC2 instance, to measure how our 
software might operate on such an 
instance.  We gave our VM 1,024 MB of RAM, 
20 GB of SSD and 2 vCPUs.  We copied a 
data set of 2.5 GB - 12,808 files, in 4642 
directories - into the guest and used this as our 
test data.  Allocating two vCPUs allowed us to 
manipulate our test platform to our own 
specifications.  The purpose of this was to 
make comparison between two different 
management scenarios, one where the OS 
managed the vCPU allocation and one where 
we pinned our program to one vCPU.  We 
executed our program in these two 
management environments to find which one 
returned the best performance and gave the 
best results in terms of execution speed.  

5.3  Description 
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To achieve our aims, we built a tool to search 
the content of a hard drive.  The tool searches 
a file tree for files, recursing into sub-
directories when they are found.  It then uses 
the Linux utility file to extract the file type, 
from any files found.  We then used the grep 
command to search the output of the file 
command to identify text files.  The program 
then built the full path to the files found and 
used the Linux command md5sum to calculate 
the MD5 hash of the files found.  The 
'md5sum' output is then saved to file.  

We developed this tool on the host system 
described above and compiled it using the 
Gentoo Hardened 4.9.3 p1.1 version of 
gcc.  We took this route building our own 
search engine in preference to using the Linux 
terminal utility 'find'.  The find command can 
be tailored to a user’s specification by 
customising the path to be searched and the 
files to be searched for, however initial testing 
showed that this approach consumed was CPU 
heavy, resulting in longer execution times than 
our own search engine when we compared 
those times.  

The POSIX interface library contains a 
header file, 'ftw.h', used to recursively search a 
file system tree.  We wrote a program using 
this header file, to be used as a comparison 
environment.  We used this program to make 
comparisons between its execution time and 
our program execution time.  We have 
designed our tool to replicate the functions of 
both find and ftw.h exactly.  Our tool 
recursively calls directories in a file system 
tree, searches those directories for files 
appropriate to the search criteria and processes 
those files as required.  It continues until a 
termination character is found at which point 
it will exit the search of that directory branch 
to resume its search of the parent directory.  

5.4 Tool Execution 

In our example we sought text files, identifying 
them using the Linux terminal command file, 
and generated an md5 hash for each file 
found.  We closed all open processes prior to 
the test runs.  We ran both programs, our 
search program, Tool_1, and one using ftw.h – 
Tool_2 – ten times and took the mean 
execution time.  Initial execution times were 
consistently within a range that indicated that 
further testing of both programs would not 
significantly influence those results.  Our VM 
was provisioned with two vCPUs and we 
carried out two separate sets of tests.  In the 
first test run we pinned our programs to one 
vCPU in the VM and timed ten runs of both 
tools, in the second test run we allowed the 
VM operating system manage CPU balancing 
while executing our programs.  We saved the 
output from both sets of tests to files.  Both 
tools generated an MD5 hash of files found and 
saved the resulting hash and the complete file 
path, to file.  

Pinning a process to one CPU, vCPU or 
core forces the execution of that process to be 
carried out exclusively on that CPU or core, 
affinity can result in greater efficiency 
[25].  Efficiency can arise by optimising cache 
performance and reducing cache miss rates 
[29], task data does not need to be cycled, 
leading to efficiency, and therefore time 
saving.  Table 1 illustrates the results we 
obtained from our tool runs, we have labelled 
the data appropriately - pinned meaning 
pinned to one vCPU, unpinned meaning OS 
managed balancing.  

 

Test Results. 
Table 1 
Timing of program runs of the two tools used - showing 
ranges +/- mean.  

pinned unpinned 
Tool_1 47.48s ± 0.5s 55.59s ± 1.6s
Tool_2 101s ± 2.1s 91s ± 2.5s to10s
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Our test results show that our tool ran 
significantly faster than that using ftw.h and 
was faster again when CPU affinity was 
applied.  This 'unbalanced' processing 
environment had an appreciably positive 
outcome for execution times.  An unexpected 
outcome of our experiments showed that there 
was smaller divergence from the mean 
execution time when our tool was measured, 
compared with a wider divergence range when 
Tool_2 was tested.  

We ran further tests to verify that the 
correct MD5 hashes were being returned by 
our tool by taking random entries from the 
results files and separately calculating MD5 
hashes of these files.  Those results confirmed 
that our tool was executing as expected. 
Comparison of the results showed that our tool 
runs faster than the alternative tool.  In the 
context of our tests and the volume of data 
used the time differences do not appear to be 
of significance, but scaling to much larger file 
systems we would expect the disparity to 
become more obvious. 

6. PERFORMANCE 
AND ANALYSIS 

Linux maintains a page cache to accelerate 
access to files.  Data can very quickly be read 
from cache rather than re-reading the data 
from storage, this facility is also known as disk 
buffering [26].  This valuable feature can 
significantly increase the performance of 
processes by reading data once from disk, 
caching it to fast cache memory and reading it 
from the cache for subsequent operations 
involving those data, rather than accessing the 
very much slower memory.  

In our experiments, cached data produced 
very slightly anomalous results each time we 
timed our program operation.  This occurred 
because we were re-using the data from the 
first program run on subsequent runs, thus 

accelerating data access. We corrected this 
feature by clearing the cache each time we ran 
each process. 

Time is of critical importance in VM 
forensics and any method that can reduce the 
time taken to recover evidence from a VM 
should be availed of. Our tool indicates that a 
tailored solution to this problem can have 
significant benefits in terms of run time 
reduction. 

7. CONCLUSION 
VM forensics is in its infancy, with the growth 
in VM use, and its expected future growth, the 
need to forensically examine VMs will only 
escalate. We were careful to ensure that the 
tool we developed impacted the system being 
examined in a very insignificant way by 
writing just one file to RAM disk.  We have 
shown that our tool has a number of important 
qualities, it executes quickly.  It is simple and 
forensically sound.  

Our approach allows us to tailor our tool 
to probe any system, whether it is a VM or 
traditional computer system, any hardware 
platform or any software platform.  It will not 
be dependent on any compiler, we inject an 
executable program.  We can customise our 
tool to recover any evidence, any data, 
including the password files, log files, Process 
Identifier (PID) lists, etc.  We are currently 
working on ways to recover open and running 
processes and ways of cloaking our 
investigative tool execution from a user, 
presenting a view of the system where it 
appears only user processes are running.  

Our software has a small footprint, it is 
compact and efficient.  One feature of our tool 
is its flexibility and we are investigating 
extending it to interact with OS's other than 
Linux.  As future work, we will build on the 
strength of the work we present in this 
paper.  We will also be investigating how best 
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to remove or export the results file from the 
VM in a forensically secure manner.  This is a 
simple, secure, fast way of recovering data with 
a reduced risk of corruption of those data.  We 
will also look at the feasibility of extending our 
approach in memory forensics [31] of mobile 
devices in smart phone investigations [32]. 
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