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Air travel always does not offer smooth operations given that flight delays 

might occur. A flight can be canceled or delayed due to various reasons such as late 

arrivals, extreme weather, the National Airspace System, and security concerns 

(BTS, 2019a). Delays can also be attributable to the lack of airport capacity (Bai, 

2006). As such, flight delays are a critical factor for airport operators. To 

accommodate unavoidable flight delays, airport operators strive to make more 

efficient use of existing runways, taxiways, and gates (U.S. Congress, 1984). In 

other words, airport operators believe that the operational efficiency of airports is a 

critical factor in on-time airport operations.  

Nevertheless, it is not easy to increase airports’ operational effectiveness 

given that airports are complex and dynamic organizations (Humphreys & Francis, 

2002). Diana (2017), however, posits that the implementation of the Next 

Generation Air Transportation System (NextGen) programs, which are designed to 

increase airport capacity and to reduce delays, improved airports’ on-time 

performance. As part of NextGen programs, the Federal Aviation Administration 

(FAA) continuously measures U.S. airports’ operational efficiencies by using on-

time performance metrics (i.e., effective gate-to-gate time, taxi-in time, and taxi-

out time). Thusly, with increasing pressures for improving efficiency, airport 

executives need to identify key performance dimensions (Bezerra & Gomes, 2018). 

Given these considerations, the purpose of this paper was to create a 

prediction model for the airport annual on-time arrival rates by identifying the 

factors that affect an airport’s efficiency and capacity analyzing the period of 2009 

through 2017. Using a correlational design methodology which includes a 

hierarchical regression analysis, we have attempted to build a prediction model.  

Data used in the study were archival data derived from the U.S. Bureau of 

Transportation Statistics and the FAA. 

 

Background 

The literature review considered two specific subjects, (a) airport efficiency 

and (b) airport performance. Previous studies addressed several aspects of airport 

efficiency and performance factors, such as service quality, safety, security, 

financial, and environmental. Ha, Wan, Yoshida, and Zhang (2013) measured the 

efficiency of airports using both data envelopment analysis and stochastic frontier 

analysis based on a sample of eleven major airports in Northeast Asia throughout 

1994 and 2011. The resulting efficiency scores saw a slight decrease because of 

events such as the September-11 terrorist attack, SARS outbreak, and the recent US 

financial crisis. Ha et al. (2013) also suggested that the decentralization of airport 

ownership and operations negatively affected the airport’s efficiency scores, while 

intense airport competition resulted in higher airport efficiency. Kutlu and 

McCarthy (2016) examined the effects of airport ownership on airport efficiency 

based on a sample of all U.S. medium and large hub airports. The authors suggested 
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that while form of ownership could be important for cost efficiency, its effect was 

relatively small. The authors go on to explain that type of public sector ownership 

had cost efficiency implications in certain environments. 

Other studies investigated and analyzed airport efficiency providing 

prediction models. For example, Tsui, Gilbey and Balli (2014) examined the 

operational efficiency of New Zealand airports by identifying several variables (i.e. 

population around the airport, airport hub status, airport operating hours, airport 

ownership, Christchurch earthquakes, and the Rugby World Cup) that explain 

variations in airport efficiency among the sampled New Zealand airports. The 

estimated results for their regression analysis revealed that four explanatory 

variables were statistically significant in explaining of airport efficiency, including 

the airport’s hub status, airport operating hours, airport ownership, and the Rugby 

World Cup 2011. Their findings suggested that there was a positive impact between 

the operational efficiency of New Zealand airports and the variables of airport 

operating hours, airport ownership, and Rugby World Cup 2011. More specifically, 

for the variable of airport operating hours, the positive impact suggested that the 

extension of airport operating hours increased the efficiency of the New Zealand 

airports. Similarly, sports tournaments such as the Rugby World Cup increased 

airport demand and improved the efficiency of New Zealand airports. Their finding 

on airport ownership implied that privately managed or owned airports had better 

efficiency than airports controlled or owned by local government or joint ventures. 

On the other hand, Tsui et al. (2014) found that the airport hub status had a negative 

impact on the operational efficiency of the New Zealand airports, suggesting that 

airports in New Zealand that operate as an international airport are less efficient 

than those that operate as a regional or non-hub airport. In another study providing 

a prediction model, Orkcu, Balikci, Dogan, and Genc (2016) examined the 

operational efficiency of Turkey’s airport industry by focusing on the predictor 

variables identified in the study of Tsui et al. Orkcu et al. (2016) argue that airport 

operating hours and percentage of international traffic were statistically significant 

factors in explaining the variance in airport efficiency among the sampled Turkish 

airports. Orkcu et al. (2016) suggest that the growth of operating hours influenced 

favorably in the operational efficiency of airports, whereas the increase in the ratios 

of the international traffic would reduce the airports’ operational efficiency. 

Airports’ performance has also become the focus of other studies. Different 

methodologies have been used to show airports’ performance. For example, Bai 

(2006) investigated the delay performance of U.S. airports and found that the daily 

average arrival delays at airports were related to the departure delays at other 

airports. Bai (2006) also argued that the precipitation and wind speed around the 

airports negatively affected airports’ arrival performance, and that airport capacity 

had no significant effect on arrival performance. In another study focusing on the 

airports’ performance, Diana (2017) investigated whether airline market 
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concentration and NextGen programs had a significant effect on on-time 

performance of airports at prioritized and non-prioritized metroplexes before and 

after the 2008 recession. The results of the study published by Diana (2017) 

indicated that the degree of market concentration and the introduction of NextGen 

programs improved airports’ on-time performance, especially at prioritized 

metroplexes. Eshtaiwi, Badi, Abdulshahed, and Erkan (2018) identified a set of key 

performance indicators to measure and monitor airports’ performance over time. 

The findings of their analysis revealed that safety and security, passenger services, 

and airside capacity were the most important indicators for monitoring and 

evaluating airport performance. 

Although airports’ on-time performance and efficiency have always 

received much attention, the researchers are unaware of any other research that 

measures the effects of airports’ efficiency and capacity indicators as provided by 

FAA on the airports’ on-time arrival rates. Hence, we have tried to develop a 

prediction model that can be used to observe the effects of airport efficiency and 

capacity indicators on the airports on-time arrival rates. 

 

Methodology 

The purpose of the present study was to create a prediction model for the 

airports’ annual on-time arrival rates based on the factors affecting airports’ 

efficiency and capacity over the period between 2009 and 2017. For the statistical 

analysis, the current study utilized a correlational design with a hierarchical 

regression analysis. A correlation methodology was appropriate because the focus 

of this research was to determine the relationship between airport efficiency and 

capacity indicators and the airport’s on-time arrival rates. Conducting the 

hierarchical regression analysis, we found the factors influencing the airports’ on-

time arrival rates and how they related to the airports’ on-time arrival rates. Data 

used in this research was archival data derived from the U.S. Bureau of 

Transportation Statistics (BTS) (2019b) and Federal Aviation Administration 

(FAA) (FAA, 2018a). 

Population and Sample 

The target population was all U.S. airports’ on-time arrival rates over the 

period from 2009 to 2017. The accessible population was 30 U.S. major airports’ 

on-time arrival rates that were reported in the Bureau of Transportation Statistics' 

(2019b) annual on-time arrival rankings for major airports database. The database 

is publicly accessible and contains the U.S. major airports’ on-time arrival rates 

over the period from 2003 through 2018. The sampling strategy for the study was 

a purposive sampling strategy (non-probability sampling). By using the purposive 

sampling strategy, 20 U.S. commercial airports listed in the appendix were selected 

as the sample of the study. As a result, the current study used a sample size of N = 

180, keeping the outliers in the model. 
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The dependent variable was the U.S. airports’ on-time arrival rates, whereas 

the predictor variables were airport efficiency and capacity indicators, namely 

(1)Average daily capacity, (2) Average gate arrival delay, (3) Average number of 

level-offs per flight, and (4) Distance in level flight from top of descent to runway 

threshold, (5) Effective gate-to-gate time, (6) Taxi-in time, and (7) Taxi-out time. 

Besides, the predictor variables in the data set were portioned into two sets as one 

of the multiple regression data-analytic strategies: Set A= Airport Capacity 

Indicator and Set B= Airport Efficiency Indicators. (1)Average daily capacity was 

placed in Set A, while the other predictor variables, (2) Average gate arrival delay, 

(3) Average number of level-offs per flight, and (4) Distance in level flight from 

top of descent to runway threshold, (5) Effective gate-to-gate time, (6) Taxi-in time, 

and (7) Taxi-out time were assigned to Set B. 

 

Research Question and Hypotheses 

The primary research question for this study is: 

When examined using set entry order of A-B in hierarchical perspective, what is 

the anticipating incremental gains at each step of the analysis within the relationship 

of airports’ on-time arrival rates? 

The corresponding hypotheses are as follows:  

H0: ρ2
 YA = 0.  Set A alone, without any influence from Set B, will not have 

anticipated gains within the relationship of airports’ on-time arrival rates when 

examined using set entry order of A-B in hierarchical perspective. 

H1: ρ2
 YA ≠ 0.  Set A alone, without any influence from Set B, will have anticipated 

gains within the relationship of airports’ on-time arrival rates when examined using 

set entry order of A-B in hierarchical perspective. 

H0: ρ2
 YB·A = 0.   Set B will not have anticipated gains within the relationship of 

airports’ on-time arrival rates in the presence of Set A when examined using set 

entry order of A-B in hierarchical perspective. 

H1: ρ2
 YB·A ≠ 0.  Set B will have anticipated gains within the relationship of airports’ 

on-time arrival rates in the presence of Set A when examined using set entry order 

of A-B in hierarchical perspective. 

To answer the research question, our analysis was conducted using a 

hierarchical regression analysis with the set entry order A-B. The entry order of the 

sets variable entry was determined by the scope of the study. 

A Summary of Preliminary Analysis 

Prior to performing the primary analysis, we tested regression assumptions 

and curvilinearity and ran an outlier analysis using Jackknife distances to see if 

there were any extreme scores relative to the data set. After testing the regression 

assumptions, the three predictor variables in Set B, (2) Average gate arrival delay, 

(3) Average number of level-offs per flight, and (4) Distance in level flight from 

top of descent to runway threshold were removed from the data set because of 
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violation of multicollinearity which is the existence of substantial correlation 

among independent variables. Table 1 provides a definition of the criterion variable 

and the remaining predictor variables in the study. 

 

 
Table 1 

Definition of Independent and Dependent Variables in the Data Set 

Variables Description 

Criterion variable 
 

Annual On-Time Arrival 

Rates for the U.S. Major 

Airports 

A continuous variable represented by the major airports’ 

on-time arrival rates in the United States throughout 

2009 and 2017.   

Explanatory variables  

Average Daily Capacity  A discrete variable represented by the average daily sum 

of the Airport Departure Rate (ADR) and Airport 

Arrival Rate (AAR) reported by fiscal year (FY). 

Effective Gate-to-Gate Time 

(Minutes per Flight) 

A continuous variable represented by the difference 

between the Actual Gate-In Time at the destination 

airport and the Scheduled Gate-Out Time at the origin 

airport. 

Taxi-In Time  

(Minutes per Flight) 

A continuous variable represented by the yearly average 

of the difference between Wheels-On Time and Gate-In 

Time for flights arriving at the selected airport from any 

of the Aviation System Performance Metrics (ASPM) 

airports. 

Taxi-Out Time  

(Minutes per Flight) 

A continuous variable represented by the yearly average 

of the difference between Gate-Out Time and Wheels-

Off Time for flights from the selected airport to any of 

the ASPM airports. 

  

 

After we had tested if each respective independent variable had a curvilinear 

relationship with the airports’ on-time arrival rates, we suggested that (1) Average 

daily capacity had a curvilinear relationship within the first three powers of a 

polynomial function.  We, therefore, conducted a hierarchical regression analysis 

using the variable entry order of X–X 2–X3 to observe if the overall R2s at each step 

of the investigation were statistically significant. The results are summarized in 

Table 2. 
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Table 2 

Bivariate Fit of Y = Airports On-Time Arrival Rates by X1 = Average Daily Capacity  

*p < .05 

 

Based on the results above, the cubic model of (1) Average daily capacity 

was determined as the best model because the increment associated with the cubic 

aspect of X1 was significant. Nonetheless, when the cubic aspect of X1 was used in 

the final model, it was observed that each respective regression coefficient had no 

practical effect on airports’ on-time arrival rates. As a result, the single aspect of 

average daily capacity was used in the final model even though it was suggested to 

have a curvilinear relationship with the airports’ on-time arrival rates. Following 

that the outlier analysis flagged eight outliers in the data set, we conducted two 

separate bivariate regression analyses: one in the presence of outliers and one in the 

absence of outliers. Because both analyses yielded similar statistical results and 

outliers reflected real-world fluctuations in the airports’ on-time arrival rates, we 

decided to keep the outliers in the final model. Finally, to assure if a sample size of 

N = 180 provided statistically significant results, a priori power analysis was 

conducted considering these parameters: α = .05, β = .20 (minimum power of .80), 

a population effect size of ES = .15, and the number of predictors k = 4.  These 

parameters were consulted with G*Power package and yielded a minimum sample 

size of N =85 needed for the overall model to be significant. 

Primary Analysis 

To answer the research question associated with the purpose of the study, 

we ran a hierarchical regression analysis (Fit Model) in JMP which is a computer 

program for statistical analysis. By conducting the hierarchical regression analysis 

with the set entry order of A-B, we were able to generate a regression equation with 

a regression coefficient. As noted earlier, the sets entry order was determined by 

the research’ purpose. 

 

Estimating and Discussion of the Results 

In the first stage of the primary analysis, we summarized individual 

variables in the data set. A summary of the descriptive statistics relating to the 

variables in the data set is presented in Table 3. As reported in Table 3, the mean 

of the criterion variable, Y = Airports’ On-Time Arrivals Rates, was M = 79.65 (SD 

= 4.29), the median was Mdn = 80.41, and it ranged from 65.76 to 88.55. Regarding 

the explanatory variables, X1= Average Daily Capacity had the mean of 1788.85 

(SD = 619.42), the median of 1591.5, and the range was from 787 to 3,450 aircraft 

Variable in Model R2 df F I = sri
2 dfI FI 

X1 .143 1, 178 29.87 .143 1, 178 29.87* 

X1
2 .144 2, 177 14.92 .001 1, 177 0.2 

X1
3      .214                 3,176                   16.03                   .07 1,176 15.67* 
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operation per day.  X2= Effective gate-to-gate time with the mean M = 156.14 (SD 

= 25.01) had a median of 154.35, and the range was from117.2 to 224.9 minutes 

per flight.  The mean of X3= Taxi-in Time was M = 7.22 minutes per flight (SD = 

1.82 minutes), the median was 7.05, and the range was from 3.6 to 14.2 minutes 

per flight.  The mean of X4 = Taxi-out Time was 17.55 (SD = 3,74), the median was 

17l.15, and it ranged from 11.9 to 33.1 minutes per flight. 

 
Table 3 

A Summary of Descriptive Statistics 

Note.  N = 180. 

 

As a reminder, the purpose of the study was to create a prediction model for 

the airports’ on-time arrival rates by determining the variations in the airports’ on-

time arrival rates through airport efficiency indicators provided by the FAA. The 

hierarchical regression analysis with the set entry order A-B analysis provided all 

of this information. The estimated results for the hierarchical analysis are included 

in Figures 1 and 2 in the appendix. A summary of the findings relating to the 

hierarchical regression analysis is reported in Table 4 below.  

 

  

Factors M Mdn SD Range 

X1 = Average daily capacity   1,788.85 1,591.5 619.42 787 – 3450 

X2 = Effective gate-to-gate time   156.15 154.35 25.01 117.2 – 225 

X3 = Taxi-in time 7.23 7.05 1.83 3.6 – 14.2 

X4 = Taxi-out time 17.55 17.15 3.75 11.9 – 33.1 

Y = Airports’ on-time arrivals rates 79.65 80.41 4.29 65.76 – 88.55 
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Table 4 

Summary of Hierarchical Multiple Regression Analysis  

 
 

Model 1 Ba
 

 

Model 2 

Bb 

 

            95% CI 

Constant 74.95 89.76 [85.39, 94.13] 

X1= Average Daily Capacity  0.0026* 0.0029* [0.0018, 0.004] 

X2 = Effective gate-to-gate time  -0.045* [-0.068, -0.0219] 

X3= Taxi-in time  -0.627* [-1.046, -0.207] 

X4 = Taxi-out time  -0.214* [-0.376, -0.052] 

Statistical Results 

R2 .144 .436  

F 29.87* 33.8*  

R2  .29  

F  29.99*  

Note. N = 180. Set entry order was A-B 
aModel 1 corresponded to the first stage of the hierarchical regression analysis when the airports’ 

on-time arrival rates were regressed on Set A = Airport Capacity Factor. bModel 2 corresponded to 

the final stage of the hierarchical regression analysis when the airports’ on-time arrival rates were 

regressed on Set B = Airport efficiency factors in the presence of Set A.  

*p < .05. 

Set A: Airport Capacity Factor.  As reported in Table 4, the first step of the 

analysis involved regressing of Y= Airport’s on-time arrival rates on airport 

capacity factor, which contains X1=Average Daily Capacity. When Y was 

regressed on Set A, it was found that Set A accounted for about 14% of the variance 

in Y=Airports’ on-time arrival rates. Consequently, the set of airport capacity alone, 

without any influence from the other sets, accounted for 14% of the variance in the 

airports’ on-time arrival rates, which was statistically significant, R2Y.A = .144, F 

(1, 178) = 29.87, p < .0001*. 

An inspection of the individual factor within Set A revealed that 

X1=Average Daily Capacity was statistically significant: B1= 0.0026, t (178) = 

5.47, p < .0001*. Interpreting this regression coefficient, for every 1000 increases 

in airports’ average daily capacity, the airports’ on-time arrival rates increased on 

average by 3%.  

Set B: Airport Efficiency Factors. As reported in Table 4, when the three 

factors of Set B including X2= Effective gate-to-gate time, X3=Taxi-in time, and 

X4= Taxi-out time entered to the analysis in the presence of Set A, it yielded R2
Y.AB 

of 0.436. As a result, the collective contribution of the sets, airport capacity, and 

airport efficiency factors accounted for almost 44 % of the variability in the 
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airports’ on-time arrival rates; this was statistically significant, F (4, 175) = 33.8, p 

< .0001 *. Furthermore, the increment of Set B was sR2
B = .29. Thus, Set B= Airport 

efficiency factors accounted for about 30% additional variation of airports’ on-time 

arrival rates when analyzed in the presence of the Set A. This was also statistically 

significant, F (3, 176) = 29.99, p < .05 *. 

Within an omnibus test, an analysis of the effects of the individual factors 

within Set B in the presence of Set A showed that all variables in Set B were 

statistically significant. With respect to X2 = Effective gate-to-gate time, holding 

X1 = Average daily capacity, X3 = Taxi-in time, and X4 = Taxi-out time constant, 

for every 10 minutes increase in effective gate-to-gate time, the airport’s on-time 

arrival rates decreased on average 0.5 %.  This was statistically significant, B2 = -

0.045, t (176) = -3.86, p = .0002*. Regarding X3 = Taxi-in time, holding X1 = 

Average daily capacity, X2 = Effective gate-to-gate time, and X4 = Taxi-out time 

constant, for every 10 minutes increase in taxi-in time, the airport’s on-time arrival 

rates decreased on average 6 %.  This was statistically significant, B3 = -0.627, t 

(176) = -2.95, p = .0036*. With respect to X4 = Taxi-out time, holding X1 = Average 

daily capacity, X2 = Effective gate-to-gate time, and X3 = Taxi-in time constant, for 

every 10 minutes increase in taxi-out time, the airport’s on-time arrival rates 

decreased on average 2 %.  This was statistically significant, B4 = -0.214, t (176) = 

-2.61, p = .0098*. 

When the three factors of Set B were individually examined in the absence 

of  Set A, the factors in Set B, collectively explained about 35% of the variance in 

the airports ‘on-time arrival rates, which was statistically significant R2 = .346, F(3, 

176) = 31.11, p < .0001*. The estimated results of Set B is included in Figure 3 in 

the appendix. 

The corresponding 95% confidence intervals reported in Table 4 for the 

final analysis (Model 2) were fairly narrow, which implied that the accuracy in 

parameter estimation for each of the corresponding regression coefficients was 

probably high. For example, the 95% CI of X1 = Average Daily Capacity was 

[0.0018, 0.004]. This points out that 95% of the time the airports’ on-time arrival 

rates in the population is expected to increase on average anywhere between 0.0018 

to 0.004 for every aircraft operation increases in the airports’ average daily capacity 

when considered in the absence of the other variables.  

Overall, from a variance perspective, the explanatory variables in the final 

model explained 43.6% of the variability in the airports’ on-time arrival rates. From 

a prediction, the four explanatory variables in the final model collectively provided 

43.6% of the information needed to correctly predict the airports’ on-time arrival 

rates. 

Results of Hypotheses Testing 

As reported in Table 4, there was a significant predictive gain when Set A 

= Airport Capacity entered the model alone, R2 Y·A = .144, F (1, 178) = 29.87, p < 
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.0001*.  As a result, H0: ρ2
 Y·A = 0 was rejected. Instead, the study accepted that Set 

A alone, without any influence from Set B, will have anticipated gains within the 

relationship of airports’ on-time arrival rates. 

As reported in Table 4, there was a significant predictive gain when Set B= 

Airport Efficiency entered the model in the presence of Set A. sR2
 YA·B = .29, F (3, 

176) = 29.99, p < .05*.  As a result, H0: ρ2
 YA·B = 0 was rejected. Instead, the study 

accepted that Set B will have anticipated gains within the relationship of airports’ 

on-time arrival rates in the presence of Set A. 

Precision Analysis of the Overall Model 

To determine the precision of the coefficient of determination (R2), we first 

calculated the standard errors (SEs) of R2 by using  Cohen, Cohen, West and Aiken's 

(2003, p. 88) equation, then determined the corresponding (t) value to the 95% 

confidence intervals (CIs). Table 5 summarizes the results of the precision analysis 

for R2. 

 

𝑆𝐸�̂�2 = √
4(.436)(1−.436)2(180−4−1)2

(1802−1) (180+3)
 = √

16,996

5,929,017
 = 0.053 

95% CI = .436 +/- 0.053 (1.976)  

= .436 +/- 0.105 

=.331 - .541 

 
Table 5 

Precision Analysis for Overall Model(R2)  

Model Actual Value 

Standard 

Error 

(SE) 

t critical  
Lower 

95% 

Upper 

95%  

Overall Modelb R2
 Y·AB = .436 .053 

t (175) = 

1.976 
.331 .541 

Note. N = 180. aThe overall model consisted of four independent variables that were partitioned into two 

functional sets A and B.  Set A = Airport Capacity, which consisted of X1 = Average Daily Capacity.  SetB = 

Airport Efficiency, which consisted of X2 = Effective gate-to-gate time, X3= Taxi-in time, and X4 = Taxi-out 

time.   
 

As a result, the CIs for R2
Y·AB was [.331, .541]. This indicates that 

approximately 95% of the CIs will include the true population R2
Y·AB between 33.1 

and 54.1. Put another way, if we were to randomly select 100 samples of size 180, 

then in the 95 of these samples, the collective contribution of the four explanatory 

variables in the model in explaining the variability in the airports’ on-time arrival 

rates would be between 33.1% and 54.1%. Note that the standard error was small 

and that the resulting 95% CI = [.331, .541] was fairly narrow, which indicates that 

accuracy in parameter estimation (AIPE) of the overall R2 was probably high.   
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Post Hoc Power Analysis 

 To assess the power for the multiple correlation coefficient squared (R2), we 

consulted with G*Power software program by inputting parameters such as the 

sample size N = 180, the significance criterion α = .05, and the number of predictor 

variables =4.  The effect size of the overall R2 was calculated by using Cohen et 

al.'s (2003, p. 92) equation. The results are summarized in Table 6.  

 
Table 6 

Power Analysis and Calculated Powers for α = .05 Based on N = 180 

Model Actual Value 
Actual 

Effect Size 

Number of 

Predictors (k) 

Approximate 

Power 

Overall Modela R2
Y·AB = .436 .773 4 > .99 

     
Note. N = 180. Set entry order was A-B. 
aThe overall model consisted of four independent variables that were partitioned into two functional sets A and 

B.  Set A = Airport Capacity, which consisted of X1 = Average Daily Capacity.  SetB = Airport Efficiency, 

which consisted of X2 = Effective gate-to-gate time, X2= Taxi-in time, and X4 = Taxi-out time.   
 

With respect to the overall R2
Y·AB, the power was greater than .99, which 

means that we have more than 99% chance of correctly rejecting the null hypothesis 

involving R2. with the effect size of 0.773. 

 

Discussion of the Results 

As presented in Figure 2 of the appendix, all explanatory variables in the 

model were found to be significant factors that explain variations in airports’ on-

time arrival rates. The equation of the final multiple regression analysis is:  

Ŷ= 0.0029(B1) – 0.045(B2) – 0.627(B3) –0.214(B4) + 89.76 

B1(0.0029) = Average Daily Capacity. The sign of the average daily capacity’s 

coefficient indicated the direction of the effect was positive. More specifically, 

holding all other variables constant in the model, for every 1,000 aircraft operation 

increases in the airports’ average daily capacity, we can expect an average 3% 

increase in the airports’ on-time arrival rates. This was statistically significant: t 

(175) =5.21, p < .0001*. Our analysis suggested that airports’ capacity was a 

significant factor in the airport on-time arrival rates. Therefore, airport planners 

should invest in the airport infrastructures in such a way that it leads to an increase 

in the average daily capacity.  As a quick reminder, in the preliminary analysis, a 

curvilinear relationship was determined between X1 = average daily capacity and 

the airports’ on-time arrival rates at the polynomial degree 3. Readers, therefore, 

should be careful about the average daily capacity’s interpretation. 

B2(-0.045) = Effective gate-to-gate time. The sign of the effective gate-to-gate 

time’s coefficient indicated the direction of the effect was negative. Holding all 

other variables constant in the model, for every 100 minutes increases in the 

effective gate-to-gate time, we can expect an average 4.5% decreases in the 
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airports’ on-time arrival rates. This was statistically significant: t (175) =-3.86, p = 

.0002*. According to the FAA (2018b), effective gate-to-gate time is a time 

difference between the actual gate-in time at the destination (selected) airport and 

the scheduled gate-out time at the origin airport during reportable hours. 

Additionally, the calculation of effective-gate-to gate time includes the time that 

aircraft spends in a non-movement area; therefore, changes made to the airlines 

‘operations at an airport may impact effective-gate-gate time. Based on the results 

in the given study, we concluded that making frequent changes in the airlines’ 

scheduled operations increases airlines' effective gate-to-gate time, leading to 

decrease in airports’ on-time arrival rates. 

B3(-0.627) = Taxi-in time. The sign of the taxi-in time’s coefficient 

indicated the direction of the effect was negative. Holding all other variables 

constant in the model, for every 10 minutes increases in the taxi-in time, we can 

expect an average 6.3% decreases in the airports’ on-time arrival rates. This was 

statistically significant: t (175) =-2.95, p = .0036*. According to the FAA (2018b), 

taxi-in time is the yearly average of the difference between wheels-on time and 

gate-in time for flights arriving at the selected airport. Additionally, the desired 

trend for the taxi-in time should be downward. Our analysis also confirmed that 

there was an inverse relationship between taxi-in time and the airports’ on-time 

arrival rates.  

B4(-0.214) = Taxi-out time. The sign of the taxi-out time’s coefficient 

indicated the direction of the effect was negative. Holding all other variables 

constant in the model, for every 10 minutes increases in the taxi-out time, we can 

expect an average 2.1% decreases in the airports’ on-time arrival rates. This was 

statistically significant: t (175) =-2.61, p = .0098*. According to the FAA (2018b), 

taxi-out time is the yearly average of the difference between wheels-off time and 

the actual gate-out time for departures at the selected airport. Our analysis 

suggested that airlines which have long taxi-out times made airports ‘on-time 

arrival rates decreased. Thus, airport planners are advised to design direct accesses 

between an apron and a runway given that direct accesses may decrease the taxi-

out time at an airport. 

 

Conclusion 

Airport operators can increase their on-time arrival rates by improving the 

efficiency at their airports. The purpose of this paper was to create a prediction 

model for the airports’ annual on-time arrival rates by identifying airport efficiency 

indicators. For the estimation of the airports’ on-time arrival rates, this paper used 

a hierarchical regression analysis that provided us with cumulative increments in 

each set including predictor variables. Our study revealed that all predictors in the 

sets, namely the average daily capacity, the effective gate-to-gate time, the taxi-in 

time, and the taxi-out time were statistically significant for the identified variations 
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in airports’ on-time arrival rates : (1) the airports that could increase their average 

daily capacity had higher on-time arrival rates than the airports that failed to 

increase their average daily capacity . (2) the decrease in airlines’ effective-gate-to-

gate time led to better airports’ on-time arrival rates. (3) the decrease in airlines’ 

taxi-in time led to better airports’ on-time arrival rates, and (4) the decrease in 

airlines’ taxi-out time led to better airports’ on-time arrival rates. Thus, the present 

study suggests that four variables analyzed could provide a useful model for the 

airport planners and forecasters in the estimation of airports’ on-time arrival rates. 

In addition to concluding comments related to the results, the current study 

raises a number of issues for future research. For example, regarding the 

applicability of the study, we believed that it would be difficult to generalize the 

current study’s results outside of the United State. This is because the U.S. airport 

industry has its unique characteristics.  Future research can address this limitation 

by focusing on different geographic areas, such as the Asia and Pacific regions. 

Furthermore, the study assumed that there was a relationship between the airports’ 

on-time arrival rates and the four explanatory variables in the model. The primary 

data sources for the current study was the Bureau of Transportation Statistics’ 

database, meaning that we did not have direct control of the variables in the study. 

Due to the lack of control, it is not true to say there is a genuine relationship between 

IVs and airports’ on-time arrival rates. However, future studies may be conducted 

to minimize the effect of this limitation by directly taking consistent data from 

airlines. Finally, as we pointed out in the summary of the preliminary analysis 

section, the outliers in the data were not removed from the data set. Thus, a 

recommendation for future research is to use different outlier analysis strategies. 
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Appendix 

 

Figure 1. Estimation Results for Set A=Airport Capacity Factor 

 

Figure 2. Estimation Results for Set B=Airport Efficiency Factor in the Presence of Set A= 

Airport Capacity (Overall Model) 
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Figure 3. Estimation Results of Set B=Airport Efficiency in the absence of Set A= Airport 

Capacity  

A List of the U.S. Airports Selected as The Sample of the Study 

 

Salt Lake City UT (SLC) 

Minneapolis/St. Paul MN (MSP) 

Detroit MI (DTW) 

Seattle WA (SEA) 

Phoenix AZ (PHX) 

Charlotte NC (CLT) 

Washington DC (DCA) 

San Diego CA (SAN) 

Denver CO (DEN) 

Philadelphia PA (PHL) 

Tampa FL (TPA) 

Baltimore MD (BWI) 

Orlando FL (MCO) 

Las Vegas NV (LAS) 

Boston MA (BOS) 

Los Angeles CA (LAX) 

New York NY (JFK) 

San Francisco CA (SFO) 

Fort Lauderdale FL (FLL) 

Newark NJ (EWR) 
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