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High-frequency fluctuations of a modulated, helical electron beam
M. A. Reynoldsa) and G. J. Morales
Department of Physics and Astronomy, University of California, Los Angeles, California 90095

~Received 17 June 1996; accepted 27 August 1996!

The high-frequency electromagnetic field generated by a density-modulated, helical electron beam
propagating in a magnetized plasma is calculated. The magnetic fluctuations are found to exhibit
spatially localized~evanescent! resonances at harmonics of the electron-cyclotron frequency, whose
width is determined by the pitch angle of the beam, and whose existence is a consequence of the
helical geometry. In addition, electrostatic modes are radiated near the hybrid frequencies, and
electromagnetic modes are radiated above the upper-hybrid frequency. The predicted frequency
spectrum and mode structure in configuration space are in good agreement with experimental
observations of discrete emission lines at the electron-cyclotron harmonics@Phys. Fluids B5, 3789
~1993!#. © 1996 American Institute of Physics.@S1070-664X~96!01312-2#

I. INTRODUCTION

There are several areas of contemporary plasma physics
in which radiation from localized charge distributions plays
an important role. Current and temperature filaments in
tokamaks,1 auroral electron beams in the ionosphere,2 and
artificial particle beams injected into space3 are some of
these areas.

This analytical study is motivated by a laboratory experi-
ment performed by Stenzel and Golubyatnikov4 at the Uni-
versity of California, Los Angeles~UCLA!, in which the
properties of the fluctuating magnetic field near a helical
electron beam in a high-density magnetized plasma were
measured. This is a fundamental experiment which explores
the source of fluctuations near the harmonics of the electron-
cyclotron frequency, and a theoretical understanding is nec-
essary to lay the foundation for more involved studies and
applications. When the plasma is weakly magnetized
(Ve!vpe , whereVe andvpe are the electron-cyclotron and
the electron-plasma frequencies, respectively!, the observed
frequency spectrum of the axial component of the magnetic
field is characterized by sharp resonances at the harmonics of
Ve .

4 Resonances of this type have been observed previ-
ously, e.g., remotely by Landauer,5 but not in situ as in the
UCLA experiment. These local measurements show that no
plasma instability or nonlinearity is involved, but that the
fields are generated by the free-streaming electrons. That is,
large fields are produced only when the condition
v2nVe5kiU i is satisfied, whereU i is the velocity of the
beam parallel to the magnetic field andn is the azimuthal
mode number.

Previous theoretical work on linear fields has focused on
propagating modes and has not examined the evanescent
fields which characterize the parameter regime of the UCLA
experiment. For example, there has been long-standing inter-
est in the space-physics community in the problem of modu-
lated electron beams acting as sources of whistler waves.3

Lavergnatet al.6–9 studied Bernstein modes, plasma waves
and electromagnetic whistler waves generated by beams in-

jected into the ionosphere. They included realistic beam ef-
fects, such as a beam front and the fact that the beam has a
finite thickness on the order of the Brillouin radius. Harker
and Banks10,11 calculated the power radiated by a helical
electron beam through the far field, and also the explicit form
of the near field. However, they restricted their study to the
whistler and lower-hybrid frequency regimes, and also to a
square-wave density modulation. This type of modulation
allows certain integrals to be evaluated analytically, but hin-
ders the understanding of the intrinsic frequency spectrum of
the beam~which must be multiplied by the spectrum of the
modulation to obtain the radiated spectrum!.

Another motivation for the study of localized beams is
the explanation of laboratory experiments like those of
Landauer5 where many harmonics ofVe are observed in the
frequency spectrum of the fields measured outside of the
plasma chamber. Canobbio and Croci12 were among the first
to suggest single-particle radiation as a possible explanation
for Landauer’s experiment. They considered the radiation of
electron Bernstein modes by a single electron in a hot plasma
and found enhanced emission at the upper-hybrid frequency,
but did not determine how these quasi-electrostatic waves
could convert to the electromagnetic radiation observed by
Landauer.

In addition to treating all frequency regimes equally, the
present study considers the density modulation to be arbi-
trary, and separates out those effects that are due to the ge-
ometry of the beam from those that are due to the details of
the modulation. Also, while the general formulation allows
for either ion or electron beams, this study concentrates on
electron beams and frequencies aboveVe . It is found that
the resonances observed by Stenzel and Golubyatnikov4 are
due to the helical geometry of the beam, which forces varia-
tions in z to be mapped into variations inu, and which
produces large fields only for the beam modes,
v2nVe5kiU i . In the frequency regimeVe,v,vpe the
plasma modes are evanescent in the perpendicular direction
so that the fields are localized near the beam. Near the hybrid
frequencies, however, the plasma modes propagate and are
electrostatic in character, in agreement with the findings of
Canobbio.13 Finally, for frequencies abovevpe , the plasma
is essentially transparent near the electron-cyclotron harmon-

a!Present address: Beam Physics Branch, Plasma Physics Division, Naval
Research Laboratory, Washington, D.C. 20375.
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ics, and the beam radiates electromagnetic fields similar to
those in a vacuum.

Section II formulates the general helical beam problem,
and sketches the calculation of the fields produced by that
beam. Section III examines in detail the physics of the high-
frequency regime (v.Ve) and catalogues the character of
the fields, including the sharp resonances at the electron-
cyclotron harmonics in the frequency spectrum. The analyti-
cal predictions are compared with experimental observations
in Sec. IV, and Sec. V is the conclusion.

II. CALCULATION OF FIELDS

The source of the fluctuations is modeled as a density-
modulated, charged-particle beam of infinite extent in thez
direction, immersed in a uniform plasma with a background
magnetic fieldB05B0ẑ. The role of this beam is that of a
current source; no plasma feedback is included in this for-
mulation, and hence no instabilities. Effects due to the injec-
tion point and beam front are not crucial to the form of the
steady-state fields, and hence are not included. However, the
beam is defined by its properties at thez50 plane, as if it
were injected at that point. To facilitate future study of dif-
ferent types of beams within one theoretical description, we
consider beams whose current densityjb(x,t) is proportional
to a radiald-function

jb~x,t !}d~r2r c!, ~1!

wherer is the usual cylindrical radial coordinate andr c is
the cyclotron radius of the beam particles. This formulation
is able to describe single particles, helical beams, and annu-
lar beams. All three types have the property that the particles
remain at a fixed radiusr5r c .

The experimental realization of this model consists of a
beam injected continuously into the plasma at a specific lo-
cation, and at a given angle to the ambient magnetic field, as
sketched in Fig. 1. This beam spirals along the magnetic field
and, because the modulation affects only the density, it re-
tains its helical shape; there is no velocity spread. Letn be
the number of particles per-unit-length in thez direction at
time t and positionz; because the particles simply free
stream in the z direction, n is a function only of
t[t2z/U i . The total current passing through thez50
plane ~i.e., ‘‘injected’’! per-unit-time is given byqn(t)U i ,
whereq is the single-particle charge. In the cylindrical coor-
dinates of configuration space (r,u,z) the beam current den-

sity has onlyû and ẑ components

jb~x,t !5
nq

r c
~U iẑ1Ver cû !d~r2r c!d~u2Vez/U i!, ~2!

whereVe5qB0 /mec andme is the mass of the beam elec-
trons. A relativistic correction may be included inVe if the
beam’s velocity is large enough; however, in this paper we
restrict our study to beam velocities which are nonrelativis-
tic. Alternatively, the perpendicular velocity,U'[Ver c ,
can be used to parametrize the beam. The Fourier transform
@i.e., assuming a dependence of exp(ikiz2ivt1inu)] of the
helical current in Eq.~2! is

j̃b~r,n,ki ,v!5
2pcq ñ

r c
FU i

c
ẑ1

Ver c
c

û G
3dS ki2

v2nVe

U i
D d~r2r c!, ~3!

where

ñ5E
2`

`

dt eivtn~t! ~4!

is the spectrum of the modulation atz50 ~the ‘‘injection’’
point!.

The formalism can be extended to the other two types of
beams mentioned previously: single particles and annular
beams. The only modifications appear in the expressions for
n and ñ . For a single particle, the density becomes a
d-function and its transform is a constant

n5d~z2U it !, ñ5
1

U i
. ~5!

For an annular beam, the beam density must be integrated
over the angleu8 at which the beam crosses thez50 plane.
That is,n is a function of botht andu8, and ñ is a function
of both frequencyv and azimuthal mode numbern

ñ~v,n!5E
2`

`

dt eivtE
0

2p

du8 einu8n~t,u8!. ~6!

The Fourier transforms of the current density of all three
types of beams have the same structure due to the fact that
they are made up of free-streaming particles. The particle
nature of the source current is manifested in Eq.~3!, which
holds for all three types; only the correct expression forñ
must be inserted@Eq. ~4!, ~5! or ~6!#.

The calculation of the linear electric and magnetic fields
due to a current source with cylindrical symmetry in a cold
plasma is similar to the derivation of the fields in a uniform
waveguide,14 but must be modified for a tensor dielectric.15

Because the technique is well-known and straightforward,
only a sketch is given.

The plasma is represented by the cold dielectric tensor

«5F e' 2 i eH 0

i eH e' 0

0 0 e i

G , ~7!

where the elements of« are functions ofv only. The sepa-
ration of the fields into parallel and perpendicular compo-
nents~with respect toẑ, the direction of the static magnetic

FIG. 1. Geometry of the helical beam considered in the analysis.
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field! decouples Maxwell’s equations, resulting in differen-
tial equations for the parallel field components,Ez andBz .
The solutions away from the beam are written in terms of
Bessel functions, and then integrated over the source to ob-
tain the overall magnitude of the fields. The perpendicular
field components can then be determined in terms of the
parallel components if desired. This method works when the
medium is uniform and can be described by a scalar
dielectric.14 It is also applicable to tensor media when, as in
the present case, the dielectric tensor is both Hermitean and
block diagonal.15

The complete solution for the parallel electric and mag-
netic fields is

Ez~r ,v!5
q ñ

r c
eivz/U i(

n
ein~u2Vez/U i !

3(
6

H h6Jn~k6r! r,r c

j6Hn
~1!~k6r! r.r c

J , ~8a!

Bz~r ,v!5
q ñ

r c
eivz/U i(

n
ein~u2Vez/U i !

3(
6

h6H h6Jn~k6r! r,r c

j6Hn
~1!~k6r! r.r c

J , ~8b!

where

H h6

j6
J 5

2p i

e'~h62h7! F k6r ce'

U'

c HHn
~1!8~k6r c!

Jn8~k6r c!
J

2S k0r c@NieH2 ih7~e'2Ni
2!#

U i

c

1n@eH1 ih7Ni#
U'

c D HHn
~1!~k6r c!

Jn~k6r c!
J G . ~9!

Here,Jn andHn
(1) are Bessel functions and Hankel functions

of the first kind, respectively, the prime denotes differentia-
tion with respect to their argument,Ni5(v2nVe)/k0U i is
the scaled parallel wave number,k05v/c, and

h65
e'~k6

2 /k0
2!2e i~e'2Ni

2!

i eHNi

5
i eHNie i

e'~e'2Ni
2!2eH

2 2e'~k6
2 /k0

2!
. ~10!

The quantityk6 is the perpendicular wave number, and is
given by the two solutions of the dispersion relation

~e i2N'
2 !@~e'2N2!~e'2Ni

2!2eH
2 #2N'

2Ni
2~e'2N2!50,

~11!

whereN25N'
21Ni

2 andN'
25k6

2 /k0
2 . The fields may alter-

natively be expressed in terms of the modified Bessel func-
tions I n andKn by making the replacements

Hn
~1!~k6r c!Jn~k6r!→

2i

p
Kn~k6r c!I n~k6r!, ~12a!

Jn~k6r c!Hn
~1!~k6r!→

2i

p
I n~k6r c!Kn~k6r!, ~12b!

wherek6
2 52k6

2 . When the character of the fields is prima-
rily evanescent, the modified Bessel functions provide a
more convenient form for both interpretation and numerical
evaluation.

The perpendicular components of the electric and mag-
netic fields are linear combinations of the parallel compo-
nents, and can be determined by applying the operatorẑ3 to
Ampère’s law and Faraday’s law to obtain

“'Bz2 ik iB'1 ik0ẑ3«•E'50, ~13a!

“'Ez2 ik iE'2 ik0ẑ3B'50, ~13b!

where“'5“2 ẑ]/]z. Equations~13! can be solved alge-
braically forE' andB' in ki space, and the resulting expres-
sions inverse-transformed if configuration-space dependence
is desired.

III. GENERAL FIELD BEHAVIOR

Equations~8! are now evaluated for an electron beam
and for frequencies aboveVe . For weak magnetic fields
(Ve,vpe) this range of frequencies consists of three re-
gimes: the ‘‘evanescent’’ regime (Ve,v,vpe) where the
fields are radially localized, the ‘‘upper-hybrid’’ regime
(vpe,v,vuh) where the beam excites propagating upper-
hybrid waves, and the ‘‘vacuum’’ regime (vuh,v) where
the beam excites propagating electromagnetic modes near
the harmonics ofVe . When the magnetic field is strong
(vpe,Ve) only the last two of these regimes exist above
Ve .

Before evaluating the fields numerically, it is helpful to
investigate the physics qualitatively by examining the struc-
ture of Eqs.~8!. All of the field components, for example
Bz , may be written in the dimensionless form

Bz~r ,v![
Bz

~q ñ/r c!
5(

n
bzn~r,v!eiz~v2nVe!/U ieinu,

~14!

wherebzn is the strength of thenth term. An investigation of
Bz ~rather thanBz) has the advantage of separating the ef-
fects of the density modulation,ñ , from those inherent to the
beam. The dependence of thenth term onu andz is oscil-
latory

exp~ inu!expF izS v2nVe

U i
D G . ~15!

This structure arises as a consequence of the beam geometry,
which demands that if the azimuthal dependence is har-
monic, exp(inu), then the axial dependence is a phase oscil-
lation due to the free streaming, i.e., only those waves which
satisfy the Doppler-shifted cyclotron condition

v2nVe5kiU i , ~16!

are excited. The strength of thenth term is governed by
bzn(r,v), whose evaluation requires a detailed knowledge
of the dispersion relation because it depends sensitively on
k6 .
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The parallel index of refractionNi is a measure of the
frequency separation from thenth harmonic

Ni } v2nVe . ~17!

Two limits are useful:Ni'0 ~near thenth harmonic! and
Ni→` ~far from thenth harmonic!. In the smallNi limit, the
two solutions for the perpendicular wave number are ap-
proximated by

N'
2'e i ,

e'
22eH

2

e'

, ~18!

which are the well-known dispersion relations for the ordi-
nary and extraordinary modes, respectively. For largeNi ,
N'
2 approaches

N'
2→2Ni

2 , 2
e i

e'

Ni
2 , ~19!

which are the dispersion relations for the electromagnetic
and electrostatic modes, respectively. In Eq.~19!, Ni has
been taken to be larger than all elements of the dielectric,
which means the frequency does not correspond to a hybrid
resonance.

There are three important dimensionless parameters: the
pitch angle

up5tan21~U' /U i!, ~20!

the scaled velocity

b5
AU i

21U'
2

c
, ~21!

and the effective magnetization

a5
vpe
2

Ve
2 . ~22!

A. Evanescent regime: Ve<v<vpe

In this frequency regime, the real part ofN'
2 is negative

for all values ofNi , hence the fields are radially evanescent
and are localized near the beam. We will show that each term
in Eq. ~14! decays exponentially as the frequency is varied
away from cyclotron harmonics. Figure 2 shows a typical
spectrum,Bz(v), for a beam with a pitch angle ofup588°
and a scaled velocity ofb50.01, immersed in a plasma of
a5104. This spectrum is taken at the spatial location of
r/r c50.7 andu5z50. It is convenient to choosez50 be-
cause, except for the phase factor due to the free-streaming
@see Eq.~15!#, the field is periodic inz with a period of
2pU i /Ve . All figures in this paper will therefore evaluate
the fields atz50. Peaks occur at the cyclotron harmonics,
with a maximum amplitude that decreases with increasing
harmonic number. To understand this spectrum, each term in
Eq. ~14! needs to be considered in more detail.

Near thenth harmonic, thenth term in the sum is larger
than the other terms and has the shape of a resonance, with
exponential wings. To illustrate this feature, considerv to be
different fromnVe . In this case,Ni is large, the asymptotic
solutions in Eq.~19! may be used, and the strength of the
nth term approaches the value

bzn→
U'

c
Ar c

r
exp~2kiur2r cu!, ~23!

where the exponential behavior stems from the large argu-
ment expansion of the radial Bessel functions. The approxi-
mation in Eq.~23! is shown as a dashed line in Fig. 2 for the
n54 term. To determine the frequency scale, the argument
of the exponential can be written in the form

kiur2r cu5
uv2nVeu

D
, ~24!

where

D

Ve
[

~U i /U'!

u12r/r cu
5

cot up

u12r/r cu
, ~25!

is defined as the width of the resonance, corresponding to
onee-folding. For the values of the parameters in Fig. 2, Eq.
~25! predicts a half-width ofD/Ve50.12, in good agreement
with Fig. 2. Sharp resonances, therefore, are obtained at ra-
dial locations far from the beam (r/r c→` or r/r c'0), and
for large pitch angles. For large pitch angles, Eq.~25! im-
plies that the resonance width depends sensitively onup .
This dependence is depicted in Fig. 3 which shows the fre-
quency spectrum for three values of the pitch angle,
up587°, 88°, and 89°, and at the same spatial location as
Fig. 2 (r/r c50.7 andu5z50). The determination of the
resonance width as a function ofr is complicated by the fact
that the magnitude of the field is also a function of radial
position, as is investigated next.

Whenv is near a harmonic,Ni'0, and Eq.~18! can be
used to approximate the perpendicular wave number. If, in
addition, r is not too large, the Bessel functions may be
expanded for small argument to approximate the magnitude
of the field at the peak of thenth harmonic

bzn'2
U'

c

1

e'
H ~eH1e'!~r/r c!

n r,r c

~eH2e'!~r c /r!n r.r c
J . ~26!

FIG. 2. Frequency spectrum of the scaled magnetic fieldBz . The spatial
location is r/r c50.7, u5z50, the beam parameters areup588°,
b50.01, andvpe

2 /Ve
2[a5104. The choice ofz50 is a convenience, and is

made in all of the figures. The dashed line is Eq.~23! for n54 and the
dotted line is Eq.~26!.
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This is due solely to the extraordinary mode, for the polar-
ization of the ordinary mode isBz5Eu50. This expression
contains both the decrease of peak amplitude with harmonic
numbern for a given radial position, shown as the dotted
line in Fig. 2, as well as the dependence of peak amplitude
on r/r c for a given harmonic number. The radial dependence
of Bz for v52Ve and for three different values of the azi-
muthal angle,u50°, 90°, and 180°, is shown in Fig. 4. Far
from r5r c , the fields are well-approximated by a power law
in r, as predicted by Eq.~26!. Of course, asr becomes large,
the small-argument expansion is no longer valid, and the
fields become evanescent. Near the cyclotron radius, the
width of the harmonic resonances increases, implying that
many terms contribute significantly to the sum, and the radial
dependence departs from the simple power law. This is the
mathematical manifestation of the fact that the induced
plasma current near the beam is strong and has a complex
spatial structure.

The following picture emerges:

~1! Each term in the sum has axial and azimuthal depen-
dence given by Eq.~15!, and a radial dependence given
by Eq.~26! at the harmonic, and by Eq.~23! far from the
harmonic.

~2! For large pitch angles and far from the radial location of
the beam, the frequency spectrum consists of sharp reso-
nances at the cyclotron harmonics. In this parameter re-
gime, these resonances are well-approximated by one
term in the infinite sum — the other terms are exponen-
tially small. Hence, the field has the same spatial depen-
dence as the single, dominant, term.

~3! Close to the radial location of the beam,r'r c , and for
small pitch angles, many terms contribute significantly
to the magnitude of the field. In this case, the field mag-
nitude at a given frequency is a superposition of those
terms that are ‘‘closest,’’ in the sense of Eq.~17!.

These properties are due to the Bessel functions which ap-
pear in the expression for the field, and hence are a conse-
quence of the helical geometry. Because all components of
E andB depend on this same product of Bessel functions,
they all exhibit similar structure.

B. Upper-hybrid regime: vpe<v<vuh

This frequency regime is characterized by electrostatic
wave propagation. As long asvpe andvuh are far from the
harmonics ofVe , the value ofNi is large for all terms in the
sum, the approximation in Eq.~19! can be used, and because
the electrostatic mode has a real and positiveN'

2 , the fields
propagate. Although the dispersion relation is well approxi-
mated by the electrostatic dispersion relation,
k'
2 e'1ki

2e i50, the fields have a significant magnetic com-
ponent, hence we continue to useBz as characteristic of the
field structure. The electromagnetic mode may be ignored
because it is evanescent with a short decay length
L[k'

21!r c , where the inequality is due to the fact that
k';Ni .

To illustrate the behavior in the upper-hybrid regime, we
choose the value ofa520.25, which impliesvpe54.5Ve

andvuh'4.61Ve . This upper-hybrid regime corresponds to
the frequency interval between then54 andn55 harmonics
so that the largeNi approximation is appropriate for all terms
in the infinite sum. Figure 5 shows the magnetic field due to
the n55 and n56 terms at a radial position ofr52r c ,
outside of the beam. The oscillations in the field are due to
the Bessel functionsJ5(k2r c) and J6(k2r c), where
k2'k0NiA2e i /e'. As v approachesvuh , e' approaches
zero, and the oscillations are more closely spaced. The field
in this limit approaches the value

ubznu→2Ni
2U i

c
Ar c

r
A e i

2e'
UcosS k2r c2

1

2
np2

1

4
p D U.

~27!

Because these waves propagate away from the beam, it is
useful to discuss the power radiated by the beam and its
radiation resistance. The total power radiated per-unit-length
P may be found by integrating the Poynting vectorS over a
cylinder of lengthL and radial positionr@r c that is centered
on the beam

FIG. 3. Frequency spectrum of the scaled magnetic fieldBz for three dif-
ferent values of the pitch angleup587° ~dashed line!, 88° ~solid line!, and
89° ~dotted line!. The spatial location isr/r c50.7, u5z50, the beam ve-
locity is b50.01, anda5104.

FIG. 4. Radial dependence of the scaled magnetic fieldBz for three different
values of azimuthal angleu50° ~solid line!, 90° ~dashed line!, and 180°
~dotted line!. The parameters arev/Ve52, b50.01, a5104, and
up588°.
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P5
1

LE0
L

dzE
0

2p

du rSr . ~28!

The contributions from the endcaps of the cylinder cancel. A
radiation resistance per-unit-length, which is a measure of
the efficiency of the beam, may be defined as

R[
2

uI u2
P, ~29!

where uI u25q2U i
2u ñ u2. In this upper-hybrid frequency re-

gime, the resistance is approximately

R'(
n

2Ni

crc

1

A2e ie'

cos2S k2r c2
1

2
np2

1

4
p D . ~30!

For the parameters in Fig. 5, the magnitude of each term is
approximately

2Ni

crc
'1.231024nVe

ohm

cm
, ~31!

if Ve is measured in s21. Electrostatic waves are also radi-
ated above the lower-hybrid frequency.

C. Vacuum regime: vuh<v

For frequencies larger than the upper-hybrid frequency,
N'
2 can be real and positive for small values ofNi

2 , i.e., the
ordinary mode propagates forv.vpe , while the extraordi-
nary mode propagates forv.vuh . This implies that for fre-
quencies very near thenth harmonic, thenth term describes
a propagating electromagnetic field. The contribution of
other terms is exponentially small because for themNi

2 is
large.

To illustrate this behavior, we choosea51 which places
all harmonics above the upper-hybrid frequency, so that both
modes will propagate for smallNi . A typical near-field spec-
trum is shown in Fig. 6, forr/r c52, b50.01, and
up588°. Also shown is the spectrum fora5104 ~evanes-
cent regime! for comparison. As in the evanescent regime,
sharp resonances occur because the parameterD/Ve is small,
and the strength of each term decays exponentially. How-

ever, the beam radiates near the cyclotron harmonics, and the
radiation resistance per-unit-length is again a useful quantity.
Unlike the upper-hybrid regime, the regions in frequency
space corresponding to propagation do not overlap for dif-
ferentn, so that the radiation resistance per-unit-length for
v5nVe ~on the harmonics! becomes

R5
pv

U i
2 F SU i

c D 2Jn2~k1r c!1
Ve

2/v2

e'~e'
22eH

2 !

3$neHJn~k2r c!2k2r ce'Jn8~k2r c!%
2G , ~32!

where

k1r c5n
U'

c
e i , ~33a!

k2r c5n
U'

c

e'
22eH

2

e'

. ~33b!

The two terms in the square brackets represent the power
radiated into the ordinary mode and extraordinary mode, re-
spectively.

As v becomes large compared withvpe , the radiated
fields closely approximate those that would be radiated by a
beam in vacuum. That is,« approachesl in this high-
frequency limit, and the arguments of the Bessel functions
approachnU' /c. If U' /c!1 as well, i.e., the beam is non-
relativistic, the radiation resistance takes a simple form

R'
pnVe

U i
2

S 12 nU'

c D 2n
~n! !2 F SU i

c D 21n4SU'

c D 4G , ~34!

which for largen becomes

R~n→`!→
pnVe

U i
2 S e2 U'

c D 2n, ~35!

so that the resistance decreases with harmonic number as
b2n, as expected.

FIG. 5. Frequency dependence ofbz5 ~thin line! andbz6 ~thick line! for the
parameter values ofa520.25, b50.01, up588°, and a spatial location
r/r c52, u5z50.

FIG. 6. Frequency spectrum of the scaled magnetic fieldBz in the vacuum
regime. The spatial location isr/r c52, u5z50, and the parameters are
b50.01, up588°, anda51. For comparison, the dashed line is the spec-
trum for a5104, with all other parameters the same.
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IV. COMPARISON WITH EXPERIMENT

In the experiment performed at UCLA by Stenzel and
Golubyatnikov,4 the parallel component of the fluctuating
magnetic field is measured using aḂ probe, which consists
of a circular wire coil in which the induced emf driven by the
changing magnetic flux through the loop is detected. TheḂ
probe is 2.3 cm in radius, with a thickness of 2.6 mm. This
radius is approximately equal to the cyclotron radius of the
beam electrons, the exact ratio depending on the beam’s per-
pendicular velocity. The background plasma in which the
beam is immersed is weakly magnetized,Ve!vpe , and its
temperature is low enough to warrant the approximation of
the dielectric tensor by that of a cold plasma.

There are three experimental facts which, when con-
trasted with the theoretical idealization presented here, make
the quantitative comparison between experiment and theory
difficult. First, and most important, is the finite size of the
Ḃ probe. The experimental technique cannot detect varia-
tions in the magnetic field on a scale smaller than the size of
the probe. For typical beam energies of 30 V–100 V, the
corresponding cyclotron radii arer c'1.7 cm–3 cm. This
means that the probe is not much smaller than the beam, and
is sometimes larger. The present theory, however, deter-
mines the field locally. Because of the mathematical form in
which we have expressed the fields~an infinite sum of Bessel
functions!, it is difficult to integrate the field over the area of
the probe, except when the probe is located either completely
inside the beam (r,r c) or completely outside (r.r c). Sec-
ond, while the theory singles out a specific pitch angle and
beam velocity, the experimental beam has a finite spread in
these quantities produced by the broadband noise inherent in
the injection process. Thus, there is no well-defined beam
axis. Third, the beam is injected from a specific location and
does not extend infinitely inz. This fact leads to the experi-
mental observation that when the probe is near the injection
point, the field spectrum is broadband, corresponding to the
noise of the injection. However, when the probe is far from
the injection point, those modes that are not coherent are
filtered out, and spectra more closely resembling those in
Fig. 2 are obtained. This implies that the theory can only be
used to explain measurements taken far from the disturbing
influence of the injector.

The simple axial and azimuthal dependence predicted by
Eq. ~15! is observed using interferometric techniques. For
large pitch angles (up'88°) and frequencies nearVe and its
first harmonic (v/Ve51,2), the observedu dependence is
clearlyeinu and the measuredz dependence is uniform, i.e.,
ki50. The phase change inz is also measured for interme-
diate frequencies (Ve<v<2Ve) andki is found to be con-
sistent with Eq.~16!, wheren is the ‘‘closest’’ harmonic, i.e.,
due to that term which has the largest magnitude. The
present theory agrees well with these observations.

The observed radial dependence at the first harmonic
(v/Ve52), depicted in Fig. 12 of Ref. 4, also is in agree-
ment with the present theory as shown in Fig. 7. This theo-
retical plot is a cut alongx for y50. That is, negative values
of x correspond tou5180° while positive values signify
u50°. The minimum atx50 and the decay foruxu.r c

shown in Fig. 7 is seen in the experiment. However, the
measured field decreases more slowly, a feature expected
from the finite size of the probe. At the cyclotron frequency
(v5Ve), however, there is a significant discrepancy. While
the experimental measurement does show a sharp drop in
magnitude forr>r c , it remains large forr,r c and does not
show a minimum atr50. The present theory does not pre-
dict this type of behavior, most likely because it does not
include any dissipation mechanisms which might be present
in the experiment.

The frequency dependence of the magnetic fluctuations
is perhaps the most striking result of the experiment, and is
explained by the present theory. The theoretical spectrum in
Fig. 8, where the parameters were chosen to approximate the
experimental conditions, agrees qualitatively with the experi-
mental spectrum seen in Fig. 6 of Ref. 4. A quantitative
comparison is difficult to make, for the reasons mentioned
earlier. Due to the dependence of the resonance width on
pitch angle and radial location, and the experimental spread
in these quantities, the resonances of the observed spectra

FIG. 7. Radial dependence of the scaled magnetic fieldBz ~theoretical pre-
diction! for the first two harmonicsv/Ve51.01 ~solid line! andv/Ve52
~dashed line!. The parameters areup588°, b50.01, z50, and
u50°, 180°. Compare with Fig. 12 of Ref. 4.

FIG. 8. Frequency spectrum of the scaled magnetic fieldBz . The spatial
location is r/r c50.7, u5z50, and the parameters areup588°,
b50.0198, anda58711. Compare with Fig. 6 of Ref. 4.
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have a minimum width, regardless of the average parameters
of the beam. A clear dependence of resonance width on pitch
angle is indeed observed in the experiments~see Fig. 8 of
Ref. 4!. The sensitivity of the experimental resonance width
on up , however, is not as strong as predicted by the present
model. Figure 9 shows that the resonances disappear when
up'80°, while experimentally they are seen for pitch angles
as small as 70°. Because experimentally, the resonance
width depends strongly on the distance between the probe
and the injection point, and, since this is not addressed in the
present theory, it is difficult to offer an explanation for the
discrepancy. However, it is worth noting that while a general
tendency is for the non-ideal experimental realities to destroy
theoretically sharp features, in this case the observed behav-
ior is contrary to this trend.

The linear beam modes excited by spiraling electrons, as
calculated by the present theory, agree qualitatively with the
experimental results. Some of the discrepancies can be un-
derstood in light of the method of measurement, i.e., a spatial
integration ofBz rather than a localized measurement, and by
taking into account the experimental limitations and the
theoretical idealizations. However, the two points of dis-
agreement are puzzling: the radial structure forv5Ve , and
the resonance width for small pitch angles.

V. CONCLUSION

The electromagnetic fluctuation spectrum generated by a
modulated, free-streaming, helical electron beam has been
calculated and compared to a recent laboratory experiment.4

For the frequency regime of the experiment
(Ve,v!vpe), the spectrum consists of localized, evanes-
cent fields which shows a series of sharp resonances at the

electron-cyclotron harmonics. This behavior is well de-
scribed by the excitation of beam modes which satisfy the
condition v2nVe5kiU i . The width and magnitude of
these resonant peaks can be explained by the form of the
fields both near the harmonics and far from the harmonics. It
is found that the peaks are functions of the pitch angle and
the spatial location. The axial and azimuthal dependence of
the fields is also described by the model developed in this
study. A discrepancy arises between the experimental results
and the theoretical prediction for the radial dependence of
the field atVe . The finite size of the measuring instrument,
a magnetic loop which integrates the flux, as well as the
idealization of the theory, which includes neither a velocity
modulation nor a spread in pitch angle, are the probable
causes for the discrepancy.

In addition, the present theoretical formulation is general
enough to describe fluctuations generated in other frequency
regimes as well as those generated by ion beams. This gen-
erality allows the calculation of quantities such as the radi-
ated power in a straightforward manner, without resorting to
approximations. Two of these other frequency regimes, near
and above the upper-hybrid frequencyvuh , have been con-
sidered. Nearvuh the beam radiates a broad spectrum of
electrostatic waves which propagate away from the beam,
and propagating electromagnetic modes are emitted near
those harmonics ofVe that are abovevuh .
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