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PHYSICS OF PLASMAS VOLUME 5, NUMBER 7 JULY 1998

lon Bernstein waves driven by two transverse flow layers

M. A. Reynolds® and G. Ganguli
Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375

(Received 9 February 1998; accepted 16 April 1998

The interaction between two narrow layersiok B flow is investigated, along with their stability
properties. The mode frequencies, growth rates, and eigenfunctions are calculated. It is found that
the instability due to a single layer is robust to the inclusion of a second layer. Specifically, when
the separation between the layers is on the order of the ion-cyclotron radius, there is strong coupling
between the two layers and the second layer is destabilizing. In addition, when the flow velocities
are in opposite directions a wide variety of modes is possible, including near-zero-frequency modes,
resulting in broadband structure in both the frequency spectrum and the wave number spectrum.
These results may have implications for the understanding of the auroral ionosphere, where such
spatial structure in the transverse electric field is often observed19@3 American Institute of
Physics[S1070-664X98)03807-3

I. INTRODUCTION to the addition of a second layer. Because an examination of
the field structure is crucial to the understanding of the phys-
Nonuniformities in the direction perpendicular to the jcs of this instability, we use the eigenfunctions of the wave
magnetic field are routinely observed in a variety of plasmaspotential in a given flow structure as an important pedagogi-
The complicated structure in the density, current, and electrigal tool. Of course, the eigenfunctions may not be orthogonal
field of the auroral ionospheric environméi one striking  if the system exhibits transient behavior, and other methods
example. For many years, observations of the aurorahust be used to deduce the linear respdfsghis compli-
ionospher&* have revealed fine scale structure in the transcation is not considered here.
verse electric field, in which the overall effect is one of The eigenvalue equation for ion Bernstein waves in a
strong velocity shear, resembling many individ&ad B flow  nonuniform plasma is derived in Sec. Il, the dispersion rela-
layers in close proximity. In addition, laboratory tion for our choice of geometry is given in Sec. Ill, and
experiment3® designed to model the space environmentrelevant results for a single flow layer are described in Sec.
have been able to externally drive electric fields of this typelv. In Secs. V and VI we investigate in detail two types of
The linear stability properties of waves in such nonuniformstructures that are generic in character. The first type, Sec. V,
media are difficult to predica priori: each situation must be s characterized by flows in the same direction, with a region
studied individually, and evaluated on a case-by-case basisf zero velocity separating the two layers. The second type,
In this paper, we study the effects that structured, nonuniSec. VI, is characterized by flows in opposite directions with
form EXB flow has on the stability of ion Bernstein waves. no separation between the two layétsis approximates a
Specifically, we investigate the case of two layémhose  so-called “paired electrostatic shock). Section VIl is the
thicknessL is on the order of the ion-cyclotron radius, conclusion.
=p;) with finite EXB flow, immersed in a background
plasma that is stationary.

It has been shown, both theoreticdffyand experi-

9,10 i i ith i
mentally;""" that a single localized flow layewith its asso- |, |oN BERNSTEIN WAVES IN NONUNIFORM

ciated velocity shearcan be unstable to ion-cyclotron-like p| agmas

waves. In the frame of the background plasma the electro-

static wave energy density is negative within the flow layer  To obtain electrostatic ion Bernstein wavésye make
and positive outside the flow layer, which means that a losshe usual approximations of low frequen@y<(,, where

of wave energy from the layer can sustain wave growkhe Q) is the electron-cyclotron frequengylong perpendicular
waves that grow must propagate energy outward across thgavelength(k, p,<1, wherep, is the electron-cyclotron ra-
boundary between the layer and the background plasmaius), and perpendicular propagati¢k,=0; finite k, intro-
Analysis of single-particle orbitd in the field structure gen- duces Landau damping, which is ignored heta addition,
erated by the instability shows that ions fall through a potenwe assumen,;>); (where w,; and); are the ion-plasma
tial drop and give up this energy to the wave, similar to theand ion-cyclotron frequencigswhich holds for most plas-
physical mechanism of a magnetron. In this paper, we genmas of interest. This is equivalent to restricting the frequency
eralize the single-layer results to include the new effects dugegime to well below the lower hybrid frequency.<w)y, .
Under these approximations, and taking magnetic field to be
aNational Research Council-NRL Research Associate. Electronic mail!l _the z direction, the eleqtrOSta“C dispersion relation for a
anthony@ppdu.nrl.navy.mil uniform plasma has the simple fotin
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i w
5/,/:1—; Fa(b) =g =0 (1)

Y v
whereb, = (k2+k2)p?/2, p;=v,/€); is the ion-cyclotron ra- “La
dius, v_i= V2T;/m; is the ion thermal velocity,I',(b,) 7
=exp(—b)I,(b,), andl, is a modified Bessel function. The L~ A
solution of Eq.(1) gives the so-called “pure” ion Bernstein
waves* 0

When the plasma is nonuniform, an exact solution of the
plasma response requires an integral-differential : - ; ; : : |
formulation!® To lowest order, however, nonuniformities in ~L/2 0 L/2  (Ly/2+8) (Li/R+A+Ly)
thex direction can be included by expandiagfor smallk,, N
and making the substitutiok,— —id/dx. (Here, we have FIG. 1. Geometry of the structured flow. The two layers have witlthand
assumed that any nonuniformities in tiieand z directions ~ L2: flow velocitiesV, andV,, and are separated by a distanice
are negligible compared with those in tRedirection) The
uniform dispersion relation then becomes a second order dif-

ferential (eigenvalug equation The nonlocal dispersion relation for this nonuniform plasma
o 5 is obtained by matching botth and d4/dx across the four
o |27 7 H(x)=0 ) boundaries between the five regiofsee the Appendix for

k=0 k?) k0 ax* ' details and a generalization to an arbitrary number of layers

_ . . ~ The two-layer dispersion relation can be written as a product
where ¢ is the electrostatic potential, and the quantities in-of two single-layer dispersion relations plus a coupling term
side the brace&Z and its derivativiare to be evaluated for

2) 1 1 —
k,=0. When the plasma parameters are piecewise constant, D13 =D{’D5’+Cy,=0. ®
the general solution to E¢2) in each region is an exponen- The superscript indicates the number of layers and the sub-
tial, ¢(x)~exp(+ikx), where scripts label each layer. That is,
27 D= (ko—ky)?eat1— (ko +ky) e Hat1=0 ®)
AT (k) . . . . . .
X Tk,=0 is the nonlocal dispersion relation for layefile., assuming

V,=0), DV is identical in form toD{® with k;—k, and
(3) L1—>L2, and

Co=4e”*o% (kg —ki) (kg —kp)sin(ksLp)sin(k,Lo) — (7)

b= kjpf/2, T'=dI/db, w=w—k\Vg(x), and VE(X)= 5 the coupling between the two layers. The wave numbers in
—YCE,(x)/B. The quantityw is the Doppler-shifted fre- thex direction in the flow layersk; andk,, are given by Eq.
quency due to th_E>< B row,_?ngs a function of position in (3) with @ replaced byw— k,V1 and =k V,, while the

this case(In previous work;™***%he symbolv, has been  aye number in the regions with no flok, is given by Eq.
used to denote.) The quantityw has both a real and imagi- (3) with @ replaced byw.

nary part, which we denote=w,+iy, where o, is the The dispersion relation for a single lay@{"’=0, can

frequency andy is the growth rate. be factored into terms responsible for definite pafiéyen
and odd eigenfunctions

_ 1-3,Ip(b)o/(@—nQ;)
(pH2)E, (D)ol (@0 —nQy)

I1l. GEOMETRY AND NONLOCAL DISPERSION (1) . .
RELATION Dl :4[k0 CO$k1L1/2)— | kl S|n(k1|_1/2)]

We consider two layers, labeled layer 1 and layer 2, with X{iko sin(k;L1/2) —k; cogkiL41/2)}=0,  (8)
widths L, andL and flow velocitiesV, andV,, separated \here the eigenfunctions associated with the eigenvalues of
by a distance. TheEXB drift velocity as a function ok is  the term in square brackets are everxjrwhile those asso-
specified in five different regions ciated with the term in curly braces are odd. No such factor-

0 X< —L4/2 ing is possible in the more general case considered here be-
cause the flows do not exhibit any inherent symmetry.in

Vi ~Li/2<x<L,/2 The result in Eq(8) is equivalent to the solution of the
Ve=4 0 Li/2<x<Li/2+A : (4)  time-independent Schdinger equation for a finite square
V, L2+ A<x<L,2+A+L, well, and Egs.(5)—(7) show the extension from a single

square well to two square wells. We have expressed the re-
sult in a form that separates the interaction between the two
The geometry is sketched in Fig. 1. A piecewise constanflow layers(or square wellsfrom the dynamics of a single
flow velocity is chosen for its simplicity, and because theflow layer. Equatior(7) shows that the coupling between the
instability of interest does not depend explicitly on gradientstwo layers is proportional to exp2A Im k) which means

in the flow, but does depend on the global nonuniforfiity. that for largeA the layers are uncouplgof course, the fact

0 Ly/2+A+L,<x
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FIG. 2. Growth rate for a single layer as a function of wave nunibéor / \
two different thicknessed,,=3p; (solid) andL,=6p; (dotted. The flow OfF—— - == -
velocities arevV,=3v; andV,=0. The three diamond®&)—(c) mark eigen- | i
values for which the eigenfunctions are shown in Fig. 3. -1
-10 -5 0 5 10
z/p;

that Imk, is positive is required by the boundary condition i, 3. Eigenfunctions for a single layer of thicknesg=3p; and flow
that $—0 for [x|—). In this case, the modes of one layer velocity V,=3u; for three different values ob: (a) b=0.52559, (b) b
are normal modes of the system regardless of the other layet.0.575, (c) b=0.62336. The dashed line is Re the dot-dashed line is
If the layers are identical, then there is the possibility that'm ¢, and the solid line i$_¢\. The two vertical lines delineate the edges of
some roots are degenerate. Whes 1/(2 Imk,) (the case ;hrz '\"j‘i‘r’t‘zrél"l"y”?dghnetig;tte‘j line {b) marks the zero value. i), Re ¢ and| |
we wish to investigate herethe coupling between the layers '
is strong, and the normal modes are global in nature and
incorporate the physics of the interaction of the two layers.the layer. WhenU, is negative,U, is positive, andv is
positive, which is the case here, there is the possibility for
IV. SINGLE-LAYER RESULTS OF RELEVANCE instability. (Positive vy, means the group velocity points
. ] ] ~_away from the layey.
~ When V,=0 (i.e., kp=ko), the dispersion relation is This energy flow can be inferred from Fig. 3 where the
given py Eqg.(8) and the re;ultmg §tab|I|ty prqpertles have eigenfunctionsp(x) for a single layer of width_,=3p; are
been discussed elsewhere in detage Gangufiand refer-  shown for three different values af (corresponding to the
ences therejn We describe briefly only the results relevant yiamonds in Fig. 2 Wheny is maximum[Fig. 3(b)], energy
to the two-layer case. This includes a detailed look at the,onagates away from the layer in both directions. This is the
propertles_of the elgenfun_cno_ns, which form the basis for OUbhysical mechanism by which the instability grows: because
interpretation of the physics in the two-layer case. ~the electrostatic wave energy density is negative within the
We choose a coherent mollevhere the growth rate is  |ayer and positive outside the layer, the eigenfunction must
positive only in a narrow range df. (The ion-cyclotron  pe 5 wave whose group velocity propagates energy across
radiusp; is held constant, so that a variationtosignifies @ {he poundary between the layer and the background plasma
variation ofk, .) Figure 2 showsy as a function ob for a i grger for the free energy to be released. The direction of
single layer, with flow velocityV;=3v;. (The frequency, energy flow is determined from Fig(i® and the fact that
w;, is not shown as it remains approximately equal td%.6 these waves are backward waves. In Fig)3the phase of
over the entire range df.) Two different widths are shown, Re ¢ lags that of Im¢ by 90°, which means that the phase
L;=3p; andL,=6p;. This illustrates the property that as velocity points toward the layer. In addition, for frequencies
the width increases, the growth rate decreases. Physicallpelow the lower hybrid frequency, ion Bernstein waves are
the reason is that the velocity shear is weaker. In the nexackward waves for all values &f . (This can be seen from
section it will be shown that when the separation betweerFig. 1 of Ref. 14 by noting thalw/dk, <0.) These two facts
two layers is small, they can either be strongly coupled or actogether indicate that the group velocity points away from
as essentially a single, wider, layewith a corresponding the layer, thus satisfying the criteria for instability given in
reduction in the growth rajedepending on the wave num- Eq.(9). When the eigenfunction is either localized within the

ber. layer [Fig. 3(@] or evanescent outside the layétig. 3(c)]
A heuristic derivation of the growth rate, which consid- the growth rate is reduced. Only the “ground state” eigen-
ers only energy flow, results in functions (and eigenvalugsare shown, because they typi-
vgUo cally have the largest growth rates. Similar to the quantum

(9) square well problem, however, there are other “bound
states,” and they exhibit the same physical behavior just

whereuv 4 is the group velocity in thex direction across the described for the ground state.

boundaries of the layex& =L4/2), Ug is the electrostatic This physical behavior exists for two layers as well, but

wave energy density in the region of no flow outside thethe possibility of coupling between the layers, and the result-

layer, andU, is the electrostatic wave energy density insideing interference between the eigenfunctions associated with

[V
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FIG. 4. Growth rate(solid line) and coupling term(dotted ling for two 7
identical layers as a function of separa@n The thicknesses afe;=L, 2 ___,J ' M B
=3p;, the flow velocities are/,;=V,=3v;, and the wave number is 0 =N S
=0.575. The three diamonds)—(c) mark eigenvalues for which the eigen- -2 Y B
functions are shown in Fig. 5. —4
-10 0 10 20 30

x/p;
each Iayer’ results in new effects with correspondlng quaIIT:IG. 5. Eigenfunctions for two layers of thickness=L,=3p; and flow

tative and quantitative changes in the mode structure angelocitiesV1=V2=3v_i for three different values oA: (@) A=20p; , (b)

growth rates. A=75p;, () A=1.2,. The dashed line is R¢, the dot-dashed line is
Im ¢, and the solid line i$¢|, andb=0.575. The vertical lines delineate the

edges of the layers, and the dotted lines mark the zero values.
V. IDENTICAL LAYERS

We now turn to the first of the two generic structure

types: two identical layers. Identical layers are chosen begor |arge separationgy=20p;, the coupling term is expo-
cause we want to focus on the physics of the couplinthentially small, and in this limit a root of the single layer
mechanism, and the behavior of the coupling t@m. This  p{l) js also a(degenerateroot of D{2). The physics of this
can be illustrated most easily wh@t" andDY") are iden-  jimit was discussed in the previous section. For intermediate
tical. When the two layers are widely separated, the normadeparations, 5 <A=<20p;, the growth rate oscillates with
modes will be similar to those of a single layer, with similar A Finally, for small separationgy<5p;, C;, becomes ap-
stability properties. As the separation decreases, howevepreciable, the coupling between the two layers is strongest,
the coupling ternC,, plays a nontrivial role. and the growth rate approaches twice its single layer value.

There are two parameters which quantify the strengthas in the single-layer cases,~1.60; for all values ofA.)
and behavior of the interaction between the two |ayerS. Thq"h|s behavior can be understood by examining the eigen_
first parameter is a measure of the strength of the couplinggynctions.

5=2A Im kK,. (10) The eigenfunctions for three separationsA/g;

i ) ) =20,7.5,1.2) are shown in Fig. 5. For large separations, Fig.

The coupling terme5, is proportional to exp{d), so that 55 each layer drives waves locally, independent of the
for large 6 (large separationghe coupling is exponentially oiher |ayer. For this cas@~ 13, which means that the two
small. In addition,6/2 is the number ok-foldings of the |ayers are effectively uncoupled. Of course, any noise in the
amplitude of the eigenfunction between the layers. In theasma will destroy the slight coupling that exists theoreti-
region of no flow between the layers, the eigenfunctibnis iy for these large separations. As the separation decreases,

proportional to exp{xIm ko). Evaluating this for a separa- the coupling increases, and the growth rate changes from its
tion of x=A results in exp{-§2). This is consistent with the - gingle-layer value and oscillates with These oscillations

physical idea thaC,, should have the same dependence Ofyre que to an integral number of wavelengths fitting in the

separation ash¢*, a measure of the energy. The secondyqiential well between the layers, as given by the parameter
parameter is the number of wavelengths that fit between thg This can be seen from Fig. 6, which shodsas a func-

layers tion of layer separation(For comparison, the growth rate is
A A Rek, also shown.WhenN is an integer, the growth rate is near a
N=‘=——" (1)) maximum. This is similar to the effect that has on the
X

transmission coefficient through two quantum square wells.
wherel, is the wavelength in the direction in the region  The growth rate is not exactly a maximum, however, because
between the layers. the effective potential well between the layers is not infinite.
To illustrate how these parameters determine the interThe eigenfunction for the separation whéte 1 is shown in
action, we choosé=L,=3p; andV,;=V,=3v,. Figure 4  Fig. 5b). WhenA<5p,, the waves generated by each layer
shows the growth rate in the transition between large andonstructively interfere, as shown in Figch and the eigen-
small separation, fdo=0.575. Also shown is the magnitude function is largest in the region between the two layers. This
of the coupling termC,,, which decays exponentially with is because the waves propagating away from each layer are
increasing separatiof. Three regimes can be distinguished. reflected multiple times in the region between the layers. In
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FIG. 6. Number of wavelengths that fit between the laye[solid line), for 47 (c) T
L,=L,=3p;, V1=V2=3v_i, andb=0.575. Also shown is the growth rate 2 ;//_'_ L ]
(dashed ling The dotted lines indicate the values of the separation for O === N T
which an integral number of wavelengths fit between the layers. The squares -2 T
indicate the growth rate for these separations. -4
-10 -5 0 5 10 15
x/p;

this regime, there is no simple formulg.g., an integral
number of wavelengthswhich will predict the separation FIG. 8. Eigenfunctions for two layers of thickneks=L,=3p; and flow
with maximum . velocitiesV,=V,=3v; separated by a distande=1.2p; for three different
This coupling can be investigated in more detail by look-Values ofb: (@ b=0.527,(b) b=0.575,(c) b=0.62582. The dashed line is
. f . . Re ¢, the dot-dashed line is I, and the solid line i$¢|. The vertical lines
|_ng at the b_EhaVIOr ofy (and the eigenfunctionsas a func- delineate the edges of the layers, and the dotted linés iand(c) mark the
tion of b. Figure 7 showsy(b) for two values of the sepa- zero values.
ration (A/p;=0.12,1.2). The growth rates for a single layer
of widths L;=3p; andL,=6p; are shown for comparison.
Figure 8 shows the eigenfunctions corresponding to the three
diamonds in Fig. 7. For casg@), the two layers are essen-
tially uncoupled: the growth rate is close to the single-laye
value, the eigenfunction is localized~4.5 andN~1.5, The results so far have been presented for specific values
which means that the spatial damping in thelirection is  of b. In the asymptotic limit, however, the plasma will re-
strong enough for the distance between the layers to be e§pond most strongly to the wave number component with the
fectively large. For casg), the two close layers behave as a |argest growth rate. It is important, therefore, to maximjze
single wide layer: the growth rate is low, the eigenfunction isoverb. In general, one would maximize ovkr as well, but
evanescent outside the layefs; 0.4, andN~0.06, whichis  we are restricting this study to long parallel wavelengths
small enough that the eigenfunction is not affected by thesnly. Of course, the saturated nonlinear response is not nec-
narrow potential well between the two layers. In the interme-essarily strongest at this wavelength. In addition, the allowed
diate regime of enhanced growth rate, where the eigenfungvave numbers in laboratory experiment$have physical
tion is shown in Fig. &), the coupling is very strong and the restrictions via boundary conditions that affect the observed
system behaves neither like two separate single narrow layesponse. For these reasons, a comparison with any experi-
ers nor one single wide layer. ment must take into account the configuration of that experi-
ment. It is not possible to prove conclusively that a global
maximum has been found, but it is possible to locate local
0.08 ’ ' - - - maxima over parameter space. In the present case, a single
- branch of the dispersion relation often has more than one

rJ\/Iaximum Growth Rate

0.06 - locally (in b) maximum growth rate, as can be seen in the
dashed line of Fig. 7. Each of these local maxima typically
é 0.04 | have different properties, as evidenced by their eigenfunc-
> | tions (see, for example, Fig.)8Figure 9 shows the locally
maximum growth rate;y.x, a@s a function of separation,
0.0z i where each maximum is depicted with a different line style.
0.00 I : . . . () ] Figure 10 shows the value bffor each local maximunh,,,

052 054 056 058 060 062 064 Wlt_h the I|_ne styles corrgspondlng to those in .F|g. 9_. The
b solid line is the mode with the strongest coupliftbat is,
where the eigenvalue is influenced BY»); it also has the
FIG. 7. Growth rate for two identical layers as a functionkgffor two Iargest growth rate for this branch of the dispersion relation.

values of the separatiofi/p;=0.12 (dashegl 1.2 (solid). For comparison, . .
the dotted lines show the growth rates of a single layer of widths 3p; The dotted and dashed lines represent modes that are pertur

andL,=6p, (see Fig. 2 The three diamond&)—(c) mark eigenvalues for ~0ations Of_ the single-layer dispers_i(:due to the Variati_on of _
which the eigenfunctions are shown in Fig. 8. N). The single, wide layer behavior, shown as a thick solid
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FIG. 11. Growth rate for oppositely directed flows as a functionbpf
corresponding to ground state eigenfunctions. The solid line is the single-
layer mode(layer 1) perturbed by layer 2, while the dashed and dotted lines
are new modes. The line styles correspond to Figs. 12—14. The parameters

FIG. 9. Growth rate, maximized ovér, for two identical layers as a func-
tion of separatiom\. The thicknesses ate,=L,=3p; and the flow veloci-

ties areV,=V,=3y;. The different line styles, solid, thick solid, dotted,
and dashed, represent different local maxima. The wide layer maximum, th — i
thick solid line, is marked with an arrow, and a close-up is shown in theareVi=3v;, V,=—1.8;, L;=L,=3p;, andA=0.
inset.

i K ith a cl h inthe | peaked function ob, so that many local maxima exist. This
ine marked by an arrovwith a close-up shown in the inget situation is shown in Fig. 11, where the growth rate Yor

only exists as a local maximum for extremely small values of — .
y : y =—1.8; has three local maxima. All three of these roots
the separation.

correspond to the ground state eigenfunction. There also ex-
ist local maxima for other bound states, but for clarity we
focus only on the ground state. As in the case of identical
The physics elucidated above suggests a second genetigyers, the behavior of the maximum growth rates is the most
type of structure, that of oppositely directed flows. Whan  physically interesting. Figures 12—14 show the locally maxi-
is large enough, the wave energy density in layer 1 can benized growth ratey,,.,, frequencyw,, andb,, for the four
negative, leading to instability through coupling with the fastest growing roots, whet®, is the value ofb for which
positive wave energy density outside the layer. This couplingy= y,,.,.. Figure 15 shows the eigenfunctions of three of
also occurs ifv; is allowed to be negative, forcing layer 210 these roots fon,= —2.8%, .
act as an energy sink, rather than an energy source. This type |n Figs. 12-14, the solid lines represent the mode that is
of profile, two adjacent flow layers with oppositely directed morphologically similar to the single-layer caée., they are
velocities, is commonly seen in the auroral ionosphere and igingle-layer roots perturbed by the second layks associ-
called a paired electrostatic shochMost importantly, the  ateq b,, is approximately 0.58compare with Fig. 2 its
dispersion relation of this type of structure has many locakequency is approximately 1(§, and its growth rate is
maxima with widely varying frequencies and wave numbersonly slightly reduced from the single-layer case. Figurél5
which can physically manifest itself as a broad spectrum. shows the eigenfunction for this root, which exhibits the fol-
We investigate the case where layer 1 has the same pgswing behavior. To the left of layer X< —L,/2, the wave
rameters as befor&;=3v; andL,=3p;. The second layer propagates. To the right of layer 2>L,+L,/2, the wave
is adjacent to the firstA=0, and has the same width,  propagates but its amplitude is small because it had to tunnel
=L4, but has a flow velocity in the opposite directiov,
<0. In this configuration, the growth rate can be a multiply

VI. OPPOSITELY DIRECTED FLOWS
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& 0.03F % -7 g
L h \x (a) — — ’/z e T ~—
0.60 I E (/b)’ _ &~ /
e ® 002 0) g i
i) =TT | s B
0.55 b 0.01 f--—"— -
0.00 . . . .
I -3 -2 -1 0
0.50 L | ) " Vz/ai
0 5 10 15

A/p; FIG. 12. Growth rates of four different local maxima for oppositely directed
flows as a function o¥,. The solid line is the single-layer modkayer 1)
perturbed by layer 2, while the dashed, dotted, and dot-dashed lines are new
modes. The parameters qu=3;, L,=L,=3p;, andA=0. The three
diamonds(a)—(c) mark eigenvalues for which the eigenfunctions are shown

in Fig. 15.

FIG. 10. Maximum value ob of four different local maxima for two iden-
tical layers as a function of separatiadn The thicknesses ark;=L,

=3p; and the flow velocities ar¥,=V,=3v;. The different line styles
correspond to the growth rates shown in Fig. 9.
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FIG. 13. Frequency of four different modes for oppositely directed flows as 0 G ER Y N
a function ofV,. The solid line is the single-layer modiyer 1 perturbed —1F NP e
by layer 2, while the dashed, dotted, and dot-dashed lines are new modes. -2k =

|
—_
o
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FIG. 15. Eigenfunctions of three different modes for oppositely directed

. .. flows forV,=—2.85, with the labels corresponding to the diamonds in Fig.
through layer 2 where the wave energy density is positive;2. The dashed line is R#, the dot-dashed line is In, and the solid line
which forces the eigenfunction to be evanescent. The effeGt |4|. The other parameters ak,=3v;, L,=L,=3p;, andA=0. The
of the presence of layer 2, with negatiVg, on this mode is vertical lines delineate the edges of the layers, and the dotted lines mark the
minimal because the energy is still allowed to leave layer 1€ values.
(either by propagation on the left or absorption on the jight
as required for a positive growth rate.

The other three rootéindicated by the dotted, dashed, VII. CONCLUSION

and dot-dashed lingsare quite different in character and . . .
have no counterpart in the single-layer case. They have two _Structure in the perpendicular flow profile of a plasma,
properties that distinguish them from the single-layer casell the form of layers flowing in the same direction or in
First, they all exhibit the trend of decreasing, decreasing qpposllte. directions, gnrlchgs its instability properties. Pro-
Ymax, @nd decreasing,, as |V,| increasegthese quantities files sm_nlar to those |_nvest|gated here are observed, for ex-
are all relatively constant for the single-layer dada fact, 2MPle, in the auroral ionosphere. _ _
for |V,| approximately equal t&/; the frequency becomes . Tvy9_|mp0rtant concluspns follow f_rom this yvork. First,
extremely low, approaching,—0. Second, the eigenfunc- mstgblhtle_s due t_o a nonumform velocity are _qwte robust to
tions are not propagating waves, but are evanescent stru@e inclusion of fine structure in tr_](_a f!ow profile. In fact, the
tures[see Figs. 16)—150c)]. The flow profile thus modifies fine structure can even pe d_establhz(mg., when two Iayer.s
the usual ion Bernstein waves, which are coherent and naR'® ¢l0se and the coupling is strongve do not expect this
row band, into a broadbangven statit response. At the conclusion to be altered qualltgtlvely if further structure
same time, many modes become unstable, creating the pddl"e€ or more layers, for examplis added to the flow pro-

sibility of both frequency and wavenumber spectra that aréne,_although a det_ermlnatlon of the qu_antltatlve aspects of
quite broad. the interaction require numerical analysis. Second, when op-

positely directed flows exist, extremely low-frequency waves
become unstable, with associated evanescent field structures.
This quasistatic response is similar to that which is observed
in the auroral ionosphereln addition to the possibility of
low frequencies, many modes become unstable, which could
, . ] result in a broad frequency spectrum fo£ w.; and a broad
0.4r"" e T wave number spectrum fdr, p;<1.
£ | e ] The two generic velocity profiles investigated here were
- - ] chosen for their similarity to profiles observed by sounding
02F _--~ T rockets and satellites* For this reason, these results are
I ] intended to shed light on the current understanding of the
process of wave generation in the auroral ionosphere.

The parameters aM1:3;i, L,=L,=3p;, andA=0.
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where M, is the 4x4 matrix which gives the single-layer

APPENDIX: DISPERSION RELATION . . .
dispersion relation for layer 1,

When the flow velocity is piecewise constant, the

second-order differential equation f@¥ is mathematically 1 —1m, —m 0
identical to the quantum square well problem. The simplest —ko —ki/my  kymy O
case, a single flow layer or a single square well, is covered in My = 0 —kimy ki/my kol (AB)
most textbooks on quantum mechani€sn this appendix,
0 -m; —-1m; 1

we solve the eigenvalue equation for two layers, and extend
the solution to an arbitrary number of layers. The boundanand the matrix elements are given oy, =exp(k,L/2),
conditions are written in matrix form, and we show that theywherek; is the wave number in layer 1 and is the width
can be built from two types of submatrices; those that repreef layer 1. That is, deM; = D(ll), which is shown explicitly
sent the dispersion relation of each layer separately, anigh Egs. (6) and (8). Equivalently, for the second layer,
those that represent the coupling between the layers. In thigetM,=D{Y. The upper and lower off-diagonal submatri-
way, the dispersion relation for any number of flow layersces,CY andC", couple the two layers,

(or square wellscan be determined, with the coupling ex-

plicitly shown. 0 0 00
Equation(2) can be rewritten as U 0 0 0O
Ca=| _ . aikod , (A7)
92 ) kee'™* 0 0 O
(?? +k (X) ¢(X):O! (Al) I eikoA 0 0 O
wherek?(x) is the effective potential. In each region listed in 0 0 0 eikod
Eq. (4), the potentialg is expressed as a sum of both right- 0 0 0 kigikod
going and left-going plane waves with arbitrary amplitudes CZ - 0 (A8)
(except for the outermost regions, where only outgoing plane 0 00 0
waves satisfy the correct boundary conditionsxas+ ) 0 0 O 0
pre7 o whereA is the separation between the two layers. The trans-
gtk 4+ ek formation matrix T can also be written in the matrix-of-
L (A2) matrices format, as a product of two matrices
peetikx 4+ ek o I O . T, O (A9)
@8e+ikox O T12 O T2 '

where Imk,>0. Because the system is uniform in both the wherel and O are the 4<4 unit matrix and zero matrix,
andz directions,¢ must be continuous across each bound-espectively,

ary. Integrating Eq(A1) across each boundary results in the et ikod 0 0 0

condition thatd¢/dx must also be continuous. These are the ke

usual gquantum-mechanical boundary conditions that deter- To— 0 e 2 0 0 (A10)
mine the amplitudes;. The two matching conditions ap- 12 0 0 etkd o |’

plied to each of the four boundaries result in a set of eight 0 0 0
coupled equations for the amplitude of which can be writ-
ten as a matrix equation

e~ ikod

d=A+L,/2+L,/2 is the distance between the centers of
each layer, and

M- =0, (A3) )

where o={¢1,02,¢3,04,¢5,96,¢7,95} andM is the ma- et 0 0 0

trix of coefficients. Setting the determinant M equal to 0 10 0

zero gives the dispersion relation Ti= 0 0 1 0 (A11)
detM= D<122) =0. (A4) 0 0 0 e ikoti2

The form of D{2) is shown explicitly in Eq.(5). The matrix ~ The submatrixT,, effectively translates laye2 a distance
M is neither symmetrical nor does it display the coupling—d along thex axis so that it is centered on the origin, and
clearly. However, it can be written to explicitly show the the submatrixT, effectively translates the boundaries of
symmetry and coupling between the two layers clearly if itlayer 1 to the originland T, makes a similar translation for
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layer 2. These translations eliminate the phase factors assdand gaps®'® The different band gaps result in a one-
ciated with the fact that the boundaries between the differendimensional, piecewise-constant electric potential. The tech-

regions are not located at the origin, and p_/Uin a symmet-
ric form. Because def=exp{—iko(L,+L,)}, the determi-

nique that is used to solve for the eigenvalues and eigenfunc-
tions of such a potential structure is the transfer matrix

nants ofM andM differ only by an unimportant phase factor, Method;™ which eyaluatgs a product o2 matrices(one
and either may be used to calculate the dispersion relation. F €ach boundaby the dispersion relation is then found by

calculation of the eigenfunctions, however, requires the usP

of M, because it includes the proper phase factors.

The generalization dfl to an arbitrary number of layers
is simple because the inherent symmetry is clear and the

coupling is explicit. The result foN layers is a block tridi-
agonal matrix

™, Cy, O o ]
Ci, M, C§, .. 0
MN=| O Ci, Mz .. o |, (A12
. . CZJNil
O 0 O Ci ., My

where A; is the separation between the layeand layeri
+ 1. The transformation matriX has a similar extension to
N layers

|l O .. O][T, O ... O
O Ty ... O o T,

TN=| | | g . (A13
: : @] : .. 0 ( )
O O O T |O O O Ty

whereTy; is a 4X4 submatrix that translates layeto the

origin, T; is a 4x4 submatrix that translates the boundaries,,

of layerj to the origin, and andO are the 4x 4 identity and
zero submatrices defined earlier. The dimensiond®f and

TN are thus X 4N, and the equation d&1™ =0 is the
dispersion relation foN layers of widthL; and separation

A,. From the system of equations containedMd¥). T(N)

-¢=0, and a knowledge of the eigenvalues, the eigenfunc

tions may be calculated.

rcing the incoming waves to have zero amplitd&é’ It is

a different, albeit equivalent, approach to that taken in this
appendix(The boundary condition ofi¢/ 9x must be modi-
fied in semiconductors, however, depending on the specific
excitation of interest®) The specific case of two, asymmetric
wells has also been investigat&dalthough in semiconduc-
tors the interest is in the tunneling of electrons between the
two wells.
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