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Ion Bernstein waves driven by two transverse flow layers
M. A. Reynoldsa) and G. Ganguli
Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375

~Received 9 February 1998; accepted 16 April 1998!

The interaction between two narrow layers ofE3B flow is investigated, along with their stability
properties. The mode frequencies, growth rates, and eigenfunctions are calculated. It is found that
the instability due to a single layer is robust to the inclusion of a second layer. Specifically, when
the separation between the layers is on the order of the ion-cyclotron radius, there is strong coupling
between the two layers and the second layer is destabilizing. In addition, when the flow velocities
are in opposite directions a wide variety of modes is possible, including near-zero-frequency modes,
resulting in broadband structure in both the frequency spectrum and the wave number spectrum.
These results may have implications for the understanding of the auroral ionosphere, where such
spatial structure in the transverse electric field is often observed. ©1998 American Institute of
Physics.@S1070-664X~98!03807-5#

I. INTRODUCTION

Nonuniformities in the direction perpendicular to the
magnetic field are routinely observed in a variety of plasmas.
The complicated structure in the density, current, and electric
field of the auroral ionospheric environment1 is one striking
example. For many years, observations of the auroral
ionosphere2–4 have revealed fine scale structure in the trans-
verse electric field, in which the overall effect is one of
strong velocity shear, resembling many individualE3B flow
layers in close proximity. In addition, laboratory
experiments5,6 designed to model the space environment
have been able to externally drive electric fields of this type.
The linear stability properties of waves in such nonuniform
media are difficult to predicta priori: each situation must be
studied individually, and evaluated on a case-by-case basis.
In this paper, we study the effects that structured, nonuni-
form E3B flow has on the stability of ion Bernstein waves.
Specifically, we investigate the case of two layers~whose
thicknessL is on the order of the ion-cyclotron radius,L
*r i! with finite E3B flow, immersed in a background
plasma that is stationary.

It has been shown, both theoretically7,8 and experi-
mentally,9,10 that a single localized flow layer~with its asso-
ciated velocity shear! can be unstable to ion-cyclotron-like
waves. In the frame of the background plasma the electro-
static wave energy density is negative within the flow layer
and positive outside the flow layer, which means that a loss
of wave energy from the layer can sustain wave growth.7 The
waves that grow must propagate energy outward across the
boundary between the layer and the background plasma.
Analysis of single-particle orbits11 in the field structure gen-
erated by the instability shows that ions fall through a poten-
tial drop and give up this energy to the wave, similar to the
physical mechanism of a magnetron. In this paper, we gen-
eralize the single-layer results to include the new effects due

to the addition of a second layer. Because an examination of
the field structure is crucial to the understanding of the phys-
ics of this instability, we use the eigenfunctions of the wave
potential in a given flow structure as an important pedagogi-
cal tool. Of course, the eigenfunctions may not be orthogonal
if the system exhibits transient behavior, and other methods
must be used to deduce the linear response.12 This compli-
cation is not considered here.

The eigenvalue equation for ion Bernstein waves in a
nonuniform plasma is derived in Sec. II, the dispersion rela-
tion for our choice of geometry is given in Sec. III, and
relevant results for a single flow layer are described in Sec.
IV. In Secs. V and VI we investigate in detail two types of
structures that are generic in character. The first type, Sec. V,
is characterized by flows in the same direction, with a region
of zero velocity separating the two layers. The second type,
Sec. VI, is characterized by flows in opposite directions with
no separation between the two layers~this approximates a
so-called ‘‘paired electrostatic shock’’2!. Section VII is the
conclusion.

II. ION BERNSTEIN WAVES IN NONUNIFORM
PLASMAS

To obtain electrostatic ion Bernstein waves,13 we make
the usual approximations of low frequency~v!Ve , where
Ve is the electron-cyclotron frequency!, long perpendicular
wavelength~k're!1, wherere is the electron-cyclotron ra-
dius!, and perpendicular propagation~ki[0; finite ki intro-
duces Landau damping, which is ignored here!. In addition,
we assumevpi@V i ~wherevpi and V i are the ion-plasma
and ion-cyclotron frequencies!, which holds for most plas-
mas of interest. This is equivalent to restricting the frequency
regime to well below the lower hybrid frequency,v!v lh .
Under these approximations, and taking magnetic field to be
in the z direction, the electrostatic dispersion relation for a
uniform plasma has the simple form13
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dius, v̄ i5A2Ti /mi is the ion thermal velocity,Gn(b')
5exp(2b')In(b'), andI n is a modified Bessel function. The
solution of Eq.~1! gives the so-called ‘‘pure’’ ion Bernstein
waves.14

When the plasma is nonuniform, an exact solution of the
plasma response requires an integral-differential
formulation.15 To lowest order, however, nonuniformities in
thex direction can be included by expandingD for smallkx ,
and making the substitutionkx→2 i ]/]x. ~Here, we have
assumed that any nonuniformities in they and z directions
are negligible compared with those in thex direction.! The
uniform dispersion relation then becomes a second order dif-
ferential ~eigenvalue! equation

H DU
kx50

2S ]D

]~kx
2! D

kx50

]2

]x2J f~x!50, ~2!

wheref is the electrostatic potential, and the quantities in-
side the braces~D and its derivative! are to be evaluated for
kx50. When the plasma parameters are piecewise constant,
the general solution to Eq.~2! in each region is an exponen-
tial, f(x);exp(6ikx), where
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2/2, G85dG/db, ṽ5v2kyVE(x), and VE(x)5

2 ŷcEx(x)/B. The quantityṽ is the Doppler-shifted fre-
quency due to theE3B flow, and is a function of position in
this case.~In previous work,5–11,15,16the symbolv1 has been
used to denoteṽ.! The quantityv has both a real and imagi-
nary part, which we denotev[v r1 ig, where v r is the
frequency andg is the growth rate.

III. GEOMETRY AND NONLOCAL DISPERSION
RELATION

We consider two layers, labeled layer 1 and layer 2, with
widths L1 andL2 and flow velocitiesV1 andV2 , separated
by a distanceD. TheE3B drift velocity as a function ofx is
specified in five different regions

VE55
0 x,2L1/2

V1 2L1/2,x,L1/2

0 L1/2,x,L1/21D

V2 L1/21D,x,L1/21D1L2

0 L1/21D1L2,x
6 . ~4!

The geometry is sketched in Fig. 1. A piecewise constant
flow velocity is chosen for its simplicity, and because the
instability of interest does not depend explicitly on gradients
in the flow, but does depend on the global nonuniformity.8

The nonlocal dispersion relation for this nonuniform plasma
is obtained by matching bothf and ]f/]x across the four
boundaries between the five regions~see the Appendix for
details and a generalization to an arbitrary number of layers!.
The two-layer dispersion relation can be written as a product
of two single-layer dispersion relations plus a coupling term

D12
~2![D1

~1!D2
~1!1C1250. ~5!

The superscript indicates the number of layers and the sub-
scripts label each layer. That is,

D1
~1![~k02k1!2eik1L12~k01k1!2e2 ik1L150 ~6!

is the nonlocal dispersion relation for layer 1~i.e., assuming
V250!, D2

(1) is identical in form toD1
(1) with k1→k2 and

L1→L2 , and

C1254e2ik0D~k0
22k1

2!~k0
22k2

2!sin~k1L1!sin~k2L2! ~7!

is the coupling between the two layers. The wave numbers in
thex direction in the flow layers,k1 andk2 , are given by Eq.
~3! with ṽ replaced byv2kyV1 and v2kyV2 , while the
wave number in the regions with no flow,k0 , is given by Eq.
~3! with ṽ replaced byv.

The dispersion relation for a single layer,D1
(1)50, can

be factored into terms responsible for definite parity~even
and odd! eigenfunctions

D1
~1!54@k0 cos~k1L1/2!2 ik1 sin~k1L1/2!#

3$ ik0 sin~k1L1/2!2k1 cos~k1L1/2!%50, ~8!

where the eigenfunctions associated with the eigenvalues of
the term in square brackets are even inx, while those asso-
ciated with the term in curly braces are odd. No such factor-
ing is possible in the more general case considered here be-
cause the flows do not exhibit any inherent symmetry inx.

The result in Eq.~8! is equivalent to the solution of the
time-independent Schro¨dinger equation for a finite square
well, and Eqs.~5!–~7! show the extension from a single
square well to two square wells. We have expressed the re-
sult in a form that separates the interaction between the two
flow layers~or square wells! from the dynamics of a single
flow layer. Equation~7! shows that the coupling between the
two layers is proportional to exp(22D Im k0) which means
that for largeD the layers are uncoupled~of course, the fact

FIG. 1. Geometry of the structured flow. The two layers have widthsL1 and
L2 , flow velocitiesV1 andV2 , and are separated by a distanceD.
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that Imk0 is positive is required by the boundary condition
that f→0 for uxu→`!. In this case, the modes of one layer
are normal modes of the system regardless of the other layer.
If the layers are identical, then there is the possibility that
some roots are degenerate. WhenD&1/(2 Imk0) ~the case
we wish to investigate here!, the coupling between the layers
is strong, and the normal modes are global in nature and
incorporate the physics of the interaction of the two layers.

IV. SINGLE-LAYER RESULTS OF RELEVANCE

When V250 ~i.e., k25k0!, the dispersion relation is
given by Eq.~8! and the resulting stability properties have
been discussed elsewhere in detail~see Ganguli8 and refer-
ences therein!. We describe briefly only the results relevant
to the two-layer case. This includes a detailed look at the
properties of the eigenfunctions, which form the basis for our
interpretation of the physics in the two-layer case.

We choose a coherent mode,7 where the growth rate is
positive only in a narrow range ofb. ~The ion-cyclotron
radiusr i is held constant, so that a variation ofb signifies a
variation ofky .! Figure 2 showsg as a function ofb for a
single layer, with flow velocityV153v̄ i . ~The frequency,
v r , is not shown as it remains approximately equal to 1.6V i

over the entire range ofb.! Two different widths are shown,
L153r i and L156r i . This illustrates the property that as
the width increases, the growth rate decreases. Physically,
the reason is that the velocity shear is weaker. In the next
section it will be shown that when the separation between
two layers is small, they can either be strongly coupled or act
as essentially a single, wider, layer~with a corresponding
reduction in the growth rate!, depending on the wave num-
ber.

A heuristic derivation of the growth rate, which consid-
ers only energy flow, results in15

g52
vgU0

L1U1
, ~9!

wherevg is the group velocity in thex direction across the
boundaries of the layer (x56L1/2), U0 is the electrostatic
wave energy density in the region of no flow outside the
layer, andU1 is the electrostatic wave energy density inside

the layer. WhenU1 is negative,U0 is positive, andvg is
positive, which is the case here, there is the possibility for
instability. ~Positive vg means the group velocity points
away from the layer.!

This energy flow can be inferred from Fig. 3 where the
eigenfunctionsf(x) for a single layer of widthL153r i are
shown for three different values ofb ~corresponding to the
diamonds in Fig. 2!. Wheng is maximum@Fig. 3~b!#, energy
propagates away from the layer in both directions. This is the
physical mechanism by which the instability grows: because
the electrostatic wave energy density is negative within the
layer and positive outside the layer, the eigenfunction must
be a wave whose group velocity propagates energy across
the boundary between the layer and the background plasma
in order for the free energy to be released. The direction of
energy flow is determined from Fig. 3~b! and the fact that
these waves are backward waves. In Fig. 3~b!, the phase of
Ref lags that of Imf by 90°, which means that the phase
velocity points toward the layer. In addition, for frequencies
below the lower hybrid frequency, ion Bernstein waves are
backward waves for all values ofk' . ~This can be seen from
Fig. 1 of Ref. 14 by noting thatdv/dk',0.! These two facts
together indicate that the group velocity points away from
the layer, thus satisfying the criteria for instability given in
Eq. ~9!. When the eigenfunction is either localized within the
layer @Fig. 3~a!# or evanescent outside the layer@Fig. 3~c!#
the growth rate is reduced. Only the ‘‘ground state’’ eigen-
functions ~and eigenvalues! are shown, because they typi-
cally have the largest growth rates. Similar to the quantum
square well problem, however, there are other ‘‘bound
states,’’ and they exhibit the same physical behavior just
described for the ground state.

This physical behavior exists for two layers as well, but
the possibility of coupling between the layers, and the result-
ing interference between the eigenfunctions associated with

FIG. 2. Growth rate for a single layer as a function of wave numberb for
two different thicknesses,L153r i ~solid! and L156r i ~dotted!. The flow

velocities areV153v̄ i andV250. The three diamonds~a!–~c! mark eigen-
values for which the eigenfunctions are shown in Fig. 3.

FIG. 3. Eigenfunctions for a single layer of thicknessL153r i and flow

velocity V153v̄ i for three different values ofb: ~a! b50.52559, ~b! b
50.575, ~c! b50.62336. The dashed line is Ref, the dot-dashed line is
Im f, and the solid line isufu. The two vertical lines delineate the edges of
the layer, and the dotted line in~b! marks the zero value. In~c!, Ref andufu
are virtually identical.
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each layer, results in new effects with corresponding quali-
tative and quantitative changes in the mode structure and
growth rates.

V. IDENTICAL LAYERS

We now turn to the first of the two generic structure
types: two identical layers. Identical layers are chosen be-
cause we want to focus on the physics of the coupling
mechanism, and the behavior of the coupling termC12. This
can be illustrated most easily whenD1

(1) andD2
(1) are iden-

tical. When the two layers are widely separated, the normal
modes will be similar to those of a single layer, with similar
stability properties. As the separation decreases, however,
the coupling termC12 plays a nontrivial role.

There are two parameters which quantify the strength
and behavior of the interaction between the two layers. The
first parameter is a measure of the strength of the coupling,

d[2D Im k0 . ~10!

The coupling term,C12, is proportional to exp(2d), so that
for large d ~large separations! the coupling is exponentially
small. In addition,d/2 is the number ofe-foldings of the
amplitude of the eigenfunction between the layers. In the
region of no flow between the layers, the eigenfunction,f, is
proportional to exp(2x Im k0). Evaluating this for a separa-
tion of x5D results in exp(2d/2). This is consistent with the
physical idea thatC12 should have the same dependence on
separation asff* , a measure of the energy. The second
parameter is the number of wavelengths that fit between the
layers

N[
D

lx
5

D Re k0

2p
, ~11!

wherelx is the wavelength in thex direction in the region
between the layers.

To illustrate how these parameters determine the inter-
action, we chooseL15L253r i andV15V253v̄ i . Figure 4
shows the growth rate in the transition between large and
small separation, forb50.575. Also shown is the magnitude
of the coupling termC12, which decays exponentially with
increasing separationD. Three regimes can be distinguished.

For large separations,D*20r i , the coupling term is expo-
nentially small, and in this limit a root of the single layer
D1

(1) is also a~degenerate! root of D12
(2) . The physics of this

limit was discussed in the previous section. For intermediate
separations, 5r i&D&20r i , the growth rate oscillates with
D. Finally, for small separations,D&5r i , C12 becomes ap-
preciable, the coupling between the two layers is strongest,
and the growth rate approaches twice its single layer value.
~As in the single-layer case,v r'1.6V i for all values ofD.!
This behavior can be understood by examining the eigen-
functions.

The eigenfunctions for three separations (D/r i

520,7.5,1.2) are shown in Fig. 5. For large separations, Fig.
5~a!, each layer drives waves locally, independent of the
other layer. For this case,d'13, which means that the two
layers are effectively uncoupled. Of course, any noise in the
plasma will destroy the slight coupling that exists theoreti-
cally for these large separations. As the separation decreases,
the coupling increases, and the growth rate changes from its
single-layer value and oscillates withD. These oscillations
are due to an integral number of wavelengths fitting in the
potential well between the layers, as given by the parameter
N. This can be seen from Fig. 6, which showsN as a func-
tion of layer separation.~For comparison, the growth rate is
also shown.! WhenN is an integer, the growth rate is near a
maximum. This is similar to the effect thatN has on the
transmission coefficient through two quantum square wells.
The growth rate is not exactly a maximum, however, because
the effective potential well between the layers is not infinite.
The eigenfunction for the separation whereN'1 is shown in
Fig. 5~b!. WhenD&5r i , the waves generated by each layer
constructively interfere, as shown in Fig. 5~c!, and the eigen-
function is largest in the region between the two layers. This
is because the waves propagating away from each layer are
reflected multiple times in the region between the layers. In

FIG. 4. Growth rate~solid line! and coupling term~dotted line! for two
identical layers as a function of separationD. The thicknesses areL15L2

53r i , the flow velocities areV15V253v̄ i , and the wave number isb
50.575. The three diamonds~a!–~c! mark eigenvalues for which the eigen-
functions are shown in Fig. 5.

FIG. 5. Eigenfunctions for two layers of thicknessL15L253r i and flow

velocities V15V253v̄ i for three different values ofD: ~a! D520r i , ~b!
D57.5r i , ~c! D51.2r i . The dashed line is Ref, the dot-dashed line is
Im f, and the solid line isufu, andb50.575. The vertical lines delineate the
edges of the layers, and the dotted lines mark the zero values.
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this regime, there is no simple formula~e.g., an integral
number of wavelengths! which will predict the separation
with maximumg.

This coupling can be investigated in more detail by look-
ing at the behavior ofg ~and the eigenfunctions! as a func-
tion of b. Figure 7 showsg(b) for two values of the sepa-
ration (D/r i50.12,1.2). The growth rates for a single layer
of widths L153r i and L156r i are shown for comparison.
Figure 8 shows the eigenfunctions corresponding to the three
diamonds in Fig. 7. For case~a!, the two layers are essen-
tially uncoupled: the growth rate is close to the single-layer
value, the eigenfunction is localized,d'4.5 andN'1.5,
which means that the spatial damping in thex direction is
strong enough for the distance between the layers to be ef-
fectively large. For case~c!, the two close layers behave as a
single wide layer: the growth rate is low, the eigenfunction is
evanescent outside the layers,d'0.4, andN'0.06, which is
small enough that the eigenfunction is not affected by the
narrow potential well between the two layers. In the interme-
diate regime of enhanced growth rate, where the eigenfunc-
tion is shown in Fig. 8~b!, the coupling is very strong and the
system behaves neither like two separate single narrow lay-
ers nor one single wide layer.

Maximum Growth Rate

The results so far have been presented for specific values
of b. In the asymptotic limit, however, the plasma will re-
spond most strongly to the wave number component with the
largest growth rate. It is important, therefore, to maximizeg
overb. In general, one would maximize overki as well, but
we are restricting this study to long parallel wavelengths
only. Of course, the saturated nonlinear response is not nec-
essarily strongest at this wavelength. In addition, the allowed
wave numbers in laboratory experiments9,10 have physical
restrictions via boundary conditions that affect the observed
response. For these reasons, a comparison with any experi-
ment must take into account the configuration of that experi-
ment. It is not possible to prove conclusively that a global
maximum has been found, but it is possible to locate local
maxima over parameter space. In the present case, a single
branch of the dispersion relation often has more than one
locally ~in b! maximum growth rate, as can be seen in the
dashed line of Fig. 7. Each of these local maxima typically
have different properties, as evidenced by their eigenfunc-
tions ~see, for example, Fig. 8!. Figure 9 shows the locally
maximum growth rate,gmax, as a function of separation,
where each maximum is depicted with a different line style.
Figure 10 shows the value ofb for each local maximum,bm ,
with the line styles corresponding to those in Fig. 9. The
solid line is the mode with the strongest coupling~that is,
where the eigenvalue is influenced byC12!; it also has the
largest growth rate for this branch of the dispersion relation.
The dotted and dashed lines represent modes that are pertur-
bations of the single-layer dispersion~due to the variation of
N!. The single, wide layer behavior, shown as a thick solid

FIG. 6. Number of wavelengthsN that fit between the layers~solid line!, for

L15L253r i , V15V253v̄ i , andb50.575. Also shown is the growth rate
~dashed line!. The dotted lines indicate the values of the separation for
which an integral number of wavelengths fit between the layers. The squares
indicate the growth rate for these separations.

FIG. 7. Growth rate for two identical layers as a function ofb, for two
values of the separationD/r i50.12 ~dashed!, 1.2 ~solid!. For comparison,
the dotted lines show the growth rates of a single layer of widthsL153r i

andL156r i ~see Fig. 2!. The three diamonds~a!–~c! mark eigenvalues for
which the eigenfunctions are shown in Fig. 8.

FIG. 8. Eigenfunctions for two layers of thicknessL15L253r i and flow

velocitiesV15V253v̄ i separated by a distanceD51.2r i for three different
values ofb: ~a! b50.527,~b! b50.575,~c! b50.62582. The dashed line is
Ref, the dot-dashed line is Imf, and the solid line isufu. The vertical lines
delineate the edges of the layers, and the dotted lines in~b! and~c! mark the
zero values.
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line marked by an arrow~with a close-up shown in the inset!,
only exists as a local maximum for extremely small values of
the separation.

VI. OPPOSITELY DIRECTED FLOWS

The physics elucidated above suggests a second generic
type of structure, that of oppositely directed flows. WhenV1

is large enough, the wave energy density in layer 1 can be
negative, leading to instability through coupling with the
positive wave energy density outside the layer. This coupling
also occurs ifV2 is allowed to be negative, forcing layer 2 to
act as an energy sink, rather than an energy source. This type
of profile, two adjacent flow layers with oppositely directed
velocities, is commonly seen in the auroral ionosphere and is
called a paired electrostatic shock.2 Most importantly, the
dispersion relation of this type of structure has many local
maxima with widely varying frequencies and wave numbers,
which can physically manifest itself as a broad spectrum.

We investigate the case where layer 1 has the same pa-
rameters as before,V153v̄ i andL153r i . The second layer
is adjacent to the first,D50, and has the same width,L2

5L1 , but has a flow velocity in the opposite direction,V2

,0. In this configuration, the growth rate can be a multiply

peaked function ofb, so that many local maxima exist. This
situation is shown in Fig. 11, where the growth rate forV2

521.8v̄ i has three local maxima. All three of these roots
correspond to the ground state eigenfunction. There also ex-
ist local maxima for other bound states, but for clarity we
focus only on the ground state. As in the case of identical
layers, the behavior of the maximum growth rates is the most
physically interesting. Figures 12–14 show the locally maxi-
mized growth rategmax, frequencyv r , andbm for the four
fastest growing roots, wherebm is the value ofb for which
g5gmax. Figure 15 shows the eigenfunctions of three of
these roots forV2522.85v̄ i .

In Figs. 12–14, the solid lines represent the mode that is
morphologically similar to the single-layer case~i.e., they are
single-layer roots perturbed by the second layer!. Its associ-
ated bm is approximately 0.58~compare with Fig. 2!, its
frequency is approximately 1.6V i , and its growth rate is
only slightly reduced from the single-layer case. Figure 15~a!
shows the eigenfunction for this root, which exhibits the fol-
lowing behavior. To the left of layer 1,x,2L1/2, the wave
propagates. To the right of layer 2,x.L21L1/2, the wave
propagates but its amplitude is small because it had to tunnel

FIG. 9. Growth rate, maximized overb, for two identical layers as a func-
tion of separationD. The thicknesses areL15L253r i and the flow veloci-

ties areV15V253v̄ i . The different line styles, solid, thick solid, dotted,
and dashed, represent different local maxima. The wide layer maximum, the
thick solid line, is marked with an arrow, and a close-up is shown in the
inset.

FIG. 10. Maximum value ofb of four different local maxima for two iden-
tical layers as a function of separationD. The thicknesses areL15L2

53r i and the flow velocities areV15V253v̄ i . The different line styles
correspond to the growth rates shown in Fig. 9.

FIG. 11. Growth rate for oppositely directed flows as a function ofb,
corresponding to ground state eigenfunctions. The solid line is the single-
layer mode~layer 1! perturbed by layer 2, while the dashed and dotted lines
are new modes. The line styles correspond to Figs. 12–14. The parameters

areV153v̄ i , V2521.8v̄ i , L15L253r i , andD50.

FIG. 12. Growth rates of four different local maxima for oppositely directed
flows as a function ofV2 . The solid line is the single-layer mode~layer 1!
perturbed by layer 2, while the dashed, dotted, and dot-dashed lines are new

modes. The parameters areV153v̄ i , L15L253r i , and D50. The three
diamonds~a!–~c! mark eigenvalues for which the eigenfunctions are shown
in Fig. 15.
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through layer 2 where the wave energy density is positive,
which forces the eigenfunction to be evanescent. The effect
of the presence of layer 2, with negativeV2 , on this mode is
minimal because the energy is still allowed to leave layer 1
~either by propagation on the left or absorption on the right!,
as required for a positive growth rate.

The other three roots~indicated by the dotted, dashed,
and dot-dashed lines! are quite different in character and
have no counterpart in the single-layer case. They have two
properties that distinguish them from the single-layer case.
First, they all exhibit the trend of decreasingv r , decreasing
gmax, and decreasingbm as uV2u increases~these quantities
are all relatively constant for the single-layer case!. In fact,
for uV2u approximately equal toV1 the frequency becomes
extremely low, approachingv r→0. Second, the eigenfunc-
tions are not propagating waves, but are evanescent struc-
tures@see Figs. 15~b!–15~c!#. The flow profile thus modifies
the usual ion Bernstein waves, which are coherent and nar-
row band, into a broadband~even static! response. At the
same time, many modes become unstable, creating the pos-
sibility of both frequency and wavenumber spectra that are
quite broad.

VII. CONCLUSION

Structure in the perpendicular flow profile of a plasma,
in the form of layers flowing in the same direction or in
opposite directions, enriches its instability properties. Pro-
files similar to those investigated here are observed, for ex-
ample, in the auroral ionosphere.

Two important conclusions follow from this work. First,
instabilities due to a nonuniform velocity are quite robust to
the inclusion of fine structure in the flow profile. In fact, the
fine structure can even be destabilizing~i.e., when two layers
are close and the coupling is strong!. We do not expect this
conclusion to be altered qualitatively if further structure
~three or more layers, for example! is added to the flow pro-
file, although a determination of the quantitative aspects of
the interaction require numerical analysis. Second, when op-
positely directed flows exist, extremely low-frequency waves
become unstable, with associated evanescent field structures.
This quasistatic response is similar to that which is observed
in the auroral ionosphere.2 In addition to the possibility of
low frequencies, many modes become unstable, which could
result in a broad frequency spectrum forv&vci and a broad
wave number spectrum fork'r i&1.

The two generic velocity profiles investigated here were
chosen for their similarity to profiles observed by sounding
rockets and satellites.1–4 For this reason, these results are
intended to shed light on the current understanding of the
process of wave generation in the auroral ionosphere.
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APPENDIX: DISPERSION RELATION

When the flow velocity is piecewise constant, the
second-order differential equation forf is mathematically
identical to the quantum square well problem. The simplest
case, a single flow layer or a single square well, is covered in
most textbooks on quantum mechanics.17 In this appendix,
we solve the eigenvalue equation for two layers, and extend
the solution to an arbitrary number of layers. The boundary
conditions are written in matrix form, and we show that they
can be built from two types of submatrices; those that repre-
sent the dispersion relation of each layer separately, and
those that represent the coupling between the layers. In this
way, the dispersion relation for any number of flow layers
~or square wells! can be determined, with the coupling ex-
plicitly shown.

Equation~2! can be rewritten as

H ]2

]x2 1k2~x!J f~x!50, ~A1!

wherek2(x) is the effective potential. In each region listed in
Eq. ~4!, the potentialf is expressed as a sum of both right-
going and left-going plane waves with arbitrary amplitudes
~except for the outermost regions, where only outgoing plane
waves satisfy the correct boundary conditions asx→6`!

f55
w1e2 ik0x

w2e1 ik1x 1 w3e2 ik1x

w4e1 ik0x 1 w5e2 ik0x

w6e1 ik2x 1 w7e2 ik2x

w8e1 ik0x

6 , ~A2!

where Imk0.0. Because the system is uniform in both they
and z directions,f must be continuous across each bound-
ary. Integrating Eq.~A1! across each boundary results in the
condition that]f/]x must also be continuous. These are the
usual quantum-mechanical boundary conditions that deter-
mine the amplitudesw i . The two matching conditions ap-
plied to each of the four boundaries result in a set of eight
coupled equations for the amplitude off, which can be writ-
ten as a matrix equation

M•w50, ~A3!

wherew5$w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7 ,w8% and M is the ma-
trix of coefficients. Setting the determinant ofM equal to
zero gives the dispersion relation

det M5D12
~2!50. ~A4!

The form ofD12
(2) is shown explicitly in Eq.~5!. The matrix

M is neither symmetrical nor does it display the coupling
clearly. However, it can be written to explicitly show the
symmetry and coupling between the two layers clearly if it

first is transformed by a matrixT ~shown below!, which
eliminates unimportant phase factors, and then is written as a
232 matrix of 434 submatrices. This gives a new matrixM̄

M̄[M•T5FM1 CD
U

CD
L M2

G , ~A5!

where M1 is the 434 matrix which gives the single-layer
dispersion relation for layer 1,

M15F 1 21/m1 2m1 0

2k0 2k1 /m1 k1m1 0

0 2k1m1 k1 /m1 k0

0 2m1 21/m1 1

G , ~A6!

and the matrix elements are given bym15exp(ik1L1/2),
wherek1 is the wave number in layer 1 andL1 is the width
of layer 1. That is, detM15D1

(1) , which is shown explicitly
in Eqs. ~6! and ~8!. Equivalently, for the second layer,
detM25D2

(1) . The upper and lower off-diagonal submatri-
ces,CU andCL, couple the two layers,

CD
U5F 0 0 0 0

0 0 0 0

2k0eik0D 0 0 0

eik0D 0 0 0

G , ~A7!

CD
L 5F 0 0 0 eik0D

0 0 0 k0eik0D

0 0 0 0

0 0 0 0

G , ~A8!

whereD is the separation between the two layers. The trans-
formation matrix T can also be written in the matrix-of-
matrices format, as a product of two matrices

T5F I O

O T12
G•FT1 O

O T2
G , ~A9!

where I and O are the 434 unit matrix and zero matrix,
respectively,

T125F e1 ik0d 0 0 0

0 e2 ik2d 0 0

0 0 e1 ik2d 0

0 0 0 e2 ik0d

G , ~A10!

d5D1L1/21L2/2 is the distance between the centers of
each layer, and

T15F e2 ik0L1/2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2 ik0L1/2

G . ~A11!

The submatrixT12 effectively translates layer 2 a distance
2d along thex axis so that it is centered on the origin, and
the submatrixT1 effectively translates the boundaries of
layer 1 to the origin~andT2 makes a similar translation for
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layer 2!. These translations eliminate the phase factors asso-
ciated with the fact that the boundaries between the different
regions are not located at the origin, and putM̄ in a symmet-
ric form. Because detT5exp$2ik0(L11L2)%, the determi-
nants ofM andM̄ differ only by an unimportant phase factor,
and either may be used to calculate the dispersion relation. A
calculation of the eigenfunctions, however, requires the use
of M, because it includes the proper phase factors.

The generalization ofM̄ to an arbitrary number of layers
is simple because the inherent symmetry is clear and the
coupling is explicit. The result forN layers is a block tridi-
agonal matrix

M̄~N!53
M1 CD1

U O ... O

CD1

L M2 CD2

U
... O

O CD2

L M3 ... O

] ] ] �
CDN21

U

O O O CDN21

L MN

4 , ~A12!

whereD i is the separation between the layeri and layeri
11. The transformation matrixT has a similar extension to
N layers

T~N!5F I O ... O

O T12 ... O

] ] � O

O O O T1N

G •F T1 O ... O

O T2 ... O

] ] � O

O O O TN

G , ~A13!

whereT1i is a 434 submatrix that translates layeri to the
origin, Tj is a 434 submatrix that translates the boundaries
of layer j to the origin, andI andO are the 434 identity and
zero submatrices defined earlier. The dimensions ofM̄(N) and
T(N) are thus 4N34N, and the equation detM̄(N)50 is the
dispersion relation forN layers of widthLi and separation
D i . From the system of equations contained inM̄(N)

•T(N)

•w50, and a knowledge of the eigenvalues, the eigenfunc-
tions may be calculated.

Interest in the multiple square well problem has also
recently surged in the condensed matter community due to
advances in manufacturing semiconductor heterostructures,
which are layers of semiconductor materials with different

band gaps.18,19 The different band gaps result in a one-
dimensional, piecewise-constant electric potential. The tech-
nique that is used to solve for the eigenvalues and eigenfunc-
tions of such a potential structure is the transfer matrix
method,20 which evaluates a product of 232 matrices~one
for each boundary!; the dispersion relation is then found by
forcing the incoming waves to have zero amplitude.18,19 It is
a different, albeit equivalent, approach to that taken in this
appendix.~The boundary condition on]f/]x must be modi-
fied in semiconductors, however, depending on the specific
excitation of interest.20! The specific case of two, asymmetric
wells has also been investigated,21 although in semiconduc-
tors the interest is in the tunneling of electrons between the
two wells.
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