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IMPROVED FEEDBACK 
MECHANISMS OF HYDRAULICS 

SANDBOX SIMULATOR
Dr. Karen Johnson and Martin Hebel

Aviation Technologies – Southern Illinois University



Hydraulics Sandbox
■ Developed by the presenters

■ Allows simulating the build of a hydraulics system with 
standard components

■ The software checks for valid and invalid connections

■ Hopefully will be beneficial in students’ understanding



Quick Use Guide
■ Download from:

www.selmaware.com/sandbox
PC & Linux installers, other options for MacOS

■ Drag components to build area

■ Click a port to connect hose - Right-click to cancel a hose

■ Right-Click a port to delete a hose

■ A Component must be disconnected to drag

■ Drag components to trash to delete

■ Turn on switch to check connection validity - Counter will update each time 
turned on





Implementation
■ Hydraulic Systems and Landing Gear Course (16 weeks)

– Section 1 (n=17) - concurrent sandbox
– Section 2 (n=17) - terminal sandbox

■ Both sections given the same list of components each week to create 
their system
– Submitted screenshots of final build with timestamps and 

attempts
■ Unit tests (4 plus final exam)

– Drawing (on paper) a schematic with given list of components
– MCQs related to component interactions within a system

■ General and system specific



Findings
■ No statistically significant results

■ Only (very) minor differences in actual numbers of right/wrong on 
assessments
– Terminal group did slightly better on both schematics and MCQ

■ Overall more attempts made (weekly) by the concurrent group
– Started over rather than using the trash bin?

■ Overall more time logged (weekly) by the concurrent group
– More time going back to fix errors along the way?

■ Chalk this up to a pilot study of the software



THEORY OF CODE 
OPERATION



Hydraulics Sandbox Code
■ Installers available for Windows and Linux.

www.selmaware.com/sandbox
The installers add an updated that can be used to check if a new version is 
available.

■ A zip of the code is available under MacOS distribution – can be used on all 
platforms:

■ Developed using the Processing 3 Java environment, which is free.

■ Directions on the page explain how to make your own .exe build – open and export, 
done. Modify if you desire! Please do not publicly distribute.

■ This is required for local MacOS distribution on flash drives as the exe did not pass 
Apple’s Notarization checks for download use.



Component Objects
■ There is a single component object.

■ All the various components are created at load with a finite
number of each.

■ At creation of each, they are indexed in a certain range, such as the 
variable displacement pumps are 10 – 14. The also are assigned an 
image and component type, along with size information.

for(i=10; i<15;i++)            // create 5 variable pumps, #3

component[i] = new  Components(350,30,100,i,3, "Variable Displacement Pump.png");



Port Objects
■ Each component can have up to 4 connection ports.
■ When placed in the build area, ports are added based on the 

Component ID.
■ Each port number is indexed based on the index of the component:

component index x 4 + 0
component index x 4 + 1
component index x 4 + 2
component index x 4 + 3

■ For the variable displacement pump (index 10), the ports will be 40, 
41, 42 and 43 (if all 4 had been used).

■ This allows quick identification of components from the port index 
number. 



Hose Objects
■ When a hose is placed, the beginning and end port index 

numbers are assigned to it.

■ This allows easy identification of the component indexes the 
hose is connected to (40/4 = component index 10) and 
which ports by resolving 40, 41, 42, 43 to 0, 1, 2, 3.

■ Having the component index, that component object can be 
polled to determine its type.



Connection Verification Rules
■ Being able to resolve the port number and the component type, the rules 

check for 4 rule sets by checking each hose in sequence:

– Is there a valid connection?
– Does it connect to itself some how?
– Is there an invalid connection via tees?
– Is there a valve/actuator agreement?

for (int i=0;(i < numHoses); i++)              // go through each hose used
{
connCount = 0;
if (hose[i].visible()) {                  // if visible

finalResult = checkHoses(i);                             // check for proper connections
if (finalResult)  finalResult = test2Self(i);            // go ensure it doesn't connect to itself
if (finalResult)  finalResult = checkBadTeeConnections(i);    // go run through not-allowed connection list
if (finalResult)  finalResult = valves2Actuators(i);    // check valve/actuator agreement for both hoses
setHose(i, finalResult);

}
}



Valid Connection Rules
■ A valid connection rule checks component type and port to 

another component type and port for each hose.

if (testHose(i,res,1,constDispPump,0))                                          return true;

if (testHose(i,res,1,varDispPump,1))                                     return true;  

if (testHose(i,pressReg,2,closedCenterValve,0))                            return true; 

if (testHose(i,pressReg,2,closedCenterValve,1))                             return true;



Invalid Connection Rules
■ While a hose may check ok, a tee from it may form an invalid 

connection.

■ Some invalid connections are checked to provide a feedback message 
to the user when they place the pointer over the connection.

■ The port is not checked in all cases, just the component types.

if (testCompHose(i,res,actuator)) { 
hoseMsg[i][0]="This connection would not supply pressure to the 

actuator"; 
return false; 

} 



Example Feedback



Tee Checks
■ While a single hose connection may be good, hoses from 

the tees, and subsequent tees and their hoses need to 
checked for validity.

■ This is done with recursive calls to trace a path through 
multiple tees.



Return Lines
■ Hoses are checked to see if they connect to the reservoir 

return and displayed in dark green.

if (result){
if (testHose(i,res,3))  // in return line, make dark green

hose[i].finish(color(0,128,0));
else

hose[i].finish(color(0,255,0));    // good, normal green
}
else 

hose[i].finish(color(253,0,0));      // bad, red



Enabling Checking
■ When the toggle switch is off, hoses 

are not checked and will remain blue.

■ When turned on, hoses are checked, 
and the counter is increased to allow 
verifying during a quiz situation.

While on, any subsequent hoses 
placed will be checked.



Summary
■ Final use notes

– There is NO saving/opening builds.

– Do NOT press the escape key - It will close.

– To start a new build, close and re-open or it may become 
sluggish and the parts bin may empty.

■ A Windows and Linux installer is available. Mac versions need to 
be ‘Exported’ using the source code for local manual 
distribution.

■ Bugs may still exist depending on what the student does but is 
effective at helping them understand a hydraulics system build 
we hope.
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