
National Training Aircraft Symposium (NTAS) 2022 - Bridging the Gap

Improved Feedback Mechanisms of the Hydraulics Sandbox Improved Feedback Mechanisms of the Hydraulics Sandbox

Simulator Simulator

Karen J. Johnson
SIUC, ksulliva@siu.edu

Martin Hebel
Southern Illinois University Carbondale, mhebel@siu.edu

Follow this and additional works at: https://commons.erau.edu/ntas

 Part of the Aviation and Space Education Commons, Curriculum and Instruction Commons,

Educational Technology Commons, and the Maintenance Technology Commons

Johnson, Karen J. and Hebel, Martin, "Improved Feedback Mechanisms of the Hydraulics Sandbox
Simulator" (2023). National Training Aircraft Symposium (NTAS). 8.
https://commons.erau.edu/ntas/2022/presentation/8

This is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted
for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly
Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/ntas
https://commons.erau.edu/ntas/2022
https://commons.erau.edu/ntas?utm_source=commons.erau.edu%2Fntas%2F2022%2Fpresentation%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1370?utm_source=commons.erau.edu%2Fntas%2F2022%2Fpresentation%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=commons.erau.edu%2Fntas%2F2022%2Fpresentation%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1415?utm_source=commons.erau.edu%2Fntas%2F2022%2Fpresentation%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1310?utm_source=commons.erau.edu%2Fntas%2F2022%2Fpresentation%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/ntas/2022/presentation/8?utm_source=commons.erau.edu%2Fntas%2F2022%2Fpresentation%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

IMPROVED FEEDBACK
MECHANISMS OF HYDRAULICS

SANDBOX SIMULATOR
Dr. Karen Johnson and Martin Hebel

Aviation Technologies – Southern Illinois University

Hydraulics Sandbox
■ Developed by the presenters

■ Allows simulating the build of a hydraulics system with
standard components

■ The software checks for valid and invalid connections

■ Hopefully will be beneficial in students’ understanding

Quick Use Guide
■ Download from:

www.selmaware.com/sandbox
PC & Linux installers, other options for MacOS

■ Drag components to build area

■ Click a port to connect hose - Right-click to cancel a hose

■ Right-Click a port to delete a hose

■ A Component must be disconnected to drag

■ Drag components to trash to delete

■ Turn on switch to check connection validity - Counter will update each time
turned on

Implementation
■ Hydraulic Systems and Landing Gear Course (16 weeks)

– Section 1 (n=17) - concurrent sandbox
– Section 2 (n=17) - terminal sandbox

■ Both sections given the same list of components each week to create
their system
– Submitted screenshots of final build with timestamps and

attempts
■ Unit tests (4 plus final exam)

– Drawing (on paper) a schematic with given list of components
– MCQs related to component interactions within a system

■ General and system specific

Findings
■ No statistically significant results

■ Only (very) minor differences in actual numbers of right/wrong on
assessments
– Terminal group did slightly better on both schematics and MCQ

■ Overall more attempts made (weekly) by the concurrent group
– Started over rather than using the trash bin?

■ Overall more time logged (weekly) by the concurrent group
– More time going back to fix errors along the way?

■ Chalk this up to a pilot study of the software

THEORY OF CODE
OPERATION

Hydraulics Sandbox Code
■ Installers available for Windows and Linux.

www.selmaware.com/sandbox
The installers add an updated that can be used to check if a new version is
available.

■ A zip of the code is available under MacOS distribution – can be used on all
platforms:

■ Developed using the Processing 3 Java environment, which is free.

■ Directions on the page explain how to make your own .exe build – open and export,
done. Modify if you desire! Please do not publicly distribute.

■ This is required for local MacOS distribution on flash drives as the exe did not pass
Apple’s Notarization checks for download use.

Component Objects
■ There is a single component object.

■ All the various components are created at load with a finite
number of each.

■ At creation of each, they are indexed in a certain range, such as the
variable displacement pumps are 10 – 14. The also are assigned an
image and component type, along with size information.

for(i=10; i<15;i++) // create 5 variable pumps, #3

component[i] = new Components(350,30,100,i,3, "Variable Displacement Pump.png");

Port Objects
■ Each component can have up to 4 connection ports.
■ When placed in the build area, ports are added based on the

Component ID.
■ Each port number is indexed based on the index of the component:

component index x 4 + 0
component index x 4 + 1
component index x 4 + 2
component index x 4 + 3

■ For the variable displacement pump (index 10), the ports will be 40,
41, 42 and 43 (if all 4 had been used).

■ This allows quick identification of components from the port index
number.

Hose Objects
■ When a hose is placed, the beginning and end port index

numbers are assigned to it.

■ This allows easy identification of the component indexes the
hose is connected to (40/4 = component index 10) and
which ports by resolving 40, 41, 42, 43 to 0, 1, 2, 3.

■ Having the component index, that component object can be
polled to determine its type.

Connection Verification Rules
■ Being able to resolve the port number and the component type, the rules

check for 4 rule sets by checking each hose in sequence:

– Is there a valid connection?
– Does it connect to itself some how?
– Is there an invalid connection via tees?
– Is there a valve/actuator agreement?

for (int i=0;(i < numHoses); i++) // go through each hose used
{
connCount = 0;
if (hose[i].visible()) { // if visible

finalResult = checkHoses(i); // check for proper connections
if (finalResult) finalResult = test2Self(i); // go ensure it doesn't connect to itself
if (finalResult) finalResult = checkBadTeeConnections(i); // go run through not-allowed connection list
if (finalResult) finalResult = valves2Actuators(i); // check valve/actuator agreement for both hoses
setHose(i, finalResult);

}
}

Valid Connection Rules
■ A valid connection rule checks component type and port to

another component type and port for each hose.

if (testHose(i,res,1,constDispPump,0)) return true;

if (testHose(i,res,1,varDispPump,1)) return true;

if (testHose(i,pressReg,2,closedCenterValve,0)) return true;

if (testHose(i,pressReg,2,closedCenterValve,1)) return true;

Invalid Connection Rules
■ While a hose may check ok, a tee from it may form an invalid

connection.

■ Some invalid connections are checked to provide a feedback message
to the user when they place the pointer over the connection.

■ The port is not checked in all cases, just the component types.

if (testCompHose(i,res,actuator)) {
hoseMsg[i][0]="This connection would not supply pressure to the

actuator";
return false;

}

Example Feedback

Tee Checks
■ While a single hose connection may be good, hoses from

the tees, and subsequent tees and their hoses need to
checked for validity.

■ This is done with recursive calls to trace a path through
multiple tees.

Return Lines
■ Hoses are checked to see if they connect to the reservoir

return and displayed in dark green.

if (result){
if (testHose(i,res,3)) // in return line, make dark green

hose[i].finish(color(0,128,0));
else

hose[i].finish(color(0,255,0)); // good, normal green
}
else

hose[i].finish(color(253,0,0)); // bad, red

Enabling Checking
■ When the toggle switch is off, hoses

are not checked and will remain blue.

■ When turned on, hoses are checked,
and the counter is increased to allow
verifying during a quiz situation.

While on, any subsequent hoses
placed will be checked.

Summary
■ Final use notes

– There is NO saving/opening builds.

– Do NOT press the escape key - It will close.

– To start a new build, close and re-open or it may become
sluggish and the parts bin may empty.

■ A Windows and Linux installer is available. Mac versions need to
be ‘Exported’ using the source code for local manual
distribution.

■ Bugs may still exist depending on what the student does but is
effective at helping them understand a hydraulics system build
we hope.

	Improved Feedback Mechanisms of the Hydraulics Sandbox Simulator
	

	Improved Feedback Mechanisms of Hydraulics Sandbox Simulator
	Hydraulics Sandbox
	Quick Use Guide
	Slide Number 4
	Implementation
	Findings
	Theory Of Code Operation
	Hydraulics Sandbox Code
	Component Objects
	Port Objects
	Hose Objects
	Connection Verification Rules
	Valid Connection Rules
	Invalid Connection Rules
	Example Feedback
	Tee Checks
	Return Lines
	Enabling Checking
	Summary

