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INTRODUCTION 

Threat background 

As technology advances and computing power continues to become more 

and more miniaturized, commercial small unmanned aerial systems (sUAS), more 

commonly known as “drones,” are becoming more prevalent. These systems are 

defined by the Federal Aviation Administration (FAA) in Title 14 of the Code of 

Federal Regulations (C.F.R.) § 107.3 as a small unmanned aircraft and its 

associated elements. While there are many beneficial uses of sUAS including 

photography, building and tower surveys, search and rescue applications, and 

geospatial uses, there are more nefarious uses that are concerning from a physical 

security standpoint. Drones have been used to attack the Venezuelan president, land 

undetected on the property of the White House, and to deliver crude explosives to 

troops in the Middle East (Gramer, 2017; Grossman, 2018; Wallace & Loffi, 2015). 

Indeed, current physical security protocols are proving too costly or ineffective to 

stop unwanted sUAS activity. 

Within the United States, an alarming number of prisons have reported use 

sUAS to drop contraband to inmates. Reports from Maryland, Ohio, Oklahoma, 

Tennessee, South Carolina, and other states have described the use of these systems 

to air-drop heroin, cell phones, and blades to prisoners (“United States,” 2016). In 

California, 45 “unauthorized drone intrusions” were recorded between July 2017 

and May 2018, some of which were found to have successfully smuggled cell 

phones, drugs, and saw blades putting correctional officers and other inmates at risk 

(Harvey, 2018; Kotowski, 2018). In South Carolina, a drone was used to give 

personnel locations and deliver wire-cutters to assist a convict in a prison break. 

After a manhunt, the criminal was re-apprehended ("Dedrone," 2019). 

Challenge 

Many prisons struggle to implement an effective counter unmanned aerial 

systems (C-UAS) detection program tailored to the typical UAS threat they 

encounter and do not have enough funding for a robust C-UAS protocol (Otte, 

2017). Additionally, even well-funded organizations are finding effective C-UAS 

solutions for fixed sites a challenge, as evidenced by a March 2019 solicitation by 

the Department of Defense admitting, “It has proven difficult to identify and 

mitigate threats,” in regard to its bases, installations, and facilities (NC DefTech, 

2019). Common characteristics of UAS intrusions to prisons include using 

minimally modified commercial off-the-shelf platforms from manufacturers such 

as DJI and Yuneec. This gives threat sUAS some unique characteristics that can be 

used to develop tailored and low-cost solutions that are specific to this problem. 

Modeling and UAS Security 

 Currently, the ability to interdict drones is illegal outside of certain Federal 

entities. Agent-based modeling may serve as an appropriate venue to test counter 
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UAS policies and techniques without legal consequences. Technical data can be 

programmed into a model to represent a geographical space, a sensor, an 

interdiction device, a threat UAS, and a facility footprint. Modeling may be an 

appropriate method to provide data to guide policy revisions involving counter 

UAS operations. Once a model is built, it can be used to validate the security 

procedures of a fixed site, while different scenarios can be used to test and refine 

the security policy and implementation. This data may provide lawmakers with 

insights to make legal revisions necessary for corporations and non-federal entities 

to protect themselves with C-UAS technology currently restricted from use. 

 

Research Question 

Given a hypothetical C-UAS sensor performance data and fixed C-UAS 

interdiction characteristics, what are the effects of a threat unmanned aerial 

vehicle’s speed on detection and interdiction of a C-UAS designed to protect a 40-

acre facility from threat UAS overflights? 

 

LITERATURE REVIEW 

Threat UAS Characteristics 

FAA sUAS guidelines affecting manufacture. 

 Current threats to U.S. prison systems involve ‘low-tech’ offenders using 

commercially available sUAS from manufacturers such as DJI, Yuneec, and Parrot 

and minimally modifying them for the purposes of intrusive overflight and 

contraband smuggling. Manufacturers adhere to FAA regulations regarding the use 

of and operation of sUAS, which gives these threats several common characteristics 

that can be used in detecting, tracking, and integrating interdiction methods. 

Title 14 C.F.R §107.31 requires that a remote pilot is within visual line of 

sight of the sUAS at all times and able to re-direct the aircraft (e-CFR, 2019). 

Typically this will place the remote pilot no further than one mile from the aircraft 

where visual tracking and obstacle avoidance becomes very challenging (UAV 

Coach, 2020). The control channel for DJI offerings, such as the Phantom 4, 

typically send control inputs from the radio control module on the 2.4 GHz 

wavelength, and image transmission is broadcast back from the aircraft to the 

control station over the 5.8 GHz wavelength (DJI, 2019). DJI reports the 

controllable signal strength of this UAS to be just over four miles. A similar Yuneec 

offering, the Typhoon 4K, transmits control inputs over the 2.4 GHz bandwidth and 

sends video signals back to the control system over the 5.8 GHz range as well 

(Yuneec, 2018). This control transmission architecture is not uncommon for 

commercial offerings and may be used to interdict trespassing sUAS. This also 

excludes the possibility of legal autonomous flight and requires that a remote 

controller can control the aircraft, as opposed to the capability of ‘high-tech’ 
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offenders to use pre-programmed GPS waypoints and flight routes for autonomous 

flight. 

Title 14 C.F.R. §107.29 restricts sUAS operation during night hours. While 

the flight performance characteristics are not different at night, most of the control 

systems for commercial sUAS involve visual sensors for flight orientation and 

obstacle navigation. Night flight is therefore difficult without upgrading to 

expensive night visual optics and possible aircraft modifications, which would push 

the offender into the ‘high-tech’ category as well. For the purposes of this paper, 

‘low-tech’ threats will be considered and modeled, as they are the primary sUAS 

threat encountered by prisons. 

Popular sUAS performance characteristics. 

The primary threat and common thread in the reviewed cases of unwanted 

UAS intrusions involving prisons is using commercial-off-the-shelf platforms with 

slight modifications for accepting and jettisoning a payload. The DJI Phantom 4 

Pro is a popular UAS and can fly up to a maximum of 45 mph in ideal atmospheric 

conditions and in a clean configuration with no payload (DJI, 2019). This UAS has 

a retail price of approximately $1,700 and requires an Apple iPhone or iPad to 

operate. Additionally, DJI offers a robust and powerful flight control software that 

is intuitive and ideal for low experience sUAS pilots. This aircraft is consistent with 

the price point, power and specifications of reported prison intrusions and will be 

used as an initial basis from which to model flight behavior (Rubens, 2018).  

C-UAS Sensor Types and Characteristics 

As of December of 2019 a report highlighted that there are 537 C-UAS 

products and systems offered by over 277 different companies (Michel, 2019). The 

products range from detection only, interdiction only, or a mix of both. Detection 

methods include radar, radio-frequency tracking, electro-optical, infrared, acoustic, 

and mixed sensors. No single detection method has proven to be without fault, so 

often integrated systems use a mix of detection sensors. Interdiction methods can 

include radio-frequency jamming, global positioning system (GPS) jamming, 

spoofing, laser, nets, and projectiles (Michel, 2019). Table 1 represents a brief 

summary of UAS detection sensors. 
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Table 1 

Types of Detection Sensors and Descriptions 

Sensor Type Description 

Radar Detects radar signature by emitting radio wave pulses and 

analyzing return energy to determine the range, angle, and 

velocity 

Radio-

Frequency 

Detect UAS presence by scanning commonly used UAS 

bands such as 2.4 GHz and 5.8 GHz, may be able to 

determine location with complex antennas and multiple 

sensor locations 

Electro-Optical Detect UAS based on the visual signature of the UAS aircraft 

Infrared Detect UAS based on the infrared signature emitted by the 

UAS aircraft        

Acoustic Detect changes in sound by using microphones and software 

filters to match data from a database UAS audio signatures 

Note. Descriptions are adapted from Michel (2018, p. 4). 

 For the purposes of this study, the hypothetical sensor used in modeling will 

be largely based on integrated acoustic UAS sensors since there is very limited data 

available with other sensors that can be used for simulation modeling, and this 

sensor type is typically lower in cost than other sensor types. 

Acoustic sensor characteristics. 

Acoustic means of sUAS detection typically rely on microphone arrays that 

are coupled with audio analysis software. Simply stated, a microphone array 

consists of several microphones positioned at a single site with positional offsets 

that allow for bearing and azimuth estimations based on the slight differences 

between the timing and intensity of the sound reaching each microphone. The 

detection range of these systems can be affected by multiple elements such as 

microphone quality and sensitivity, ambient noise, weather conditions, and 

software packages.  

French-German Research Institute of Saint-Louis (ISL) conducted audio 

drone detection testing using four Brüel & Kjaer type 4189 metrological 

microphones (Christnacher et al., 2016). The research team was only able to 

accurately detect (in azimuth and elevation) a customized drone 20 seconds away 

from the sensors when the drone was directly traveling towards the sensor. 

However, the sensor array was able to continuously track the drone for 45 seconds 

when it was flying away. In ISL’s 2016 experiment, the audio sensor array reached 

the longest detection range of up to 300 meters when testing against the DJI 

Phantom 2 at an altitude ranging from 120 to 150 feet. While there is no acoustic 

data specifically on the Phantom 4, the Phantom 2 is a close alternative. 
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Additionally, from data gathered by Guvenc, Koohifar, Singh, Sichitiu, & 

Matolak (2018), the detection range of different acoustic sensors ranges from 20 

meters to 600 meters, mainly depending on drone types and sensor arrangement. 

According to Bernardini et al. (2017), their acoustic detection algorithms have 

accuracy ratings ranging from 0.964 to 0.992 when distinguishing UAS noises from 

different environmental noises. The lowest accuracy being in a crowd and street 

with traffic, while the highest rating was in natural daytime. These algorithms, 

however, do not account for limitations encountered by distance, ambient 

conditions and specifications of microphones. 

The hypothetical sensor characteristics used for this study will be modeled 

largely after acoustic sensors as there is more available operational data for this 

sensor type than others, and it meets the intent for developing a low-cost solution 

for identifying threat sUAS. 

Interdiction Agent Characteristics 

UAS interdiction involves the disruption of the threat sUAS flight path by 

one or more methods, with a goal of threat mitigation or minimizing perceived risk 

from the unwanted activity. Table 2 represents a summary of different interdiction 

methods currently employed (Michel, 2018). It is important to note that currently 

UAS interdiction operations are illegal in the U.S. outside of the Department of 

Defense, Department of Energy, Department of Homeland Security, and 

Department of Justice. 

 

Table 2 

Types of Interdiction Methods Currently Employed 

Sensor Type Description 

Radio Frequency 

(RF) Jamming 

Interrupts the RF link between UAV and operator by 

generating large amounts of RF output. Once the RF link is 

disturbed, the UAV will land or return to the operator. 

GNSS Jamming Interrupts the satellite link used for navigating. Once the 

satellite link is lost, UAV will hover, land, or return to the 

operator. 

Spoof Taking control of the UAV by hijacking the 

communications link 

Kinetic Destroys portions of the airframe with directed energy, 

causing a crash        

Net Entangles the UAV or its rotors 

Projectile Employs ammunition to destroy UAV 

Combination Several C-UAS methods employed – commonly tandem RF 

and GNSS jamming 

Note. Descriptions are adapted from Michel (2018, p. 4) 

5

Cline and Dietz: Agent Based Modeling for a C-UAS Protocol; Prison

Published by Scholarly Commons, 2020



 In 2016, a Michigan Tech research team demonstrated the effectiveness of 

a proof-of-concept anti-UAS net-launcher mounted on what appears to be a DJI 

Matrice 600 (Goodrich, 2016). This team later filed for and received a patent for 

their system which is able to aim the net projectile and carry the intruding UAS to 

a safe location for handling, mitigating human risk due to explosives or other 

potentially hazardous cargo (Aagaah et al., 2018). 

 In 2017, another research team from Purdue University demonstrated the 

effectiveness of a completely autonomous C-UAS detection and interdiction 

system involving a radar tracking system and autonomous hunter drone equipped 

with an ultra-light carbon-framed conical net (Goppert et al., 2017). The net design 

was selected to allow multiple attempts at interdiction of a threat in the event the 

autonomous positional data was too imprecise for a launched-net entanglement. 

The threat UAS was flown at a set altitude over a set path toward a protected object. 

The radar in use was described as a “high-precision” and “military” radar (Goppert 

et al., 2017, pp. 236, 238). This high-fidelity radar would be excellent for proving 

autonomous interdiction is possible but is largely outside of the budget and 

manpower available to prisons and other fixed facilities. Hunter type drone 

characteristics will be modeled for the interdiction agent in this study. 
Prison Characteristics for Modeling Consideration 

Like many other prisons across the country, there have been reports drones 

have been used to smuggle contraband within the security perimeter of the Indiana 

State Prison (J. E. Dietz, personal communication, September 20, 2018). Indiana 

State prison is a level four maximum-security prison located in Michigan City, 

Indiana which houses approximately 2,400 inmates (State of Indiana, 2019). The 

walled area spans 24 acres and the adjacent field is approximately another 18 acres 

(see Figure 1). These dimensions will be used to geographically represent the 

protected facility within the simulation model. 
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Figure 1. Indiana State Prison footprint of approximately 40 acres (Google Maps, 

2020) 

METHOD 

This section discusses the research framework, approach, tools of 

measurement, variables, and assumptions used in this article. 

Research Framework 

 This research paper explores the usefulness of agent-based modeling 

software for adjusting and determining parameters that could lead to a successful 

C-UAS detection system. Simulation modeling software has the unique ability to 

quickly adjust parameters and gather data and should provide insights that should 

transfer over to real-world systems, and bypass current legal restrictions on testing 

and implementation of C-UAS interdiction. Later iterations are intended to refine 

threat, sensor, and system behaviors. This will be done with a goal of identifying 

parameters for recommending system specifications for a comprehensive detection, 

tracking, and interdiction system for common commercially manufactured threats. 

AnyLogic modeling software will be used to replicate the geometric space, threat 

UAS, hypothetical C-UAS sensors, and an interdiction agent. 

 This study is designed to test an abstracted fixed counter unmanned aerial 

system that is designed to prevent overflight of a fixed facility representing an 

abstracted prison or compound. Parameters for agents will be discussed in later 
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sections and are designed to replicate probable integrations of equipment that may 

be purchased for these purposes. Data will be collected for 50 iterations of each 

varying threat speed, while all other C-UAS behaviors remain the same between 

iterations. 

Model Characteristics 

Threat UAS characteristics. 

The DJI Phantom 4 Pro specifications will be used to model the threat 

aircraft characteristics. This UAS is capable of speeds up to 45 mph under ideal 

conditions with no other payload other than the integrated camera on-board. Adding 

a payload will lower the top speed and affect the center of gravity and other flight 

controllability characteristics. The modeled threat UAS was spawned .75 miles 

away from the protected facility outside of sensor detection range, and at the far 

end of feasible line-of-sight tracking (UAV Coach, 2020). The threat UAS was 

flown in a pattern as dictated by 100 “attractors” selected randomly, one after the 

other, as depicted in Figure 2. There were 50 attractors placed evenly within the 

bounds of the protected facility, and an additional 50 attractors spanning the 

remaining space surrounding the facility. The simulation was run with threat speeds 

set at 25, 27.5 30, 32.5, 35, 36, 37.5, and 40 mph to collect sample data in each 

speed category. 

Facility characteristics. 

The simulation model contains a .25 x .25-mile (40 acres) square that will 

be used to indicate the footprint of the protected facility. A ‘failure’ within an 

iteration is defined as the threat UAS overflying the footprint of the protected 

facility, regardless of the duration of overflight. 
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Figure 2. The physical representation of the model space used in the experiment 

  

Hypothetical sensor model characteristics. 

A hypothetical sensor will be used for modeling based on an average of 

performance characteristics of Bernardini et al. (2017) and listed specifications of 

DroneSheild as reported by Birch et al. (2015) for ranging and success probability. 

The hypothetical sensor will be assumed to provide cueing to a higher fidelity 

electro-optical sensor. For the purposes of this study cueing and additional 

functionality will be abstracted into the specifications listed in Table 3. 

 

Table 3  

Hypothetical sensor model parameters and values. 

Sensor Type: Omni-

directional 

Parabolic dish Hypothetical 

Effective Range  150 m / 495 ft 1000 m / 3280 ft 575 m / 1890 ft 

Detection Angle 300° 30° 165° 

Analysis Time 

Frame  

- - 5 second frames 

 SVM Success 

Rate 

- - 96.4% 

Note. Analysis time and success rate derived from works by Bernardini et al. (2017, p. 

63) and range and angle adapted from Birch et al. (2015, p. 27). 

 

 

9

Cline and Dietz: Agent Based Modeling for a C-UAS Protocol; Prison

Published by Scholarly Commons, 2020



Interdiction agent model characteristics. 

The DJI Matrice 600 Pro specifications will be used to model the 

interdiction aircraft characteristics. This UAS is capable of speeds up to 40 mph, 

no wind or excess payload (DJI, 2020). The simulation model will be using this as 

the fixed C-UAS interdiction speed. The model assumes that there will be an 

attached ultra-light net similar to the one used in a 2017 study by Goppert et al., in 

which a conical net and carbon-fiber housing were attached to a similar platform 

for the purposes of entangling threat UAS. The effects on top speed, the center of 

gravity, and other flight controllability characteristics have not been considered 

with the net attached for the purposes of this study. The C-UAS will be placed in 

the center of the protected facility and will track to the threat 10 seconds after the 

sensor detects the threat UAS. This will be the assumed time for cueing from the 

sensor to the interdiction agent. 

 

RESULTS AND ANALYSIS 

The model was built based on an abstracted facility footprint, hypothetical 

C-UAS sensor performance data and fixed C-UAS interdiction characteristics. 

After this framework was established and the agent behaviors set, the only variable 

manipulated in the model for each set of samples collected was the sUAS threat 

speed, which was set at the beginning of each iteration. These individual fixed-

speed simulations were allowed 50 iterations of each run. The runs were 

documented and the threat UAS fixed speed was adjusted for the next set of 

simulations. Eight fixed-speed simulation sets were run, altering the threat UAS 

speed at 25 mph, 27.5 mph, 30 mph, 32.5 mph, 35 mph, 36 mph (added to explore 

the critical failure speed for this hypothetical system), 37.5 mph, and 40 mph and 

recorded each time. The results are recorded in Table 5.  
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Table 5  

Model Simulation Results 

Threat Speed 

(MPH) 

Avg I - D Time 

(s) 

Std. Dev. (s) Overflights Avg 

overflight 

time (s) 

40.0 59.2 30.4 72% 18.2 

37.5 50.8 23.4 54% 14.0 

36.0 48.8 19.2 56% 13.0 

35.0 35.5 9.9 4% 1.5 

32.5  32.0 5.9 0% 0 

30.0  33.9 5.7 0% 0 

27.5 33.0 4.4 0% 0 

25.0 34.6 3.8 0% 0 

Note. I-D Time represents the interdiction time minus the detection time in seconds. 36 

MPH was added to further explore the relationship between speed and system failure. 

 Predictably, the amount of ‘failures’ or overflights of the protected facility 

increase as the threat speed increases. Interestingly, however, the overflights 

increase rapidly between 35 mph and 37.5 mph. Another 50 trials were run to 

determine if there was a linear relationship between the threat speed and failures of 

the system. From 35 mph to 36 mph the overflights increased from 4% to 56% of 

the trials respectively.  

This is interesting in that there is a large jump in system “failures” within a 

very small increase in speed. Subsequent research may be needed to identify the 

critical speed delta between the interdiction agent and the threat UAS to better 

determine the point at which the system's effectiveness is degraded. 

 The data from this experiment suggest that a 5 MPH or greater speed delta 

is required between the expected threat UAS and a hypothetical system designed as 

outlined in this study. Figure 3 displays the large increase in variance present when 

the difference in speed changes from 5 mph to 4 mph to 2.5 mph and 0 mph between 

the threat sUAS and interdiction UAS respectively. 
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Figure 3. Interdiction time - Detection time at Various Speeds 

The distributions in each category are generally right skewed with very 

close lower limits. This is due to the high success rates of the hypothetical C-UAS 

system for threats that follow a straight flight path toward the protected facility. 

Since half of the attractor points were located within the protected facility, this type 

of flight pattern was common. As the threat speed increases, the variance increases, 

as can be seen by larger box areas in the graph for each speed category. The higher 

tail grows drastically larger in the categories that have less than a 5-mph difference 

between the interdiction or ‘hunter’ UAS and the threat UAS. 
 

DISCUSSION 

The purpose of this study was to explore the relationship threat UAS speed 

has on a set C-UAS system that might be typical for a fixed facility such as a 

prison. Additionally, the second goal of this study was to explore the usefulness 

of agent-based modeling software as a future tool for adjusting and determining 

parameters that could ultimately lead to a cost-effective C-UAS detection and 

interdiction system for fixed facilities. Data was gathered that provide insights 

that may apply to real-world systems. 
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This study suggests that there is a critical threat speed in which the variance 

between detection to interdiction times drastically increases along with subsequent 

system failures. The critical threat speed will depend on sensor performance, the 

geographic position of the sensors in relation to the protected facility, and 

interdiction characteristics. The goal of a fixed facility C-UAS system is to mitigate 

the threat, or in this case, prevent overflights of the facility. Agent-based simulation 

modeling may be a useful tool for establishing system parameters when careful 

consideration is applied in replicating the environment, threat, and parts of the 

whole C-UAS system. 

The threat agent was given behavior based on commands to fly to a random 

sequence of attractors around the protected facility with the largest concentration 

within the facility. Further investigation will be conducted prior to future research 

if there are better methods to model this threat behavior. Threat speed was set 

initially at the start of each simulation. Future works may add in a speed variability 

into the behavior of the agent to replicate more real-world threats. The simulation 

took place primarily in a two-dimensional plane. The third dimension was 

replicated with a changing variable that was not fully accounted for within the 

interdiction behavior. Future research will try to integrate the third dimension more 

natively, which will have an added benefit of providing more visually appealing 

simulations. Additionally, although the threat UAS was given semi-random 

behavior based on attractors distributed around the facility, there was only one 

spawn point for the threat UAS, which will likely be addressed in further iterations. 

Sensor data was based on a hypothetical sensor, since there is a general lack 

of real-world performance characteristics of C-UAS sensors. As better data 

becomes available, more realistic sensor data will be modeled in future works. A 

96.4% probability seems rather high for an SVM accuracy rating, and perhaps a 

distance tiered probability would be appropriate for such sensors if data is available. 

Interdiction ‘warm-up’ time may need to be lengthened past ten seconds to 

replicate more real-world conditions. Further investigation will be conducted on 

similar integrated systems as data becomes available. As system complexity 

increases, communication delays due to cueing and data transmission may be added 

into the model logic. 

 

CONCLUSION 

This study suggests that there is a critical threat speed for a hypothetical C-

UAS system in which the variance of possible detection to interdiction sequences 

becomes so great that system failure becomes prevalent. This critical speed will be 

based on the geographic location and layout of the protected facility, the parameters 

of the sensor network, and the interdiction agents that make up the counter 

unmanned aerial system. Additionally, this study suggests that simulation modeling 

may be a useful tool for determining the system parameters required for the desired 
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level of protection (i.e. notification of an overflight vs. prevention of an overflight) 

for a fixed facility, or can alternately suggest the appropriate makeup and placement 

of sensors and interdiction methods from tested and well-documented elements of 

a system. Simulation modeling may also be able to provide data to influence policy 

currently restricting UAS interdiction at the federal level. 
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