
Publications 

1-8-2017 

Numerical Simulation of Acoustic Emission During Crack Growth Numerical Simulation of Acoustic Emission During Crack Growth 

in 3-point Bending Test in 3-point Bending Test 

Mihhail Berezovski 
Embry-Riddle Aeronautical University, berezovm@erau.edu 

Arkadi Berezovski 
Laboratory of Nonlinear Dynamics, Institute of Cybernetics at Tallinn University 

Follow this and additional works at: https://commons.erau.edu/publication 

 Part of the Numerical Analysis and Computation Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Berezovski A, Berezovski M. Numerical simulation of acoustic emission during crack growth in 3-point 
bending test. Struct Control Health Monit. 2017;24:e1996. https://doi.org/10.1002/stc.1996 

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in 
Publications by an authorized administrator of Scholarly Commons. For more information, please contact 
commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=commons.erau.edu%2Fpublication%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


Received: 16 August 2016 Revised: 16 November 2016 Accepted: 8 January 2017

DOI: 10.1002/stc.1996

R E S E A R C H A R T I C L E

Numerical simulation of acoustic emission during crack growth in
3-point bending test

A. Berezovski1 M. Berezovski2

1Laboratory of Nonlinear Dynamics, Institute of

Cybernetics at Tallinn University of Technology,

21 Akadeemia Rd. Tallinn, 12618, Estonia
2Department of Mathematics, Embry-Riddle

Aeronautical University, 600 South Clyde Morris

Blvd. Daytona Beach 32114-3900, FL, USA

Correspondence
A. Berezovski, Laboratory of Nonlinear Dynamics,

Institute of Cybernetics at Tallinn University of

Technology, 21 Akadeemia Rd., Tallinn 12618,

Estonia.

Email: berez@ioc.ee

Funding information
EU through the European Regional Development

Fund Estonian Research Council, Grant/Award

Number: PUT434

Summary
Numerical simulation of acoustic emission by crack propagation in 3-point bending

tests is performed to investigate how the interaction of elastic waves generates a

detectable signal. It is shown that the use of a kinetic relation for the crack tip velocity

combined with a simple crack growth criterion provides the formation of waveforms

similar to those observed in experiments.
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1 INTRODUCTION

Acoustic emission (AE) is widely applied in the structural

health monitoring to detect individual fracture events.[1–3]

One of the main sources of acoustic emission is a crack propa-

gating in a material. Elastic waves radiated due to the moving

crack tip that create a signal, which can be recognized by

detectors. The problem of elastic wave propagation from a

moving source inside a body can be solved numerically, at

least in principle. However, numerical simulations of acoustic

emission do not fully capture the wave phenomena occurring

during dynamic crack propagation.[4] This relates to the com-

plexity in the dynamic crack propagation.[5] In the framework

of the continuum description, a crack path and its tip velocity

are the two problematic issues. Whereas the crack path can be

aligned by boundary conditions, the crack tip velocity should

be determined by a kinetic relation.[6]

To understand the connection between acoustic emission

and crack propagation in more detail, we simulate numeri-

cally the well-known 3-point bending test embedding a simple

model for the crack tip velocity.[7, 8] The fracture in the 3-point

bending test is in the opening mode (Mode 1) of loading, and

the crack path can be assumed as a straight line. Such sim-

plified description of crack propagation is used as a sample

for more complicated situations. The purpose of the paper

is to study the ability of the proposed model to reproduce

the AE signal as the result of the interaction of elastic waves

radiated by the propagating crack. Calculations are performed

by means of the conservative finite-volume wave-propagation

algorithm, which was proposed in previous studies[9, 10] and

modified for the application to front propagation in other

studies.[11–13] The algorithm was successfully applied to wave

propagation simulations in inhomogeneous solids.[14] Here,

the algorithm is specified for the accounting of a moving crack

in two dimensions.

The paper is organised as follows. After a brief explana-

tion of the 3-point bending test in Section 1, the governing

equations of the plane strain elasticity are recalled in Section

2. The method of calculation of the dynamic J-integral is

described in Section 3. Section 4 is devoted to the kinetic rela-

tion for the straight brittle crack. The numerical procedure,

initial and boundary conditions, and material parameters are

presented in Section 5. Results of the numerical simulations

are discussed in the last Section of the paper.

2 3-POINT BENDING TEST

It should be noted that the single edge V-notched beam

(SEVNB) method is the standard method for evaluating the

fracture toughness.[15, 16] In the SEVNB method, the standard

bend specimen is a single edge-notched and fatigue-cracked

beam loaded in 3-point bending with a support span, S,

nominally equal to four times the width, W. The general pro-

portions of the specimen configuration are shown in Figure 1.
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FIGURE 1 Specimen geometry

The basic procedure involves loading a specimen to a

selected displacement level and determining the amount of

crack extension that occurred during loading.[17]

The stress intensity, KI, represents the level of stress at the

tip of the crack and the fracture toughness, and KIc is the

highest value of stress intensity that a material under spe-

cific (plane–strain) conditions can withstand without fracture.

As the stress intensity factor reaches the KIc value, unstable

fracture occurs.

For isotropic, perfectly brittle, linear-elastic materials, the

fracture toughness can be directly related to the J-integral

if the crack extends straight ahead with respect to its orig-

inal orientation. For plane strain under Mode 1 loading

conditions,[6]

J = K2
I

1 − 𝜈2

E
, (1)

where E is the elastic modulus and 𝜈 is Poisson’s ratio.

3 PLANE STRAIN ELASTICITY

Numerical simulation of the crack propagation in the 3-point

bending test is based on the solution of equations of

two-dimensional linear elasticity. Neglecting both geomet-

rical and physical nonlinearities, we can write the bulk

equations of homogeneous linear isotropic elasticity in the

absence of body force as follows[18]:

𝜌
𝜕vi

𝜕t
=

𝜕𝜎ij

𝜕xj
, (2)

𝜕𝜎ij

𝜕t
= 𝜆

𝜕vk

𝜕xk
𝛿ij + 𝜇

(
𝜕vi

𝜕xj
+

𝜕vj

𝜕xi

)
, (3)

where t is the time, xj is the spatial coordinate, vi is the com-

ponent of the velocity vector, 𝜎ij is the Cauchy stress tensor,

𝜌 is the density, and 𝜆 and 𝜇 are the Lamé coefficients.

Consider a sample that is relatively thick along x3 and where

all applied forces are uniform in the x3 direction. Because all

derivatives with respect to x3 vanish, all fields can be viewed

as functions of x1 and x2 only. This situation is called plane

strain. The corresponding displacement component (e.g., the

component u3 in the direction of x3) vanishes, and the others

(u1, u2) are independent of that coordinate x3; that is,

u3 = 0, ui = ui(x1, x2), i = 1, 2. (4)

It follows that the strain tensor components, 𝜖ij, are

𝜖i3 = 0, 𝜖ij =
1

2
(ui,j + uj,i), i, j = 1, 2. (5)

The stress components follow then

𝜎3i = 0, 𝜎33 = E
1 − 2𝜈

(
𝜈

1 + 𝜈
𝜖ii

)
, i = 1, 2, (6)

𝜎ij =
E

1 + 𝜈

(
𝜖ij +

𝜈

1 − 2𝜈
𝜖kk𝛿ij

)
, i, j, k = 1, 2, (7)

where E is Young’s modulus, 𝜈 is Poisson’s ratio, and 𝛿ij is

the unit tensor.

Inversion of Equation 7 yields an expression for the strains

in terms of stresses:

𝜖ij =
1 + 𝜈

E
(
𝜎ij − 𝜈𝜎kk𝛿ij

)
, i, j, k = 1, 2. (8)

To simulate the crack propagation, we need to apply a crite-

rion for crack growth. We use the simple Griffith criterion[19]:

When applied loading is such that

KI ⩾ KIc, (9)

then the crack will grow. The same criterion can be expressed

in terms of the energy release rate (J-integral), because of

relation (Equation 1)

J ⩾ Jc. (10)

The J-integral is path independent, which allows to calculate

it as explained below.

3.1 Dynamic J-integral

The dynamic J-integral for a homogeneous cracked body has

the physical meaning of the energy release rate.[20–22] It can

be expressed in the case of Mode 1 straight crack as follows:

J = lim
Γ→0∫Γ

(
(W + K)𝛿2j − 𝜎ij

𝜕ui

𝜕x2

)
njdΓ. (11)

Here, x2 is the coordinate in the direction of applied load-

ing, and nj is the unit vector normal to an arbitrary contour Γ
pointing outward of the enclosed domain (see Figure 2).

The specific elastic energy stored in the body, W, and

kinetic energy density, K, in a linear elastic medium are

given by

W = 1

2
𝜎ij𝜖ij, K = 1

2
𝜌v2

i . (12)

A domain integral representation of J is more suited for

numerical computation.[23, 24] Following the work of Moran

and Shih,[24] a weighting function q is introduced, which has
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FIGURE 2 Crack tip coordinates and integration contours

a value of unity on the inner contour Γ and zero on the outer

contour Γ0. Within the enclosed area A, q is an arbitrary

smooth function of x1 and x2 with values ranging from zero

to one.

Using the weighting function q, Equation (11) can be

rewritten in the form:

J = lim
Γ→0

(
−∫C

H2jmjq dC + ∫Γ++Γ−
H2jmjq dC

)
, (13)

where C = Γ+Γ++Γ−+Γ0, vector mj denotes the unit vector

normal to C, pointing outward from the enclosed area A, and

H2j = (W + K)𝛿2j − 𝜎ij
𝜕ui

𝜕x2

. (14)

Components of the function H are

H21 = (W + K)𝛿21 − 𝜎i1
𝜕ui

𝜕x2

= −𝜎11
𝜕u1

𝜕x2

− 𝜎21
𝜕u2

𝜕x2

. (15)

H22 = (W + K)𝛿22 − 𝜎i2
𝜕ui

𝜕x2

=

=(1

2
𝜎1j𝜖1j +

1

2
𝜎2j𝜖2j +

1

2
𝜌(v2

1
+ v2

2
)) − 𝜎12

𝜕u1

𝜕x2

−𝜎22
𝜕u2

𝜕x2

=

=(1

2
𝜎11𝜖11+

1

2
𝜎12𝜖12+

1

2
𝜎21𝜖21 +

1

2
𝜎22𝜖22 +

1

2
𝜌(v2

1
+ v2

2
))

− 𝜎12
𝜕u1

𝜕x2

− 𝜎22
𝜕u2

𝜕x2

.

(16)

Applying the divergence theorem, the contour integral in

Equation (13) can be converted into an equivalent domain

form[24]:

J = −∫A

(
H2j

𝜕q
𝜕xj

+
𝜕H2j

𝜕xj
q
)

dA =

= −∫A

(
H21

𝜕q
𝜕x1

+ H22

𝜕q
𝜕x2

+ 𝜕H21

𝜕x1

q + 𝜕H22

𝜕x2

q
)

dA.

(17)

The integral over Γ+ + Γ− vanishes because of traction-free

crack surfaces.

The effect of the choice of a q function on the calculated

J values is not significant.[25] In this paper, a “bell” type q
function is used

q(x1, x2) = exp(−x2
1
∕b − (x2 − a)2∕c). (18)

where a is the position of the crack tip, and b and c are

parameters.

4 VELOCITY OF THE CRACK IN MODE 1

To simulate crack propagation, we need to determine the

crack tip velocity. In the numerical procedure, we can estimate

the velocity at any time step by means of the jump relation

associated with the bulk equation for linear momentum[26, 27]:

VC[𝜌v̄i] + Nj[𝜎̄ij] = 0, (19)

where overbars denote the values averaged over a computa-

tional cell, square brackets denote jumps, and Nj is the normal

to the crack front. The material velocity Vj is connected with

the physical velocity vi by[28]

v̄i = −(𝛿ij +
𝜕ūi

𝜕xj
)Vj. (20)

Inserting the latter relation into former one, we have

VC

[
𝜌(𝛿ij +

𝜕ūi

𝜕xj
)Vj

]
− Nj[𝜎̄ij] = 0. (21)

In the case of a straight crack in Mode 1, the last expression

reduces to

V2
C = 𝜎̄22

𝜌(1 + 𝜖22)
, (22)

where VC is the crack tip velocity and 𝜎22 and 𝜖22 are stress

and strain components in the direction of the crack propaga-

tion, respectively.

These stress and strain components at the crack tip are

not determined due to the square root singularity. As it is

shown,[7] if we apply a local equilibrium approximation for

𝜎22 and linear stress-strain relation for 𝜖22, we will arrive at

the kinetic relation
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V2
C

c2
R

= 𝜎̄22

𝜎̄22 + 𝜌0c2
R

, (23)

with the Rayleigh velocity cR as the limiting crack tip velocity.

Here, 𝜎̄22 is the local equilibrium (averaged) value of the stress

component.

As experiments show,[29] the limiting velocity of the crack

tip is usually significantly less than the Rayleigh speed. This

leads to a generalization of the kinetic relation (Equation 23)

by introducing a limiting crack speed VT

V2
C

V2
T

= 𝜎22

𝜎22 + 𝜌0V2
T

, (24)

but the stress component 𝜎22 at the crack tip is no more

an equilibrium one. To determine its value, we apply an

assumption analogous to that in the case of the phase

boundary[8]

𝜎22 = NfC, (25)

where fC is the driving force acting at the crack tip and N is a

material dependent coefficient.

In the thin strip geometry, the driving force is related to the

J-integral (e.g., Maugin[30])

fC = J
l
, (26)

where l is a scaling factor with dimension of length.

Accordingly, we arrive at the kinetic relation

V2
C

V2
T

=
NJ∕l

NJ∕l + 𝜌0V2
T

= 1 −

(
1

1 + NJ∕𝜌0V2
T l

)
. (27)

The characteristic length l can be related to the process zone

length[31]

l ∼
K2

Ic

𝜎2
f

, (28)

with the critical value of the stress intensity factor KIc and the

applied stress 𝜎f.

The value of the applied stress 𝜎f, in its turn, can be

expressed in terms of the dynamic release rate (Equation 1).

Correspondingly, the kinetic relation (Equation 27) can be

rewritten as (cf. Berezovski and Maugin[7])

V2
C

V2
T

= 1 −
(

1 + M J2

Jc

)−1

, (29)

where the coefficient M depends on the properties of material.

5 NUMERICAL SIMULATION OF CRACK
PROPAGATION

To compute the value of the J-integral by means of

Equations 14–18, we need to know the strain and stress

fields. For this purpose, system of Equations 2 and 3,

specialized to plane strain conditions by Equations 4–8,

is solved numerically by means of the conservative

finite-volume wave-propagation algorithm. The advantages

of the wave-propagation algorithm are its stability up to the

Courant number equal to unity, high-order accuracy, and

energy conservation.[10] It should be noted that discrete ele-

ment method, which is the basis of lattice model simulations

(see Birck et al.,[32] e.g.), provides equivalent results for con-

tinuum dynamic problems, as shown in the work of K. and

W. Liu.[33]

The corresponding two-dimensional computational domain

is shown in Figure 3.

Loading is applied at the middle of the upper boundary.

Initial crack is placed at the middle of the bottom. Bound-

aries are stress free except the left and right ends of the

bottom boundary, which are fixed. Initially, the beam is at

rest yielding zero initial values of wanted fields on all cells.

The solution includes two steps. First, numerical fluxes at

boundaries between cells are computed. Then new averaged

stresses, strains and velocities on all cells are evaluated. Their

values at the boundaries are computed using boundary con-

ditions. The solution procedure is described in detail in the

work of Berezovski et al.[14]

The size of the beam is chosen as follows: length

S = 250 mm, height W = 60 mm, width B = 30 mm. Silica

aerogel is chosen as the material of the beam. Its properties

are extracted from the work of Phalippou et al.[34]: the density

𝜌 is 200 kg/m3), Young’s Modulus E is 6.5 MPa, Poisson’s

ratio is 0.2, and the fracture toughness Kc is 2 KPa-m1/2.

For numerical simulation, the space step Δx is chosen as

1 mm, and the corresponding time step is determined from

the value of the Courant number equal to 1. This gives the

value of the time step as Δt = Δx∕cp. In the case of silica

aerogel cp = 80 m/s, which results in the value of the time step

Δt = 0.510−5 s. The loading is determined by the cross-head

velocity, which constant value is chosen as 0.294 m/s. The

time history of the loading in terms of the normalized stress in

the middle of the upper boundary is presented in Figure 4. The

loading is eliminated at 4,000 time steps to avoid the complete

breaking down of the specimen.

FIGURE 3 Sketch of computational domain
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FIGURE 4 Load time history

FIGURE 5 Time history of the energy release rate

FIGURE 6 Stress field at 60 time steps

FIGURE 7 Wave field at 60 time steps

The value of the J-integral is computed by means of

Equations 14–18 at every time step. If this value overcomes

its critical value, then the crack starts to propagate. The

velocity of the crack propagation is calculated by means
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FIGURE 8 Stress field at 1600 time steps

of Equation 29 with the value of dimensionless coefficient

M = 0.375. A simple procedure for the tracking of the crack

tip is applied. Its virtual displacement is computed for each

time step. We keep the location of the crack tip in the old place

if the sum of its virtual displacements is less than the size of

space step, and change it to one space step forward otherwise.

All the calculations are performed with the Courant number

equal to 1.

6 RESULTS AND DISCUSSION

Time history of the J-integral presented in Figure 5 shows

that initially, its value is increased with time like a square

of time. The crack starts to grow if the critical value of the

J-integral is reached. The crack growth is accompanied by a

sudden decrease of the value of the J-integral due to the stress

relaxation. It means that the crack is not growing until the

value of the J-integral could reach its critical value again. The

process is repeating until 4,000 time steps; after that the load-

ing is eliminated. The similar discontinuous behavior of the

crack in the 3-point bending test is mentioned in the work of

Carpinteri et al.[35]

Typical wave propagation from a point source in the middle

of the upper boundary is observed for first 500 time steps. As

an example, normal stress distribution and wave field (in fact,

the energy distribution) for 60 steps are given in Figures 6

and 7. Then a stabilized wave field is formed and kept for

next 2,300 time steps. The corresponding normal stress dis-

tribution and wave field for 1,600 time steps are shown in

Figures 8 and 9.

The crack starts to grow approximately at 2,815 time steps

that is reflected in the radiation of short waves from the crack

tip. The interaction of these radiated waves with the global

wave field established before is displayed in supplementary

animated picture, which shows the evolution of wave field

from 2,800 till 4,000 time steps as well as the crack propaga-

tion. The growing size of the crack is also clearly seen. Typical

example of normal stress distribution at 4,000 time steps is

given in Figure 10.

Waves emitted by the growing crack due to their interfer-

ence and reflection from boundaries form the wave pattern

FIGURE 9 Wave field at 1600 time steps

FIGURE 10 Stress field at 4000 time steps
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FIGURE 11 Wave field at 4000 time steps

FIGURE 12 Time history of the normal stress at the boundary

shown in Figure 11. In the middle of the side boundaries,

they generate a signal presented in Figure 12 in terms of the

normal stress. This waveform looks qualitatively similar to

those registered in experiments.[36] This means that numerical

simulation of the crack propagation under the 3-point bend-

ing test conditions can predict acoustic emission even in the

framework of a simple macroscopic model for the crack tip

velocity. Despite the simplified representation of the fractur-

ing process, it provides the possibility to calculate the signal

as a result of interaction of elastic waves. The 3-point bend-

ing test is chosen for the numerical simulation because it is

the standard procedure for the determination of the fracture

toughness of materials.

It should be noted that the dissipation of energy due to

the crack propagation is controlled by the velocity of the

crack tip and the driving force (the energy release rate).

The applied numerical procedure of the crack tip track-

ing provides only an estimate of the dissipated energy. A

more accurate discontinuity tracking procedure with the mesh

adaptation is needed for more detailed results. Such a proce-

dure, which is crucial for a nonstraight crack path, is under

development.
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