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Image and Information Fusion Experiments with a Software-Defined Multi-
Spectral Imaging System for Aviation and Marine Sensor Networks 

 
Sam Siewert1, Matthew Demi Vis2, Ryan Claus2 

Embry Riddle Aeronautical University, Prescott, Arizona, 86301, USA 

Ramnarayan Krishnamurthy3, Surjith B. Singh3, Akshay K. Singh4, Shivasankar Gunasekaran4 
Electrical, Computer and Energy Engineering, University of Colorado, Boulder, 80309, USA 

The availability of Internet, line-of-sight and satellite identification and surveillance 
information as well as low-power, low-cost embedded systems-on-a-chip and a wide range 
of visible to long-wave infrared cameras prompted Embry Riddle Aeronautical University 
to collaborate with the University of Alaska Arctic Domain Awareness Center (ADAC) in 
summer 2016 to prototype a camera system we call the SDMSI (Software-Defined Multi-
spectral Imager).  The concept for the camera system from the start has been to build a 
sensor node that is drop-in-place for simple roof, marine, pole-mount, or buoy-mounts.  
After several years of component testing, the integrated SDMSI is now being tested, first on 
a roof-mount at Embry Riddle Prescott.  The roof-mount testing demonstrates simple 
installation for the high spatial, temporal and spectral resolution SDMSI.  The goal is to 
define and develop software and systems technology to complement satellite remote sensing 
and human monitoring of key resources such as drones, aircraft and marine vessels in and 
around airports, roadways, marine ports and other critical infrastructure.  The SDMSI 
was installed at Embry Riddle Prescott in fall 2016 and continuous recording of long-wave 
infrared and visible images have been assessed manually and compared to salient object 
detection to automatically record only frames containing objects of interest (e.g. aircraft 
and drones).  It is imagined that ultimately users of the SDMSI can pair with it via wireless 
to browse salient images.  Further, both ADS-B (Automatic Dependent Surveillance-
Broadcast) and S-AIS (Satellite Automatic Identification System) data are envisioned to be 
used by the SDMSI to form expectations for observing in future tests.  This paper presents 
the preliminary results of several experiments and compares human review with smart 
image processing in terms of the receiver-operator characteristic.  The system design and 
software are open architecture, such that other researchers are encouraged to construct 
and participate in sharing results and networking identical or improved versions of the 
SDMSI for safety, security and drop-in-place scientific image sensor networking. 

                                                           
1 Principal Investigator, Theme 2, SmartCam, Arctic Domain Awareness Ctr., University of Alaska; Assistant 
Professor, Embry Riddle Aeronautical Univ., 3700 Willow Creek Road, Prescott AZ 86301, AIAA Senior member. 
2 Undergraduate Research Asst., Embry Riddle Aeronautical Univ., 3700 Willow Creek Road, Prescott AZ 86301. 
3Master of Science, Electrical Engineering and Computer Engineering, University of Colorado Boulder. 
4Master of Engineering Embedded Systems Engineering Program, University of Colorado Boulder. 
This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award 
Number, DHS-14-ST-061-COE-001A-02.  The views and conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of 
the U.S. Department of Homeland Security. 



Nomenclature 
ADS-B = Automatic Dependent Surveillance – Broadcast, aviation identification and tracking  
AIFC = Arctic Information Fusion Concept, an ADAC sensor network prototype 
CBONS = Community Based Observing Network System, or human field monitoring 
CUDA = Compute Unified Device Architecture, GP-GPU acceleration 
DMM = Digital Multi-Meter, used for current monitoring and power use analysis 
EO/IR = Electro-Optical / Infrared instrumentation 
GPGPU = General Purpose Graphics Processing Unit 
LWIR = Long Wave Infrared, typically 8-15 micron wavelength electromagnetic radiation 
MWIR = Medium Wave Infrared, typically 3-8 micron wavelength electromagnetic radiation 
NAS = National Airspace 
NIR = Near Infrared, typically 0.75-1.4 micron wavelength electromagnetic radiation 
OpenCV = Open Computer Vision, an open source library in C/C++ 
Panchromatic = Visible and part of VNIR electromagnetic radiation in 0.45-0.8 micron range  
PCIe = Peripheral Component Interconnect Express, a device interface bus 
ROC = Receiver operator Characteristic, compares true positive and false positive rates 
S-AIS = Satellite Automatic Identification System – automatic marine tracking service 
SDMSI = Software Defined Multi-Spectral Imager 
SOD = Salient Object Detector 
SWIR = Short Wave Infrared, typically 1.4-3 micron wavelength electromagnetic radiation 
TAP = Trans Alaska Pipeline 
UAS = Unoccupied Aerial System 
USB3 = Universal Serial Bus, Revision 3, operating at 5 gigabits per second (625MB/sec) 
USCG = US Coast Guard 
VNIR  = Visible and Near Infrared, typically 04.4-1 micron wavelength range 
 

Introduction 
The purpose of the research presented in this paper is to evaluate the hypothesis that pole-mount 
cameras on buoys, buildings or towers, and marine vessels can improve situational awareness for 
the agencies and organizations that manage campuses, ports, airports and other critical 
infrastructure where drone, aircraft and marine vessels co-operate compared to use of satellite 
remote sensing and human monitoring.  The assertion is that a multi-spectral imaging system 
defined by software providing concurrent visible and infrared image collection and processing 
can also be defined and improved through software upgrades over time to perform better than 
security camera continuous monitoring or occasional satellite imaging.  Finally, that the result 
will be better spatial, temporal, and spectral resolution observing of key areas of interest in 
regions that are hard to monitor such as Alaska and the Arctic compared to current methods 
employed.  This hypothesis has been initially tested at Embry Riddle by monitoring shared 
airspace traffic including drones, aircraft and wildlife to test whether the concept of a smart 
SDMSI might also have value for aerial surveys and surveillance as well as marine 
environments.  The SDMSI system design that has been prototyped and built and tested in 
Arizona is shown in Figure 1 below.  The camera system includes a Tegra K1 SoC (4 processor 



cores and 192 vector co-processor cores), wireless 802.11, Ethernet wired, USB3, a PCIe card 
interface, and is able to support 2 USB3 visible cameras and between one and four analog 
cameras including long-wave infrared.  As such, the hardware is a system composed of sub-
systems that can be upgraded and the features and function of the SDMSI are totally defined by 
the software and capabilities of the components in terms of resolution, optics, and frame rates, 
spectral and dynamic range.   

Figure 1. – SDMSI Test Configuration 

 

The system allows for hardware, firmware and software to be open systems, based on embedded 
Linux running on the processor and emphasis is on the image transforms and salient object 
detectors that can be run in real-time with power efficiency to support advanced monitoring and 
observing modes.  The power analysis leading to the selection of a GP-GPU co-processor for the 
SDMSI is presented in detail in previous work [1] and in general the system has a power budget 
of 20 Watts maximum.   The SDMSI system was mounted for testing on the roof of the Embry 
Riddle Prescott campus and remotely upgraded and accessed with continuous recording of 
images to compare to intelligent image selection tests.  In the future, the project plans to pursue 
additional installations of SDMSI systems in other geographical locations such as Florida, 
Alaska, and Colorado.  Three main experiments completed and presented in this paper are: 1) 
sky monitoring of overflying aircraft, 2) sky monitoring of drone operations in shared airspace, 
and 3) monitoring of avian wildlife activity.  The goals include acquisition and storage of images 



of interest that are unexpected based on criteria such as targets of interest (aircraft not reporting 
on ADS-B and drones), animal activity for animal hazards and false positives (insects and birds).  
Some testing was also completed at marine ports, but only to assess basic feasibility of detection 
and tracking of these objects of interest in addition to the airborne objects of interest.  The 
eventual criteria for object of interest image collection require both information fusion and 
sensor and image fusion for success.  Performance results collected from experiments to date 
include ROC (receiver operator characteristic) analysis based on human review of the continuous 
image data (taken as truth based on multiple human frame-by-frame assessments) and 
comparison to several salient object detector algorithms. 

Information Fusion 

Information fusion is simple in concept, but requires constant monitoring of aggregated ADS-B 
information for example to provide expectation for aircraft that should be in view as well as 
unexpected aircraft detected (services such as flightradar24.com provide this information in real-
time) [26].  The same information fusion can be used in marine environments with S-AIS, but 
based on the experimental locations; this was not validated at this time since most of the aerial 
objects observed did not appear on flightradar24 at all and in the future a line-of-sight ADS-B 
receiver will be used for compliant drone and aviation testing.  For remote installations on buoys 
the SDMSI would require line-of-sight ADS-B or satellite ADS-B, which is true as well for 
marine AIS.  The marine environment feasibility results collected to date show promise, as 
depicted in Figure 2, where for example in marine environments, the use of visible and long-
wave infrared images can provide information such as engine and exhaust configuration, which 
can be compared to database information for S-AIS.  Most marine vessels already report and use 
S-AIS whereas small aircraft (and drones operating below 400 feet) most often do not yet use 
ADS-B (compliance is required by January 1, 2020). 

Figure 2. – Example of Marine Vessel Observation in Valdez Alaska of S-AIS reporting Vessels 

 



Note in Figure 2, we see not only the obvious fishing vessel in 10-14 micron LWIR (Long Wave 
Infrared), but also the engines and exhaust system of the Supertanker at the TAP (Trans Alaska 
Pipeline), which is more evident with a narrower field of view as shown in Figure 3, but still 
obscured by fog.  With image fusion, the thermally hot pixels in the LWIR image can be overlaid 
on the visible image in a single image with proper image registration and resolution matching. 

Figure 3. – Supertanker detected by LWIR in Figure 2, partially visible with narrow field of view 

 

In general, the concept of information fusion for aircraft and marine vessel situational awareness 
with the SMSI used in a larger sensor network is shown in Figure 4. 

Figure 4. – Integration of the SDMSI into AIFC After Field Trials and Experiments 

 



Overall, the goal for information fusion is simply to observe what is expected, but also to note 
any targets of specific type (marine vessels) that are unexpected based upon saliency metrics for 
that target type including shape [14], motion, color and contrast, thermal signature and behavior.  
The marine examples shown in this extended abstract were tested using a prototype of the 
SDMSI on a tripod.  The shared airspace aviation results were collected with a semi-permanent 
roof-top drop-in-place installation at Embry Riddle Aeronautical University Prescott, with 
similar goals, but with skyward observations in visible and 10-14 micron long-wave infrared 
over days to weeks of time during fall 2016. 

Image Fusion of Multi-Detector, Multi-Spectral Data 

While salient object detection can be performed by the SDMSI in each band (visible and 
infrared), another option is to process fused images.  A long term goal of the project is to 
determine whether concurrent processing in different bands or fusion and processing of a single 
stream of fused images provides better detection.  Image fusion requires spatial registration 
[3][4][5][7], matching of resolution through pyramidal up-conversion and/or down-conversion at 
a common aspect ratio and finally blending of pixels if a single fused image is desired rather than 
side-by-side comparison.  Part of the challenge of performing image fusion in real-time is 
processing and power required, but based on previous work, we have shown this is quite possible 
for a system operating well below 10 to 20 Watts of total power continuously up to 30 Hz [1].  
Furthermore, based on early work, we have determined that this does not require custom 
hardware [2].  The value of image fusion, into a single blended image, is reduction in storage and 
bandwidth required for salient images.  Figure 4 shows a tidal glacier with both visible and long-
wave images, both which indicate presence of melt-water on the rocks, but with pixel-level 
fusion can be enhanced. 

Figure 5. – Visible and LWIR Images of Tidal Glacier and Meltwater 

 



The use of LWIR and visible extends the spectral resolution at a common spatial and pixel 
resolution with much better temporal resolution than occasionally over flights by satellite remote 
sensing for field monitoring of geological locations of interest. 

The mathematical and algorithmic methods for co-registration of images from fixed mount 
cameras (that don’t share a common bore-sight) and pixel-level fusion are well established [8].  
However, use for a range of targets of interest for the experiments planned can also benefit from 
specifics of the targets of interest, requiring additional image analysis in real-time. 

Image Analysis 

Image analysis for saliency and to determine whether targets that are either expected or 
unexpected might pose a threat or may be going through significant change requires more 
advanced and intelligent computer vision such as segmentation, identification of components of 
foreground targets and behavior.  For example, a Moose in Alaska is a significant threat to 
human safety and to motorist safety and the animal can not only be recognized by shape, but by a 
skeletal transform which can also indicate behavior as sown in Figure 6. 

Figure 6. – Skeletanization of a Moose Crossing Roadway 

 
 

Saliency of foreground targets can range from simplistic motion triggered capture to much more 
complex threat analysis that involves machine learning, for example of animal gate and postures 
which indicated aggressive behavior [9][10][11][12][13].  Once the camera systems are in place, 
a wide range of saliency metrics will be evaluated by using OpenCV algorithms along with 
CUDA accelerated transforms to compare methods.  Numerous saliency map and salient object 



detector algorithms can be used with the SDMSI, but one of the goals for research beyond the 
basic system design and analysis methods outlined here is to test hypothesis for which 
characteristics can best help classify flying objects for example.  A summary of potentially 
distinguishing characteristics is enumerated in Table 1 as an outline for future investigation 
based on SDMSI use. 

 
Table 1. – Hypothesized Saliency Characteristics for Aerial Objects of Interest 

 Object      
Characteristic Insect Aircraft Drone Birds Ground 

Clutter 
Clouds and 
Atmospheric 
Variations 

Shape X X  X  X 
Motion and 
Behavior 

X X X X  X 

Color, Contrast 
and Texture 

 X    X 

Physical 
Properties 
(electromagnetic 
reflection, 
absorption, 
emission) 

  X  X  

Audio signatures  X X    
Thermal and 
radiometric 
infrared 
signature 

  X  X  

RADAR/LIDAR 
cross section 

 X   X X 

ADS-B or 
Flightradar24 
tracking 
information 

 X     

 
The long-term goal for the SDMSI is to use a variety of passive and active sensing modalities 
along with any information already known about objects such as cooperative aircraft that report 
their position to increase probability of correct classification of each objected detected and 
segmented.  Overall the SDMSI is envisioned to eventually be able to detect objects, classify 
them, track them and ideally identify them if possible by correlating to information sources such 
as ADS-B for compliant aircraft and drones, but also to log all unexpected air traffic in the NAS 
(National Airspace).  The use of EO/IR instruments similar to the SDMSI have been shown to be 
one of the most effective ways to detect and track UAS drones [27].  Using active LIDAR and 
RADAR along with passive observing, it is imagined that the SDMSI can provide processing to 



assess safety issues (e.g. birds near civil aviation activity, drones within geo-fenced localities, 
and drones in the vicinity of people and buildings).  Security and safety logs along with select 
imaging are imagined to be available for selective downlink to tablets or smart phones by users 
of the system.  The SDMSI can in fact be integrated into the Cloud for uplink as well as accessed 
point-to-point (paired with) over 802.11 and/or Bluetooth Low Energy. 

 
For human monitoring, location of individuals, such as the trespassers shown in Figure 7 on a 
USCG facility caught in field testing.  Trespassing is most often detected through motion, but for 
example the distinction of human trespassers compared to wildlife activity is a more intelligent 
form or image saliency and additional cues such as audio can be helpful.  The acceleration 
provided by GP-GPU at the transform layer is likely to be critical to provide real-time skeletal 
transformation, shape saliency and other more advanced metrics to distinguish wildlife from 
human activity. 
 
The results from the three basic planned experiments (aviation monitoring, drone monitoring and 
aerial wildlife) have been analyzed to support or refute the basic hypothesis that a low-cost drop-
in-place SDMSI can add value to overall situational awareness when integrated into a network.  
Likewise, limitations and characterization of spatial, temporal and spectral resolution has been 
shown to be improved locally compared to other existing options such as satellite remote 
sensing, human patrol, or continuous capture security cameras systems operating in more limited 
spectral ranges. 

 
Figure 7. – Trespassers Detected by Audio Cues and LWIR Motion 

 
 

 
Experiments with Aircraft and Drone Detection 

Following feasibility testing in marine environments, the SDMIS was prototyped and tested on 
the roof of Embry Riddle Aeronautical University during the fall semester of 2016.  Two tests 
were conducted including aircraft and drone detection, with aerial wildlife detection as an 



unavoidable by-product of the environment.  The aircraft detection experiment was based on a 
common motion based detection algorithm that used number of pixels changed, maximum 
deviation of those pixels, and a threshold for that change to trigger positive detection – this 
simple salient object detector was used as a compare-to baseline for other salient object 
detectors.  The SDMSI was prototyped for these experiments using a weather resistant NEMA 
(National Electrical Manufacturers Association) enclosure, two visible cameras, one FLIR LWIR 
camera, and an embedded Linux system for data acquisition and real-time display.  Figure 8 
shows the based camera physical design. 

Figure 8. – SDMSI Prototype Physical Design Used in Aircraft and Drone Detection 
Experiments 

   

Analysis and Results 

ROC (Receiver Operator Characteristic) has been used for RADAR sensitivity and detection 
performance analysis [17, 18].  The SDMSI makes use of EO/IR (Electro-Optical / Infrared) 
sensing, which is passive compared to RADAR, but the fundamental sensitivity analysis and 
performance using an ROC is possible by adjusting algorithmic thresholds as sensitivity.  The 
analysis presented in this paper considers every frame collected during tests.  In order to provide 
ROC analysis of the data, the frames were also graded as P (positive), N (negative) or B (bug) by 
human reviewers.  Several reviewers performance independent grading of the images frame by 
frame and agreement was within 93.68% or better for a total of 28773 frames reviewed from the 
two tests (disagreement of only 75 frames for the entire corpus) [21].  A rapid preview tool with 
simple buttons to classify each and every frame as P, N, or B was used to automate the human 
assessment used as a truth model.  This process was validated and is intended to form a standard 
method for analyzing and comparing candidate salient object detectors, machine learning for 
detection and classification (an ROC is a simple two class classifier), which will be further 
developed as the project progresses.  Using this human truth model, the sensitivity of the motion 
detector was then adjusted up and down to produce the ROC in Figure 9.  In this paper we 
present the results for our baseline motion detector and the BinWang14 saliency map generator 



which we modified to first do background elimination and to use our motion detector with 
thresholds to trigger positive identification for objects of interest. 

Figure 9. – Receiver Operator Characteristic for Aircraft Observed by SDMSI 

 

Figure 9 shows that simple motion triggered detection of aircraft results in detection better than 
random (the dashed diagonal shown on the ROC), but to detect more than 60% of all passing 
aircraft, the false positive rate with a sensitive threshold configuration is almost 30%.  This same 
simple motion detector was also tested with flights of a DJI Inspire drone to determine 
detectability compared to aircraft.  Figure 10 shows and ROC for this drone test. 
 

Figure 10. – Reciever Operator Characteristic for DJI Drone Observed by SDMSI 
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In both cases, the ROC is better than random and has generally positive detection, but with 
higher false positives as sensitivity is increased and not much better than 50% true positive 
detection for the drone.  Since motion detect is the most widely deployed and used security 
method for image selection for display and storage, we felt this was a good compare-to baseline 
for all proposed new methods of salient object detection and more advanced object classification.  
Our team implemented several other salient object detectors including a color and contrast 
histogram methods [22, 25], super-pixel [23] and the BinWang14 found as an example in 
OpenCV [19].  Presently the only advanced method of salient object detection we have been able 
to make produce comparative results is BinWang14.  Salient object detectors are sensitive to 
parameters and thresholds and often segment images to form saliency maps rather than detecting 
specific objects of interest.  While we have not found a SOD that is better than our baseline, we 
present what we found using our modified BinWang14 SOD as an example of our methodology 
for comparing detectors to be used in our aviation and marine domain which includes significant 
challenge to minimize false positive rates in an ROC. 
 
One biggest challenge with EO/IR detection methods, which will also be an issue for the 
SDMSI, is false positives triggered by other flying objects which require more than just motion 
characteristics to distinguish.  These false positives could either be filtered (rejected) or perhaps 
correctly classified in a multi-object-of-interest scheme.  For example, during the SDMSI tests, 
many insects and birds were detected and were not readily distinguishable from drones or aircraft 
with simple motion detection.  Figure 11 shows insects, which were easily distinguished by 
human review based upon shape, flight trajectory, and behavior.  Shape and motion behavior are 
saliency metrics that can be codified and used to enhance detection and classification to 
distinguish insects form aircraft and drones [20, 24]. 

 
Figure 11. – Insects Observed by LWIR band with SDMSI 

 
 



Likewise, numerous birds and flocks of bird were observed during testing as shown in Figure 12, 
where a single large hawk (or similar bird) was observed. 
 

Figure 12. – Bird Observed by LWIR band with SDMSI 
 

 
 
At this stage of SDMSI development, visible images were tested along with 10-14 micron 
LWIR, but not yet fused.  Rather both were tested with the same object detection algorithms.  
For example, drone detection was evaluated using both LWIR and visible images in one 
combined test as shown in Figure 13. 
 

Figure 13. – DJI Inspire Drone Observed by LWIR and Visible band with SDMSI 
 

 
 



Figure 14 shows one of the many aircraft detected by simple motion based detection during the 
two experiments completed. 
 

Figure 14. – Light Aircraft Observed by LWIR with SDMSI and Marked Positive 

 
 
The work presented here has established methods of analysis using ROC for our group so we can 
compare basic motion detection to shape, behavior, color/contrast/texture, physical characteristic 
salient object detectors to each other and in hybrid (combined) configurations.  For example, the 
video frames collected in the two experiments were re-played and evaluated using the 
BinWangApr2014 salient object detector [19].  The BingWang14 SOD (Salient Object Detector) 
is a motion based detector similar to our simple binary threshold detector with statistical 
significance thresholds, but it is described as having superior saliency segmentation.  We use 
BinWang14 preceded by background elimination and with the saliency map output processed by 
our basic motion detector.   
 
The goal was to see if we could improve ROC performance.  So far with our limited results with 
just one alternative SOD, we have not been able to show improvement.  For follow-on work we 
plan to test more candidate SODs and to potentially construct novel methods that account for 
multiple salient characteristics such as combined shape, behavior, thermal signature, audio cues 
and color/contrast.  Based on our preliminary investigation reported here it seems that the main 
limitation of most SODs is that they focus on just one characteristic.   
 
Our negative result with BinWang14 seems to indicate that in fact improved algorithms for 
saliency mapping by one characteristic method does not lead to improvement in detection 
performance.  The negative result therefore appears to support our hypothesis that multi-modal 
sensing and multi-characteristic salient object detection is required.  As such, in future work we 
plan to combine SODs into hybrid algorithms that make use of first principle characteristics such 
as those enumerated in Table 1, or to make use of machine learning methods to extract more rich 
components for detection with higher dimensionality.  Figure 15 shows the resulting ROC for the 
same aircraft video frames processed and summarized by our motion detect algorithm in Figure 
9.  It is possible that we have not appropriately used the BinWang14 saliency map with our 
method of detection, but it does not look promising that a single characteristic approach based on 
motion alone will provide significant improvement over our simple baseline method. 
 



Figure 14. – ROC for Aircraft Observed by SDMSI and Processed using Modified 
BinWang14 Saliency Segmentation 

 

 
 
Interestingly the BinWang14 saliency map reduced ROC performance despite simplifying the 
foreground and background segmentation.  Based on subjective observation, the most likely 
reason is over filtering of the salient segments.  The goal in using BinWang14 was simply to test 
the compare-to design for use of a wide range of SODs with the SDMSI.  Long term, the goal is 
to allow for rapid comparison of SODs for both aviation use and use in marine environments 
where image and information fusion can be used together to optimize detection and 
classification.  The modified BinWang14 was also tested with the drone flights and likewise 
found not to perform better than a simple motion detector as can be seen by comparing Figure 10 
and Figure 15. 
 

Figure 15. – ROC for DJI Inspire Drone Observed by SDMSI and Processed using Modified 
BinWang14 Saliency Segmentation 
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Previous work to select the most power efficient processing for the SDMSI has shown that GP-
GPU co-processing is one of the most efficient approaches and the NVIDIA Corporation Tegra 
K1 system on chip was used for all experiments.  At peak power, the system draws no more than 
20 Watts for processing and for operation of all three cameras concurrently and is nominally 
operating at 12 Watts of power consumption during bench test measurement with a DMM for the 
experiments presented [1].  At this time, this is well within requirements for roof operation, but 
further work on power efficiency is being pursued to enable battery, alternative power source 
and fuel cell operation of the SDMSI for operation off-grid. 
 
The ultimate goal for the field trials and experiments with the SDMSI is to determine feasibility 
and value of using this software defined smart cameras for deployments such as buoys, vessels 
and UAV systems as depicted in Figure 8.  The current bill of materials for the experimental 
configuration is well under $5,000, which is very low cost for a multi-spectral sensing system 
that has similar spectral resolution to Worldview 2 and 3 (panchromatic, NIR multi-spectral, and 
longer wave infrared bands) for example if NIR and SWIR cameras are added to the system [15] 
[16].  Clearly with far less coverage, but with spatial resolution as good or better than sub-meter 
resolution from satellite remote sensing systems and with far better, continuous temporal 
coverage of specific areas of interest.  The final manuscript will include comparative Worldview 
2 image data of the same regions where the cameras are located at times where salient images 
were collected to compare overall situational awareness provided and to compare spatial, 
temporal and spectral resolution and features of both as well as cost of monitoring by both 
methods. 
 
Future work planned includes systematic evaluation of SODs by type and combined 
configurations of SODs tested in the aviation domain for drone and aircraft tracking as well as 
marine environments.  Further, it is envisioned that other institutions and researchers can easily 
fabricate our SDMSI using our open reference design so that networks of cameras within one 
locality or more widely geographically separated regions can share information.  This 
exploration has led to the idea for a “Drone Net’, where SDMSI instruments are networked in the 
cloud to share detection and tracking information, potentially updating ADS-B and RADAR data 
aggregation services such as flightradar24 [26]. 

 
 

Conclusion 

The SDMSI demonstrates the value of software-defined image analysis systems design, which 
allows for low-power, low-cost high spatial, temporal, and spectral resolution commonly found 
in more costly, less compact larger instruments.  The software definition requires significant 
processing capability, but system-on-chip technology enables on-camera transform, fusion, and 
saliency processing such that uplink of images is selective and pre-processed to reduce 
bandwidth requirements.  The ease of use has been demonstrated and the design allows for 
upgrade of the SDMSI over time, both hardware components and software.  The smart image 
ranking and selection features provide a significant advantage compared to continuous image 
capture with processing done only in the cloud, but reducing storage and link bandwidth 



requirements.  The total power is such that the SDMSI can be operated from a LiPo battery for 
stand-alone aviation deployments or from fuel cell and alternative energy sources in remote 
Arctic locations.  The long term intent of the project is to provide and open hardware, firmware 
and software design so that other researchers can reconfigure and reuse elements of the SDMSI 
test configuration presented here, to realize the software-defined goals.  For some applications, 
the cost of custom multi-spectral instrumentation can be reduced by using a software-defined 
approach as presented here if similar or better overall spatial, spectral and temporal resolution 
can be provided by multiple cameras integrated and fused by software processing. 
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