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xix  

ABSTRACT 

 

The motivation of the current work is to develop a multi-modal analysis of the nonlinear 

response of stiffened double curved shells made of functionally graded materials under 

thermal loads. The formulation is based on the first order shear deformation shell theory 

in conjunction with the von Kármán geometrical nonlinear strain-displacement 

relationships. The nonlinear equations of motion of stiffened double curved shell based 

on the extended Sanders’s theory were derived using Galerkin’s method. The resulting 

system of infinite nonlinear ordinary differential equations, that includes both cubic and 

quadratic nonlinear terms, was solved using a nonlinear dynamic software XPPAUT to 

obtain the force-amplitude relationship. The effect of both, longitudinal and transverse 

stiffeners, was considered using the Lekhnitsky’s technique and the material properties 

are temperature dependent and vary in the thickness direction according to the linear rule 

of mixture. In order to obtain accurate natural frequency in thermal environments, critical 

buckling temperature differences are carried out, resulting in closed form solutions. The 

effect of temperature’s variation as well as power index, functionally graded stiffeners, 

geometrical parameters, temperature depended materials and initial imperfection on the 

nonlinear response of the stiffened shell are considered and discussed. This dissertation 

showed that the nonlinear study of problems of thin-walled structures with even stiffeners 

is of paramount importance. It was also found that the difference between single-mode 

and multi-mode analyses could be very significant for nonlinear problems in a thermal 

environment. Hence, multimode vibration analysis is necessary for structures of this 

nature.



1  

1. Introduction 

For the last few decades, laminated composite materials have been extensively used 

in aerospace, civil and marine engineering. They are well accepted due to their high 

strength to weight ratio, high corrosion resistivity, and very good fatigue characteristics. 

In many cases, the laminated plates undergo extreme high thermal loading and large 

amplitude vibration, which may lead to delamination, crack initiations create thermal 

stresses between layers. Their multilayer compositions and bonding phenomenon make 

them vulnerable to a mismatch of mechanical properties across the interfaces (Reddy, 

2000). Recently, functionally graded materials (FGMs), a new type of composite 

materials, has been introduced to overcome these drawbacks. The concept of functionally 

graded materials was proposed in 1984 by Japanese materials scientists along with the 

preparation of a heat resistant material for reactor vessels, aerospace vehicles and other 

engineering applications (Koizumi, 1997). The material design of FGMs has mechanical 

properties varying smoothly from a surface made of metal to another made of ceramic at 

the micron level (Kawasaki & Watanabe, 1997). The main advantage of this continuous 

variation is to avoid and reduce thermal stresses. 

1.1 Literature Survey 

 

In recent years, several studies have been devoted to the dynamical analysis of FGM 

plates and shells. The effects of aspect ratios, gradient indices and stiffness coefficients of 

the free vibration of FGM plates using first-order shear deformation theory were studied 

(Hashemi, Taher, Akhavan, & Omidi, 2010). Six combinations of boundary conditions 

were studies in their paper. The influence of skew angle on bending and natural 

frequencies of an FGM shell panel using Reddy’s higher-order theory was covered 
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(Gulshantaj & Chakrabarti, 2013). Higher order shear deformation theory and a meshless 

approach were adopted by Xiang, Kang and Liu (2014) to calculate the natural frequency 

of the FGM plates.  

Nonlinear transient response of imperfect FGM cylindrical, spherical, paraboloid and 

hyperboloid shells were studied by Pradyumna and Nanda (2013) using Sander’s 

approximation. The arc length approach combined with the Newton-Raphson’s method 

was used by Zhao and Liew (2009) to study the nonlinear response of FGM shells under 

thermomechanical loads. The elliptic governing partial differential equation (PDE) was 

reduced by Kobayashi and Leissa (1995) to an ordinary differential equation (ODE) 

based on the first shear deformation theory (FSDT) in order to analyze the nonlinear 

vibration of thick shallow shells.  

Cylindrical panels are found mainly in spacecraft, submarine, missile and other 

aircraft components (e.g. fuselage sections). To study the nonlinear vibration of stainless 

steel and nickel cylindrical shells, the Sanders-Koiter theory was adopted (Strozzi & 

Pellicano, 2013). Their study was based on two steps, linear analysis to find the 

eigenfunctions, and then nonlinear analysis based on the previously calculated functions. 

The governing equations were derived by Pradhan, Loy, Lam and Reddy (2000) using the 

Rayleigh method. The natural frequencies of the FGM cylindrical shells were evaluated 

based on Love’s shell theory.  

Then Pradhan et al. (2000) extended the previous study to include different volume 

fraction indices and various boundary conditions. The vibration and buckling analysis of 

two-layered cylindrical shells made of an inner FGM and outer isotropic layer under 

static and periodic loads were considered (Sepiani, Rastgoo, Ebrahimi & Arani, 2010). 
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Their theoretical formulations are based on both FSDT and CPT. The Rayleigh Ritz 

approach was adopted by Shah, Mahmood and Naeem (2009) to find the linear natural 

frequencies of FGM thin cylindrical shells. By ignoring the shallowness of cylindrical 

shells, Bich and Xuan (2012) introduced an improved Donnell shell theory to study the 

nonlinear vibration of FG circular cylindrical shells. Very good agreement was observed 

comparing their results by using commercial software.  

The natural frequencies and the unstable regions of the FG cylindrical panels under 

mechanical and thermal loads were studied (Yang & Shen, 2003). The governing 

equations of motion based on FSDT were discretized by Tornabene, Viola and Inman 

(2009) into a standard linear eigenvalue problem using generalized differential quadrature 

(GDQ) to study the vibration of FGM plates and shells. A semi-analytical finite element 

model based on converting the equations of motion from 3D to 2D was developed by 

Santos, Soares and Reddy (2009) to study the bending and free vibration of FGM 

cylindrical shells.  

The original 3D foundational equations with variable coefficients were transformed 

by Cao and Tang (2012) into membrane bending coupling of 2D equations with constant 

coefficients to study the natural frequencies of FGM cylindrical shells with infinite and 

finite lengths. A parametric study was conducted by Patel, Gupta, Loknath and Kadu 

(2005) on the free vibration analysis of FGM elliptical and cylindrical shells using the 

finite element method based on a higher order displacement model. Embedded thin 

piezoelectric layers were used by Sheng and Wang (2013) to control the nonlinear 

vibration of FGM laminated cylindrical shells.  
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A generalized formulation of doubly curved shells including double radii of curvature 

has been considered in some papers. A nonlinear finite element method was presented by 

Singh and Panda (2014) in order to study the nonlinear free vibration analysis of doubly 

curved composite shell panels. The nonlinear natural frequencies were calculated using a 

direct iterative method. The nonlinear vibration of clamped FGM doubly curved shallow 

elliptical shells was studied (Chorfi & Houmat, 2010). The nonlinear dynamic analysis of 

FGM shallow shells was studied by Tornabene, Liverani and Caligiana (2011) using the 

generalized differential quadrature method. Equations of motion were solved using the 

free form meridian. The nonlinear vibration and dynamic buckling of FGM cylindrical 

and doubly curved shallow shells subjected to mechanical loads were studied by Bich and 

Long (2010) using classical shell theory. A 2D higher order theory was presented by 

Matsunaga (2009) to evaluate the natural frequencies, stress distribution, and buckling 

stresses of simply supported functionally graded shallow shells.  

The vibration and dynamic analysis of FGM plates, cylinders and double curved 

shells along with temperature dependent and independent materials have received 

positive attention. Transient response of FGM plate in thermal environments was studied 

by Yang and Shen (2002) using one dimensional different quadrature technique, Galerkin 

approach, and the modal superposition method. A geometrically nonlinear analysis of 

FGM plate was conducted by Zhu, Zhang and Liew (2014) using the local meshless 

method with moving Kriging interpolation. Nonlinear temperature and heat flux were 

considered as thermal loadings and Newton-Raphson method was used to solve the 

nonlinear system of equations.  
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A three dimensional linear theory of elasticity was presented by Li, Iu and Kou 

(2009) to study the free vibration simply supported FGM rectangular plates subjected to 

various temperature forms. Chebyshev polynomials were used to satisfy the essential 

boundary conditions. A detailed investigation was carried out by Sundararajan, Prakash 

and Ganapathi (2005) to detect the influence of the skew angle, aspect ratios and plate 

thickness on the nonlinear free flexural vibration of FGM rectangular plates under 

thermal load. Lagrange’s equations of motion were used to find nonlinear governing 

equations that were solved using finite element procedure coupled with the direct 

iteration technique. A displacement based finite element formulation associated with a 

novel TSDT was presented by Bui et al. (2016) to analyses the static bending deflection 

and the natural frequencies subjected to high thermal conditions. The nonlinear dynamic 

response of thick FGM plate subjected to both thermal and damping loads was studied by 

Duc, Bich and Cong (2016) using the TSDT and stress function.  

A higher order finite element formulation for nonlinear transient analysis of FGM 

curved panels was presented (Pradyumna, Nanda & Bandyopadhyay, 2010). Heat 

conduction between the top and bottom surfaces was neglected and a parametric study 

was performed. The post buckling analysis of FGM plate under in plane compressive, 

thermal and thermomechanical loads were studied by Tung and Duc (2010) using the 

classical plate theory. The free vibration analysis of four edges simply supported FGM 

cylindrical shells subjected to thermal loads was studied by Haddadpour, Mahmoudkhani 

and Navazi (2007) using Love’s shell theory and the Karman-Donnell type of kinematic 

nonlinearity.  
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The Differential quadrature method combined with iteration approaches was used by 

Liew, Yang and Wu (2006) in order to evaluate the linear and nonlinear vibration 

analysis of a three-layer coating FGM substrate cylindrical with different boundary 

conditions. The nonlinear dynamic analysis of FGM circular cylindrical shell with 

clamped-clamped boundary condition was studied by Zhang, Hao and Yang (2012) under 

mechanical and uniform thermal loads. After studying the nonlinear vibration with and 

without temperature, Shen (2012) and Shen and Wang (2014) evaluated the post-buckling 

response of FGM cylindrical shells under thermomechanical loads. Then Voight and 

Mori-Tanaka models were adopted by Shen and Wang (2013), and it has shown to have 

the same influence as their previous paper.  

The Governing equation was based on HSDT and von Karman strain- displacement 

relationship. The nonlinear response of FGM cylindrical panels was investigated by Duc 

and Tung (2010) under uniform lateral pressure using the classical shell theory. Across 

the thickness, linear and nonlinear temperature distribution were considered. The 

nonlinear dynamic analysis of the FGM double curved thin shell based on classical shell 

theory was studied (Duc & Quan, 2013a). All the material properties were assumed to be 

temperature-dependent including the poison ratio. The nonlinear vibration and dynamic 

response of FGM double curved shallow shells were investigated by Quan and Duc 

(2016) under thermal effect. The formulation was based on TSDT. The free vibration of 

FGM curved panels was analyzed by Kar and Panda (2015) under a thermal environment 

using the HSDT. All the materials properties are temperature-dependent.  

The nonlinear vibration of FGM double curved panels under thermal loads based on 

HSDT and von Karman strain displacement relationships was studied (Shen, Chen, Guo, 



7  

Wu & Huang, 2015). In order to calculate the natural frequencies, the equations of 

motion were solved by two step perturbation technique. The nonlinear free vibration 

response of FGM doubly curved panels under heat conduction were studied by Kar and 

Panda (2017) using the HSDT and Green-Lagrange nonlinearity. Temperature-dependent 

and independent material properties are evaluated using Voigt’s micromechanics model. 

The buckling and post-buckling of FGM curved panels using HSDT were studied (Tung 

& Duc, 2014). The shallow panel is subjected to thermal, mechanical and 

thermomechanical loads. All the materials properties are completely independent of the 

temperature variation. Buckling and -post-buckling analysis of double curved FGM 

panels were calculated by Duc and Quan (2012) based on classical shell theory and 

subjected to thermal and thermomechanical loads.  

The nonlinear free and forced vibration and dynamic response of piezoelectric FGM 

laminated composite shells under electrical, thermal, mechanical and aerodynamic 

loading were studied (Rafiee, Mohammadi, Sobhani & Yaghoobi, 2013). The governing 

equations are derived based on improved Donnell shell theory by taking into 

consideration the physical neutral surface concept. Their previous publication was 

expended by Kar and Panda (2016) to spherical panels under the same conditions.  

Apart from discussing the results related to unstiffened structures, the study of 

stiffened plates and shells is very significant and should be considered merely because 

they are more realistic and have been utilized in the aerospace industry. Most of the 

following studies are based on Lekhnitsky smeared technique. For example, conducted a 

geometrically nonlinear vibrational analysis of eccentrically stiffened doubly curved 

functionally graded structure based on (FSDT) under a mechanical load. The nonlinear 
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dynamic response of the stiffened FGM double curved shallow shells being subjected to 

both transverse and compressive loads was studied (Duc, 2013).  

The classical shell theory and the smeared stiffeners technique were used by Bich, 

Dung and Nam (2012) to study the nonlinear vibration and dynamic buckling of stiffened 

functionally graded cylindrical panels. The influence of the volume fraction index and the 

initial imperfection were taken into account in their study. The vibrational behavior of 

ring supported functionally graded cylindrical shells was evaluated by Rahimi, Ansari 

and Hemmatnezhad (2011) based on Sanders’ thin shell theory. Ritz method is used to 

derive the governing equations of motion. The influence of some boundary conditions 

was considered. A theoretical formulation was adopted by Dung, Duc and Thiem (2017) 

in terms of displacement components based on Reddy’s TSDT to analyze the dynamic 

response of stiffened cylindrical shells made completely of FGM and filled inside by 

elastic foundations.  

Explicit relations of load-deflection curves and post-buckling of eccentrically 

stiffened FGM cylindrical panels on elastic foundation subjected to mechanical loads 

were determined (Duc & Quan, 2014). A semi-analytical approach was presented by 

Bich, Dung and Nam (2013) to investigate the nonlinear dynamic behavior of 

orthogonally stiffened functionally graded shallow shells using the classical thin shell 

theory. The effects of damping, mechanical and critical buckling loads were taken into 

account in this work. The power law distribution and Mori-Tanaka homogenization 

scheme were used by Wattanasakulpong and Chaikittiratana (2015) to define the material 

variational through the shell thickness. In this study, stiffened shells with the various 

radius of curvatures are considered in the evaluation of the nonlinear frequencies.  
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 The nonlinear dynamic response of reinforced FGM plates with stiffeners using both 

the Reddy’s TSDT and stress function was studied (Cong, Anh & Duc, 2017). Uniform 

and non-uniform temperature distribution over the thickness were considered. The 

influence of physical and temperature-dependent materials properties of the plate and 

stringers on the nonlinear vibration was discussed. The nonlinear vibration and dynamic 

response of stiffened thick sandwich plate made of functionally graded materials were 

discussed by Duc et al. (2016) using the first-order shear deformation theory and stress 

function with full motion equations. The Plate was subjected to both mechanical and 

thermal loads. The governing equations were established by Duc, Nguyen and Khoa 

(2017) based on classical shell theory and Airy stress functions.  

Then nonlinear vibrational and dynamical equations of eccentrically stiffened 

Sigmoid power-law distribution FGM elliptical cylindrical shells under thermal loads are 

solved by Galerkin method and Runge-Kutta numerical technique. The buckling and 

post-buckling analysis of stiffened double curved thin shallow shells were studied by Duc 

and Quan (2013b) under thermal effect using based on the CST. Here the functionally 

graded material’s volume fraction is based on a simple power-law distribution.  

The Donnell nonlinear strain displacement relations were adopted by Najafizadeh, 

Hasani and Khazaeinejad (2009) to derive the equilibrium and stability equation of 

stiffened functionally graded cylindrical shells. The static and dynamic stability and 

buckling of stiffened FGM double curved shallow shells in thermal environment were 

studied (Quan & Duc, 2017). Equilibrium, compatibility and motion equations are 

derived using the third-order shear deformation theory taking into account the thermal 

stress in both the shells and stiffeners  
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In all the above papers, nonlinear analysis of stiffened and unstiffened functionally 

graded materials with or without thermal load were conducted using only a single-mode 

approximation. Few authors have adapted a multi-modal approach to solving these type 

of problems. The multi-modal energy approach was adopted by Alijani, Amabili and 

Nejad (2011) to study the nonlinear vibration of FGM doubly curved shells under thermal 

effect, using the HSDT. In order to obtain numerical solutions, the Lagrange equation of 

motion was used to reduce the energy function to a system of infinite nonlinear ordinary 

differential equations. Moreover, the nonlinear forced vibration of simply supported 

FGM doubly curved shallow shells based on Donnell’s shell theory was studied (Alijani, 

Amabili, Karagiozis & Nejad, 2011).  

A multi-modal discretization, considering nine doubly symmetric modes with respect 

to the panel center, was used in every nonlinear analysis. The amplitude-frequency 

response was plotted using the software AUTO 97. To overcome the shortcomings in 

Glarkin’s procedure, Abe and Yamada (2019) used the shooting method to study the one 

to one internal resonance of the symmetric crossly composite shallow shell. The 

nonlinear vibration of simply-supported isotropic and multi-laminated cross-ply doubly 

curved shallow shells was studied (Alhazza, Ahmadian, Inman, Leo & Masoud, 2002). 

Modal interaction between the first and second modes is investigated by applying the 

method of multiple scales directly to nonlinear partial differential equations of motion.  

1.2 Scope 

 

To the author’s knowledge, no one has investigated the effect of the stiffeners on the 

nonlinear vibrations under thermal load using multimode analysis. The present 

dissertation consists of two main parts. The purpose of the first part of this analytical 
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investigation is to study and validate the nonlinear behavior of imperfect simply 

supported stiffened isotropic and functionally graded double curved shells, subjected to 

thermal and mechanical load using a single-mode approximation. The formulation is 

based on the first-order shear deformation shell theory in conjunction with the Von 

Kármán geometrical nonlinear strain-displacement relationships. Galerkin’s method is 

used to transform the nonlinear equations of motion based on the extended Sanders’s 

theory into a set of nonlinear ordinary differential equations. Longitudinal and transversal 

stiffeners, in addition to the stiffener’s twisting moment are included by using the 

Lekhnitsky’s smeared technique. The material properties are temperature-dependent and 

change through the thickness according to the linear rule of mixtures. Uniform linear and 

nonlinear temperature distribution are considered in this dissertation. 

Consequently, critical buckling temperature differences are carried out, resulting in 

closed-form solutions. The resulting equations were solved numerically by using the 

Fourth Order Runge-Kutta method. A closed-form solution of the amplitude-frequency 

relationship, based on He’s energy technique, is developed for a Duffing equation with 

strong quadratic and cubic nonlinearities. Several studies with different loads and 

parameters were conducted to validate the present technique and a good agreement was 

achieved with results already available in the literature. 

In the second part of the dissertation, the numerical analysis of the problem 

introduced before is carried out based on the multi-modal energy method and nonlinear 

first-order shear deformation theory. The procedure is undertaken in two steps. First, the 

shape functions of the displacements and rotations field are expressed in terms of shifted 

Chebyshev polynomials of the first kind. The integration of these polynomials is 



12  

performed using Mathematica software. Then linear analysis are performed by 

minimization of the Lagrangian function. After using the mode shapes form the linear 

analysis, the energy functional is reduced to set on infinite strongly nonlinear ODE with 

both, quadratic and cubic nonlinearities. The amplitude-frequency response is plotted 

using XPPAUT software.  
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2. Functionally Graded Materials Double Curved Shells 

In this chapter, the variation of the volume fractions of ceramic and metal the shallow 

eccentrically stiffened double curved shell is discussed. The concentration of metal and 

ceramic is assumed to change through the thickness of the shells and of the stiffeners 

based on the power law distribution. Furthermore, the material properties are considered 

to be temperature dependent. 

2.1 Modeling 

 

Consider an eccentrically stiffened double curved shallow shell made from 

functionally graded materials (FGM). The shallow shell is assumed to have a small rise to 

span ratio. In general, the middle surface of the shells should be defined by curvilinear 

coordinates. But that is not the case for shallow shells. Here, the Cartesian coordinates (x, 

y, z) are established in which (x, y) define the plane of the middle surface and z on the 

thickness direction(−ℎ 2⁄ ≤ 𝑧 ≤ ℎ 2⁄ ). The Cartesian coordinates, the radius of 

curvature Rx, the configurations and dimensions of transversal stiffeners are shown in 

Figure 2.1 below. 

 

Figure 2.1. A double-curved shell with transversal stiffeners. 
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It is to be noted that by changing the components of curvatures 𝑅𝑥 and 𝑅𝑦, double-

curved shells can exhibit different shapes as follow: 

1) Flat plate: 
1

𝑅𝑥
=

1

𝑅𝑦
= 0  

2) Cylindrical shell: 
1

𝑅𝑥
= 0 or 

1

𝑅𝑦
= 0  

3) Spherical shell: 
1

𝑅𝑥
=

1

𝑅𝑦
 

4) Hyperbolic paraboloidal shell: 
1

𝑅𝑥
= −

1

𝑅𝑦
 

For the stiffeners in x and y directions, dx and dy are the spacing between two 

consecutive longitudinal and transversal stiffeners respectively. Also, bx, by represent the 

width and hx, hy represents the thickness. Finally, ex and ey are the eccentricities of the 

stiffeners with respect to the middle surface of the shell. 

2.2 Material Properties 

 

Functionally Graded Material consists of a mixture of metal (denoted by “m”) and 

ceramic (denoted by “c”). The top surface of the shell is considered to be metal and the 

bottom surface to be ceramic. In order to provide continuity between the shells and the 

stiffeners, it is assumed that the stiffeners are made of full metal when placed on the 

metal-rich side of the shell, and made of full ceramic when placed on the ceramic rich 

side. The volume fractions of ceramic and metal of the FGM shells and stiffeners are 

assumed to change through the thickness according to the power-law distribution (Reddy 

& Chin, 1998): 
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𝑉𝑐(𝑧) =

{
 
 
 

 
 
 (

2𝑧 + ℎ

2ℎ
)
𝐾

 , 𝑓𝑜𝑟 𝑠ℎ𝑒𝑙𝑙𝑠            (0 ≤ 𝐾 ≤ ∞)

 (
2𝑧 − ℎ

2ℎ𝑥
)
𝐾𝑥

 , 𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  (0 ≤ 𝐾𝑥 ≤ ∞)

 (
2𝑧 − ℎ

2ℎ𝑦
)

𝐾𝑦

, 𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 𝑖𝑛 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  (0 ≤ 𝐾𝑦 ≤ ∞)

 (1) 

𝑉𝑐(𝑧) + 𝑉𝑚(𝑧) = 1 (2) 

where 𝐾,𝐾𝑥 and 𝐾𝑦 are the volume fraction indices that define the material distribution 

and ℎ, ℎ𝑥 and ℎ𝑦 are the total thicknesses of the shells and stiffeners. Figure 2.2 shows 

the variation of the volume fraction through the thickness with different values of power 

index K. 

 
Figure 2.2. Effect of power index “K” on the variation in the ceramic volume fraction 

Vc through the shell thickness. 

 

In this study, the FGM properties, 𝑃, are assumed to be a function of volume fraction 

and are related to their volume fraction 𝑉𝑐 and 𝑉𝑚 by the linear rule of mixture (Voigt’s 

model) as (Reddy & Chin, 1998): 

𝑃(𝑧, 𝑇) = {
 𝑃𝑐(𝑧, 𝑇)𝑉𝑐(𝑧, 𝑇) + 𝑃𝑚(𝑧, 𝑇)𝑉𝑚(𝑧)  , 𝑓𝑜𝑟 𝑠ℎ𝑒𝑙𝑙𝑠 

       
𝑃𝑚(𝑧, 𝑇)𝑉𝑐(𝑧) + 𝑃𝑐(𝑧, 𝑇)𝑉𝑚(𝑧)  ,    𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠   

 (3) 
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where 𝑃 represents, the young’s modulus 𝐸, thermal expansion 𝛼, thermal conduction 

coefficient 𝑘, and the mass density 𝜌. Moreover, the material properties of metal and 

ceramic are temperature dependent and are expressed as the following nonlinear function 

of temperature (Reddy & Chin, 1998): 

Pr (𝑧, 𝑇) = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇

1 + 𝑃2𝑇
2 + 𝑃3𝑇

3) (4) 

 

in which 𝑇 = 𝑇0 + ∆𝑇 , 𝑇0 = 300𝐾 (room temperature) unless otherwise specified, 𝑃𝑟 

(“r” can be replaced by “m” or “c”), and 𝑃0, 𝑃−1, 𝑃1, 𝑃2, 𝑃3 are coefficients characterizing 

of the constituent materials with temperature-dependent. Substituting equations (1) and 

(2) into equation (3), the effective FGM mechanical properties are obtained using the 

following equations: 

For Shells: 
  

𝐸(𝑧, 𝑇) = {

𝐸𝑚(𝑧, 𝑇)

𝐸𝑚(𝑧, 𝑇) + {𝐸𝑐(𝑧, 𝑇) − 𝐸𝑚(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝐸𝑐(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = −ℎ 2⁄

𝑎𝑠 −ℎ 2⁄ < 𝑧 < ℎ 2⁄

𝑎𝑠 𝑧 = ℎ 2⁄

 (5a) 

𝛼(𝑧, 𝑇) = {

𝛼𝑚(𝑧, 𝑇)

𝛼𝑚(𝑧, 𝑇) + {𝛼𝑐(𝑧, 𝑇) − 𝛼𝑚(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝛼𝑐(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = −ℎ 2⁄

𝑎𝑠 −ℎ 2⁄ < 𝑧 < ℎ 2⁄

𝑎𝑠 𝑧 = ℎ 2⁄

 
(5b) 

𝑘(𝑧, 𝑇) = {

𝑘𝑚(𝑧, 𝑇)

𝑘𝑚(𝑧, 𝑇) + {𝑘𝑐(𝑧, 𝑇) − 𝑘𝑚(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝑘𝑐(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = −ℎ 2⁄

𝑎𝑠 −ℎ 2⁄ < 𝑧 < ℎ 2⁄

𝑎𝑠 𝑧 = ℎ 2⁄

 
(5c) 

𝜌(𝑧, 𝑇) = {

𝜌𝑚(𝑧, 𝑇)

𝜌𝑚(𝑧, 𝑇) + {𝜌𝑐(𝑧, 𝑇) − 𝜌𝑚(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝜌𝑐(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = −ℎ 2⁄

𝑎𝑠 −ℎ 2⁄ < 𝑧 < ℎ 2⁄

𝑎𝑠 𝑧 = ℎ 2⁄

 
(5d) 

𝜈(𝑧, 𝑇) = {

𝜈𝑚(𝑧, 𝑇)

𝜈𝑚(𝑧, 𝑇) + {(𝜈𝑐(𝑧, 𝑇) − 𝜈𝑚(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝜈𝑐(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = −ℎ 2⁄

𝑎𝑠 −ℎ 2⁄ < 𝑧 < ℎ 2⁄

𝑎𝑠 𝑧 = ℎ 2⁄

 (5e) 
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For stiffeners in x and y directions: 

𝐸𝑥(𝑧, 𝑇) = {

𝐸𝑐(𝑧, 𝑇)

𝐸𝑐(𝑧, 𝑇) + {𝐸𝑚(𝑧, 𝑇) − 𝐸𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝐸𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑥⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑥⁄

 (6a) 

𝐸𝑦(𝑧, 𝑇) = {

𝐸𝑐(𝑧, 𝑇)

𝐸𝑐(𝑧, 𝑇) + {𝐸𝑚(𝑧, 𝑇) − 𝐸𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝐸𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑦⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑦⁄

 (6b) 

𝛼𝑠𝑥(𝑧, 𝑇) = {

𝛼𝑐(𝑧, 𝑇)

𝛼𝑐(𝑧, 𝑇) + {𝛼𝑚(𝑧, 𝑇) − 𝛼𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝛼𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑥⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑥⁄

 
(6c) 

𝛼𝑠𝑦(𝑧, 𝑇) = {

𝛼𝑐(𝑧, 𝑇)

𝛼𝑐(𝑧, 𝑇) + {𝛼𝑚(𝑧, 𝑇) − 𝛼𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝛼𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑦⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑦⁄

 
(6d) 

𝑘𝑠𝑥(𝑧, 𝑇) = {

𝑘𝑐(𝑧, 𝑇)

𝑘𝑐(𝑧, 𝑇) + {𝑘𝑚(𝑧, 𝑇) − 𝑘𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝑘𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑥⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑥⁄

 
(6e) 

𝑘𝑠𝑦(𝑧, 𝑇) = {

𝑘𝑐(𝑧, 𝑇)

𝑘𝑐(𝑧, 𝑇) + {𝑘𝑚(𝑧, 𝑇) − 𝑘𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝑘𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑦⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑦⁄

 
(6f) 

𝜌𝑠𝑥(𝑧, 𝑇) = {

𝜌𝑐(𝑧, 𝑇)

𝜌𝑐(𝑧, 𝑇) + {𝜌𝑚(𝑧, 𝑇) − 𝜌𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝜌𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑥⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑥⁄

 (6g) 

𝜌𝑠𝑦(𝑧, 𝑇) = {

𝜌𝑐(𝑧, 𝑇)

𝜌𝑐(𝑧, 𝑇) + {𝜌𝑚(𝑧, 𝑇) − 𝜌𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝜌𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑦⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑦⁄

 (6h) 

𝜈𝑠𝑥(𝑧, 𝑇) = {

𝜈𝑐(𝑧, 𝑇)

𝜈𝑐(𝑧, 𝑇) + {𝜈𝑚(𝑧, 𝑇) − 𝜈𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝜈𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑥⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑥⁄

 (6i) 

𝜈𝑠𝑦(𝑧, 𝑇) = {

𝜈𝑐(𝑧, 𝑇)

𝜈𝑐(𝑧, 𝑇) + {𝜈𝑚(𝑧, 𝑇) − 𝜈𝑐(𝑧, 𝑇)}𝑉𝑐(𝑧)

𝜈𝑚(𝑧, 𝑇)
  

𝑎𝑠 𝑧 = ℎ 2⁄

𝑎𝑠 ℎ 2⁄ < 𝑧 < ℎ 2 + ℎ𝑦⁄

𝑎𝑠 𝑧 = ℎ 2 + ℎ𝑦⁄

 (6j) 
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Figure 2.3 shows the variation of modulus of elasticity of Aluminum and Zirconia 

(Al/ZrO2) FGM shell with respect to the thickness for different power law indices. It can 

be seen that the young’s modulus is smaller when K’s are smaller. 

 

Figure 2.3. Young’s modulus variations with respect to the dimensionless thickness of 

the shell for different volume fraction indices (EAl = 70GPa and EZrO2 = 151GPa). 
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3. Single Mode Theoretical Formulation 

In this chapter, static and dynamic analyses of isotropic and FGM simply supported 

isotropic and FGM stiffened double curved shells are considered. The contribution of the 

stiffeners are accounted for by using the lekhnitsky smeared stiffeners technique. Fourth 

Order Runge-Kutta and He’s energy method were adopted to investigate the nonlinear 

dynamic and amplitude frequency responses. The obtained results were validated with 

previously published papers in this area. 

3.1 Governing Equations 

 

Let 𝑢0, 𝑣0, 𝑤0 denote the middle plane displacement components in the x, y, z 

directions while 𝜓𝑥 ,  𝜓𝑦 denote the middle plane rotations of transverse normal about the 

y and x-axes respectively. The displacement field based on the first-order shear 

deformation theory (FSDT) is defined as (Reddy, 2003): 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑥(𝑥, 𝑦, 𝑡)  

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑦(𝑥, 𝑦, 𝑡) (7) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡)  

 

The FSDT extends the kinematic of the classical plate theory (CPT) by including in 

its kinematics assumptions, a constant transverse shear deformation through its thickness. 

To overcome this inconsistency, The FSDT requires a shear correction factor 𝑘𝑆 that 

depends not only on the geometric parameter of a structure but also on the boundary 

conditions and on the applied load (Reddy, 2003). In the case of isotropic and laminated 

composite shell, the shear correction factor is 𝑘𝑠 = 5 6⁄  , but in case of functionally 

graded materials, 𝑘𝑠 can be expressed as given (Lee, Zhao & Reddy, 2010): 
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𝑘𝑠 =
5

6 − {𝜈𝑐(𝑧)𝑉𝑐(𝑧) + 𝜈𝑚(𝑧)𝑉𝑚(𝑧)}
 (8) 

 

A set of simplifying assumptions regarding the behavior of thin elastic shells as given 

by Reddy (2003) are as follows: 

1. The thickness of the shell is very small compared to the width and length of the 

shell. 

2. The transverse normal stress is negligible. 

3. The thickness-to-radius ratio of the shell is assumed to be small compared to 

unity. 

4. The second derivatives of membrane displacement are small compared to the 

second derivatives of the transverse displacement. (Reddy, 2003, p.125) 

Based on the above assumptions, and by using the von Kármán type geometrical 

nonlinearity and Sanders’s shell theory, the nonlinear strain-displacement relationship for 

a double-curved shallow shell is given by (Brush & Almroth, 1975) as: 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} =

{
 
 
 
 

 
 
 
 
𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅𝑥
+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑥
+
1

2
(
𝜕𝑤0
𝜕𝑥

)
2

𝜕𝑣0
𝜕𝑦

+
𝑤0
𝑅𝑦
+
𝜕𝑤0
𝜕𝑦

𝜕𝑤⋆

𝜕𝑦
+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦

+

𝜕𝑤⋆

𝜕𝑥

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑦 }
 
 
 
 

 
 
 
 

+ 𝑧

{
 
 
 
 

 
 
 
 
𝜕𝜓𝑥
𝜕𝑥
𝜕𝜓𝑦

𝜕𝑦

 
𝜕𝜓𝑥
𝜕𝑦

+

𝜕𝜓𝑦

𝜕𝑥 }
 
 
 
 

 
 
 
 

 

{
𝛾𝑥𝑧
𝛾𝑦𝑧
} = {

𝛾𝑥𝑧
0

𝛾𝑦𝑧
0 } =

{
 
 

 
 𝜕𝑤0
𝜕𝑥

−
𝑢0
𝑅𝑥
+
𝜕𝑤⋆

𝜕𝑥
+ 𝜓𝑥

𝜕𝑤0
𝜕𝑦

−
𝑣0
𝑅𝑦
+
𝜕𝑤⋆

𝜕𝑦
+ 𝜓𝑦

}
 
 

 
 

 

(9) 
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where 𝜀𝑥 and 𝜀𝑦 are the normal strains, 𝛾𝑥𝑦 is the in-plane shear strain, 𝛾𝑥𝑧  𝑎𝑛𝑑 𝛾𝑦𝑧 are 

the transverse shear deformation, and 𝑤⋆ the initial shell imperfection which represents a 

small deviation of the shell middle plane. 

3.2 Constitutive Relations 

 

The stress-strain relations by Hooke’s law for a functionally graded shell under 

temperature are defined as (Reddy, 2003): 

{
 
 

 
 
𝜎𝑥(𝑧, 𝑇)

𝜎𝑦(𝑧, 𝑇)

𝜏𝑥𝑦(𝑧, 𝑇)

𝜏𝑦𝑧(𝑧, 𝑇)

𝜏𝑥𝑧(𝑧, 𝑇)}
 
 

 
 
𝑆ℎ𝑒𝑙𝑙+𝑇

=

{
 
 

 
 
𝑄11(𝑧, 𝑇) 𝑄12(𝑧, 𝑇) 0 0 0

𝑄21(𝑧, 𝑇) 𝑄22(𝑧, 𝑇) 0 0 0

0 0 𝑄66(𝑧, 𝑇) 0 0

0 0 0 𝑄44(𝑧, 𝑇) 0

0 0 0 0 𝑄55(𝑧, 𝑇)}
 
 

 
 

{
 
 

 
 
𝜀𝑥 − 𝛼𝑥(𝑧, 𝑇)∆𝑇(𝑧)
𝜀𝑦 − 𝛼𝑦(𝑧, 𝑇)∆𝑇(𝑧)

𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧 }

 
 

 
 

 (10) 

Where  

𝑄11(z, T) = 𝑄22(z, T) =
𝐸(𝑧, 𝑇)

1 − 𝜈2(𝑧, 𝑇)
 

𝑄12(z, T) = 𝑄21(z, T) =
𝜈(𝑧, 𝑇)𝐸(𝑧, 𝑇)

1 − 𝜈2(𝑧, 𝑇)
 

𝑄44(z, T) = 𝑄55(z, T) = 𝑄66(z, T) =
𝐸(𝑧, 𝑇)

2{1 + 𝜈(𝑧, 𝑇)}
 

 

It is assumed that the stiffeners are perfectly bonded to the FGM shell, therefore, the 

normal strain components of the double-curved shell are similar to the skin. Hence, the 

stress-strain relations of the stiffeners, under temperature, in both x and y directions can 

be written as:  

{
 
 

 
 
𝜎𝑥(𝑧, 𝑇)

𝜎𝑦(𝑧, 𝑇)

𝜏𝑥𝑦(𝑧, 𝑇)

𝜏𝑦𝑧(𝑧, 𝑇)

𝜏𝑥𝑧(𝑧, 𝑇)}
 
 

 
 
𝑆𝑡𝑖𝑓𝑓+𝑇

=  

{
 
 

 
 
𝐸𝑥(𝑧, 𝑇) 0 0 0 0

0 𝐸𝑦(𝑧, 𝑇) 0 0 0

0 0 0 0 0
0 0 0 𝐺𝑦(𝑧, 𝑇) 0

0 0 0 0 𝐺𝑥(𝑧, 𝑇)}
 
 

 
 

{
 
 

 
 
𝜀𝑥 − 𝛼𝑠𝑥(𝑧, 𝑇)∆𝑇(𝑧)

𝜀𝑦 − 𝛼𝑠𝑦(𝑧, 𝑇)∆𝑇(𝑧)
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧 }

 
 

 
 

 (11) 

 

where 𝐺𝑥(𝑧, 𝑇), 𝐺𝑦(𝑧, 𝑇) are shear moduli of stiffeners in x and y direction respectively. 
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For the case of numerous identical and closely spaced stiffeners, the contribution of 

the stiffeners can be accounted for by using the lekhnitsky smeared stiffeners technique. 

In other words, the effect of the stiffeners is assumed to be smeared over the skin where 

the twisting of stiffeners is also included. The forces and moment resultants of the FGM 

stiffened double-curved shell under temperature are obtained by integrating their normal 

and shear stresses over its thickness as follow (Birman, 2011): 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥(𝑧, 𝑇)

𝜎𝑦(𝑧, 𝑇)

𝜏𝑥𝑦(𝑧, 𝑇)
}

𝑆ℎ𝑒𝑙𝑙+𝑇ℎ
2

−
ℎ
2

dz + ∫ {
𝜎𝑥(𝑧, 𝑇)

𝜎𝑦(𝑧, 𝑇)

0

}

𝑆𝑡𝑖𝑓𝑓+𝑇ℎ
2
+ℎ𝑥,𝑦

ℎ
2

 dz (12a) 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ {

𝜎𝑥(𝑧, 𝑇)
𝜎𝑦(𝑧, 𝑇)

𝜏𝑥𝑦(𝑧, 𝑇)
}

𝑆ℎ𝑒𝑙𝑙+𝑇ℎ
2

−
ℎ
2

zdz + ∫ {
𝜎𝑥(𝑧, 𝑇)
𝜎𝑦(𝑧, 𝑇)

0

}

𝑆𝑡𝑖𝑓𝑓+𝑇ℎ
2
+ℎ𝑥,𝑦

ℎ
2

zdz (12b) 

{
𝑄𝑥
𝑄𝑦
}  = 𝑘𝑠∫ {

𝜏𝑦𝑧(𝑧, 𝑇)

𝜏𝑥𝑧(𝑧, 𝑇)
}
𝑆ℎ𝑒𝑙𝑙+𝑇

𝑑𝑧

ℎ
2

−
ℎ
2

+ 𝑘𝑠∫ {
𝜏𝑦𝑧(𝑧, 𝑇)

𝜏𝑥𝑧(𝑧, 𝑇)
}
𝑆𝑡𝑖𝑓𝑓+𝑇

𝑑𝑧

ℎ
2
+ℎ𝑥,𝑦

ℎ
2

 (12c) 

 

Substituting equations (9), (10), (11) into equations (12 a-c) yield the constitutive 

relations as follow: 

{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦}
  
 

  
 

=

{
  
 

  
 
𝐴11
′ 𝐴12

′ 0 𝐵11
′ 𝐵12

′ 0

𝐴21
′ 𝐴22

′ 0 𝐵21
′ 𝐵22

′ 0

0 0 𝐴66
′ 0 0 𝐵66

′

𝐵11
′ 𝐵12

′ 0 𝐷11
′ 𝐷12

′ 0

𝐵21
′ 𝐵22

′ 0 𝐷21
′ 𝐷22

′ 0

0 0 𝐵66
′ 0 0 𝐷66

′ }
  
 

  
 

{
  
 

  
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦}

  
 

  
 

−

{
 
 
 

 
 
 
𝑁𝑥
𝑇

𝑁𝑦
𝑇

𝑁𝑥𝑦
𝑇

𝑀𝑥
𝑇

𝑀𝑦
𝑇

𝑀𝑥𝑦
𝑇 }
 
 
 

 
 
 

 (13a) 

{
𝑄𝑥
𝑄𝑦
} = 𝑘𝑠 {

𝐴55
′ 0

0 𝐴44
′ } {

𝛾𝑥𝑧
0

𝛾𝑦𝑧
0 } 

(13b) 

where the equivalent-Shell Stiffnesses for a reinforced shell are: 
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{

𝐴11
′ 𝐴12

′ 0

𝐴21
′ 𝐴22

′ 0

0 0 𝐴66
′
} = {

𝐴11 𝐴12 0
𝐴21 𝐴22 0
0 0 𝐴66

} +

{
 
 

 
 
𝐸𝑥𝐴𝑥
𝑑𝑥

0 0

0
𝐸𝑦𝐴𝑦

𝑑𝑦
0

0 0 0}
 
 

 
 

 (14a) 

{

𝐵11
′ 𝐵12

′ 0

𝐵21
′ 𝐵22

′ 0

0 0 𝐵66
′
} = {

𝐵11 𝐵12 0
𝐵21 𝐵22 0
0 0 𝐵66

} +

{
 
 

 
 
𝐸𝑥𝐴𝑥𝑒𝑥
𝑑𝑥

0 0

0
𝐸𝑦𝐴𝑦𝑒𝑦

𝑑𝑦
0

0 0 0}
 
 

 
 

 (14b) 

{

𝐷11
′ 𝐷12

′ 0

𝐷21
′ 𝐷22

′ 0

0 0 𝐷66
′
} = {

𝐷11 𝐷12 0
𝐷21 𝐷22 0
0 0 𝐷66

} +

{
 
 

 
 
𝐸𝑥𝐼𝑥

′

𝑑𝑥
0 0

0
𝐸𝑦𝐼𝑦

′

𝑑𝑦
0

0 0
1

2
(
𝐺𝑥𝐽𝑥

𝑑𝑥
+
𝐺𝑦𝐽𝑦

𝑑𝑦
)
}
 
 

 
 

  (14c) 

{
𝐴55
′ 0

0 𝐴44
′ } = {

𝐴55 0
0 𝐴44

} +

{
 
 

 
 𝐺𝑥𝐴𝑥
𝑑𝑥

0

0
𝐺𝑦𝐴𝑦

𝑑𝑦 }
 
 

 
 

 (14d) 

{
 
 
 

 
 
 
𝑁𝑥
𝑇

𝑁𝑦
𝑇

𝑁𝑥𝑦
𝑇

𝑀𝑥
𝑇

𝑀𝑦
𝑇

𝑀𝑥𝑦
𝑇 }
 
 
 

 
 
 

=

{
 
 
 

 
 
 Ф1𝑥

𝑇/𝑆ℎ𝑒𝑙𝑙
+Ф1𝑥

𝑇/𝑆𝑡𝑖𝑓𝑓

Ф1𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

+Ф1𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

0

Ф2𝑥
𝑇/𝑆ℎ𝑒𝑙𝑙

+Ф2𝑥
𝑇/𝑆𝑡𝑖𝑓𝑓

Ф2𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

+Ф2𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

0 }
 
 
 

 
 
 

 (14e) 

and where 𝐺𝑥 and 𝐺𝑦 are shear moduli, 𝐽𝑥 and 𝐽𝑦 are the effective torsional constants, 

𝐼𝑥
′  and 𝐼𝑦

′  are the second moment of the area of the stiffeners with respect to x and y-axis 

respectively and are expressed as (Nemeth, 2011): 

𝐺𝑥 =
𝐸𝑥

2(1 + 𝜈)
 (15a) 

𝐺𝑦 =
𝐸𝑦

2(1 + 𝜈)
 (15b) 

𝐽𝑥 =
𝑑𝑥(ℎ𝑥)

3

3
{1 −

64ℎ𝑥
3𝜋5𝑑𝑥

𝑡𝑎𝑛ℎ (
𝜋𝑑𝑥
2ℎ𝑥

)} (15c) 
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𝐽𝑦 =
𝑑𝑦(ℎ𝑦)

3

3
{1 −

64ℎ𝑦

3𝜋5𝑑𝑦
𝑡𝑎𝑛ℎ (

𝜋𝑑𝑦

2ℎ𝑦
)} 

(15d) 

𝐼𝑥
′  = 𝐼𝑥 + 𝐴𝑥(𝑒𝑥)

2 (15e) 

𝐼𝑦
′  = 𝐼𝑦 + 𝐴𝑦(𝑒𝑦)

2
 (15f) 

 

Matrices A, B, 𝐴𝑠 and D represent the extensional, bending – extensional coupling, 

transverse shear and bending stiffness, and are expressed as:  

(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗) = ∫
 

𝑄𝑖𝑗(𝑧, 𝑇) (1, 𝑧, 𝑧
2)𝑑𝑧    𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,6

ℎ 2⁄

−ℎ 2⁄

 (16a) 

   𝐴𝑖𝑗
𝑠 = ∫ 𝑄𝑖𝑗(𝑧, 𝑇) 𝑑𝑧        𝑓𝑜𝑟 𝑖, 𝑗 = 4,5

ℎ 2⁄

−ℎ 2⁄

 (16b) 

 

Thermal stresses in both, the shell and the stiffeners are given as follow: 

 

Ф1𝑥
𝑇/𝑆ℎ𝑒𝑙𝑙

= ∫ {𝑄11(𝑧, 𝑇)𝛼𝑥(𝑧, 𝑇) + 𝑄12(𝑧, 𝑇)𝛼𝑦(𝑧, 𝑇)}∆𝑇(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

 (17a) 

Ф1𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

= ∫ {𝑄21(𝑧, 𝑇)𝛼𝑥(𝑧, 𝑇) + 𝑄22(𝑧, 𝑇)𝛼𝑦(𝑧, 𝑇)}∆𝑇(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

 (17b) 

Ф2𝑥
𝑇/𝑆ℎ𝑒𝑙𝑙

= ∫ {𝑄11(𝑧, 𝑇)𝛼𝑥(𝑧, 𝑇) + 𝑄12(𝑧, 𝑇)𝛼𝑦(𝑧, 𝑇)}∆𝑇(𝑧)𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 (17c) 

Ф2𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

= ∫ {𝑄21(𝑧, 𝑇)𝛼𝑥(𝑧, 𝑇) + 𝑄22(𝑧, 𝑇)𝛼𝑦(𝑧, 𝑇)}∆𝑇(𝑧)𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 (17d) 

(Ф1𝑥
𝑇/𝑆𝑡𝑖𝑓𝑓

, Ф2𝑥
𝑇/𝑆𝑡𝑖𝑓𝑓

) = (
𝑏𝑥
𝑑𝑥
)∫ 𝐸𝑥(𝑧, 𝑇)𝛼𝑠𝑥(𝑧, 𝑇)∆𝑇(𝑧)(1, 𝑧)𝑑𝑧

ℎ
2
+ℎ𝑥

ℎ
2

 (17e) 

(Ф1𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

, Ф2𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

) = (
𝑏𝑦

𝑑𝑦
)∫ 𝐸𝑦(𝑧, 𝑇)𝛼𝑠𝑦(𝑧, 𝑇)∆𝑇(𝑧)(1, 𝑧)𝑑𝑧

ℎ
2
+ℎ𝑦

ℎ
2

 (17f) 

The expression of the force and moment resultants in equations (13 a-b) can be 

expended and written in terms of 𝑢0, 𝑣0, 𝑤0 displacements:  
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𝑁𝑥 = (𝐴11 +
𝐸𝑥𝐴𝑥
𝑑𝑥

) {
𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅𝑥
+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑥
+
1

2
(
𝜕𝑤0
𝜕𝑥
)
2

}+𝐵12
𝜕𝜓𝑦

𝜕𝑦
 

  + (𝐵11 +
𝐸𝑥𝐴𝑥𝑒𝑥
𝑑𝑥

)
𝜕𝜓𝑥
𝜕𝑥

+ 𝐴12 {
𝜕𝑣0
𝜕𝑦

+
𝑤0
𝑅𝑦
+
𝜕𝑤0
𝜕𝑦

𝜕𝑤⋆

𝜕𝑦
+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

} 

  −Ф1𝑥
𝑇/𝑆ℎ𝑒𝑙𝑙

−Ф1𝑥
𝑇/𝑆𝑡𝑖𝑓𝑓

 

(18a) 

𝑁𝑦 = (𝐴22 +
𝐸𝑦𝐴𝑦

𝑑𝑦
){
𝜕𝑣0
𝜕𝑦

+
𝑤0
𝑅𝑦
+
𝜕𝑤0
𝜕𝑦

𝜕𝑤⋆

𝜕𝑦
+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

}+𝐵21
𝜕𝜓𝑥
𝜕𝑥

 

+(𝐵22 +
𝐸𝑦𝐴𝑦𝑒𝑦

𝑑𝑦
)
𝜕𝜓𝑦

𝜕𝑦
+ 𝐴21 {

𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅𝑥
+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑥
+
1

2
(
𝜕𝑤0
𝜕𝑥
)
2

} 

  −Ф1𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

−Ф1𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

 

(18b) 

𝑁𝑥𝑦 = 𝐴66 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤⋆

𝜕𝑥

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑦
) 

   +𝐵66 (
 𝜕𝜓𝑥
𝜕𝑦

+ 
𝜕𝜓𝑦

𝜕𝑥
) 

(18c) 

𝑀𝑥 = (𝐵11 +
𝐸𝑥𝐴𝑥𝑒𝑥
𝑑𝑥

) {
𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅𝑥
+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑥
+
1

2
(
𝜕𝑤0
𝜕𝑥
)
2

} + 𝐷12
𝜕𝜓𝑦

𝜕𝑦
 

+(𝐷11 +
𝐸𝑥𝐼𝑥

′

𝑑𝑥
)
𝜕𝜓𝑥
𝜕𝑥

+ 𝐵12 {
𝜕𝑣0
𝜕𝑦

+
𝑤0
𝑅𝑦
+
𝜕𝑤0
𝜕𝑦

𝜕𝑤⋆

𝜕𝑦
+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

} 

   −Ф2𝑥
𝑇/𝑆ℎ𝑒𝑙𝑙

−Ф2𝑥
𝑇/𝑆𝑡𝑖𝑓𝑓

 

(18d) 

𝑀𝑦 = (𝐵22 +
𝐸𝑦𝐴𝑦𝑒𝑦

𝑑𝑦
){
𝜕𝑣0
𝜕𝑦

+
𝑤0
𝑅𝑦
+
𝜕𝑤0
𝜕𝑦

𝜕𝑤⋆

𝜕𝑦
+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

}+𝐷21
𝜕𝜓𝑥
𝜕𝑥

 

+(𝐷22 +
𝐸𝑦𝐼𝑦

′

𝑑𝑦
)
𝜕𝜓𝑦

𝜕𝑦
+ 𝐵21 {

𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅𝑥
+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑥
+
1

2
(
𝜕𝑤0
𝜕𝑥

)
2

} 

   −Ф2𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

−Ф2𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

 

(18e) 

𝑀𝑥𝑦 = 𝐵66 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤⋆

𝜕𝑥

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤⋆

𝜕𝑦
) 

    + {𝐷66 +
1

2
(
𝐺𝑥𝐽𝑥
𝑑𝑥

+
𝐺𝑦𝐽𝑦

𝑑𝑦
)}(

 𝜕𝜓𝑥
𝜕𝑦

+ 
𝜕𝜓𝑦

𝜕𝑥
) 

(18f) 

𝑄𝑥 = 𝑘𝑠 (𝐴55 +
𝐺𝑥𝐴𝑥
𝑑𝑥

)(
𝜕𝑤0
𝜕𝑥

−
𝑢0
𝑅𝑥
+
𝜕𝑤⋆

𝜕𝑥
+ 𝜓𝑥) (18g) 
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𝑄𝑦 = 𝑘𝑠 (𝐴44 +
𝐺𝑦𝐴𝑦

𝑑𝑦
)(
𝜕𝑤0
𝜕𝑦

−
𝑣0
𝑅𝑦
+
𝜕𝑤⋆

𝜕𝑦
+ 𝜓𝑦) (18h) 

3.3 Equations of Motion 

 

The nonlinear equations of motion of imperfect eccentrically stiffened functionally 

graded double curved shell based on Sanders’s shell theory that accounts for the shear 

deformation are expressed as follow (Reddy, 2003): 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕

𝜕𝑦
(𝑁𝑥𝑦 + 𝐶0𝑀𝑥𝑦) +

𝑄𝑥
𝑅𝑥

= 𝐼0 (
𝜕2𝑢0
𝜕𝑡2

) + 𝐼1 (
𝜕2𝜓𝑥
𝜕𝑡2

) (19a) 

𝜕

𝜕𝑥
(𝑁𝑥𝑦 − 𝐶0𝑀𝑥𝑦) +

𝜕𝑁𝑦

𝜕𝑦
+
𝑄𝑦

𝑅𝑦
= 𝐼0 (

𝜕2𝑣0
𝜕𝑡2

) + 𝐼1 (
𝜕2𝜓𝑦

𝜕𝑡2
) (19b) 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
−
𝑁𝑥
𝑅𝑥
−
𝑁𝑦

𝑅𝑦
+
𝜕

𝜕𝑥
{𝑁𝑥 (

𝜕𝑤0
𝜕𝑥

+
𝜕𝑤∗

𝜕𝑥
) + 𝑁𝑥𝑦 (

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤∗

𝜕𝑦
)} + 𝑄𝑧 

+
𝜕

𝜕𝑦
{𝑁𝑥𝑦 (

𝜕𝑤0
𝜕𝑥

+
𝜕𝑤∗

𝜕𝑥
) + 𝑁𝑦 (

𝜕𝑤0
𝜕𝑦

+
𝜕𝑤∗

𝜕𝑦
)} = 𝐼0 (

𝜕2𝑤0
𝜕𝑡2

) + 2𝜖𝐼0
𝜕𝑤0
𝜕𝑡

 

(19c) 

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 𝐼1 (

𝜕2𝑢0
𝜕𝑡2

) + 𝐼2 (
𝜕2𝜓𝑥
𝜕𝑡2

) (19d) 

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦 = 𝐼1 (

𝜕2𝑣0
𝜕𝑡2

) + 𝐼2 (
𝜕2𝜓𝑦

𝜕𝑡2
) (19e) 

Where 𝐶0 =
1

2
(
1

𝑅𝑥
−

1

𝑅𝑦
) and 𝑄𝑥, 𝑄𝑦 and 𝑄𝑧 are uniformly distributed pressures over the 

shell surface in x,y, and z-direction. 𝐼0, 𝐼1, 𝐼2 are calculated by: 

𝐼𝑖

= ∫ 𝜌(𝑧, 𝑇)𝑧𝑖𝑑𝑧 + (
𝑏𝑥
𝑇

𝑑𝑥𝑇
)∫ 𝜌𝑠𝑥(𝑧, 𝑇)𝑧

𝑖𝑑𝑧

ℎ
2
+ℎ𝑥

𝑇

ℎ
2

 + (
𝑏𝑦
𝑇

𝑑𝑦𝑇
)∫ 𝜌𝑠𝑦(𝑧, 𝑇)𝑧

𝑖𝑑𝑧

ℎ
2
+ℎ𝑦

𝑇

ℎ
2

 

  

ℎ
2

−
ℎ
2

 

 𝑓𝑜𝑟 𝑖, 𝑗 = 0,1,2 

(20) 

To investigate the dynamic movement of the stiffened double-curved shell under 

temperature, the governing equations are required to be written in terms of displacements. 

By substituting equations (18 e-h) into equations (19 a-e), one can obtain: 
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𝐿11(𝑢0) + 𝐿12(𝑣0) + 𝐿13(𝑤0) + 𝐿14(𝜓𝑥) + 𝐿15(𝜓𝑦) + 𝐿16(𝑤
∗) + 𝑁𝐿1(𝑤0) 

(21a) 
+𝑁𝐿2(𝑤0, 𝑤

∗) = 𝐼0 (
𝜕2𝑢0
𝜕𝑡2

) + 𝐼1 (
𝜕2𝜓𝑥
𝜕𝑡2

) 

𝐿21(𝑢0) + 𝐿22(𝑣0) + 𝐿23(𝑤0) + 𝐿24(𝜓𝑥) + 𝐿25(𝜓𝑦) + 𝐿26(𝑤
∗) + 𝑁𝐿3(𝑤0) 

(21b) 
+𝑁𝐿4(𝑤0, 𝑤

∗) = 𝐼0 (
𝜕2𝑣0
𝜕𝑡2

) + 𝐼1 (
𝜕2𝜓𝑦

𝜕𝑡2
) 

𝐿31(𝑢0) + 𝐿32(𝑣0) + 𝐿33(𝑤0) + 𝐿34(𝜓𝑥) + 𝐿35(𝜓𝑦) + 𝐿36(𝑤
∗) + 𝐿37(Ф) 

 

+𝑁𝐿5(𝑤0) + 𝑁𝐿6(𝑢0, 𝑤0) + 𝑁𝐿7(𝑣0, 𝑤0) + 𝑁𝐿8(𝜓𝑥, 𝑤0) + 𝑁𝐿9(𝜓𝑦, 𝑤0) 

+𝑁𝐿10(𝑤0, 𝑤
∗) + 𝑁𝐿11(𝑢0, 𝑤

∗) + 𝑁𝐿12(𝑣0, 𝑤
∗) + 𝑁𝐿13(𝜓𝑥, 𝑤

∗) 

+𝑁𝐿14(𝜓𝑦, 𝑤
∗)+𝑄𝑧 = 𝐼0 (

𝜕2𝑤0
𝜕𝑡2

) + 2𝜖𝐼0
𝜕𝑤0
𝜕𝑡

 

(21c) 

𝐿41(𝑢0) + 𝐿42(𝑣0) + 𝐿43(𝑤0) + 𝐿44(𝜓𝑥) + 𝐿45(𝜓𝑦) + 𝐿46(𝑤
∗) + 𝑁𝐿15(𝑤0)  

+𝑁𝐿16(𝑤0, 𝑤
∗) = 𝐼1 (

𝜕2𝑢0
𝜕𝑡2

) + 𝐼2 (
𝜕2𝜓𝑥
𝜕𝑡2

) 

(21d) 

𝐿51(𝑢0) + 𝐿52(𝑣0) + 𝐿53(𝑤0) + 𝐿54(𝜓𝑥) + 𝐿55(𝜓𝑦) + 𝐿56(𝑤
∗) + 𝑁𝐿17(𝑤0) 

 

+𝑁𝐿18(𝑤0, 𝑤
∗) = 𝐼1 (

𝜕2𝑣0
𝜕𝑡2

) + 𝐼2 (
𝜕2𝜓𝑦

𝜕𝑡2
) 

(21e) 

where 𝐿𝑖𝑗(𝑖 = 1,2,3,4,5; 𝑗 = 1,2,3,4,5,6) are the linear operator and 𝑁𝐿𝑖(𝑖 =

1,2, … .18), are the nonlinear operators and are given in the Appendix. 

3.4 Solution Procedures 

 

It can be seen that equations (21 a-e) show highly coupling between displacements 

and rotations. T solve the coupled equations, some trigonometric series are used. Suppose 

that all four edges are simply supported and restrained from moving, in other words, all 

edges are immovable, then the following conditions are encountered (Chia, 1980): 
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𝑢0 = 𝑣0 = 0 𝑎𝑡 𝑥 = 0,
𝑎

2
, 𝑎  

𝑤0 = 𝜓𝑦 = 𝑀𝑥 = 𝜕2𝑤0 𝜕𝑥2 = 0⁄  𝑎𝑡 𝑥 = 0, 𝑎 (22a) 

𝑢0 = 𝑣0 = 0 
𝑎𝑡 𝑦 = 0,

𝑏

2
, 𝑏  

𝑤0 = 𝜓𝑥 = 𝑀𝑦 = 𝜕2𝑤0 𝜕𝑦2 = 0⁄  𝑎𝑡 𝑦 = 0, 𝑏 (22b) 

 

The geometric boundary conditions given by equations (22 a-b) are satisfied identically 

by employing the following doubly Fourier series equations:  

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑𝑈𝑚𝑛(𝑡)𝑠𝑖𝑛 (
2𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

𝑁

𝑛=1

𝑀

𝑚=1

 (23a) 

𝑣0(𝑥, 𝑦, 𝑡) = ∑ ∑𝑉𝑚𝑛(𝑡)𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

2𝑛𝜋𝑦

𝑏
)

𝑁

𝑛=1

𝑀

𝑚=1

 (23b) 

𝑤0(𝑥, 𝑦, 𝑡) = ∑ ∑𝑊𝑚𝑛(𝑡)𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

𝑁

𝑛=1

𝑀

𝑚=1

 (23c) 

𝜓𝑥(𝑥, 𝑦, 𝑡) = ∑ ∑𝑋𝑚𝑛(𝑡)𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

𝑁

𝑛=1

𝑀

𝑚=1

 (23d) 

𝜓𝑦(𝑥, 𝑦, 𝑡) = ∑∑𝑌𝑚𝑛(𝑡)𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
)

𝑁

𝑛=1

𝑀

𝑚=1

 (23e) 

      𝑤⋆(𝑥, 𝑦, 𝑡) = ∑ ∑  𝜇ℎ𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

∞

𝑛=1

∞

𝑚=1

 (23f) 

where m and n denote the number of half-waves in x and y directions, respectively. The 

terms 𝑈𝑚𝑛(𝑡), 𝑉𝑚𝑛(𝑡),  𝑊𝑚𝑛(𝑡),  𝑋𝑚𝑛(𝑡) 𝑎𝑛𝑑 𝑌𝑚𝑛(𝑡) are the generalized coordinates, 

which are the unknown functions of time “t,” and the coefficient “µ “ is the imperfection 

constant ( 0 ≤ 𝜇 ≤ 1). Furthermore, the external force 𝑄𝑧 for the static case can be 

expressed in the form of double trigonometric series as follow (Brush & Almroth, 1975): 
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𝑄𝑧(𝑥, 𝑦) = ∑ ∑𝑞𝑧𝑚𝑛s𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)

𝑁

𝑛=1

𝑀

𝑚=1

 (24) 

The coefficients 𝑞𝑧𝑚𝑛 for the case of uniformly distributed load are defined as: 

𝑞𝑧𝑚𝑛 = {

16𝑞0
𝑚𝑛𝜋2

𝑓𝑜𝑟 𝑚, 𝑛 𝑜𝑑𝑑

0 𝑓𝑜𝑟 𝑚, 𝑛 𝑒𝑣𝑒𝑛
 (25) 

 

Where 𝑞0, is the amplitude of the excitation. For the case of sinusoidal distributed load: 

𝑞𝑧𝑚𝑛 = 𝑞0 𝑓𝑜𝑟 𝑚 = 𝑛 = 1 (26) 

Finally, for the case of concentrated load: 

𝑞𝑧𝑚𝑛 =
4𝑞0
𝑎𝑏

 𝑓𝑜𝑟 𝑚 = 𝑛 = 1 (27) 

Substituting equations (23 a-d) and equation (24) into equations of motion (21 a-e) 

and then applying single-mode Galerkin’s method, five equations in terms of the time-

dependent variables 𝑈𝑚𝑛(𝑡),  𝑉𝑚𝑛(𝑡),  𝑊𝑚𝑛(𝑡),  𝑋𝑚𝑛(𝑡) 𝑎𝑛𝑑 𝑌𝑚𝑛(𝑡) are obtained as 

follows:  

𝑙11𝑈𝑚𝑛(𝑡) + 𝑙12𝑉𝑚𝑛(𝑡) + 𝑙13𝑊𝑚𝑛(𝑡) + 𝑙14𝑋𝑚𝑛(𝑡) + 𝑙15𝑌𝑚𝑛(𝑡) + 𝑙16𝜇ℎ  

+𝑙17{𝑊𝑚𝑛
2 (𝑡) + 2𝜇ℎ𝑊𝑚𝑛(𝑡)} = 𝐼0�̈�𝑚𝑛(𝑡) + 𝐼1�̈�𝑚𝑛(𝑡) (28a) 

𝑙21𝑈𝑚𝑛(𝑡) + 𝑙22𝑉𝑚𝑛(𝑡) + 𝑙23𝑊𝑚𝑛(𝑡) + 𝑙24𝑋𝑚𝑛(𝑡) + 𝑙25𝑌𝑚𝑛(𝑡) + 𝑙26𝜇ℎ  

+𝑙27{𝑊𝑚𝑛
2 (𝑡) + 2𝜇ℎ𝑊𝑚𝑛(𝑡)} = 𝐼0�̈�𝑚𝑛(𝑡) + 𝐼1�̈�𝑚𝑛(𝑡) (28b) 

𝑙31𝑈𝑚𝑛(𝑡) + 𝑙32𝑉𝑚𝑛(𝑡) + 𝑙33𝑊𝑚𝑛(𝑡) + 𝑙34𝑋𝑚𝑛(𝑡) + 𝑙35𝑌𝑚𝑛(𝑡) + 𝑙36𝜇ℎ  

+𝑙37(𝑊𝑚𝑛(𝑡) + 𝜇ℎ)𝑈𝑚𝑛(𝑡) + 𝑙38(𝑊𝑚𝑛(𝑡) + 𝜇ℎ)𝑉𝑚𝑛(𝑡) + 𝑙39(𝑊𝑚𝑛(𝑡)  

+𝜇ℎ)𝑋𝑚𝑛(𝑡) + 𝑙310(𝑊𝑚𝑛(𝑡) + 𝜇ℎ)𝑌𝑚𝑛(𝑡) + 𝑙311𝑊𝑚𝑛(𝑡)𝑊𝑚𝑛(𝑡)  

+𝑙312{𝑊𝑚𝑛(𝑡) + 𝜇ℎ}{𝑊𝑚𝑛(𝑡) + 2𝜇ℎ}𝑊𝑚𝑛(𝑡) + 𝑙313(Ф) + 𝑞𝑧𝑚𝑛(𝑡)  

= 𝐼0�̈�𝑚𝑛(𝑡) + 2𝜖𝐼0�̇�𝑚𝑛(𝑡) (28c) 
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𝑙41𝑈𝑚𝑛(𝑡) + 𝑙42𝑉𝑚𝑛(𝑡) + 𝑙43𝑊𝑚𝑛(𝑡) + 𝑙44𝑋𝑚𝑛(𝑡) + 𝑙45𝑌𝑚𝑛(𝑡) + 𝑙46𝜇ℎ  

+𝑙47{𝑊𝑚𝑛
2 (𝑡) + 2𝜇ℎ𝑊𝑚𝑛(𝑡)} = 𝐼1�̈�𝑚𝑛(𝑡) + 𝐼2�̈�𝑚𝑛(𝑡) (28d) 

𝑙51𝑈𝑚𝑛(𝑡) + 𝑙52𝑉𝑚𝑛(𝑡) + 𝑙53𝑊𝑚𝑛(𝑡) + 𝑙54𝑋𝑚𝑛(𝑡) + 𝑙55𝑌𝑚𝑛(𝑡) + 𝑙56𝜇ℎ  

+𝑙57{𝑊𝑚𝑛
2 (𝑡) + 2𝜇ℎ𝑊𝑚𝑛(𝑡)} = 𝐼1�̈�𝑚𝑛(𝑡) + 𝐼2�̈�𝑚𝑛(𝑡) (28e) 

3.4.1 Linear Vibration Analysis Solution 

 

By taking the linear terms of equations (28 a-e), and neglect the effect of damping 

and imperfection, the above equations of motion can be written in a matrix form as: 

[
 
 
 
 
𝑙11 𝑙12 𝑙13 𝑙14 𝑙15
𝑙21 𝑙22 𝑙23 𝑙24 𝑙25
𝑙31 𝑙32 𝑙33 𝑙34 𝑙35
𝑙41 𝑙42 𝑙43 𝑙44 𝑙45
𝑙51 𝑙52 𝑙53 𝑙54 𝑙55]

 
 
 
 

{
 
 

 
 
𝑈𝑚𝑛(𝑡)

𝑉𝑚𝑛(𝑡)

𝑊𝑚𝑛(𝑡)

𝑋𝑚𝑛(𝑡)

𝑌𝑚𝑛(𝑡)}
 
 

 
 

+

[
 
 
 
 
𝐼0 0 0 𝐼1 0
0 𝐼0 0 0 𝐼2
0 0 𝐼0 0 0
𝐼1 0 0 𝐼1 0
0 𝐼1 0 0 𝐼1]

 
 
 
 

{
 
 

 
 
�̈�𝑚𝑛(𝑡)

�̈�𝑚𝑛(𝑡)

�̈�𝑚𝑛(𝑡)

�̈�𝑚𝑛(𝑡)

�̈�𝑚𝑛(𝑡)}
 
 

 
 

 =

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

 (29) 

For calculating the natural frequency under thermal load, assuming the generalized 

coordinate are of the form: 

𝑈𝑚𝑛(𝑡) = 𝑈𝑚𝑛𝑒
𝑖𝜔𝑡; 𝑉𝑚𝑛(𝑡) = 𝑉𝑚𝑛𝑒

𝑖𝜔𝑡;𝑊𝑚𝑛(𝑡) = 𝑊𝑚𝑛𝑒
𝑖𝜔𝑡; 𝑋𝑚𝑛(𝑡) = 

𝑋𝑚𝑛𝑒
𝑖𝜔𝑡 𝑎𝑛𝑑 𝑌𝑚𝑛(𝑡) = 𝑌𝑚𝑛𝑒

𝑖𝜔𝑡 
(30) 

where 𝜔, is the natural frequency. In addition, substituting assumptions (30) into equation 

(29) and solving the resultant determinant, leads to five frequencies. The smallest one of 

which is called the fundamental frequency.  

3.4.2 The solution of Nonlinear Static Equations 

 

Consider the FGM double-curved shell with all four edges simply supported and 

subjected to uniform external transverse load without any imperfection, damping effects 

and inertial forces. After considering the assumptions above, the static deflection is 

determined by setting all the time derivative terms in equations (28 a, b, d, and e) through 

(28e) equal to zero and solving the resulting equations in terms of displacement 
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components 𝑈𝑚𝑛, 𝑉𝑚𝑛, 𝑋𝑚𝑛 𝑎𝑛𝑑 𝑌𝑚𝑛. Then substituting the results into equation (28c) 

without the time derivatives (static equation), to obtain the static-deflection curves of the 

eccentrically FGM double curved shells: 

{𝑃1 + 𝑃6(𝜇ℎ) + 𝑃8(𝜇ℎ)
2}𝑊𝑚𝑛 + {𝑃2 + 𝑃7(𝜇ℎ)}𝑊𝑚𝑛

2 + 𝑃3𝑊𝑚𝑛
3

+ {𝑃4(𝜇ℎ) + 𝑃5(𝜇ℎ)
2} + 𝑃9(Ф) = 𝑞𝑧𝑚𝑛 

(31) 

Note that 𝑞𝑧𝑚𝑛 in equation (31) is not a function of time. It is given either by equation 

(26) or by equation (27). All the P’s are symbolic equations in the function of the linear 

operators 𝑙𝑖𝑗. 

3.4.3 The solution of Nonlinear Dynamic Equations 

 

For this case, Bich, Duc and Quan (2014) and Kobayashi and Leissa (1995) 

investigated the effect of inertia terms on nonlinear vibration. It was shown that 

neglecting both, the in-plane and rotational inertia terms, did not cause significant errors. 

Hence, solving equations (28a), (28b), (28d) and (28e) for 𝑈𝑚𝑛(𝑡),  𝑉𝑚𝑛(𝑡), 𝑋𝑚𝑛(𝑡) and 

𝑌𝑚𝑛(𝑡), then substituting the results into equations (28c) the nonlinear dynamic response 

of stiffened FGM double curved shallow shell, also known as the extended duffing 

equation is obtained. Note that the original Duffing equation contains only cubic 

nonlinear term, whereas the extended Duffing equation problem the governing nonlinear 

differential equation of motion includes the second order term, quadratic term in addition 

to the cubic term as: 

𝑀�̈�𝑚𝑛(𝑡) + 𝐶�̇�𝑚𝑛(𝑡) + {𝑃1 + 𝑃6(𝜇ℎ) + 𝑃8(𝜇ℎ)
2}𝑊𝑚𝑛(𝑡)

+ {𝑃2 + 𝑃7(𝜇ℎ)}𝑊𝑚𝑛
2 (t) + 𝑃3𝑊𝑚𝑛

3 (t) + {𝑃4(𝜇ℎ) + 𝑃5(𝜇ℎ)
2}

+ 𝑃9(Ф) =  𝑞𝑧𝑚𝑛(𝑡) 

(32) 

where 𝑀 is the global mass, 𝐶 is the damping coefficient, {𝑃1 + 𝑃6(𝜇ℎ) + 𝑃8(𝜇ℎ)
2} is 

the linear stiffness, {𝑃2 + 𝑃7(𝜇ℎ)} 𝑎𝑛𝑑 𝑃3 are the nonlinear quadratic and cubic stiffness 
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respectively, {𝑃4(𝜇ℎ) + 𝑃5(𝜇ℎ)
2} is the imperfection coefficients, and 𝑃9 is the thermal 

coefficient of the stiffened shell. For the case of a perfect structure, the extended duffing 

equation above becomes: 

𝑀�̈�𝑚𝑛(𝑡) + 𝐶�̇�𝑚𝑛(𝑡) + 𝑃1𝑊𝑚𝑛(𝑡) + 𝑃2𝑊𝑚𝑛
2 (t) + 𝑃3𝑊𝑚𝑛

3 (t) + 𝑃9(Ф)

=  𝑞𝑧𝑚𝑛(𝑡) 
(33) 

Nonlinear response of equations (32) and (33) are investigated using Fourth Order 

Runge-Kutta combined with the following initial conditions: 

𝑊(0) = 0,
𝜕𝑊(0)

𝜕𝑡
= 0  

3.4.4 Amplitude – Frequency Curve 

 

The nonlinear amplitude frequency response of the stiffened double curved shell is 

studied. The harmonic balance method was is applied using single and multi-harmonic 

terms. And the he’s energy balance is considered to obtain a closed-form solution for the 

strongly nonlinear Duffing equation. 

3.4.4.1 Nonlinear Forced Vibration for Isotropic Shells 

 

Nonlinear vibration of the stiffened FGM double-curved shell is considered under a 

uniformly distributed pressure 𝑞𝑧𝑚𝑛(𝑡). To obtain a closed-form frequency-amplitude 

response of nonlinear forced vibration, the harmonic balance method is applied. Only a 

single harmonic term is used for isotropic shells. The excitation is assumed to be 

harmonic of the form qzmn(t) =  qzmncos(Ωt). The response is assumed to be W(t) =

A cos(Ωt + ϕ). Using single-mode Galerkin’s method by multiplying equation (32) by 

cos(Ωt + ϕ) and  sin(Ωt + ϕ), respectively then integrating both results over the period 

𝑇 = 2𝜋 Ω⁄  of nonlinear oscillation, the equation of the amplitude-frequency curve of 

nonlinear forced vibration with imperfection is expressed as: 
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(𝑃1𝐴 + 𝑃6𝐴(𝜇ℎ) + 𝑃8𝐴(𝜇ℎ)
2 +

3𝑃3
4
𝐴3 − 𝐴𝑀Ω2)

2

+ (𝐶Ω𝐴)2 = (𝑞𝑧𝑚𝑛)
2 (34) 

For the case of perfect shell, the forced nonlinear amplitude-frequency curve above 

becomes: 

(𝑃1𝐴 +
3𝑃3
4
𝐴3 − 𝐴𝑀Ω2)

2

+ (𝐶Ω𝐴)2 = (𝑞𝑧𝑚𝑛)
2 (35) 

3.4.4.2 Nonlinear Free Vibration of Isotropic Shell 

 

Nonlinear free vibration is expressed when the damping coefficient is neglected 

(𝐶 = 0) and no external loads exist (𝑞𝑧𝑚𝑛 = 0) in equation (34) above. In this case, the 

frequency-amplitude nonlinear free vibration of an imperfect curve is given as follow: 

Ω2 =
𝑃1
𝑀
+
𝑃6(𝜇ℎ)

𝑀
+
𝑃8(𝜇ℎ)

2

𝑀
+
3𝑃3
4𝑀

𝐴2 (36) 

For the case of a perfect shell, the free nonlinear amplitude-frequency curve above 

becomes: 

Ω2 =
𝐾1
𝑀
+
3𝑃3
4𝑀

𝐴2 (37) 

 

3.4.4.3 Nonlinear Forced Vibration of FGM Shell 

 

In order to find a closed-form solution for the strongly nonlinear Duffing equation 

above, He’s energy balance method is adopted (He, 2006). A variational principle of 

extended Duffing equation (32) is calculated, then a Hamiltonian is developed. From 

which the frequency response is obtained by adopting the collocation method (Quan & 

Duc, 2016). The amplitude-frequency relationship can be expressed as: 

3𝑃3
16

𝐴3 + (
𝑃2
3
−

𝑃2

6√2
)𝐴2 + (0.25𝑃1 −

𝐶𝜋Ω

4
− 0.25Ω2)𝐴 = 𝑞𝑧𝑚𝑛 `(40) 

 

 

 

 



34  

3.5 Numerical Results Validation and Discussion 

 

In this section, natural frequency, nonlinear static and dynamic analysis of simply- 

supported stiffened and unstiffened functionally graded materials double-curved shell 

with different geometric parameters and material power-law indices under different 

mechanical loads are analyzed and validated. Throughout this chapter, the metal-ceramic 

FGM shell is considered to be made of either, Aluminum and Alumina (Al/Al2O2) or 

Stainless steel and Silicon Nitride (SUS304/SI3N4).  

Table 3.1  

Material Properties of the FGM Shell (Reddy & Chin, 1998). 

Materials Properties 𝑃−1 𝑃0 𝑃1 𝑃2 𝑃3 

𝑆𝑈𝑆304 𝐸𝑚(𝐺𝑃𝑎) 0 201.04 3.079E-4 -6.534E-7 0 

(metal 𝛼𝑐(1 𝑘⁄ ) 0 12.33E-6 8.086E-4 0 0 

TID 𝑘(𝑊 𝑚𝐾⁄ ) 0 15.379 -1.264E-3 2.092E-6 -7.223E-10 

T=300 K) 𝜌(𝐾𝑔 𝑚3⁄ ) 0 8166 0 0 0 

       

𝐴𝑙 𝐸𝑚(𝐺𝑃𝑎) 0 70 0 0 0 

(metal 𝛼𝑐(1 𝑘⁄ ) 0 23E-6 0 0 0 

TID 𝑘(𝑊 𝑚𝐾⁄ ) 0 204 0 0 0 

T=300 K) 𝜌(𝐾𝑔 𝑚3⁄ ) 0 2778 0 0 0 

       

𝑆𝑖3𝑁4 𝐸𝑚(𝐺𝑃𝑎) 0 348.43 -3.07E-4 2.16E-7 -8.946E-11 

(ceramic 𝛼𝑐(1 𝑘⁄ ) 0 5.8723E-6 9.095E-4 0 0 

TID 𝑘(𝑊 𝑚𝐾⁄ ) 0 13.723 -1.032E-3 5.466E-7 -7.876E-11 

T=300 K) 𝜌(𝐾𝑔 𝑚3⁄ ) 0 2370    

       

𝐴𝑙2𝑂2 𝐸𝑚(𝐺𝑃𝑎) 0 380 0 0 0 

(ceramic 𝛼𝑐(1 𝑘⁄ ) 0 7.4E-6 0 0 0 

TID 𝑘(𝑊 𝑚𝐾⁄ ) 0 10.4 0 0 0 

T=300 K) 𝜌(𝐾𝑔 𝑚3⁄ ) 0 3800 0 0 0 

       

𝑍𝑟𝑂2 𝐸𝑚(𝐺𝑃𝑎) 0 151 0 0 0 

(ceramic 𝛼𝑐(1 𝑘⁄ ) 0 10E-6 0 0 0 

TID 𝑘(𝑊 𝑚𝐾⁄ ) 0 2.09 0 0 0 

T=300 K) 𝜌(𝐾𝑔 𝑚3⁄ ) 0 3000 0 0 0 
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The material properties of the selected FGMs are listed in Table 3.1. It should be 

noted that the thermal load is not going to be considered in this chapter. The reason is that 

thermal buckling analysis should be studied and discussed first due to the nature of the 

boundary conditions adopted here (immobile simply supported). Therefore, the thermal 

load effect will be evaluated in chapter 4 instead. 

3.5.1 Natural Frequency Results 

 

As part of the validation of the present method, a comparison of the dimensionless 

frequency for the isotropic cylindrical shell is investigated in Table 3.2. The obtained 

values and compared with the theoretical results of Kobayashi and Leissa (1995) based 

on first-order shear deformation theory, Shen (2012) based on a higher-order shear 

deformation shell theory and a three dimensional theory developed by Chern and Chao 

(2000) for a variety of simply supported shallow panels. The parameters used are: 𝑅 =

10𝑏 𝑎𝑛𝑑 ℎ = 0.001𝑚 while the width to thickness ratios are taken to be 10 and 100 and 

the length to width ratios was increased from 0.5 to 2 by 0.5 increment.  

Table 3.2  

Comparison of Dimensionless Frequency 𝜛 = 𝜔𝑚𝑛𝑏√𝜌𝑚(1 − 𝜈
2) 𝐸𝑚⁄  for Isotropic 

Cylindrical Panels (h=0.001, R/b=10). 

 

b/h Theory a/b    

  0.5 1.0 1.5 2.0 

10 FSDT  

HSDT 

3D   

Present  

1.3360 

1.3153 

1.3174 

1.3195 

 

0.5563 

0.5524 

0.5505 

0.5532 

 

0.4044 

0.4022 

0.3998 

0.4026 

 

0.3505 

0.3488 

0.3461 

0.3490 

 

100 FSDT  

HSDT 

3D   

Present  

0.1615 

0.1615 

0.1606 

0.1615 

0.0743 

0.0743 

0.0736 

0.0743 

0.0505 

0.0505 

0.0491 

0.0505 

0.0404 

0.0404 

0.0392 

0.0404 
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A comparison of the dimensionless frequency of simply supported Aluminum and 

Alumina (Al/Al2O2) double curved shallow shells for various volume fraction indices 

and radii of curvature are calculated in Table 3.3. The obtained results are compared with 

those presented by Bich et al. (2013) based classical thin shell theory, by Chorfi and 

Houmat (2010) used the first-order shear deformation theory, and by Quan and Duc 

(2016) accorded to the higher-order shear theory. 

Table 3.3 

 

Comparison of Fundamental Natural Frequency Parameter 𝜛 = 𝜔𝑚𝑛ℎ√𝜌𝑐 𝐸𝑐⁄  for 

Al/Al2O3 FGM Double Curved Shallow Shells (a/b=1, b/h=10). 

 

  

 

 

 

 

The fundamental natural frequencies of stiffened and un-stiffened Al/Al2O3 FGM 

spherical panels are shown in Table 3.4 below. The stiffeners are made of Alumina 

ceramic and the Poisson’s ratio is chosen to be 0.3. A good agreement can be witnessed 

with comparison to those obtained by Bich et al. (2013) based on the classical plate 

theory. The natural frequencies of the stiffened spherical shells are greater than those of 

un-stiffened shells. The natural frequencies are obviously dependent on the volume 

Structures a/Rx b/Ry Theory  k   

    0 0.5 1 4 

Plate 0 0 CLPT 

FSDT 

HSDT 

Present 

 

0.0597 

0.0581 

0.0615 

0.0588 

 

0.0506 

0.0502 

0.0519 

0.0492 

 

0.0456 

0.0446 

0.0466 

0.0430 

 

0.0396 

0.0387 

0.0404 

0.0381 

 

Cylindrical 

Shell 

0 0.5 CLPT 

FSDT 

HSDT 

Present 

0.0648 

0.0632 

0.0662 

0.0622 

 

0.0553 

0.0543 

0.0581 

0.0535 

 

0.0501 

0.0501 

0.0525 

0.0485 

 

0.0430 

0.0422 

0.0462 

0.0413 

Spherical 

Shell 

0.5 0.5 CLPT 

FSDT 

HSDT 

Present 

0.0779 

0.0767 

0.0783 

0.0757 

0.0676 

0.0668 

0.0691 

0.0658 

0.0617 

0.0611 

0.0632 

0.0604 

0.0520 

0.0513 

0.0529 

0.0507 
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fraction index as shown in the table. They decrease as the power indices increase. This is 

very reasonable since the values of the elasticity modulus decrease as K increase. 

Table 3.4 

 

Comparison of Fundamental Natural Frequency Parameter 𝜛 = 𝜔𝑚𝑛ℎ√𝜌𝑐 𝐸𝑐 ⁄ of 

Stiffened and Un-Stiffened Al/Al2O3 Spherical Panels (𝑎 = 𝑏 = 0.8𝑚, ℎ = 0.01𝑚, ℎ𝑥 =

ℎ𝑦 = 0.05𝑚, 𝑏𝑥 = 𝑏𝑦 = 0.0025𝑚, 𝑑𝑥 = 𝑑𝑦 = 0.1𝑚). 

 

Rx=Ry K 
Un-

Stiffened 
 Stiffened 

 

  CPT Present CPT Present 

 3 0.2 0.0207 0.0206 0.0217 0.0217 

 1 0.0180 0.0179 0.0196 0.0199 

 5 0.0141 0.0140 0.0169 0.0174 

 10 0.0129 0.0128 0.0162 0.0165 

 

5 0.2 0.0132 0.0131 0.0171 0.0172 

 1 0.0114 0.0113 0.0161 0.0166 

 5 0.0090 0.0089 0.0149 0.0153 

 10 0.0083 0.0082 0.0147 0.0151 

 

10 

 

0.2 

 

0.0081 

 

0.0081 

 

0.0152 

 

0.0153 

 1 0.0069 0.0069 0.0148 0.0151 

 5 0.0056 0.0056 0.0144 0.0149 

 10 0.0053 0.0053 0.0144 0.0149 

 

∞ (plate) 

 

0.2 

 

0.0054 

 

0.0054 

 

0.0150 

 

0.0152 

 1 0.0045 0.0045 0.0149 0.0151 

 5 0.0039 0.0039 0.0148 0.0151 

 10 0.0037 0.0037 0.0148 0.0151 

Next, the first five natural frequencies parameters of stiffened and unstiffened FGM 

spherical shell are calculated and listed in Table 3.5. It is seen that the values are not 

significantly different as compared with the results of Bich, Dung and Nam (2013) based 

on the classical plate theory, and Bich, Duc and Quan (2014) added the first-order shear 

deformation theory to the previous problem. 
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Table 3.5  

 

Comparison of First 5 Modes Natural Frequency Parameters ϖ = ωmnh√ρc Ec ⁄  of 

Stiffened and Un-Stiffened Al/Al2O3 FGM Spherical Shallow Shell (a = b = 0.8m, h =
0.01m, hx = hy = 0.050m,  bx = by = 0.0025m,  dx = dy = 0.1m, Rx = Ry = 5m, 

K = 1 
 

Mode (m,n) 
Un-

Stiffened 
  Stiffened  

  

   CPT FSDT Present CPT FSDT Present  

1 

2 

3 

4 

5 

(1,1) 

(1,2) and (2.1) 

(2,2) 

(1,3) and (3,1) 

(2,3) and (3,2) 

0.0113 

0.0152 

0.0206 

0.0245 

0.0307 

0.0112 

0.0151 

0.0206 

0.0245 

0.0306 

0.0112 

0.0152 

0.0207 

0.0246 

0.0308 

0.0160 

0.0421 

0.0581 

0.0909 

0.1002 

0.0158 

0.0422 

0.0583 

0.0902 

0.0997 

0.0160 

0.0423 

0.0584 

0.0912 

0.1007 

 

To illustrate the accuracy of the proposed approach of stiffened isotropic and FGM 

double curved shallow shell based on Lekhnitsky smeared stiffeners technique, the first 

three natural frequencies (rad/s) of stiffened and un-stiffened aluminum and zirconia 

Al/ZrO2 FGM rectangular panels are calculated and shown in Table 3.6 and Table 3.7 

respectively. 

The stiffeners are made of Aluminum and the Poisson’s ratio is chosen to be 0.3 for 

simplicity.The results are compared with the FEM solutions obtained by ABAQUS 

software using the 8-node doubly curved shell element (S8R). A stepwise approximation 

is applied to model the material property gradations of the rectangular FGM. To 

accomplish the convergence of the results, the thickness is divided into 160 layers where 

the stiffness matrix for each layer is calculated and then assigned at the centroid of each 

specific layer. Figure 3.1 and Figure 3.2 show the mode shapes of the aluminum and 

FGM plate with different stiffeners configurations. 
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Table 3.6 

 

Natural Frequency of a Rectangular Aluminum Plate with Longitudinal, Transversal and 

Orthogonal Stiffeners (a/b = 2, h = 0.025m, hx = hy = 0.05m, bx = by = 0.03m). 

 
Mode 

(m,n) 

1 

(1,1) 

2 

(1,2) 

3 

(1,3) 

Arrangement ABAQUS Present 
% 

Diff 
ABQAUS Present 

% 

Diff 
ABAQUS Present 

% 

Diff 

Un-Stiffened 74.295 74.46 0.22 118.62 119.035 0.35 192.65 193.16 0.26 

          

X-Dir 

(3 stringers) 
74.924 74.679 0.32 165.05 166.19 0.68 228 229.16 0.50 

Y-Dir 

(3 stringers) 
118.33 120.879 2.13 147.58 149.615 1.36 206.07 207.899 0.88 

X-Y Dir 

(3 x 3 stringer) 
113.66 115.087 1.24 184.5 185.535 0.56 328.06 331.821 1.14 

          

X-Dir 

(7 stringers) 
75.56 74.83 0.97 184 182.07 1.05 212.6 212.97 0.17 

Y-Dir 

(7 stringer) 
142.32 142.8 0.33 166.74 166.199 0.32 218.16 216.52 0.75 

X-Y Dir 

(7 x 7 stringer) 
130.08 129.432 0.5 210.33 208.17 1.03 372.94 370.191 0.74 

          

X-Y Dir 

(5x 3 stringer) 
126.11 126.74 0.5 191.66 191.968 0.16 329.08 331.674 0.78 

X-Y Dir 

(7 x 4 stringer) 
133.93 133.93 0 201.4 200.938 0.23 341.87 344.69 0.82 

 

Figure 3.1. Frequency and mode shapes of a stiffened rectangular Aluminum plate using 

ABAQUS. 
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Table 3-7  

 

Natural Frequency of a Rectangular Al/ZrO2 Plate with Longitudinal, Transversal and 

Orthogonal Stiffeners(a/b = 2, h = 0.025m, hx = hy = 0.05m, bx = by = 0.03m). 

 
Mode 

(m,n) 

1 

(1,1) 

2 

(1,2) 

3 

(1,3) 

Arrangement ABAQUS Present 
% 

Diff 
ABQAUS Present 

% 

Diff 
ABAQUS Present 

% 

Diff 

Un-Stiffened 
101.61 102.132 0.51 161.99 163.287 0.79 263.36 265 0.62 

          

X-Dir 

(3 stringers) 
201.5 208.883 3.6 235.61 228.954 6.17 275.4 304.185 9.93 

Y-Dir 

(3 stringers) 
111.44 109.477 1.77 274.91 260.416 0.91 319.91 319.12 0.24 

X-Y Dir 

(3 x 3 stringer) 
195.13 195.316 0.09 318.35 302.02 2.98 518.02 539.966 4.14 

          

X-Dir 

(7 stringers) 
245.94 245.861 0.03 276.54 241.709 2.55 308.07 312.74 1.5 

Y-Dir 

(7 stringer) 
115.84 110.021 5.15 295.65 273.233 0.61 314.66 311.902 0.88 

X-Y Dir 

(7 x 7 stringer) 
225.27 222.69 1.15 364.69 320.646 0.71 565.99 570.705 0.82 

          

X-Y Dir 

(5x 3 stringer) 
219.03 219.838 0.36 334.08 273.233 1.2 341.53 334.869 1.96 

X-Y Dir 

(7 x 4 stringer) 
232.36 231.151 0.52 351.81 287.137 2.92 305.13 295.781 3.11 

 

 

Figure 3.2. Frequency and mode shapes of a stiffened rectangular Al/ZrO2 plate using 

ABAQUS. 
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3.5.2 Nonlinear Static Analysis Results 

 

To validate the results of the present formulation for the case of nonlinear static 

analysis of mechanically loaded FGM doubly curved shell, a simply supported shell 

made of Aluminum (Al) and Zirconia (ZrO2) with different power index K is considered. 

As the first example, the FGM square plate is subjected to bi-sinusoidal transverse 

loading. The table shows the non-dimensional deflection of a plate formulated based on 

classical plate theory (CPT) and first order shear deformation (FSDT) both obtained by 

Carrera et al. (2011), and higher order shear theory (Parandvar & Farid, 2016). It can be 

seen that our results are in an excellent agreement with the one based on FSDT in the 

following Table 3.8. 

Table 3.8  

 

Comparison of Non-Dimensional Deflection of the Simply Supported Plate Under Static 

Bi-Sinusoidal Transverse Loading (10ℎ3𝐸𝑐𝑤 𝑎4𝑞0⁄ ). 

 

 

 

 

 

K 
 Theory      a/h  

 4 10 100 

1      CPT 

     FSDT 

     HSDT 

     Present 

 

0.5623 

0.7291 

0.7251 

0.7291 

0.5623 

0.5889 

0.5864 

0.5889 

0.5623 

0.5625 

0.5539 

0.5625 

4      CPT 

     FSDT 

     HSDT 

     Present  

0.8281 

1.1125 

1.1547 

1.1125 

0.8281 

0.8736 

0.8777 

0.8736 

0.8281 

0.8286 

0.8172 

0.8286 

 

10 

 

 

     CPT 

     FSDT 

     HSDT 

     Present 

0.9354 

1.3178 

1.3846 

1.3178 

0.9354 

0.9966 

1.0043 

0.9966 

0.9354 

0.9360 

0.9247 

0.9396 
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Then, the nonlinear load-deflection curves are compared with Zhao and Liew (2009) 

results based on a modified version of Sander’s nonlinear shell theory. The Poisson ratio 

is chosen to be 0.3 and the material properties are listed in Table 3.1 above. As shown in 

Figure 3.3, an excellent agreement was met  when the present results were compared with 

(Zhao & Liew, 2009) results. 

 
Figure 3.3. Comparisons of nonlinear load-deflection curves with different index K for 

cylindrical shells (a/b=1, b/h=20, h=0.01, a/Ry = 0.2). 

 

Next, a parametric study is conducted on perfect and imperfect Al/ZrO2 cylindrical 

shell for different materials and geometric properties. A smooth snap-through behavior of 

the curved shell is shown in Figure 3.4. It can be seen that for a fixed value of the force q, 

as the volume fraction indices decreases, the magnitude of the deflection, W/h decreases, 

the graphs become less nonlinear and more stable and the snap-through response 

becomes smoother. This is because the concentration of ceramic in the shell increases 

compared to metal, hence the young’s modulus becomes larger. This means that the shell 

becomes stiffer and therefore, a load of the higher magnitude should be exerted in order 

to achieve the same nonlinear deflection. Also, it can be noticed that for an imperfectly 
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curved shell, higher applied mechanical loads are needed to reach the same maximum 

amplitude as the perfect plate. 

 
Figure 3.4. Effect of volume fraction exponent K and imperfection µ on the nonlinear 

response of cylindrical shells (a/b=1.1, b/h=50, h=0.01m, a/Ry = 0.5). 

 

 
Figure 3.5. Effect of length to width ratio and imperfection µ on the nonlinear response of 

cylindrical shells (b/h=30, a/Ry = 0.5, k=1). 
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Figure 3.6. Effect of width to thickness ratio and imperfection µ on the nonlinear response 

of cylindrical shells (a/b=1, a/Ry = 0.5, K=1). 

 

Figure 3.6 illustrates the effect of length to width ratio and width to thickness ratio 

respectively on nonlinear behavior of FGM cylindrical shell for K=1. From both Figure 

3.6 and Figure 3.6, it is observed that the load-carrying capacity of the shell increased as 

the aspect ratio decreased. Moreover, the nonlinear behavior of the curved shell becomes 

more stable for larger value of 𝑎 𝑏 ⁄ and 𝑏 ℎ⁄ , since the shell thickness increase and hence 

becomes stiffer. 

It is shown in Figure 3.7, that a snap through phenomena was exhibited for 

a Ry = 0.75 and 1.⁄  It can also be seen that when the length to the radius of curvature 

ratios decreased, the load-carrying capacity increased, and the curve became more stable. 

It is due to the fact that when the radii of curvature increase, the curved shell becomes 

shallower and therefore, stiffer and more stable. 
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Figure 3.7. Effect of length to radius ratio and imperfection µ on the nonlinear response of 

cylindrical panels (a/b=1, b/h=30, K=1). 

 

3.5.3 Nonlinear Dynamic Analysis Results 

 

In this section, two cases were considered in order to illustrate the proposed 

formulation of the nonlinear dynamic analysis of an eccentrically stiffened doubly curved 

shallow shell made of FGM subjected to a mechanical load. The first and the second 

numerical examples will be presented for stiffened and un-stiffened spherical and 

cylindrical shells, respectively. The shell is made of Aluminum and Alumina and the 

stiffeners are made of Alumina. Both longitudinal and transversal stiffeners are assumed 

identical. The nonlinear response is solved by using Runge-Kutta fourth order with 3000 

steps to reach convergence. The results of the present nonlinear responses of stiffened 

and un-stiffened spherical panels under sinusoidal mechanical excitation 𝑞(𝑡) =

105 sin(100𝑡) is compared with those of Bich (2013) based on the classical thin shell 

theory with geometrical nonlinearity. An excellent agreement can be seen in  

Figure 3.8 below. These results show that the stiffeners strongly decrease the 

vibration amplitude. Also, it can be seen that the response is not nonlinear and this is 
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because the excitation frequency (Ω=100 rad/s) is very small compared to the natural 

frequency (Ω=2643.25 rad/s). Figure 3.9 shows the difference between the linear and 

nonlinear solution. It is clear that the chosen excitation frequency does not exhibit high 

geometric nonlinearity. 

 
Figure 3.8. Nonlinear responses of stiffened and unstiffened spherical shells (a=b=0.8m, 

h=0.01m, q(t)=105 sin (100t), K=1, Rx=Ry=5m). 

 

 
Figure 3.9. Linear and Nonlinear responses of stiffened and unstiffened spherical shells 

(a=b=0.8m, h=0.01m, q(t)=105 sin (100t), K=1, Rx = Ry =5m). 
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When the forcing frequencies approach the natural ones, a very important 

phenomenon called harmonic beating phenomenon occurs. It is created by the 

interference of two sinusoidal waves at the same point in space. Sometimes they add each 

other and sometimes they destroy and cancel each other, resulting in a rapid oscillating 

accompanied by a very slow varying amplitude.  

 
Figure 3.10. Harmonic beat phenomenon of a stiffened spherical shell with different 

excitation frequencies Ω (a=b=0.8m, h=0.01m, Rx = Ry =5m, K=1, Q=105 N/m2). 

 

 
Figure 3.11. Effect of excitation loads on the harmonic beat phenomenon of stiffened 

spherical shells (a=b=0.8m, h=0.01m, Rx = Ry =5m, q(t)=Qsin(2650t), K=1). 
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Figure 3.10 shows that the amplitude of beats increases rapidly while the response 

time decreases when choosing two external frequencies (2600rad/s, and 2650rad/s) close 

to the natural frequency 2643.25rad/s of the studied stiffened spherical shell. The 

amplitude of harmonic beat increases and the response time decreases when the applied 

excitation force increases like in Figure 3.11. 

The second part of the nonlinear dynamic analysis section consists of a parametric 

study on a stiffened cylindrical shell subjected to a mechanical load. Same mechanical 

and dimensional properties as the spherical shell are used in this part.The effect of the 

volume fraction index K on the nonlinear dynamic response of the stiffened cylindrical 

shell with R=5m, h=0.01m is shown in Figure 3.12.  

 
Figure 3.12. Effect of power law index K on the nonlinear response of stiffened 

cylindrical shell (a=b=0.8m, q(t)=105 sin (100t), h=0.01m, Ry =5m). 

 

Also, this graph shows that the deflection curve increases with time as the power 

index increases (K=0,1,5). This is because the concentration of the metal (Al) in the 

functionally graded materials increases with the increase in K values according to the rule 

of mixture. Since the modulus of elasticity of the aluminum is smaller compared to the 
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Alumina (70 GPa comparing to 380 GPa), it yields a lower material stiffness therefore, a 

higher deflection. Figure 3.13 shows the effect of width to thickness ratio on the time 

deflection curve of the stiffened cylindrical shell. It can be observed clearly that as the 

value of b/h ratio increases, the load-carrying capacity decreases. 

 
Figure 3.13. Effect of width to thickness ratio on the nonlinear response of stiffened 

cylindrical shell (a/b=1, q(t)=105 sin (100t), h=0.01m, Ry =5m, K=1). 

 

Figure 3.14 depicts the effect of the length to width ratio on the time deflection curve. 

It can be seen that the deflection increase when the a/b ratio increases. Figure 3.15 shows 

the influence of increases the excitation loads on the time deflection curve. It is also seen 

that when the load increases the deflection imcreases. 

 



50  

Figure 3.14. Effect of length to width ratio on the nonlinear response of stiffened 

cylindrical shell (b/h=80, q(t)=105 sin (100t), h=0.01m, Ry =5m, K=1). 

 

Figure 3.15. Effect of excitation loads on the nonlinear response of a stiffened cylindrical 

shell (b/a=1, b/h=80, Ω= 100 rad/s, h=0.01m, Ry =5m, K=1). 
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3.5.4 Nonlinear Frequency Response 

 

To validate the present solution technique, the results for nonlinear frequency-

response obtained here, are compared with previously published papers in this area. For 

this purpose, several examples are considered here. The first study was performed for a 

simply supported Aluminum square plate with immovable edges. The so-called 

“backbone” obtained (frequency amplitude curve of nonlinear free vibration) is compared 

with the one obtained by Amabili (2004) and an excellent agreement can be found in 

Figure 3.16 below. 

 
Figure 3.16. Backbone for a square simply supported immovable Aluminum 

plate (a = b = 0.3m, h = 0.001m, E = 70 GPa, ρ = 2778 kg m3,⁄  ν = 0.3). 
 

Next study was conducted on the same immovable Aluminum plate previously 

described, but under a concentrated harmonic force at the center of magnitude F = 1.74N 

and modal damping ratio of ζ = 0.065. As can be seen in Figure 3.17 below, the 

calculated results and the ones given by Amabili (2004) were in a good agreement. 
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Figure 3.17. The frequency-amplitude curve of nonlinear vibration of an immovable 

Aluminum plate under F = 1.74N and ζ = 0.065. 

 

For the case of functionally graded material plate, both quadratic and cubic nonlinear 

terms exist. Therefore, to validate the present formulation, frequency-response curves for 

nonlinear free and forced vibration are calculated and compared with previously 

published works.  

 
Figure 3.18. Backbone curve for simply supported immovable SUS304/SI3N4 plate. 
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A backbone curve for a simply supported square plate with immovable edges made of 

SU304/Si3N4 was studied. The results obtained here were compared with Parandvar and 

Farid (2016) in Figure 3.18 above and a very good agreement was found.  

Next, the calculation of the amplitude-frequency relationship for the same simply 

supported immovable FGM plate was done and compared to Alijani and Amabili (2014) 

in Figure 3.19. It shows the forced vibration frequency-response plot of SUS304/SI3N4. 

It can be seen that the present results are in good agreement with those of Alijani and 

Amabili. 

 
Figure 3.19. The frequency-amplitude curve of nonlinear vibration of immovable 

SUS304/SI3N4 plate under f̅ = fb hω2 = 0.03⁄  and ζ = 0.01. 

 

After validating the adopted method, the frequency-response of functionally graded 

stiffened spherical shell is considered. The structure is made of Aluminum (Al) and 

Alumina (Al2O2). 
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Figure 3.20. The frequency-amplitude curve of free nonlinear vibration of stiffened and 

unstiffened Al/Al2O2 spherical shell Rx = Ry = 5m, a = b = 0.8m, h = 0.025m, K = 1. 

Figure 3.21. The frequency-amplitude curve of forced nonlinear vibration of stiffened 

and unstiffened Al/Al2O2 spherical shell Rx = Ry = 5m, a = b = 0.8m, h =

0.025m, K = 1 and ζ = 0.01 under uniformly distributed load Q = 105Pa. 
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It can be seen from both plots (Figure 3.21) that the frequency-amplitude curves of 

the forced vibration responses are asymptotic to the free vibration responses. Here both 

cases display an initial softening behavior followed by hardening. This is due to very 

high excitation leading to the geometric nonlinearity of stretching type. 

The points at which the motion changes its behavior, from stable to unstable and vice 

versa, are called Saddle-node Bifurcations. P1, P2, P3 and P4 for the un-stiffened 

spherical shell and P6, P7, P8 and P9 for stiffened one are called bifurcation points. Table 

3.9 shows the change of motion between two consecutive bifurcation points as well as the 

change of behavior. For the unstiffened curve in Figure 3, one can observe that, at some 

dimensionless frequency ratios (ωNL ωL = 0.6)⁄ , five solutions exist theoretically (S1, 

S2, S3, S4, and S5). However, this is practically not possible.  

Table 3.9  

 

Practical Behavior of Amplitude-Frequency Curve of Forced Nonlinear Vibration of 

Stiffened and Unstiffened FGM Spherical Shell. 

 

 

Based on the motion behavior in Table 3.9, solution S2 and S4 belong to two unstable 

regions, therefore, they are considered unstable points and can’t be achieved practically. 

It can be seen that the unstable region and the softening behavior of the unstiffened 

Curves         Bifurcation (saddle) 

         Point                      

Motion Behavior 

Unstiffened P0  P1 Stable  

 P1  P2 Unstable Softening 

 P2  P3 Stable Hardening 

 P3  P4 Unstable  

 P4  P5 Stable  

Stiffened P0  P6 Stable  

 P6  P7 Unstable Softening 

 P7  P8 Stable Hardening 

 P8  P9 Unstable  

 P9  P5 Stable  
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spherical shell are much bigger than the stiffened one. And this highlights one of the 

advantages of using stiffeners.  

Figure 3.22. Effect of volume fraction exponent K on the frequency-amplitude curves of 

stiffened spherical panels (Rx = Ry = 5m, a = b = 0.8m, h = 0.025m, Q = 10
5Pa). 

 

Figure 3.22 shows the effect of volume fraction index on the frequency-amplitude 

curve. It can be seen that the peak amplitude decreased as the volume fraction decreases 

and this is because the young’s modulus of the functionally graded materials increases by 

increasing the concentration of ceramic. Hence the hardness behavior increases. In Figure 

3.23 the effect of the radii of curvature of a stiffened cylindrical shell on the amplitude 

Frequency-Response curves is investigated. It is obvious that as the radius of curvature 

increases, the shell becomes flatter and therefore stiffer. Hence, the peak amplitude 

decreases and a better hardening behavior is observed.  
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Figure 3.23. Effect of radii Ry on the frequency-amplitude curves of a stiffened 

cylindrical shell (Rx = ∞, a = b = 0.8m, h = 0.025m, K = 1, Q = 105Pa). 

 

Figure 3.24 shows the effect of the magnitude of loading amplitude on the Frequency-

response curve. It can be seen that when the loading amplitude decreases, the nonlinear 

forced vibration response becomes closer to the free vibration response. 

 
Figure 3.24. Effect of excitation loads Q on the frequency-amplitude curves of stiffened 

spherical shells (Rx = Ry = 5m, a = b = 0.8m, h = 0.025m, K = 1). 
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4. Temperature Variation And Thermal Buckling 

In this chapter, the temperature variation across the thickness of the simply-supported 

stiffened functionally graded double-curved is discussed. Also, the critical buckling 

temperature variation is analyzed and a closed-form solution was found. 

4.1 Temperature Variation 

 

Consider a stiffened FGM double- curved shallow shell to besubjected to a very high 

thermal effect. Three types of temperature distribution are considered in this study: 

uniform, linear and nonlinear temperature rise. 

4.1.1 Uniform Temperature Rise 

The temperature field is assumed to change uniformly through the thickness of the 

stiffened shell, and this variation of temperature is expressed as: 

∆𝑇(𝑧) = 𝑇𝑓 − 𝑇𝑖 = 𝑇𝑓 − 𝑇0 (41) 

where the temperature of the top surface (metal-rich surface) is similar to the ambient 

temperate (𝑇𝑡𝑜𝑝 = 𝑇𝑚 = 𝑇0 = 300𝐾) unless mentioned otherwise. At the initial 

temperature 𝑇𝑖, the shell is thermal stress-free. The final value 𝑇𝑓 is, in fact, the 

temperature at which the shell buckles. Hence the thermal stresses in both the shell and 

the stiffeners are found by substituting equation (41) into equations (17 a-f). 

4.1.2 Linear Temperature Rise 

 

The temperature distribution is assumed to vary linearly through the thickness of the 

shell and for the stiffeners as well, as follows: 

𝑇(𝑧) =  𝑇0 + ∆𝑇 (
𝑧

ℎ
+
1

2
) ,    𝑤ℎ𝑒𝑟𝑒 𝑇0 = 𝑇𝑚   𝑓𝑜𝑟 𝑠ℎ𝑒𝑙𝑙  (42a) 

𝑇𝑠𝑥(𝑧) = 𝑇0 − ∆𝑇 (
2𝑧 − ℎ

2ℎ𝑥
) ,   𝑤ℎ𝑒𝑟𝑒 𝑇0 = 𝑇𝑐   𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑥 𝑑𝑖𝑟 (42b) 
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𝑇𝑠𝑦(𝑧) = 𝑇0 − ∆𝑇 (
2𝑧 − ℎ

2ℎ𝑦
) ,   𝑤ℎ𝑒𝑟𝑒 𝑇0 = 𝑇𝑐    𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑦 𝑑𝑖𝑟 (42c) 

where 𝑇𝑚 = 𝑇0 = 300𝐾 and ∆𝑇 = 𝑇 (
ℎ

2
) − T(−

ℎ

2
) = 𝑇𝑏 − 𝑇𝑡 = 𝑇𝑐 − 𝑇𝑚. Hence the 

thermal parameters in the shell and the stiffeners can be expressed by substituting 

equations (42 a-c) into 𝑇(𝑧) = 𝑇𝑚 + ∆𝑇(𝑧) , then the results into equations (17 a-f). 

4.1.3 Nonlinear Temperature Rise 

 

The temperature gradient is assumed to vary nonlinearly through the thickness of the 

shell and the stiffeners. It can be governed by the mono-dimensional steady-state heat 

conduction using the Fourier equations (Hetnarski, 1987) as follows: 

−
𝑑

𝑑𝑧
(𝑘(𝑧, 𝑇)

𝑑𝑇

𝑑𝑧
) = 0, 𝑇 (−

ℎ

2
) = 𝑇𝑚 T (

ℎ

2
) = 𝑇𝑐,   𝑓𝑜𝑟 𝑠ℎ𝑒𝑙𝑙 (43a) 

−
𝑑

𝑑𝑧
(𝑘𝑠𝑥(𝑧, 𝑇)

𝑑𝑇

𝑑𝑧
) = 0, 𝑇 (

ℎ

2
) = 𝑇𝑐 T (

ℎ

2
+ ℎ𝑥) = 𝑇𝑚, 𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑥 𝑑𝑖𝑟 (43b) 

−
𝑑

𝑑𝑧
(𝑘𝑠𝑦(𝑧, 𝑇)

𝑑𝑇

𝑑𝑧
) = 0, 𝑇 (

ℎ

2
) = 𝑇𝑐 T (

ℎ

2
+ ℎ𝑦) = 𝑇𝑚, 𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑦 𝑑𝑖𝑟 (43c) 

The analytical solutions to equations (43 a-c) for the shell, and x-y stiffeners respectively 

are expressed as follow: 

𝑇(𝑧) =  𝑇𝑐 − (𝑇𝑐 − 𝑇𝑚)
∫

1
𝑘(𝑧, 𝑇)

𝑑𝑧
𝑧
−ℎ
2

∫
1

𝑘(𝑧, 𝑇)

ℎ
2
−ℎ
2

𝑑𝑧

,       𝑓𝑜𝑟 𝑠ℎ𝑒𝑙𝑙  
 

(44a) 

𝑇𝑠𝑥(𝑧) = 𝑇𝑚 + (𝑇𝑐 − 𝑇𝑚)

∫
1

𝑘𝑠𝑥(𝑧, 𝑇)
𝑑𝑧

𝑧
ℎ
2

∫
1

𝑘𝑠𝑥(𝑧, 𝑇)

ℎ
2
+ℎ𝑥

ℎ 2⁄
𝑑𝑧

,     𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑥 𝑑𝑖𝑟  (44b) 

𝑇𝑠𝑦(𝑧) = 𝑇𝑚 + (𝑇𝑐 − 𝑇𝑚)

∫
1

𝑘𝑠𝑦(𝑧, 𝑇)
𝑑𝑧

𝑧
ℎ
2

∫
1

𝑘𝑠𝑦(𝑧, 𝑇)

ℎ
2
+ℎ𝑦

ℎ 2⁄
𝑑𝑧

,     𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑦 𝑑𝑖𝑟 (44c) 
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Now, substituting equations (5c) and equations (6 e-f) into equations (43a) and using 

the mentioned boundary conditions, the solution is obtained employing polynomial 

series. Hence the solution for nonlinear temperature distribution across the shell and 

stiffeners thicknesses becomes: 

𝑇(𝑧) =  𝑇𝑚 + ∆𝑇
∑

1
𝑖𝐾 + 1 (−

𝑘𝑐𝑚
𝑘𝑚

)
𝑖

(
2𝑧 + ℎ
2ℎ

)
𝑖𝐾+1

∞
𝑖=0

∑
1

𝑖𝐾 + 1 (−
𝑘𝑐𝑚
𝑘𝑚

)
𝑖

∞
𝑖=0

  𝑓𝑜𝑟 𝑠ℎ𝑒𝑙𝑙  (45a) 

𝑇𝑠𝑥(𝑧) =  𝑇𝑐 − ∆𝑇
∑

1
𝑖𝐾 + 1 (−

𝑘𝑚𝑐
𝑘𝑐
)
𝑖

(
2𝑧 − ℎ
2ℎ𝑥

)
𝑖𝐾+1

∞
𝑖=0

∑
1

𝑖𝐾 + 1 (−
𝑘𝑚𝑐
𝑘𝑐
)
𝑖

∞
𝑖=0

  𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑥 𝑑𝑖𝑟  (45b) 

𝑇𝑠𝑦(𝑧) =  𝑇𝑐 − ∆𝑇

∑
1

𝑖𝐾 + 1 (−
𝑘𝑚𝑐
𝑘𝑐
)
𝑖

(
2𝑧 − ℎ
2ℎ𝑦

)
𝑖𝐾+1

∞
𝑖=0

∑
1

𝑖𝐾 + 1 (−
𝑘𝑚𝑐
𝑘𝑐
)
𝑖

∞
𝑖=0

  𝑓𝑜𝑟 𝑠𝑡𝑖𝑓𝑓 𝑖𝑛 𝑦 𝑑𝑖𝑟  (45c) 

The first eight terms of the series were taken for the solution to convert. Then the 

thermal stresses in the shell and the stiffeners under nonlinear temperature distribution 

can be expressed by substituting 𝑇(𝑧) from equations (45 a-c) into (𝑧) = 𝑇𝑚 + ∆𝑇(𝑧) , 

then the results into equations (17 a-f). It can be seen that the temperature distribution in 

the functionally graded shell and stiffeners 𝑇(𝑧), 𝑇𝑠𝑥(𝑧) 𝑎𝑛𝑑 𝑇𝑠𝑦(𝑧) are nonlinear 

functions of thickness z. Hence, in the case of isotropic shells and stiffenersequations (45 

a-c) become equations of linear temperature distribution as equations (42 a-c). 

4.2 Thermal Buckling 

 

To study the thermal buckling, let’s consider a stiffened shell to be simply-supported 

along all four edges. When the structure is subjected to a uniform temperature rise, the 

initial temperature is raised to a final value where the plate buckles. Therefore, it is very 
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important to find the critical buckling temperature difference. To do that, the pre-

buckling thermal stresses should be determined. 

4.2.1 Buckling Under Uniform Temperature Rise 

 

From the expression of the force resultants, equations (18 a-c), the pre buckling 

resultant forces are found to be: 

𝑁𝑥0 = −Ф1𝑥
𝑇/𝑆ℎ𝑒𝑙𝑙

−Ф1𝑥
𝑇/𝑆𝑡𝑖𝑓𝑓

 

𝑁𝑦0 = −Ф1𝑦
𝑇/𝑆ℎ𝑒𝑙𝑙

−Ф1𝑦
𝑇/𝑆𝑡𝑖𝑓𝑓

 

𝑁𝑥𝑦0 = 0 

(46) 

Substituting equations (17a), (17b), (17e), and (17f) in the pre-buckling resultant forces 

from equation (46), then the result into the linear operator 𝑙33 , and solving 𝑑𝑒𝑡|𝑙𝑖𝑗| = 0, 

where 

[𝑙𝑖𝑗] =

[
 
 
 
 
𝑙11 𝑙12 𝑙13 𝑙14 𝑙15
𝑙21 𝑙22 𝑙23 𝑙24 𝑙25
𝑙31 𝑙32 𝑙33 𝑙34 𝑙35
𝑙41 𝑙42 𝑙43 𝑙44 𝑙45
𝑙51 𝑙52 𝑙53 𝑙54 𝑙55]

 
 
 
 

 

The buckling temperature change ∆𝑇 is obtained as: 

∆𝑇 = −
𝑙𝑑

𝑙𝑐 {(𝐿1 + 𝐿2) (
𝑚𝜋
𝑎 )

2

+ (𝐿1 + 𝐿3) (
𝑛𝜋
𝑏
)
2

}
 

(47) 

where  

𝐿1 =
ℎ

(1 − 𝜈)
(𝐸𝑚𝛼𝑚 +

1

𝐾 + 1
(𝐸𝑚𝛼𝑐𝑚 + 𝐸𝑐𝑚𝛼𝑚) +

1

2𝐾 + 1
𝐸𝑐𝑚𝛼𝑐𝑚) (48a) 

𝐿2 =
𝑑𝑥ℎ𝑥 (𝐸𝑐𝛼𝑐 +

1
𝐾 + 1

(𝐸𝑐𝛼𝑚𝑐 + 𝐸𝑚𝑐𝛼𝑐) +
1

2𝐾 + 1𝐸𝑚𝑐𝛼𝑚𝑐)

𝑑𝑥
 (48b) 

𝐿3 =
𝑑𝑦ℎ𝑦 (𝐸𝑐𝛼𝑐 +

1
𝐾 + 1

(𝐸𝑐𝛼𝑚𝑐 + 𝐸𝑚𝑐𝛼𝑐) +
1

2𝐾 + 1𝐸𝑚𝑐𝛼𝑚𝑐)

𝑑𝑦
 (48c) 
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𝑙𝑑 = 𝐷𝑒𝑡[𝑙𝑖𝑗]    𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3,4,5 𝑎𝑛𝑑 𝑁𝑥0 = 𝑁𝑦0 = 0 (48d) 

𝑙𝑐 = 𝐷𝑒𝑡[𝑙𝑖𝑗]    𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,4,5 (48e) 

The critical buckling temperature difference ∆𝑇𝑐𝑟 is obtained by giving values to 

𝑚 𝑎𝑛𝑑 𝑛 that makes equation (48) a minimum and this is accomplished for 𝑚 = 𝑛 = 1. 

It should be noted that equation (48) is an explicit expression of bucking temperature 

change ∆𝑇 when the functionally graded material properties are independent of the 

temperature. However, when they are entirely dependent on the temperature, equation 

(48) becomes an implicit expression. To determine the critical buckling temperature, the 

following iterative algorithm is adopted: 

1. Temperature independent material properties are obtained at the initial 

temperature 𝑇0 = 300𝐾 unless otherwise specified. 

2. Using the obtained material properties from step 1, the critical buckling 

temperature difference ∆𝑇𝑐𝑟 
1 is calculated using equation (48). 

3. The materials properties are found again using 𝑇 = 𝑇0 + ∆𝑇𝑐𝑟 
1 , then the new 

buckling temperature difference ∆𝑇𝑐𝑟 
2 is calculated. 

4. Step 3 is repeated until the critical buckling temperature converges to a specific 

error tolerance|
∆𝑇𝑐𝑟 

𝑖+1−∆𝑇𝑐𝑟 
𝑖

∆𝑇𝑐𝑟 𝑖
| ≤ 𝜀. 

4.2.2 Buckling Under Linear Temperature Change Across The Thickness 

 

To find ∆𝑇(𝑧) for the shell and the stiffeners, we substitute equations (42 a-c) into 

(𝑧) = 𝑇𝑚 + ∆𝑇(𝑧) , then the results into equations (17a), (17b), (17e), and (17f).  

Replacing the thermal stresses into equation (46), then the result into the linear operator 

𝑙33 , and solving 𝑑𝑒𝑡|𝑙𝑖𝑗| = 0, the buckling temperature change ∆𝑇 is obtained as: 
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∆𝑇 = −
𝑙𝑑

𝑙𝑐 {(𝐻1 + 𝐻2) (
𝑚𝜋
𝑎 )

2

+ (𝐻1 + 𝐻3) (
𝑛𝜋
𝑏
)
2

}
 

(50) 

where 

𝐻1 =
ℎ

(1 − 𝜈)
(
𝐸𝑚𝛼𝑚
2

+
(𝐸𝑚𝛼𝑐𝑚 + 𝐸𝑐𝑚𝛼𝑚)

𝐾 + 2
+
𝐸𝑐𝑚𝛼𝑐𝑚
2𝐾 + 2

) (51a) 

𝐻2 =
𝑏𝑥ℎ𝑥
2𝑑𝑥

{
𝐸𝑐(1 + 2𝐾){(1 + 𝐾)(2 + 𝐾)𝛼𝑐 + 2𝛼𝑚𝑐}

+𝐸𝑚𝑐{(2 + 4𝐾)𝛼𝑐 + (2 + 𝐾)𝛼𝑚𝑐}
}

(1 + 𝐾)(2 + 𝐾)(1 + 2𝐾)
 

(51b) 

𝐻3 =
𝑏𝑦ℎ𝑦

2𝑑𝑦

{
𝐸𝑐(1 + 2𝐾){(1 + 𝐾)(2 + 𝐾)𝛼𝑐 + 2𝛼𝑚𝑐}

+𝐸𝑚𝑐{(2 + 4𝐾)𝛼𝑐 + (2 + 𝐾)𝛼𝑚𝑐}
}

(1 + 𝐾)(2 + 𝐾)(1 + 2𝐾)
 

(51c) 

𝑙𝑑 = 𝐷𝑒𝑡[𝑙𝑖𝑗]    𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3,4,5 𝑎𝑛𝑑 𝑁𝑥0 = 𝑁𝑦0 = 0 (51d) 

𝑙𝑐 = 𝐷𝑒𝑡[𝑙𝑖𝑗]    𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,4,5 (51f) 

In case of functional graded temperature-dependent material properties, the same 

algorithm is used for the case of linear temperature variation through the thickness. 

4.2.3 Buckling Under Nonlinear Temperature Change Across the Thickness 

To find ∆𝑇(𝑧) for the shell and the stiffeners in this case, we substitute equations (45 

a-c) into 𝑇(𝑧) = 𝑇𝑚 + ∆𝑇(𝑧), then the results into equations (17a), (17b), (17e), and 

(17f). In this case we replace the thermal stresses into equation (27) then the results into 

the linear operator 𝑙33 , and solving 𝑑𝑒𝑡|𝑙𝑖𝑗| = 0, the buckling temperature change ∆𝑇 is 

obtained as: 

∆𝑇 = −
𝑙𝑑

𝑙𝑐 {(𝐺1 + 𝐺2) (
𝑚𝜋
𝑎 )

2

+ (𝐺1 + 𝐺3) (
𝑛𝜋
𝑏
)
2

}
 (52) 
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where 

𝐺1

= ℎ
∑

1
𝑖𝐾 + 1 (−

𝑘𝑐𝑚
𝑘𝑚

)
𝑖

(
𝐸𝑚𝛼𝑚
𝑖𝐾 + 2 +

𝐸𝑚𝛼𝑐𝑚 + 𝐸𝑐𝑚𝛼𝑚
𝑖𝐾 + 𝐾 + 2 +

𝐸𝑐𝑚𝛼𝑐𝑚
𝑖𝐾 + 2𝐾 + 2)

∞
𝑖=0

(1 − 𝑣)∑
1

𝑖𝐾 + 1 (−
𝑘𝑐𝑚
𝑘𝑚

)
𝑖

∞
𝑖=0

    
(53a) 

𝐺2 =
𝑑𝑥ℎ𝑥 (𝐸𝑐𝛼𝑐 +

1
𝐾 + 1

(𝐸𝑐𝛼𝑚𝑐 + 𝐸𝑚𝑐𝛼𝑐) +
1

2𝐾 + 1𝐸𝑚𝑐𝛼𝑚𝑐)

𝑑𝑥
 

−
𝑏𝑥ℎ𝑥
𝑑𝑥

∑
1

𝑖𝐾 + 1 (−
𝑘𝑐𝑚
𝑘𝑚

)
𝑖

(
𝐸𝑐𝛼𝑐
𝑖𝐾 + 2 +

𝐸𝑐𝛼𝑚𝑐 + 𝐸𝑚𝑐𝛼𝑐
𝑖𝐾 + 𝐾 + 2 +

𝐸𝑚𝑐𝛼𝑚𝑐
𝑖𝐾 + 2𝐾 + 2)

∞
𝑖=0

∑
1

𝑖𝐾 + 1 (−
𝑘𝑐𝑚
𝑘𝑚

)
𝑖

∞
𝑖=0

    

 

(53b) 

𝐺3 =
𝑑𝑦ℎ𝑦 (𝐸𝑐𝛼𝑐 +

1
𝐾 + 1

(𝐸𝑐𝛼𝑚𝑐 + 𝐸𝑚𝑐𝛼𝑐) +
1

2𝐾 + 1𝐸𝑚𝑐𝛼𝑚𝑐)

𝑑𝑦
 

−
𝑏𝑦ℎ𝑦

𝑑𝑦

∑
1

𝑖𝐾 + 1 (−
𝑘𝑐𝑚
𝑘𝑚

)
𝑖

(
𝐸𝑐𝛼𝑐
𝑖𝐾 + 2 +

𝐸𝑐𝛼𝑚𝑐 + 𝐸𝑚𝑐𝛼𝑐
𝑖𝐾 + 𝐾 + 2 +

𝐸𝑚𝑐𝛼𝑚𝑐
𝑖𝐾 + 2𝐾 + 2)

∞
𝑖=0

∑
1

𝑖𝐾 + 1 (−
𝑘𝑐𝑚
𝑘𝑚

)
𝑖

∞
𝑖=0

    

(53c) 

In case of functional graded temperature-dependent material properties, the same 

algorithm is used for the case of nonlinear temperature variation through the thickness.  

4.3 Numerical Results 

To calculate the nonlinear vibration of a functionally graded stiffened double-curved 

shell under thermal effect, the critical buckling temperature variation should be evaluated 

first. Once the critical buckling temperature, in either case, is defined, the applied 

temperature is taken to be less than the critical buckling temperature to prevent the 

stiffened shell from buckling. 
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4.3.1 Critical Buckling Temperature Variation 

 

As an example, consider a functionally graded simply-supported cylindrical shell that 

consists of Stainless Steel and Silicon Nitride mixture (𝑆𝑈𝑆304/𝑆𝐼3𝑁4) with 

temperature-independent materials listed above. The critical buckling temperature under 

a uniform, linear, and nonlinear temperature rise with respect to the aspect ratios (b/a) for 

different volume fraction indices are plotted in Figure 4.1  

It can be seen that when the length is equal to the width, the critical buckling 

temperatures for all three cases are the lowest for linear or nonlinear temperature rise. 

However, they are significantly higher than the ones of uniform temperature rise. 

Moreover, the critical buckling temperature change increases as the aspect ratio (width to 

length ratio) increase for all of the three cases. Also, ∆𝑇𝑐𝑟 increases as the volume 

fraction K decreases, and this is because when K approached zero, the shell becomes 

more ceramic, hence stiffer. This will lead to a higher critical temperature change. 

However, the critical temperature change decreases rapidly, when the geometric  

Figure 4.1. Critical buckling under uniform temperature rise vs b/a for 

Si3N4/SUS304. 
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parameter b/h is increased. Thus, when the plates are thicker, the critical temperature 

change becomes higher. 

 
Figure 4.2. Critical buckling under linear temperature rise vs b/a for Si3N4/SUS304. 

 

 

 
Figure 4.3. Critical buckling under Nonlinear temperature rise vs b/a for  

Si3N4/SUS304 
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Figure 4.4. Critical buckling under linear temperature rise vs b/h for Si3N4/SUS304. 

The variation of ∆𝑇𝑐𝑟 versus the width to thickness ratio, is plotted in Figure 4.4 

below for the three types of thermal loadings.It can be seen from the three plots above, 

that the critical buckling was very high when b/h was equal to 10 (thick shell). Also, 

when this ratio increases, the critical buckling temperature change decreases rapidly. This 

is because the thickness decreases with higher width to thickness ratio. Consequently, the 

shell becomes weaker and more flexible, which leads to less critical buckling 

temperature. Similar to the previously discussed case, when the volume fraction index K 

increases, the concentration of metal increases and the shell stiffness decreases.  

The effect of the longitudinal and transverse stiffeners on the critical buckling 

variation of a stiffened FGM cylindrical shell under nonlinear thermal load is studied in 

Table 4.1 below. Both cases temperature-depended and temperature-independent 

materials are considered. In this table, ∆𝑇𝑐𝑟 was calculated for different volume fraction 

indices and length to width ratios. 
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Table 4.1 

 

Critical Buckling Thermal Load for Stiffened FGM Cylindrical Shell Subjected to 

Nonlinear Temperature Rise with Temperature-Dependent Properties (Rx=2, h=0.01m). 

 

a/b K No Stiffeners 
5 Stiffeners 

in x-Direction 

5 Stiffeners 

in y-Direction 

5 by 5 

Orthogonal 

Stiffeners 

  T-ID T-D T-ID T-D T-ID T-D T-ID T-D 

0.75 0 746.58 538.99 907.02 635.5 3309.2 2135 6593.0 3431.5 

 1 541.88 451.39 264.08 235.8 2240.2 1574 3160.6 1947.1 

 5 423.11 358.1 143.79 136.6 1730.8 1263 1993.6 1387.3 

          

1 0 626.89 470.0 1195.4 727.7 1530.3 957.8 3388.5 1931.5 

 1 455.07 383.7 582.75 457.9 1062.5 742.5 1817.2 859.7 

 5 355.12 304.25 202.20 191.5 824.57 667.4 1174.6 758.43 

          

1.5 0 335.41 275.54 1082.24 648.57 503.239 370.03 1469.91 897.2 

 1 243.411 219.68 704.814 518.43 357.828 309.28 956.771 604.91 

 5 190.181 173.55 473.623 378.77 277.33 260.96 698.731 547.46 

It can be seen that when the number of stiffeners increases, the shell becomes stiffer 

and hence, a higher critical buckling temperature is achieved. Also, if the temperature-

dependent materials are used, the thermal expansion as well as the stiffness increases.  

4.3.2 Natural Frequency Results in Thermal Environment 

In this section, the dimensionless frequency of the FGM plate is calculated and 

compared with the theoretical results of Huang and Shen (2004) based on the higher-

order shear deformation theory. The FGM plate is made of Stainless Steel and Silicon 

Nitride (𝑆𝑈𝑆304/𝑆𝐼3𝑁4) with the temperature-dependent material properties listed in 

Table 4.2. Two different thermal loadings are considered: Case 1, Tb = Tt = 300 K and 
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Case 2, T-ID Tb = 300 K and Tt = 600K. Note that in this table, 𝜌0 𝑎𝑛𝑑 𝐸0 are the density 

and the young’s modulus of ceramic reach surface at 𝑇0 =300K.  

Table 4.2 

 

Comparison of Dimensionless Frequencies (Ω =  𝜛𝐿(𝑎
2 ℎ⁄ )[𝜌0(1 − 𝜈

2)/𝐸0]
1 2⁄  for 

𝑆𝑖3𝑁4/𝑆𝑈𝑆304 Plate Under Thermal Load (a=b=0.2m, h=0.3m). 

 

Temperature K   Mode     

    (1,1) (1,2) (2,2) (1,3) (2,3) 

Tb = 300 K 

Tt = 300 K 

Si3N4 

 

Present 

HSDT 

 12.506 

12.495 

29.249 

29.131 

44.206 

43.845 

53.410 

52.822 

66.292 

65.281 

 
0.5 

 

Present 

HSDT 

 8.622 

8.675 

20.197 

20.262 

30.557 

30.359 

36.941 

36.819 

45.885 

45.546 

 
1.0 

 

Present 

HSDT 

 7.560 

7.555 

17.713 

17.649 

26.802 

26.606 

32.402 

32.081 

40.246 

39.692 

 
2.0 

 

Present 

HSDT 

 6.786 

6.777 

15.885 

15.809 

24.019 

23.806 

29.025 

28.687 

36.031 

35.466 

28.698 

28.239  
SUS304 

 

SUS304 

HSDT 

 5.413 

5.405 

12.662 

12.602 

19.141 

18.967 

23.124 

22.850 

  

Tb = 300 K 

Tt = 600 K 

Si3N4 

 

Present 

HSDT 

 

11.714 

11.984 

28.675 

28.504 

43.807 

43.107 

53.117 

51.998 

66.143 

64.358 

 
0.5 

 

Present 

HSDT 

 8.196 

8.269 

19.475 

19.783 

29.909 

29.998 

36.335 

36.239 

45.036 

44.901 

 
1.0 

 

Present 

HSDT 

 6.929 

7.171 

16.953 

17.213 

26.083 

26.109 

31.706 

31.557 

39.579 

39.114 

 
2.0 

 

Present 

HSDT 

 6.261 

6.398 

15.108 

15.384 

23.259 

23.327 

28.273 

28.185 

35.127 

34.918 

 
SUS304 

 

Present 

HSDT 

 4.743 

4.971 

11.978 

12.089 

18.246 

18.392 

22.210 

22.221 

27.655 

27.557 

 

It can be seen that both, the temperature and volume fraction index rise, decrease the 

natural frequency. A good agreement with the results obtained by Huang and Shen (2004) 

can be observed between the present results and the one based on HSDT. 
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4.3.3 Thermomechanical Static Analysis Results 

 

In this section, an FGM cylindrical shell consisting of a mixture of Aluminum (Al) 

and Zirconia (ZrO2) is considered. All material properties are temperature-independent. 

The nonlinear response of a cylindrical shell under uniform temperature rise is calculated 

and compared with the previously published results. Then the effect of temperature 

distribution and imperfection are studied. 

The nonlinear pressure deflection response of an FGM cylindrical shell is calculated 

for different uniform temperature rise ΔT. The results are compared with the results 

obtained by Duc and Tung (2010) based on the classical shell theory and temperature-

independent material properties. An excellent agreement can be seen in Figure 4.5. 

 

 

 

Figure 4.5. Effect of uniform temperature rise Δt on the nonlinear response of cylindrical 

panels (a/b=1, b/h=50, a/Ry=0.5, K=1). 

 

As shown in the following figure, when ∆𝑇 = 0 (the isothermal case), the load-

deflection curve starts from the coordinate origin. When 0T   , the applied loads on 

the cylindrical shell exhibit a bifurcation behavior and no deflection occurs until a 

bifurcation behavior point is reached for ∆𝑇 = 475 𝐾 𝑎𝑛𝑑 673𝐾. This may be due to the 
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fact that when the thermal load was applied before the mechanical forces, the cylindrical 

shell deflected outward since the positive dimensional deflection is by deflecting inward. 

But after starting to apply the mechanical load, the outward deflection started to reduce 

and became zero when the applied load reached the bifurcation points (0.5 ∗ 107𝑎𝑛𝑑  

1 ∗ 107).  

Is can also be seen that, due to the existence of bifurcation behavior, both load-

deflection curves become unstable and a snap through response was observed. The curves 

are more nonlinear and unstable when the temperature changes are higher. The effect of 

temperature variations on the nonlinear load-deflection curves is plotted in Figure 4.6 and 

Figure 4.7 below.  

 
Figure 4.6. Effect of uniform temperature rise ΔT and imperfection µ on the nonlinear 

response of Si3N4/SUS304 cylindrical shell. (a/b=1, b/h=50, a/Ry=0.5, k=1). 
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Figure 4.7. Effect of nonlinear temperature rise ΔT and imperfection µ on the nonlinear 

response of Si3N4/SUS304 cylindrical shell. (a/b=1, b/h=50, a/Ry=0.5, k=1). 

It can be seen that, in contrary to the nonlinear temperature variation, the uniform 

temperature rise produces much smaller outward deflection and the shell is more stable. 

This is illustrated in Figure 4.6 where a smoother snap-through phenomenon can be 

observed.  

4.3.4 Amplitude - Frequency Response Under Thermal Load 

The amplitude-frequency response of the stiffened functionally graded plate under 

different ceramic temperature is investigated. The effect of the surface temperature on the 

Backbone curve is shown in Figure 4.8 below. 

It can be seen that when the temperature of the ceramic surface increases, the 

hardening behavior increases, therefore the curve tends to bend more to the right side. 

This is because the thermal load affects changed the stiffness matrix.  
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Figure 4.8. Backbone curve for square simply supported plate subjected to temperature 

variations through the thickness (a = b = 0.2m,  h = 0.025m,  K = 2). 
 

 
Figure 4.9. The frequency-amplitude curve of nonlinear vibration of simply-supported 

SUS304/SI3N4 plate (a = b = 0.2m,  h = 0.025m) under F = 375kN and ζ =
0.01 subjected to temperature variations through the thickness. 

Finally, the effect of surface temperature on the amplitude-frequency response of the 

nonlinear vibration of simply-supported FGM plate is shown in Figure 4.9 above. Similar 

to the free vibration case, the higher the surface temperature is, the stiffener the plate 

become 
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5. Multimode Theoretical Formulation 

In this chapter, the numerical analysis is based on the multi-modal energy method and 

nonlinear first order shear deformation theory (FSDT). The equations of motion are 

obtained based on Lagrange’s Method.  

5.1 Kinetic and Elastic Strain Energy 

The kinetic energy of the stiffened functionally graded double curved shell including 

rotary inertia is given by: 

𝑇𝑝 =
1

2
∫ ∫ ∫ 𝜌(𝑧){�̇�2 + �̇�2 + �̇�2}𝑑𝑥𝑑𝑦𝑑𝑧

𝑏

0

𝑎

0

ℎ 2⁄

−ℎ 2⁄

 (54) 

The dot indicates the differentiation of the displacements with respect to time. 

Substituting equation (7) into equation (54), the kinetic energy becomes: 

𝑇𝑝 =
𝐼0
2
∫ ∫ (�̇�0

2 + �̇�0
2 + �̇�0

2)𝑑𝑥𝑑
𝑏

0

𝑎

0

+ 𝐼1∫ ∫ (𝜓�̇��̇�0 + 𝜓�̇��̇�0)𝑑𝑥𝑑𝑦 +
𝐼2
2
∫ ∫ (𝜓�̇�

2
+ 𝜓�̇�

2
) 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

𝑏

0

𝑎

0

 
(55) 

where 

𝐼0 = ∫ 𝜌(𝑧)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 𝐼1 = ∫ 𝜌(𝑧)𝑧𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 𝐼2 = ∫ 𝜌(𝑧)𝑧2𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 

The expression for the elastic strain energy of a stiffened functionally graded double 

curved shells under thermal effect is given by: 

   𝑈𝑆
𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑠,𝑆ℎ𝑒𝑙𝑙 + 𝑈𝑠,𝑆𝑡𝑖𝑓𝑓 

=
1

2
∫ ∫ ∫ {𝜎𝑥(𝑧, 𝑇)

𝑆ℎ𝑒𝑙𝑙+𝑇{𝜀𝑥 − 𝛼𝑥(𝑧, 𝑇)∆𝑇(𝑧)}

ℎ
2

−
ℎ
2

𝑏

0

𝑎

0

+ 𝜎𝑦(𝑧, 𝑇)
𝑆ℎ𝑒𝑙𝑙+𝑇{𝜀𝑦 − 𝛼𝑦(𝑧, 𝑇)∆𝑇(𝑧)} + 𝜏𝑥𝑦(𝑧, 𝑇)

𝑆ℎ𝑒𝑙𝑙+𝑇(𝛾𝑥𝑦)

+ 𝜏𝑦𝑧(𝑧, 𝑇)
𝑆ℎ𝑒𝑙𝑙+𝑇(𝛾𝑦𝑧) + 𝜏𝑥𝑧(𝑧, 𝑇)

𝑆ℎ𝑒𝑙𝑙+𝑇(𝛾𝑥𝑧)} 𝑑𝑥𝑑𝑦𝑑𝑧 
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+
1

2
∫ ∫ ∫ {𝜎𝑥(𝑧, 𝑇)

𝑆𝑡𝑖𝑓𝑓+𝑇{𝜀𝑥 − 𝛼𝑠𝑥(𝑧, 𝑇)∆𝑇(𝑧)}

ℎ
2
+ℎ𝑥,𝑦

ℎ
2

𝑏

0

𝑎

0

+ 𝜎𝑦(𝑧, 𝑇)
𝑆𝑡𝑖𝑓𝑓+𝑇{𝜀𝑦 − 𝛼𝑠𝑦(𝑧, 𝑇)∆𝑇(𝑧)} + 𝜏𝑥𝑦(𝑧, 𝑇)

𝑆𝑡𝑖𝑓𝑓+𝑇(𝛾𝑥𝑦)

+ 𝜏𝑦𝑧(𝑧, 𝑇)
𝑆𝑡𝑖𝑓𝑓+𝑇(𝛾𝑦𝑧) + 𝜏𝑥𝑧(𝑧, 𝑇)

𝑆𝑡𝑖𝑓𝑓+𝑇(𝛾𝑥𝑧)} 𝑑𝑥𝑑𝑦𝑑𝑧 

(56) 

Assuming Poisson ratio variation is constant across the thickness (𝜈(𝑧) = 𝜈𝑚 = 𝜈𝑐) 

𝛼𝑥(𝑧) = 𝛼𝑦(𝑧) = 𝛼(𝑧) and  𝐸𝑥(𝑧) = 𝐸𝑦(𝑧). Substituting equation (9) into equation (10) 

and (11), then the result into equation (56) and integrating over the thickness, the above 

expression of elastic stain energy became: 

𝑈𝑆
𝑇𝑜𝑡𝑎𝑙 =

𝐸1
2(1 − 𝜈2)

∫ ∫ {(𝜀𝑥
0)2 + (𝜀𝑦

0)
2
+ 2𝜈𝜀𝑥

0𝜀𝑦
0} 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

+
𝐸1

4(1 + 𝜈)
∫ ∫ {(𝛾𝑥𝑦

0 )
2
+ (𝛾𝑥𝑧

0 )2 + (𝛾𝑦𝑧
0 )

2
} 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

+
𝐸2

(1 − 𝜈2)
∫ ∫ {𝜅𝑥𝜀𝑥

0 + 𝜅𝑦𝜀𝑦
0 + 𝜈(𝜅𝑥𝜀𝑦

0 + 𝜅𝑦𝜀𝑥
0)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

+
𝐸2

2(1 + 𝜈)
∫ ∫ {𝜅𝑥𝑦𝛾𝑥𝑦

0 }𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

+
𝐸3

2(1 − 𝜈2)
∫ ∫ {(𝜅𝑥)

2 + (𝜅𝑦)
2
+ 2𝜈𝜅𝑥𝜅𝑦} 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

+
𝐸3

4(1 + 𝜈)
∫ ∫ {(𝜅𝑥𝑦)

2
} 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

+
𝐹1

4(1 + 𝜈)
∫ ∫ [(𝛾𝑥𝑧

0 )2 + (𝛾𝑦𝑧
0 )

2
+ 2(1 + 𝜈) {(𝜀𝑥

0)2 + (𝜀𝑦
0)
2
}]

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

+ 𝐹2∫ ∫ {𝜅𝑥𝜀𝑥
0 + 𝜅𝑦𝜀𝑦

0}𝑑𝑥𝑑𝑦 +
𝑏

0

𝑎

0

𝐹3
2
∫ ∫ {(𝜅𝑥)

2 + (𝜅𝑦)
2
} 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

−
𝐺1

(1 − 𝜈)
∫ ∫ {𝜀𝑥

0 + 𝜀𝑦
0}𝑑𝑥𝑑𝑦 −

𝐺2
(1 − 𝜈)

∫ ∫ {𝜅𝑥 + 𝜅𝑦}
𝑏

0

𝑎

0

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

− 𝐻1∫ ∫ {𝜀𝑥
0 + 𝜀𝑦

0}
𝑏

0

𝑑𝑥𝑑𝑦 − 𝐻2∫ ∫ {𝜅𝑥 + 𝜅𝑦}𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

𝑎

0

 

(57) 
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where  

𝐸1 = ∫ 𝐸(𝑧, 𝑇)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 𝐸2 = ∫ 𝐸(𝑧, 𝑇)𝑧𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 

𝐸3 = ∫ 𝐸(𝑧, 𝑇)𝑧2𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 𝐹1 = ∫ 𝐸(𝑧, 𝑇)𝑑𝑧
ℎ 2+ℎ𝑥,𝑦⁄

ℎ 2+ℎ𝑥,𝑦⁄

 

𝐹2 = ∫ 𝐸(𝑧, 𝑇)𝑧𝑑𝑧
ℎ 2+ℎ𝑥,𝑦⁄

ℎ 2+ℎ𝑥,𝑦⁄

 𝐹3 = ∫ 𝐸(𝑧, 𝑇)𝑧2𝑑𝑧
ℎ 2+ℎ𝑥,𝑦⁄

ℎ 2+ℎ𝑥,𝑦⁄

 

𝐺1 = ∫ 𝐸(𝑧, 𝑇)𝛼(𝑧, 𝑇)∆𝑇(𝑧)𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 𝐺2 = ∫ 𝐸(𝑧, 𝑇)𝛼(𝑧, 𝑇)∆𝑇(𝑧)𝑧𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

 

𝐻1 = ∫ 𝐸(𝑧, 𝑇)𝛼(𝑧, 𝑇)∆𝑇(𝑧)𝑑𝑧
ℎ 2+ℎ𝑥,𝑦⁄

ℎ 2+ℎ𝑥,𝑦⁄

 𝐻2 = ∫ 𝐸(𝑧, 𝑇)𝛼(𝑧, 𝑇)∆𝑇(𝑧)𝑧𝑑𝑧
ℎ 2+ℎ𝑥,𝑦⁄

ℎ 2+ℎ𝑥,𝑦⁄

 

The energy dissipation, due to viscous friction, are taken into account by using the 

Rayleigh’s dissipation function is expressed as follows (Amabili, 2004):  

𝐷 =
1

2
𝑐∫ ∫ (�̇�0

2 + �̇�0
2 + �̇�0

2 + 𝜓�̇�
2
+ 𝜓�̇�

2
)𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (58) 

 

where c is the viscous damping coefficient and related to the damping ratio by 𝑐 = 2𝜍𝜔. 

 

The virtual work done by an external concentrated harmonic force acting at the point 

(�̃�, �̃�),is expressed as follows (Amabili, 2004): 

 

𝑊 = ∫ ∫ 𝑓𝑤𝛿(𝑥 − �̃�)𝛿(𝑦 − �̃�) cos(Ω𝑡) 𝑑𝑥𝑑𝑦 = 𝑓
𝑏

0

𝑎

0

cos(Ω𝑡)𝑤|𝑥 = �̃�, 𝑦

= �̃� 

(59) 

where 𝑓 is the harmonic force amplitude, 𝛿 is the Dirac delta function and Ω is the 

forcing excitation frequency.  

5.2 Boundary Conditions 

In this section, the displacement and rotation fields are represented by a combination 

of boundary functions, mode shapes and harmonic time function where the shape 

functions are written in terms of Chebyshev polynomials as follows (Kiani, 2016): 
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𝑢0(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑡)𝑔(𝑡) = 𝑅𝑢(𝑥, 𝑦) ∑ ∑𝑈𝑚,𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑦)𝑔(𝑡)

𝑁𝑈

𝑛=0

𝑀𝑈

𝑚=0

 (60a) 

𝑣0(𝑥, 𝑦, 𝑡) = 𝑉(𝑥, 𝑡)𝑔(𝑡) = 𝑅𝑣(𝑥, 𝑦) ∑ ∑𝑉𝑚,𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑦)𝑔(𝑡)

𝑁𝑉

𝑛=0

𝑀𝑉

𝑚=0

 (60b) 

𝑤0(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑡)𝑔(𝑡) = 𝑅𝑤(𝑥, 𝑦) ∑ ∑𝑊𝑚,𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑦)𝑔(𝑡)

𝑁𝑊

𝑛=0

𝑀𝑊

𝑚=0

 (60c) 

𝜓𝑥(𝑥, 𝑦, 𝑡) = Ψ𝑥(𝑥, 𝑡)𝑔(𝑡) = 𝑅
𝜓𝑥(𝑥, 𝑦) ∑ ∑Ψ𝑥𝑚,𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑦)𝑔(𝑡)

𝑁Ψ𝑥

𝑛=0

𝑀Ψ𝑥

𝑚=0

 
 

(60d) 

𝜓𝑦(𝑥, 𝑦, 𝑡) = Ψ𝑦(𝑥, 𝑡)𝑔(𝑡) = 𝑅
𝜓𝑦(𝑥, 𝑦) ∑ ∑ Ψ𝑦𝑚,𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑦)𝑔(𝑡)

𝑁Ψ𝑦

𝑛=0

𝑀Ψ𝑦

𝑚=0

 (60e) 

where 𝑔(𝑡) = cos (𝜔𝑡). The Chebyshev polynomials of the first kind of order n and m 

{𝑇𝑚(𝑥)𝑎𝑛𝑑 𝑇𝑛(𝑦)} are obtained from the following three-term recurrence relation 

(Franklin, 2007): 

𝑇𝑚+1(𝑥) = 2𝑥𝑇𝑚(𝑥) − 𝑇𝑚−1(𝑥) ,    − 1 ≤  𝑥 ≤ 1, 𝑚 = 1,2,3,4,5, ..  

𝑇𝑛+1(𝑦) = 2𝑦𝑇𝑚(𝑦) − 𝑇𝑛−1(𝑦),    − 1 ≤  𝑦 ≤ 1, 𝑛 = 1,2,3,4,5, .. 

with starting values 𝑇0(𝑥) = 𝑇0(𝑦) = 1, 𝑇1(𝑥) = 𝑥, 𝑇1(𝑦) = 𝑦 (61) 

Since the Chebyshev polynomials of the first kind are nonzero at 𝑥 𝑎𝑛𝑑 𝑦 = ±1, the 

boundary functions 𝑅𝑢,𝑣,𝑤,𝜓𝑥,𝜓𝑦(𝑥, 𝑦) should be chosen to satisfy the essential boundary 

conditions. The general expression of the auxiliary functions is written as (Kiani, 2016): 

𝑅𝑢,𝑣,𝑤,𝜓𝑥,𝜓𝑦(𝑥, 𝑦) = (𝑥)𝑝(𝑥 − 𝑎)𝑞(𝑦)𝑟(𝑦 − 𝑏)𝑠 (62) 

where the superscripts p, q, r, and s are either zero or one depending on the essential 

boundary conditions. Suppose that all four edges are simply supported and restrained 

from moving, in other words, all edges are immovable, the auxiliary functions are 

expressed as follows: 
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𝑅𝑢(𝑥, 𝑦) = (𝑥)1(𝑥 − 𝑎)1(𝑦)1(𝑦 − 𝑏)1  

𝑅𝑣(𝑥, 𝑦) = (𝑥)1(𝑥 − 𝑎)1(𝑦)1(𝑦 − 𝑏)1  

𝑅𝑤(𝑥, 𝑦) = (𝑥)1(𝑥 − 𝑎)1(𝑦)1(𝑦 − 𝑏)1 (63) 

𝑅𝜓𝑥(𝑥, 𝑦) = (𝑥)0(𝑥 − 𝑎)0(𝑦)0(𝑦 − 𝑏)0 = 1  

𝑅𝜓𝑦(𝑥, 𝑦) = (𝑥)0(𝑥 − 𝑎)0(𝑦)0(𝑦 − 𝑏)0 = 1  

It should be noted that the range of the independent variables x and y is [-1, 1], but for 

analytical and numerical work, it is often more convenient to shift the range of the 

variables to [0, 1]. Therefore shifted Chebyshev polynomials from x and y to 2x-1 and 

2y-1 are used and expressed as follows (Gil, Segura & Temme, 2007): 

𝑇𝑚+1(2𝑥 − 1) = 2(2𝑥 − 1)𝑇𝑚(2𝑥 − 1) − 𝑇𝑚−1(2𝑥 − 1), 0 ≤  𝑥 ≤ 1,  

𝑚 = 1,2,3, ..  

 

 

𝑇𝑛+1(2𝑦 − 1) = 2(2𝑦 − 1)𝑇𝑚(2𝑦 − 1) − 𝑇𝑛−1(2𝑦 − 1),          0 ≤  𝑦 ≤ 1,  

 𝑛 = 1,2,3, .. 

 

(64) 

with  𝑇0(2𝑥 − 1) = 𝑇0(2𝑦 − 1) = 1, 𝑇1(𝑥) = 2𝑥 − 1, 𝑇1(𝑦) = 2𝑦 − 1  

Let 𝜉 =
𝑥

𝑎
 and 𝜂 =

𝑦

𝑏
 be the dimensionless coordinates. Using the shifted Chebychev 

polynomials and auxiliary functions for an immovable simple supported shell, the 

displacement and rotation fields are written as follows: 

𝑢0(𝜉, 𝜂, 𝑡) = (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1) ∑ ∑𝑈𝑚,𝑛𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)𝑔(𝑡)

𝑁𝑈

𝑛=0

𝑀𝑈

𝑚=0

 (65a) 

𝑣0(𝜉, 𝜂, 𝑡) = (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1) ∑ ∑𝑉𝑚,𝑛𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)𝑔(𝑡)

𝑁𝑉

𝑛=0

𝑀𝑉

𝑚=0

 (65b) 

𝑤0(𝜉, 𝜂, 𝑡) = (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1) ∑ ∑𝑊𝑚,𝑛𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)𝑔(𝑡)

𝑁𝑊

𝑛=0

𝑀𝑊

𝑚=0

 (65c) 
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𝜓𝑥(𝜉, 𝜂, 𝑡) = ∑ ∑Ψ𝑥𝑚,𝑛𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)𝑔(𝑡)

𝑁Ψ𝑥

𝑛=0

𝑀Ψ𝑥

𝑚=0

 (65d) 

𝜓𝑦(𝜉, 𝜂, 𝑡) = ∑ ∑Ψ𝑦𝑚,𝑛𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)𝑔(𝑡)

𝑁Ψ𝑦

𝑛=0

𝑀Ψ𝑦

𝑚=0

 (65e) 

𝑤∗(𝜉, 𝜂) = (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1) ∑ ∑𝑊∗𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)

𝑁𝑊

𝑛=0

𝑀𝑊

𝑚=0

 (65f) 

In which 𝑊∗ is the amplitude of the imperfection. 

5.3 Linear Analysis 

 To calculate the linear vibration of a perfect stiffened FGM double-curved shell, the 

nonlinear parts of the strain-displacement relationship in equation (9) are neglected. 

Using the Lagrange’s equations of motion expressed below: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑘
) −

𝜕𝐿

𝜕𝑞𝑘
= 0, 𝑘 = 1,2, … .𝑁𝑚𝑎𝑥 

(66) 

Where  

𝐿 = 𝑇𝑝 − 𝑈𝑠
𝑇𝑜𝑡𝑎𝑙  

𝑔(𝑡) = 𝑞𝑐𝑜𝑠(𝜔𝑡)  

𝑁𝑚𝑎𝑥 = (𝑀𝑈 + 1)(𝑁𝑈 + 1) + (𝑀𝑉 + 1)(𝑁𝑉 + 1) + (𝑀𝑊 + 1)(𝑁𝑊 + 1)

+ (𝑀Ψ𝑥 + 1)(𝑀Ψ𝑥 + 1)

+ (𝑀Ψ𝑦 + 1) (𝑀Ψ𝑦 + 1) is the total number of degree of freedom 

𝑞 = {𝑈𝑚,𝑛, 𝑉𝑚,𝑛,𝑊𝑚,𝑛, Ψ𝑥𝑚,𝑛 𝑎𝑛𝑑 Ψ𝑦𝑚,𝑛}  

with 𝑚 = 0,… ,𝑀𝑈  𝑜𝑟 𝑀𝑣 𝑜𝑟 𝑀𝑤 𝑜𝑟 𝑀Ψ𝑥  𝑜𝑟 𝑀Ψ𝑦   

   𝑛 = 0,… ,𝑁𝑈 𝑜𝑟 𝑁𝑣 𝑜𝑟 𝑁𝑤 𝑜𝑟 𝑁Ψ𝑥  𝑜𝑟 𝑁Ψ𝑦 

 

Substituting equation (55), equation (57) and 𝑔(𝑡) = 𝑞𝑐𝑜𝑠(𝜔𝑡) into equation (66) results 

to an eigenvalue problem as: 

(𝐾 − 𝜔2𝑀)𝑞 = 0 (67) 
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Where M is the mass matrix and K is the stiffness matrix. The element of the mass and 

stiffness matrices for a perfect stiffened shell are found using Mathematica software. 

Equation (67) is written as follows: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑∑∫ ∫

(

 
 
 
 
 
 
 

(𝐾𝑈𝑈)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙 (𝐾𝑈𝑉)𝑚,..,𝑘 (𝐾𝑈𝑊)𝑚,..,𝑘 (𝐾𝑈Ψ𝑥

)
𝑚,..,𝑘

(𝐾𝑈Ψ𝑦
)
𝑚,..,𝑘

(𝐾𝑉𝑈)𝑚,..,𝑘 (𝐾𝑉𝑉)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙 (𝐾𝑉𝑊)𝑚,..,𝑘 (𝐾𝑉Ψ𝑥

)
𝑚,..,𝑘

(𝐾𝑉Ψ𝑦
)
𝑚,..,𝑘

(𝐾𝑊𝑈)𝑚,..,𝑘 (𝐾𝑊𝑉)𝑚,..,𝑘 (𝐾𝑊𝑊)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙 (𝐾𝑊Ψ𝑥

)
𝑚,..,𝑘

(𝐾𝑊Ψ𝑦
)
𝑚,..,𝑘

(𝐾Ψ𝑥𝑈)𝑚,..,𝑘
(𝐾Ψ𝑥𝑉)𝑚,..,𝑘

(𝐾Ψ𝑥𝑊)𝑚,..,𝑘
(𝐾Ψ𝑥Ψ𝑥

)
𝑚,..,𝑘

𝑇𝑜𝑡𝑎𝑙
(𝐾Ψ𝑥Ψ𝑦

)
𝑚,..,𝑘

(𝐾Ψ𝑦𝑈)𝑚,..,𝑘
(𝐾Ψ𝑦𝑉)𝑚,..,𝑘

(𝐾Ψ𝑦𝑊)𝑚,..,𝑘
(𝐾Ψ𝑦Ψ𝑥

)
𝑚,..,𝑘

(𝐾Ψ𝑦Ψ𝑦
)
𝑚,..,𝑘

𝑇𝑜𝑡𝑎𝑙

)

 
 
 
 
 
 
 

1

0

1

0𝑘𝑙

𝑎𝑏𝑑𝜉𝑑𝜂

−∑∑𝜔2∫ ∫

(

 
 
 
 
 

(𝑀𝑈𝑈)𝑚,..,𝑘 0 0 (𝑀𝑈Ψ𝑥
)
𝑚,..,𝑘

0

0 (𝑀𝑉𝑉)𝑚,..,𝑘 0 0 (𝑀𝑉Ψ𝑦
)
𝑚,..,𝑘

0 0 (𝑀𝑊𝑊)𝑚,..,𝑘 0 0

(𝑀Ψ𝑥𝑈)𝑚,..,𝑘
0 0 (𝑀Ψ𝑥Ψ𝑥

)
𝑚,..,𝑘

0

0 (𝑀Ψ𝑦𝑉)𝑚,..,𝑘
0 0 (𝑀Ψ𝑦Ψ𝑦

)
𝑚,..,𝑘)

 
 
 
 
 

𝑎𝑏𝑑𝜉𝑑𝜂
1

0

1

0𝑘𝑙

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑞𝑙.𝑘

= 0 

𝑚, 𝑙 = 0,…… ,𝑀𝑈  𝑜𝑟 𝑀𝑣 𝑜𝑟 𝑀𝑤 𝑜𝑟 𝑀Ψ𝑥  𝑜𝑟 𝑀Ψ𝑦  

𝑛, 𝑘 = 0,…… ,𝑁𝑈 𝑜𝑟 𝑁𝑣 𝑜𝑟 𝑁𝑤 𝑜𝑟 𝑁Ψ𝑥  𝑜𝑟 𝑁Ψ𝑦  

 

(68) 

where  

(𝐾𝑈𝑈)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙 = (𝐾𝑈𝑈)𝑚,..,𝑘 + (𝐾𝑈)𝑚,𝑛

𝑇  

(𝐾𝑉𝑉)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙 = (𝐾𝑉𝑉)𝑚,..,𝑘 + (𝐾𝑉)𝑚,𝑛

𝑇  

(𝐾𝑊𝑊)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙 = (𝐾𝑊𝑊)𝑚,..,𝑘 + (𝐾𝑊)𝑚,𝑛

𝑇  

(𝐾Ψ𝑥Ψ𝑥)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙

= (𝐾Ψ𝑥Ψ𝑥)𝑚,..,𝑘
+ (𝐾Ψ𝑥)𝑚,𝑛

𝑇
 

(𝐾Ψ𝑦Ψ𝑦)
𝑚,..,𝑘

𝑇𝑜𝑡𝑎𝑙

= (𝐾Ψ𝑦Ψ𝑦)
𝑚,..,𝑘

+ (𝐾Ψ𝑦)
𝑚,𝑛

𝑇

 

 

Solving the determinant of equation (67) gives the eigenvalues of the perfect stiffened 

shell. Eigenvectors are obtained by substituting each eigenvalue back into equation (67). 

The mode shapes corresponding to the eigenvectors are obtained by using equations (65 

a-f) after neglecting the time function g(t) and substituting the unknown coefficients 
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𝑈𝑚,𝑛,  𝑉𝑚,𝑛,  𝑊𝑚,𝑛,  Ψ𝑥𝑚,𝑛 𝑎𝑛𝑑 Ψ𝑦𝑚,𝑛
with 𝑈𝑚,𝑛

(𝑖)
, 𝑉𝑚,𝑛

(𝑖)
,  𝑊𝑚,𝑛

(𝑖)
,  Ψ𝑥𝑚,𝑛

(𝑖)  𝑎𝑛𝑑 Ψ𝑦𝑚,𝑛
(𝑖)  which are 

the coefficient of the 𝑖𝑡ℎ eigenvector previously obtained as follows: 

𝑈(𝑖)(𝜉, 𝜂) = ∑∑𝑈𝑚,𝑛
(𝑖) (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1)𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)

𝑁𝑈

𝑛=0

𝑀𝑈

𝑚=0

 (69a) 

𝑉(𝑖)(𝜉, 𝜂) = ∑ ∑  𝑉𝑚,𝑛
(𝑖) (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1)𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)

𝑁𝑉

𝑛=0

𝑀𝑉

𝑚=0

 (69b) 

𝑊(𝑖)(𝜉, 𝜂) = ∑ ∑𝑊𝑚,𝑛
(𝑖) (𝜉)(𝜉 − 1)(𝜂)(𝜂 − 1)𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)

𝑁𝑊

𝑛=0

𝑀𝑊

𝑚=0

 (69c) 

Ψ𝑥
(𝑖)(𝜉, 𝜂) = ∑ ∑  Ψ𝑥𝑚,𝑛

(𝑖) 𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)

𝑁Ψ𝑥

𝑛=0

𝑀Ψ𝑥

𝑚=0

 (69d) 

Ψ𝑦
(𝑖)(𝜉, 𝜂) = ∑ ∑Ψ𝑦𝑚,𝑛

(𝑖) 𝑇𝑚(2𝜉 − 1)𝑇𝑛(2𝜂 − 1)

𝑁Ψ𝑦

𝑛=0

𝑀Ψ𝑦

𝑚=0

 (69e) 

 

5.4 Nonlinear Analysis 

 To study the multi-mode nonlinear analysis of the stiffened double-curved shell, the 

mode shapes obtained by linear analysis should be used. Therefore, the displacements 

and rotations in the function of mode shapes obtained previously are expressed as 

follows: 

𝑢0(𝜉, 𝜂, 𝑡) =∑𝑢𝑖(𝑡)𝑈
(𝑖)(𝜉, 𝜂)

�̅�𝑢

𝑖=𝐼

 (70a) 

𝑣0(𝜉, 𝜂, 𝑡) =∑𝑣𝑖(𝑡)𝑉
(𝑖)(𝜉, 𝜂)

�̅�𝑣

𝑖=𝐼

 (70b) 

𝑤0(𝜉, 𝜂, 𝑡) =∑𝑤𝑗(𝑡)𝑊
(𝑗)(𝜉, 𝜂)

�̅�𝑤

𝑗=1

 (70c) 
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𝑤∗(𝜉, 𝜂) =∑𝑤∗𝑊(𝑗)(𝜉, 𝜂)

�̅�𝑤

𝑗=1

 (70d) 

𝜓𝑥(𝜉, 𝜂, 𝑡) = ∑𝜓𝑥𝑗(𝑡)Ψ𝑥
(𝑗)(𝜉, 𝜂)

�̅�𝜓𝑥

𝑗=1

 (70e) 

𝜓𝑦(𝜉, 𝜂, 𝑡) = ∑ 𝜓𝑦𝑗(𝑡)Ψ𝑦
(𝑗)(𝜉, 𝜂)

�̅�𝜓𝑦

𝑗=1

 (70f) 

where the terms 𝑢𝑖(𝑡), 𝑣𝑖(𝑡),  w𝑖(𝑡),  𝜓𝑥𝑗(𝑡)𝑎𝑛𝑑 𝜓𝑦𝑗(𝑡) are the generalized coordinates, 

which are the unknown functions of time, “t”. It should be noted that the index “j” is used 

for the out of plane displacement and rotations and it starts from the first transverse 

natural frequency (j=1). As for the in-plane displacements, index “I” is used and it starts 

from the first in-plane mode.  

The Lagrange equations of motion, in terms of virtual work and energy dissipation, is 

written as follows: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑠
) −

𝜕𝐿

𝜕𝑞𝑠
+
𝜕𝐷

𝜕𝑞𝑠
=
𝜕𝑊

𝜕𝑞𝑠
, 𝑠 = 1,2, … . �̅�𝑚𝑎𝑥 (71) 

where 

𝑞𝑠 = {𝑢𝑖(𝑡), 𝑣𝑖(𝑡), 𝑤𝑗(𝑡), 𝜓𝑥𝑗(𝑡) 𝑎𝑛𝑑 𝜓𝑦𝑗(𝑡)} 
 

 𝑖 = 𝐼, … �̅�𝑢 𝑜𝑟 �̅�𝑣 𝑎𝑛𝑑 𝑗 = 1,… �̅�𝑤 𝑜𝑟 �̅�𝜓𝑥  𝑜𝑟 �̅�𝜓𝑦  

�̅�𝑚𝑎𝑥 = �̅�𝑢 + �̅�𝑣 + �̅�𝑤 + �̅�𝜓𝑥 + �̅�𝜓𝑦  

Substituting equation (70 a-f) into equation (55), (57), (58) and (59), without 

neglecting the nonlinear terms of the stain-displacement relationship, then the results into 

equation (71). This leads to a strongly nonlinear duffing equation, which can be written in 

matrix form as follows: 

𝑀�̈� + 𝐶�̇� + 𝐾1𝑞 + 𝐾2(𝑞)𝑞 + 𝐾3(𝑞, 𝑞)𝑞 = 𝐹𝑐𝑜𝑠(Ω𝑡) (72) 
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where M is the mass matrix, C is the damping matrix, 𝐾1 is the linear stiffness matrix of 

the imperfect stiffened shell which includes the effect of temperature, 𝐾2 and 𝐾3 are the 

nonlinear quadratic and cubic matrices, respectively. F is the vector of excitation 

amplitude. Matrices 𝑀,𝐶, 𝐾1 , 𝐾2 , 𝐾3 , 𝐹 𝑎𝑛𝑑 𝐹
𝑇 are expressed as follows: 

𝑀 =

{
 
 
 

 
 
 

∑∫ ∫

(

 
 
 
 
 

(𝑀𝑈𝑈)𝑠,𝑘 0 0 (𝑀𝑈Ψ𝑥)𝑠,𝑘
0

0 (𝑀𝑉𝑉)𝑠,𝑘 0 0 (𝑀𝑉Ψ𝑦)
𝑠,𝑘

0 0 (𝑀𝑊𝑊)𝑠,𝑘 0 0

(𝑀Ψ𝑥𝑈)𝑠,𝑘
0 0 (𝑀Ψ𝑥Ψ𝑥)𝑠,𝑘

0

0 (𝑀Ψ𝑦𝑉
)
𝑠,𝑘

0 0 (𝑀Ψ𝑦Ψ𝑦
)
𝑠,𝑘)

 
 
 
 
 

𝑎𝑏𝑑𝜉𝑑𝜂
1

0

1

0𝑘

}
 
 
 

 
 
 

 

 

(73) 

𝐶 =

{
  
 

  
 

∑∫ ∫ 𝑐

(

 
 
 
 

(𝐶𝑈𝑈)𝑠,𝑘 0 0 0 0

0 (𝐶𝑉𝑉)𝑠,𝑘 0 0 0

0 0 (𝐶𝑊𝑊)𝑠,𝑘 0 0

0 0 0 (𝐶Ψ𝑥Ψ𝑥
)
𝑠,𝑘

0

0 0 0 0 (𝐶Ψ𝑦Ψ𝑦
)
𝑠,𝑘)

 
 
 
 

𝑎𝑏𝑑𝜉𝑑𝜂
1

0

1

0𝑘

}
  
 

  
 

 
(74) 

𝐾1 =

{
 
 
 
 

 
 
 
 

∑∫ ∫

(

 
 
 
 
 
 
 

(𝐾1𝑈𝑈)𝑠,𝑘
𝑇𝑜𝑡𝑎𝑙 (𝐾1𝑈𝑉)𝑠,𝑘 (𝐾1𝑈𝑊)𝑠,𝑘 (𝐾1𝑈Ψ𝑥)𝑠,𝑘 (𝐾1𝑈Ψ𝑦)𝑠,𝑘

(𝐾1𝑉𝑈)𝑠,𝑘 (𝐾1𝑉𝑉)𝑠,𝑘
𝑇𝑜𝑡𝑎𝑙 (𝐾1𝑉𝑊)𝑠,𝑘 (𝐾1𝑉Ψ𝑥)𝑠,𝑘 (𝐾1𝑉Ψ𝑦)𝑠,𝑘

(𝐾1𝑊𝑈)𝑠,𝑘 (𝐾1𝑊𝑉)𝑠,𝑘 (𝐾1𝑊𝑊)𝑠,𝑘
𝑇𝑜𝑡𝑎𝑙 (𝐾1𝑊Ψ𝑥)𝑠,𝑘

(𝐾1𝑊Ψ𝑦)𝑠,𝑘

(𝐾1Ψ𝑥𝑈)𝑠,𝑘
(𝐾1Ψ𝑥𝑉)𝑠,𝑘

(𝐾1Ψ𝑥𝑊)𝑠,𝑘
(𝐾1Ψ𝑥Ψ𝑥)𝑠,𝑘

𝑇𝑜𝑡𝑎𝑙
(𝐾1Ψ𝑥Ψ𝑦)𝑠,𝑘

(𝐾1Ψ𝑦𝑈)𝑠,𝑘
(𝐾1Ψ𝑦𝑉)𝑠,𝑘

(𝐾1Ψ𝑦𝑊)𝑠,𝑘
(𝐾1Ψ𝑦Ψ𝑥)𝑠,𝑘

(𝐾1Ψ𝑦Ψ𝑦)𝑠,𝑘

𝑇𝑜𝑡𝑎𝑙

)

 
 
 
 
 
 
 

1

0

1

0𝑘

𝑎𝑏𝑑𝜉𝑑𝜂

}
 
 
 
 

 
 
 
 

𝑞𝑘 
(75) 

 

Where 

(𝐾1𝑈𝑈)𝑠,𝑘
𝑇𝑜𝑡𝑎𝑙 = (𝐾1𝑈𝑈)𝑠,𝑘 + (𝐾1𝑈)𝑠

𝑇 

(𝐾1𝑉𝑉)𝑠,𝑘
𝑇𝑜𝑡𝑎𝑙 = (𝐾1𝑉𝑉)𝑠,𝑘 + (𝐾1𝑉)𝑠

𝑇 

(𝐾1𝑊𝑊)𝑠,𝑘
𝑇𝑜𝑡𝑎𝑙 = (𝐾1𝑊𝑊)𝑠,𝑘 + (𝐾1𝑊)𝑠

𝑇 

(𝐾1Ψ𝑥Ψ𝑥)𝑚,..,𝑘
𝑇𝑜𝑡𝑎𝑙

= (𝐾1Ψ𝑥Ψ𝑥)𝑠,𝑘
+ (𝐾Ψ𝑥)𝑠

𝑇
 

(𝐾1Ψ𝑦Ψ𝑦)
𝑚,..,𝑘

𝑇𝑜𝑡𝑎𝑙

= (𝐾1Ψ𝑦Ψ𝑦)
𝑠,𝑘
+ (𝐾1Ψ𝑦)

𝑠

𝑇
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𝐾2(𝑞)𝑞 =

{
 
 
 

 
 
 

∑ ∑ ∫ ∫

(

 
 
 
 
 

0 0 (𝐾2𝑈𝑊)𝑠,𝑘,𝑙 0 0

0 0 (𝐾2𝑉𝑊)𝑠,𝑘,𝑙 0 0

(𝐾2𝑊𝑈)𝑠,𝑘,𝑙 (𝐾2𝑊𝑉)𝑠,𝑘,𝑙 (𝐾2𝑊𝑊)𝑠,𝑘,𝑙 (𝐾2𝑊Ψ𝑥)𝑠,𝑘,𝑙 (𝐾2𝑊Ψ𝑦)𝑠,𝑘,𝑙

0 0 (𝐾2Ψ𝑥𝑊)𝑠,𝑘,𝑙 0 0

0 0 (𝐾2Ψ𝑦𝑊)𝑠,𝑘,𝑙
0 0

)

 
 
 
 
 

1

0

1

0𝑘𝑙 𝑎𝑏𝑑𝜉𝑑𝜂

}
 
 
 

 
 
 

𝑞𝑘𝑞𝑙  (76) 

𝐾3(𝑞. 𝑞)𝑞 =

{
 
 

 
 

∑ ∑ ∑ ∫ ∫

(

 
 

0 0 0 0 0
0 0 0 0 0
0 0 (𝐾3𝑊𝑊)𝑠,𝑘,𝑙,𝑝 0 0

0 0 0 0 0
0 0 0 0 0)

 
 1

0

1

0𝑘𝑙𝑝 𝑎𝑏𝑑𝜉𝑑𝜂

}
 
 

 
 

𝑞𝑘𝑞𝑙𝑞𝑝  (77) 

F=

{
  
 

  
 
𝑊(𝑗)(𝜉, 𝜂)

𝑊(𝑗+1)(𝜉, 𝜂)

𝑊(𝑗+2)(𝜉, 𝜂)
.
.

𝑊(�̅�𝑤)(𝜉, 𝜂)}
  
 

  
 
𝑇

𝑓cos (Ω𝑡) (78) 

It should be noted that Matrix M and 𝐾1 are going to be diagonalized because of 

modal analysis. For numerical implementation, the set of equations of motion above is 

reconstructed in the form of a state space modal by multiplying it by the inverse of the 

mass matrix which gives: 

�̇� = 𝑦,  

�̇� = −𝑀−1𝐶�̇� − 𝑀−1𝐾1𝑞 −𝑀
−1𝐾2(𝑞)𝑞 − 𝑀

−1𝐾3(𝑞, 𝑞)𝑞 − 𝑀
−1𝐹𝑐𝑜𝑠(Ω𝑡)  (79) 

5.5 Numerical Results 

This section is divided into two main parts. The first part consists of the validation of 

the multimodal formulation explained in the previous section. The nonlinear amplitude-

frequency response of a thin Stainless steel rectangular plate with free edges and a 

simply-supported double-curved shells with movable edges under dimensionless 

concentrated force and damping are considered here. In the second part, the nonlinear 

frequency response of a functionally graded stiffened cylindrical shell is studied under 

mechanical and thermal load 
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5.5.1 Validation of the Multimodal Formulation 

 

To study the large amplitude vibration of a rectangular plate, linear analysis is carried 

out first to find the transverse and rotational modes as well as the in-plane modes. These 

mode shapes are going to be used in order to discretize the energy functional. The 

Stainless steel plate has 𝑎 = 0.3𝑚, 𝑏 = 0.45𝑚. , 𝐸 = 198𝐺𝑃𝑎, 𝜌 = 7850𝑘𝑔/𝑚3 and 𝜈 =

0.3. It should be noted that in order to satisfy the necessary boundary conditions for free 

edges, the superscripts p, q, r, and s are taken to be zero in equation (63). To reach 

convergence, Chebyshev polynomials of order 8 were enough. This made the total 

number of the degree of freedoms 𝑁𝑚𝑎𝑥 = 405. The transverse and rotational 

dimensionless frequencies for the stainless steel rectangular plate are calculated and listed 

in Table 5.1.  

Table 5.1 

 

Comparison of Dimensionless Transverse and Rotational Frequency 𝜛 = 𝜔𝑚𝑛𝑎
3√𝜌ℎ 𝐷⁄  

for Isotropic Rectangular Plate (h=0.001, R/b=10). 

 

a/h Theory Transverse and Rotational Modes 

  1 2 3 4 

      

300 

 

 

100 

 

 

30 

HSDT  

Present 

 

HSDT  

Present 

 

HSDT 

8.9314 

8.9305 

 

8.9273 

8.9240 

 

8.8825 

9.5169 

9.5168 

 

9.5148 

9.5150 

 

9.4983 

20.598 

20.5965 

 

20.5844 

20.5781 

 

20.4425 

22.1822 

22.1812 

 

22.1743 

22.1729 

 

22.088 

 Present 8.8277 9.4626 20.3186 22.000 

In addition, the dimensionless in-plane modes are illustrated in Table 5.2 below. A 

very good agreement can be witnessed with the comparison to those obtained based on 

the higher-order shear deformation theory. 
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Table 5.2 

  

Comparison of Dimensionless In-Plane frequency 𝜛 = 𝜔𝑚𝑛𝑎
3√𝜌ℎ 𝐷⁄  for Isotropic 

Rectangular Plate (h=0.001, R/b=10) 

 

a/h Theory In-Plane Modes 

  1 2 3 4 

      

300 

 

 

100 

 

 

30 

HSDT 

Present 

 

HSDT 

Present 

 

HSDT 

1521.712(46) 

1521.670(67) 

 

507.237(37) 

507.215(52) 

 

152.171(21) 

1996.159(47) 

1995.917(69) 

 

665.386(39) 

665.294(57) 

 

199.615(25) 

2019.403(48) 

2019.391(70) 

 

673.134(40) 

673.119(58) 

 

201.940(26) 

2728.038(50) 

2727.981(80) 

 

909.346(47) 

909.311(62) 

 

272.803(29) 

 Present 152.146(24) 199.561(31) 201.911(32) 272.761(39) 

Note: In Table 5.2, the numbers given in the superscript represent the eigenvalue number.  

 

Table 5.3  

 

Dimensionless In Plane Frequency 𝜛 = 𝜔𝑚𝑛𝑎
3√𝜌ℎ 𝐷⁄  for Isotropic Rectangular Plate 

(h=0.001, R/b=10, a/h=30). 

 

In-Plane Modes 

5 6 7 8 9 10 

275.187(40) 303.574(43) 313.808(44) 318.465(45) 328.130(46) 470.563(54) 

11 12 13 14 15 16 

425.977(55) 429.436(56) 432.970(57) 441.564(58) 491.784(60) 515.351(61) 

17 18 19    

519.408(63) 529.212(65) 542.61(66)    

It can be seen form Table 5.2 and Table 5.3 that the in-plane modes occur at a higher 

frequency for the thin plate rather than for the thick one. In previously published papers, 

it was concluded that the accuracy of the nonlinear vibration is related to the in-plane 

mode rather than the transverse and rotational modes. To validate the discussed 
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formulation, and to compare it with Alijani and Amabili (2011), more dimensionless in-

plane modes are needed. After obtaining the mode shapes from linear analysis, the energy 

functional is discretized by including several combinations of generalized coordinates. 

These combinations are shown in Table 5.4 below. 

Table 5.4 

 

Generalized Coordinates Combination. 

 

Models Generalized Coordinates 

24 dof 
𝑢24, 𝑢31, 𝑢32, 𝑢39, 𝑢40, 𝑢43, 𝑣24, 𝑣31, 𝑣32, 𝑣39, 𝑣40, 𝑣43 

 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝜓𝑥1, 𝜓𝑥2, 𝜓𝑥3, 𝜓𝑥4, 𝜓𝑦1, 𝜓𝑦2, 𝜓𝑦3, 𝜓𝑦4 

36 dof 

𝑢24, 𝑢31, 𝑢32, 𝑢39, 𝑢40, 𝑢43, 𝑢44, 𝑢45, 𝑢46, 𝑢54, 𝑢55, 𝑢56 

𝑣24, 𝑣31, 𝑣32, 𝑣39, 𝑣40, 𝑣43, 𝑣44, 𝑣45, 𝑣46, 𝑣54, 𝑣55, 𝑣56 

𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝜓𝑥1, 𝜓𝑥2, 𝜓𝑥3, 𝜓𝑥4, 𝜓𝑦1, 𝜓𝑦2, 𝜓𝑦3, 𝜓𝑦4 

44 dof 

𝑢24, 𝑢31, 𝑢32, 𝑢39, 𝑢40, 𝑢43, 𝑢44, 𝑢45, 𝑢46, 𝑢54, 𝑢55, 𝑢56, 𝑢57, 𝑢58, 𝑢60, 𝑢61 

𝑣24, 𝑣31, 𝑣32, 𝑣39, 𝑣40, 𝑣43, 𝑣44, 𝑣45, 𝑣46, 𝑣54, 𝑣55, 𝑣56, 𝑣57, 𝑣58, 𝑣60, 𝑣61 

𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝜓𝑥1, 𝜓𝑥2, 𝜓𝑥3, 𝜓𝑥4, 𝜓𝑦1, 𝜓𝑦2, 𝜓𝑦3, 𝜓𝑦4 

It can be seen from the generalized coordinates combination that the transverse and 

rotation modes numbers are similar for the three cases. On the other hand, the in-plane 

modes increased from 12 in the case of 24 dof to 24 in the case of 36 dof to 32 for the 44 

dof case and finally 38 for the 50 dof case. This is due to the significance of in-plane 

mode on nonlinear vibration response.  
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Figure 5.1. The frequency amplitude curve of nonlinear vibration of free edges stainless 

steel rectangular plate (b a⁄ = 1.5, a h⁄ = 30) under dimensionless f = 0.03 and damping 

ratio ζ = 0.004 using 24 dof model. 

 

 
Figure 5.2. The frequency amplitude curve of nonlinear vibration of free edges stainless 

steel rectangular plate (b a⁄ = 1.5, a h⁄ = 30) under dimensionless f = 0.03 and damping 

ratio ζ = 0.004 using 36 dof model. 
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Figure 5.3. The frequency amplitude curve of nonlinear vibration of the free edges 

stainless steel rectagular plate (b a⁄ = 1.5, a h⁄ = 30) under dimensionless f = 0.03 and 

damping ratio ζ = 0.004 using 44 dof model. 

 

 

 

Figure 5.4. The frequency amplitude curve of nonlinear vibration of the free edges 

stainless steel rectangular plate (b a⁄ = 1.5, a h⁄ = 30) under dimensionless f = 0.03 and 

damping ratio ζ = 0.004 using 50 dof model. 
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Now the nonlinear frequency responses are plotted using the software XPPAUT 

which contains the popular bifurcation program AUTO. First, the set of nonlinear 

ordinary differential equations is solved using the numerical software XPP, then the 

amplitude-frequency response was obtained by using the built-in software AUTO.  

The Stainless Steel rectangular plate is subjected to a dimensionless force 𝑓 = 0.03 and 

damping ratio 𝜁 = 0.004. A very good agreement can be observed in Figure 5.1, Figure 

5.2, Figure 5.3 and Figure 5.4. It can be seen from Figure 5.5 that the variation of the 

number of dof model has a significant effect on the nonlinear response of the rectangular 

plate. In this example, the increase the number of dof, decreases hardening behavior. It 

can also be seen that for 44 and 50 dof, the nonlinear response has completely converged. 

Therefore, a 44 dof model can be adopted to decrease the computational cost. 

 
Figure 5.5. Effect of the number of dof model on the nonlinear frequency amplitude 

response of the free edges stainless steel rectangular plate (b a⁄ = 1.5, a h⁄ = 30) under 

dimensionless f = 0.03 and damping ratio ζ = 0.004. 
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Now a simply-supported movable functionally graded double curved shell studied 

and compared with results obtained by Amabili et al. (2011). For the movable edges, the 

auxiliary functions that satisfy the boundary conditions are given as follows: 

𝑅𝑢(𝑥, 𝑦) = (𝑥)0(𝑥 − 𝑎)0(𝑦)1(𝑦 − 𝑏)1 

𝑅𝑣(𝑥, 𝑦) = (𝑥)1(𝑥 − 𝑎)1(𝑦)0(𝑦 − 𝑏)0 

𝑅𝑤(𝑥, 𝑦) = (𝑥)1(𝑥 − 𝑎)1(𝑦)1(𝑦 − 𝑏)1 

𝑅𝜓𝑥(𝑥, 𝑦) = (𝑥)0(𝑥 − 𝑎)0(𝑦)0(𝑦 − 𝑏)0 = 1 

𝑅𝜓𝑦(𝑥, 𝑦) = (𝑥)0(𝑥 − 𝑎)0(𝑦)0(𝑦 − 𝑏)0 = 1 

and the generalized coordinated are found in Table 5.5 below: 

Table 5.5 

 

Generalized Coordinated Combination for the FGM Double Curved Shell. 

 

Models Generalized Coordinates 

15 dof 𝑢14, 𝑢19, 𝑢20, 𝑢28, 𝑢31, 𝑢34, 𝑣14, 𝑣19, 𝑣20, 𝑣28, 𝑣31, 𝑣34, 𝑤1, 𝜓𝑥1, 𝜓𝑦1 

Figure 5.6 shows the nonlinear amplitude-frequency response of the simply supported 

functionally graded double curved shell under dimensionless force and damping. The 

results are obtained using only 15 dof models. It can be seen that the present results are in 

acceptable agreement with those of Amabili et al. (2011), and the slight difference is due 

to the fact that Amabili used the higher order shear deformation theory. In addition, he 

didn’t assume the shell to be shallow.  
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Now, after validating the multimodal formulation that is adopted in this chapter, a more 

complicated problem can be considered. 

5.5.2 Results and Discussions 

 

To show the significance of multimodal analysis on the nonlinear response, a 

previously studied problem based on the single-mode Galerkin’s method is reevaluated 

using the new formulation. A functionally graded stiffened spherical shell made of 

Aluminum and Alumina mixture is considered. The frequency-amplitude curve of the 

forced nonlinear vibration under distributed load was investigated in Chapter 3 (Figure 

3.21). 

Figure 5.6. The frequency amplitude curve of nonlinear vibration of the simply supported 

double curved shells with movable edges (a b⁄ = 1, a/ Rx = b/Ry = 10, a h⁄ = 10) 

under dimensionless f = 0.0155 and damping ratio ζ = 0.004.  
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Figure 5.7. The effect of the number of dof on the frequency-amplitude curve of forced 

nonlinear vibration of stiffened Al/Al2O2 spherical shell Rx = Ry = 5m, a = b =

0.8m, h = 0.025m, K = 1 and ζ = 0.01 under uniformly distributed load Q = 105Pa. 

Following the same procedure discussed in the validation part of Chapter 5, the 

frequency response is plotted in Figure 5.7. The convergence of the solution can be seen 

when the number of dof modal was increased from a single-mode, solved previously, to 

26 dof then to 36 dof models. It can be seen that the difference of the nonlinear response 

between one mode solution and the 26 dof modal solution is much higher than the ones 

between 26 and 36 dof models. Hence, it can be concluded from this example that the 

single-mode solution gives a general nonlinear solution but not necessarily the accurate. 

This solution is not accurate enough because of the lack of transverse, rotational and in-

plane mode.  

In the second example, the same stiffened spherical FGM shell is considered under 

uniform temperature rise . In Figure 5.8, 36 dof models were used since they lead to a fast 

convergence. Also, the material properties are temperature-dependent. Figure 5.8 also 

shows that as the temperature rise increases, the deflection slightly increase for the same 
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frequency ratio. This can be seen that the initial curve has shifted to the left side. Hence, 

more softening behavior can be noticed.  

 
Figure 5.8. Effect of uniform temperature rise on the frequency response curve of a 

stiffened spherical shell (Rx = Ry = 5m, a = b = 0.8m, h = 0.025m, K = 1 and ζ =

0.01) under uniformly distributed load Q = 105Pa. 
  

Generally, it is hardly possible to manufacture a structure without any initial 

geometric imperfections. Therefore, it is imperative to evaluate the effect of imperfection 

on the selected spherical shell. Figure 5.9 below illustrates the nonlinear response of the 

stiffened spherical shell under three different imperfection amplitudes. It can be seen that 

the geometric imperfection has a significant effect on the nonlinear response of the 

structure. A softening behavior was observed for the imperfect spherical shell. This is 

because adding imperfection makes the structure weaker. Also, the variation of the 

nonlinear response between 𝑊∗ = 0 and 𝑊∗ = 0.5ℎ is much smaller than that of 

between 𝑊∗ = 0.5ℎ and 𝑊∗ = ℎ. This is may be due to the fact that adding an 

imperfection of the size of the shell thickness surpasses the limit of this structure to hold 

a specific imperfection. 
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Figure 5.9. Effect of geometrical imperfection on the frequency response curve of a 

stiffened spherical shell (Rx = Ry = 5m, a = b = 0.8m, h = 0.025m, K = 1 and ζ =

0.01) under uniformly distributed load Q = 105Pa. 

In the first part of Chapter 5, the formulation of the problem was validated by Alijani 

and Amabili (2011), and an excellent agreement was obtained. Then a convergence study 

was done to highlight the importance of using multimode over the single-mode solution. 

The difference in the nonlinear response was remarkable. This chapter was ended by 

evaluating the effect of the uniform temperature rise and the influence of the geometrical 

imperfection of the amplitude-frequency curve.  
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6. Conclusion And Future Work 

6.1 Conclusion 

This dissertation consisted mainly of two parts. The first part was concerned with the 

nonlinear static and dynamic analysis of the imperfect stiffened functionally graded 

double-curved shell in a thermal environment using a single-mode solution. The 

nonlinear equations of motion were derived using a single-mode analysis in conjunction 

with the Galerkin’s method. Closed-form solution of the amplitude-frequency response of 

an extended duffing equation with strong quadratic and cubic nonlinearities was obtained 

using He’smethod. Also, Lekhnitsky’s technique was used to smear the effect of the 

stiffeners over the thickness of the shell. The influence of the imperfection, stiffeners, 

geometric parameters and power index variations was also studied. Since the shell was 

subjected to a thermal load, a pre buckling thermal analysis was done to calculate the 

critical temperature difference. Three types of temperature functions: uniform 

temperature; linear; and nonlinear temperature rise through the thickness were studied. 

All the results obtained here were compared and validated with previously published 

papers. 

For the second part, the same problem was considered using multimode analysis. 

Chebyshev polynomials used to satisfy the essential boundary conditions. The energy 

functional was discretized by including several combinations of generalized coordinates. 

To solve the discretized equations of motion, the numerical XPPAUT software was used. 

Then a convergence study was done to highlight the importance of using multimode over 

the single-mode solution. It is, therefore, concluded that the nonlinear study of problems 

of thin-walled structures with even stiffeners is of paramount importance. We can also 

conclude that the difference between single-mode and multi-mode analyses could be very 
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significant for nonlinear problems in a thermal environment. Hence, multimode vibration 

analysis is necessary for structures of this nature . In addition, it is concluded that further 

study of FGM structures and the effect of temperature variations and imperfections on the 

nonlinear response of such structures are notable for the following two reasons. The first 

reason is that FGM structures are inherently nonlinear. The second reason is, due to the 

existence of the coupling between extension and bending, the FGM structures cannot be 

constructed flat; thus, it is necessary to consider the effect of imperfection.  

6.2 Future Work 

This dissertation can be extended, by perhaps using a higher-order shear deformation 

theory which may give more accuracy when it comes to thick double- curved shells. Airy 

stress functions can also be used to decrease the number of unknowns in the equations of 

motion.  

Another extension of this work could be using isogrid and orthogrid stiffeners and 

finding a way to apply Lekhnitsky smeared technique to deal with structures that consist 

of these kinds of stiffeners. Also, the current thesis/project could be extended to different 

kinds of FGM structures, for example, considering those for which material properties 

vary in two different directions (x,y) or three different directions (x, y, z) than just along 

with the thickness (only z) direction.  

Distribution of the material properties can be extended to change with respect to the 

length and width.Other future work would be studying the shell response to an impulsive 

load. In addition, , an experimental test could also be considered as a future work to 

validate the numerical results. To perform any kind of experiments on functionally 

graded structures, 3D printing might be used. Furthermore, flutter analysis, fracture, 

fatigue, failure, and optimization of structures made of FGM could be studied. 
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APPENDIX 

 

𝐿𝑖𝑗(𝑖 = 1,2,3,4,5; 𝑗 = 1,2,3,4,5,6) are the linear operator and 𝑁𝐿𝑖(𝑖 = 1,2, … .18), are the 

nonlinear operators of the governing equations and are listed below: 

𝐿11(𝑢0) = (𝐴66 + 𝐶0𝐵66)
𝜕2𝑢0
𝜕𝑦2

+ (𝐴11 +
𝐸𝑥𝐴

𝑑𝑥
)
𝜕2𝑢0
𝜕𝑥2

− (𝐴55 +
𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝑘𝑠𝑢0
𝑅𝑥2

 

𝐿12(𝑣0) = (𝐴12 + 𝐴66 + 𝐶0𝐵66)
𝜕2𝑣0
𝜕𝑥𝜕𝑦

 

𝐿13(𝑤0) =
1

𝑅𝑥
(𝐴11 +

𝐸𝑥𝐴𝑥
𝑑𝑥

)
𝜕𝑤0
𝜕𝑥

+
𝐴12
𝑅𝑦

𝜕𝑤0
𝜕𝑥

+ (𝐴55 +
𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝑘𝑠
𝑅𝑥

𝜕𝑤0
𝜕𝑥

 

𝐿14(𝜓𝑥) = (𝐵66 + 𝐶0𝐷66)
𝜕2𝜓𝑥
𝜕𝑦2

+ (𝐵11 +
𝐸𝑥𝐴𝑒𝑥
𝑑𝑥

)
𝜕2𝜓𝑥
𝜕𝑥2

+ (𝐴55 +
𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝑘𝑠𝜓𝑥
𝑅𝑥

 

+
𝐶0
2
(
𝐺𝑥𝐽𝑥
𝑑𝑥

+
𝐺𝑦𝐽𝑦

𝑑𝑦
)
𝜕2𝜓𝑥
𝜕𝑦2

 

𝐿15(𝜓𝑦) = (𝐵12 + 𝐵66 + 𝐶0𝐷66)
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+
𝐶0
2
(
𝐺𝑥𝐽𝑥
𝑑𝑥

+
𝐺𝑦𝐽𝑦

𝑑𝑦
)
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
 

𝐿16(𝑤
∗) = (𝐴55 +

𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝑘𝑠
𝑅𝑥

𝜕𝑤∗

𝜕𝑥
 

𝑁𝐿1(𝑤0) = (𝐴66 + 𝐶0𝐵66)
𝜕𝑤0
𝜕𝑥

𝜕2𝑤0
𝜕𝑦2

+ (𝐴12 + 𝐴66 + 𝐶0𝐵66)
𝜕𝑤0
𝜕𝑦

𝜕2𝑤0
𝜕𝑥𝜕𝑦

 

     + (𝐴11 +
𝐸𝑥𝐴𝑥
𝑑𝑥

)
𝜕𝑤0
𝜕𝑥

𝜕2𝑤0
𝜕𝑥2

 

𝑁𝐿2(𝑤0, 𝑤
∗) = (𝐴66 + 𝐶0𝐵66) (

𝜕2𝑤∗

𝜕𝑦2
𝜕𝑤0
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑦2

𝜕𝑤∗

𝜕𝑥
) 

       +(𝐴12 + 𝐴66 + 𝐶0𝐵66) (
𝜕𝑤0
𝜕𝑦

𝜕2𝑤∗

𝜕𝑥𝜕𝑦
+
𝜕𝑤∗

𝜕𝑦

𝜕2𝑤0
𝜕𝑥𝜕𝑦

) 

       + (𝐴11 +
𝐸𝑥𝐴𝑥
𝑑𝑥

)(
𝜕𝑤0
𝜕𝑥

𝜕2𝑤∗

𝜕𝑥2
+
𝜕𝑤∗

𝜕𝑥

𝜕2𝑤0
𝜕𝑥2

) 

𝐿21(𝑢0) = (𝐴21 + 𝐴66 − 𝐶0𝐵66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦

 

𝐿22(𝑣0) = (𝐴66 − 𝐶0𝐵66)
𝜕2𝑣0
𝜕𝑥2

+ (𝐴22 +
𝐸𝑦𝐴𝑦

𝑑𝑦
)
𝜕2𝑣0
𝜕𝑦2

− (𝐴44 +
𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝑘𝑠𝑣0
𝑅𝑦2
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𝐿23(𝑤0) =
1

𝑅𝑦
(𝐴22 +

𝐸𝑦𝐴𝑦

𝑑𝑦
)
𝜕𝑤0
𝜕𝑦

+
𝐴21
𝑅𝑥

𝜕𝑤0
𝜕𝑦

+ (𝐴44 +
𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝑘𝑠
𝑅𝑦

𝜕𝑤0
𝜕𝑦

 

𝐿24(𝜓𝑥) = (𝐵21 + 𝐵66 − 𝐶0𝐷66)
𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

−
𝐶0
2
(
𝐺𝑥𝐽𝑥
𝑑𝑥

+
𝐺𝑦𝐽𝑦

𝑑𝑦
)
𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

 

𝐿25(𝜓𝑦) = (𝐵66 − 𝐶0𝐷66)
𝜕2𝜓𝑦

𝜕𝑥2
+ (𝐵22 +

𝐸𝑦𝐴𝑦𝑒𝑦

𝑑𝑦
)
𝜕2𝜓𝑦

𝜕𝑦2
+ (𝐴44 +

𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝑘𝑠𝜓𝑦

𝑅𝑦
 

     −
𝐶0
2
(
𝐺𝑥𝐽𝑥
𝑑𝑥

+
𝐺𝑦𝐽𝑦

𝑑𝑦
)
𝜕2𝜓𝑦

𝜕𝑥2
 

 

𝐿26(𝑤
∗) = (𝐴44 +

𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝑘𝑠
𝑅𝑦

𝜕𝑤∗

𝜕𝑦
 

𝑁𝐿3(𝑤0) = (𝐴66 − 𝐶0𝐵66)
𝜕𝑤0
𝜕𝑦

𝜕2𝑤0
𝜕𝑥2

+ (𝐴21 + 𝐴66 − 𝐶0𝐵66)
𝜕𝑤0
𝜕𝑥

𝜕2𝑤0
𝜕𝑥𝜕𝑦

 

     + (𝐴22 +
𝐸𝑦𝐴𝑦

𝑑𝑦
)
𝜕𝑤0
𝜕𝑦

𝜕2𝑤0
𝜕𝑦2

 

𝑁𝐿4(𝑤0, 𝑤
∗) = (𝐴66 − 𝐶0𝐵66) (

𝜕𝑤∗

𝜕𝑦

𝜕2𝑤0
𝜕𝑥2

+
𝜕𝑤0
𝜕𝑦

𝜕2𝑤∗

𝜕𝑥2
) 

      +(𝐴21 + 𝐴66 − 𝐶0𝐵66) (
𝜕𝑤∗

𝜕𝑥

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+
𝜕𝑤0
𝜕𝑥

𝜕2𝑤∗

𝜕𝑥𝜕𝑦
) 

      (𝐴22 +
𝐸𝑦𝐴𝑦

𝑑𝑦
)(

𝜕𝑤0
𝜕𝑦

𝜕2𝑤∗

𝜕𝑦2
+
𝜕𝑤∗

𝜕𝑦

𝜕2𝑤0
𝜕𝑦2

) 

 

𝐿31(𝑢0) = −
1

𝑅𝑥
(𝐴11 +

𝐸𝑥𝐴𝑥
𝑑𝑥

)
𝜕𝑢0
𝜕𝑥

− (
𝑘𝑠𝐴55
𝑅𝑥

+
𝑘𝑠𝐺𝑥𝐴𝑥
𝑅𝑥𝑑𝑥

+
𝐴21
𝑅𝑦
)
𝜕𝑢0
𝜕𝑥

 

𝐿32(𝑣0) = −
1

𝑅𝑦
(𝐴22 +

𝐸𝑦𝐴𝑦

𝑑𝑦
)
𝜕𝑣0
𝜕𝑦

− (
𝑘𝑠𝐴44
𝑅𝑦

+
𝑘𝑠𝐺𝑦𝐴𝑦

𝑅𝑦𝑑𝑦
+
𝐴12
𝑅𝑥
)
𝜕𝑣0
𝜕𝑦

 

𝐿33(𝑤0) = −(𝐴11 +
𝐸𝑥𝐴𝑥
𝑑𝑥

)
𝑤0
𝑅𝑥2
− (𝐴22 +

𝐸𝑦𝐴𝑦

𝑑𝑦
)
𝑤0
𝑅𝑦2

− 2
𝐴12𝑤0
𝑅𝑥𝑅𝑦

 

    + (𝑘𝑠𝐴44 +
𝑘𝑠𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝜕2𝑤0
𝜕𝑦2

+ (𝑘𝑠𝐴55 +
𝑘𝑠𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝜕2𝑤0
𝜕𝑥2

 

    −(Ф1𝑥
𝑆ℎ𝑒𝑙𝑙+𝑇 +Ф1𝑥

𝑆𝑡𝑖𝑓𝑓+𝑇
)
𝜕2𝑤0
𝜕𝑥2

− (Ф1𝑦
𝑆ℎ𝑒𝑙𝑙+𝑇 +Ф1𝑦

𝑆𝑡𝑖𝑓𝑓+𝑇
)
𝜕2𝑤0
𝜕𝑦2
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𝐿34(𝜓𝑥) = (𝑘𝑠𝐴55 +
𝑘𝑠𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝜕𝜓𝑥
𝜕𝑥

− (
𝐵11
𝑅𝑥

+
𝐸𝑥𝐴𝑥𝑒𝑥
𝑅𝑥𝑑𝑥

+
𝐵21
𝑅𝑦
)
𝜕𝜓𝑥
𝜕𝑥

 

𝐿35(𝜓𝑦) = (𝑘𝑠𝐴44 +
𝑘𝑠𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝜕𝜓𝑦

𝜕𝑦
− (

𝐵22
𝑅𝑦

+
𝐸𝑦𝐴𝑦𝑒𝑦

𝑅𝑦𝑑𝑦
+
𝐵12
𝑅𝑥
)
𝜕𝜓𝑦

𝜕𝑦
 

𝐿36(𝑤
∗) = (𝑘𝑠𝐴44 +

𝑘𝑠𝐺𝑦𝐴𝑦

𝑑𝑦
)
𝜕2𝑤∗

𝜕𝑦2
+ (𝑘𝑠𝐴55 +

𝑘𝑠𝐺𝑥𝐴𝑥
𝑑𝑥

)
𝜕2𝑤∗

𝜕𝑥2
 

    −(Ф1𝑥
𝑆ℎ𝑒𝑙𝑙+𝑇 +Ф1𝑥

𝑆𝑡𝑖𝑓𝑓+𝑇
)
𝜕2𝑤∗

𝜕𝑥2
− (Ф1𝑦

𝑆ℎ𝑒𝑙𝑙+𝑇 +Ф1𝑦
𝑆𝑡𝑖𝑓𝑓+𝑇

)
𝜕2𝑤∗

𝜕𝑦2
 

𝐿37(Ф) =
Ф1𝑥
𝑆ℎ𝑒𝑙𝑙+𝑇

𝑅𝑥
+
Ф1𝑦
𝑆ℎ𝑒𝑙𝑙+𝑇

𝑅𝑦
+
Ф1𝑥
𝑆𝑡𝑖𝑓𝑓+𝑇

𝑅𝑥
+
Ф1𝑦
𝑆𝑡𝑖𝑓𝑓+𝑇

𝑅𝑦
 

𝑁𝐿5(𝑤0) =
𝐴21𝑤0
𝑅𝑥

𝜕2𝑤0
𝜕𝑦2

+
𝑤0
𝑅𝑦
(𝐴22 +

𝐸𝑦𝐴𝑦

𝑑𝑦𝑇
)
𝜕2𝑤0
𝜕𝑦2

+
3

2
(𝐴22 +

𝐸𝑦𝐴𝑦

𝑑𝑦
)
𝜕2𝑤0
𝜕𝑦2

(
𝜕𝑤0
𝜕𝑦

)
2

+ (2𝐴12 + 4𝐴66)
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+
3

2
(𝐴11 +

𝐸𝑥𝐴𝑥
𝑑𝑥

)
𝜕2𝑤0
𝜕𝑥2

(
𝜕𝑤0
𝜕𝑥

)
2

+ (
1

2
𝐴21 + 𝐴66)

𝜕2𝑤0
𝜕𝑦2

(
𝜕𝑤0
𝜕𝑥

)
2

+
𝑤0
𝑅𝑥
(𝐴11 +

𝐸𝑥𝐴𝑥
𝑑𝑥

)
𝜕2𝑤0
𝜕𝑥2

+
𝐴12𝑤0
𝑅𝑦

𝜕2𝑤0
𝜕𝑥2

+ (
1

2
𝐴12 + 𝐴66)

𝜕2𝑤0
𝜕𝑥2

(
𝜕𝑤0
𝜕𝑦

)
2

+
𝐴12
2𝑅𝑥

(
𝜕𝑤0
𝜕𝑦

)
2

+
1

2𝑅𝑦
(𝐴22 +

𝐸𝑦𝐴𝑦

𝑑𝑦
)(
𝜕𝑤0
𝜕𝑦

)
2

+
1

2𝑅𝑥
(𝐴11 +

𝐸𝑥𝐴𝑥
𝑑𝑥

) (
𝜕𝑤0
𝜕𝑥

)
2

+
𝐴12
2𝑅𝑦

(
𝜕𝑤0
𝜕𝑥

)
2

 

𝑁𝐿6(𝑤0, 𝑢0) = 𝐴21
𝜕𝑢0
𝜕𝑥

𝜕2𝑤0
𝜕𝑦2

+ 𝐴66
𝜕𝑤0
𝜕𝑥

𝜕2𝑢0
𝜕𝑦2

+ (𝐴21 + 𝐴66)
𝜕𝑤0
𝜕𝑦

𝜕2𝑢0
𝜕𝑥𝜕𝑦

 

       +2𝐴66
𝜕𝑢0
𝜕𝑦

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ (𝐴11 +
𝐸𝑥𝐴𝑥
𝑑𝑥

)(
𝜕𝑢0
𝜕𝑥

𝜕2𝑤0
𝜕𝑥2

+
𝜕𝑤0
𝜕𝑥

𝜕2𝑢0
𝜕𝑥2

) 

𝑁𝐿7(𝑤0, 𝑣0) = 𝐴21
𝜕𝑣0
𝜕𝑦

𝜕2𝑤0
𝜕𝑥2

+ 𝐴66
𝜕𝑤0
𝜕𝑦

𝜕2𝑣0
𝜕𝑥2

+ (𝐴12 + 𝐴66)
𝜕𝑤0
𝜕𝑥

𝜕2𝑣0
𝜕𝑥𝜕𝑦

 

      +2𝐴66
𝜕𝑣0
𝜕𝑥

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ (𝐴22 +
𝐸𝑦𝐴𝑦

𝑑𝑦
)(
𝜕𝑣0
𝜕𝑦

𝜕2𝑤0
𝜕𝑦2

+
𝜕𝑤0
𝜕𝑦

𝜕2𝑣0
𝜕𝑦2

) 

𝑁𝐿8(𝑤0, 𝜓𝑥) = 𝐵21
𝜕𝜓𝑥
𝜕𝑥

𝜕2𝑤0
𝜕𝑦2

+ 𝐵66
𝜕𝑤0
𝜕𝑥

𝜕2𝜓𝑥
𝜕𝑦2

+ 2𝐵66
𝜕𝜓𝑥
𝜕𝑦

𝜕2𝑤0
𝜕𝑥𝜕𝑦
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      +(𝐵21 + 𝐵66)
𝜕𝑤0
𝜕𝑦

𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

+ (𝐵11 +
𝐸𝑥𝐴𝑥𝑒𝑥
𝑑𝑥

) (
𝜕𝜓𝑥
𝜕𝑥

𝜕2𝑤0
𝜕𝑥2

+
𝜕𝑤0
𝜕𝑥

𝜕2𝜓𝑥
𝜕𝑥2

) 

𝑁𝐿9(𝑤0, 𝜓𝑦) = 𝐵12
𝜕𝜓𝑦

𝜕𝑦

𝜕2𝑤0
𝜕𝑥2

+ 𝐵66
𝜕𝑤0
𝜕𝑦

𝜕2𝜓𝑦

𝜕𝑥2
+ 2𝐵66

𝜕𝜓𝑦

𝜕𝑥

𝜕2𝑤0
𝜕𝑥𝜕𝑦

 

      +(𝐵12 + 𝐵66)
𝜕𝑤0
𝜕𝑥

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
 

+(𝐵22 +
𝐸𝑦𝐴𝑦𝑒𝑦

𝑑𝑦
)(
𝜕𝜓𝑦

𝜕𝑦

𝜕2𝑤0
𝜕𝑦2

+
𝜕𝑤0
𝜕𝑦

𝜕2𝜓𝑦

𝜕𝑦2
) 
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