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Abstract

Non-linear, 3D electromagnetic coupling between the ionosphere and magnetosphere

is investigated in this dissertation. The study is based on a non-linear, 3D, reduced

magnetohydrodynamic model describing interaction between dispersive Alfvén waves

and the nightside high-latitude ionosphere. Results are presented from a numerical

study of small-scale, intense magnetic field-aligned currents observed in the vicinity

of the discrete auroral arc by the Magnetosphere-Ionosphere Coupling in the Alfvén

Resonator (MICA) sounding rocket launched from Poker Flat, Alaska, on 19 February

2012. The goal of the MICA project was to investigate the hypothesis that such

currents can be produced inside the ionospheric Alfvén resonator by the ionospheric

feedback instability (IFI) driven by the system of large-scale magnetic field-aligned

currents interacting with the ionosphere. Simulations of the reduced 2D MHD model

with realistic background parameters confirm that IFI indeed generates small-scale

ULF waves inside the IAR with frequency, scale-size, and amplitude showing a good,

quantitative agreement with the observations.

The 3D model was used to verify the results from the ionospheric heating experi-

ment conducted at the High Frequency Active Auroral Research Program (HAARP)

facility, Alaska, on March 12, 2013. During the experiment, HAARP transmitted in

the direction of the magnetic zenith X-mode 4.57 MHz wave. The transmitted power
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was modulated with a frequency of 0.9 mHz, and it was pointed on a 20 km spot

at the altitude of 120 km. It was observed that this artificially initiated heating 1)

generated disturbances in the magnetic field detected with the fluxgate magnetometer

on the ground, and 2) produced bright luminous spots in the ionosphere, detected

with the HAARP telescope. Numerical simulations of the 3D reduced MHD model

reveal that these effects can be related to the magnetic field-aligned currents, excited

in the ionosphere by changing the conductivity in the E-region when the large-scale

electric field exists in the heating region.

The importance of the Hall currents in magnetosphere-ionosphere interactions,

carried by ULF waves and field-aligned currents, has been consistently overlooked

in studies devoted to the active experiments. Simulations of the 3D two-fluid MHD

model, presented in this study, demonstrate that the Hall conductivity changes 1) the

growth rate and the amplitude of ULF waves generated by the heating and 2) the

orientation and the direction of propagation of the generated waves. These findings

provide insight into the experiments where the waves were generated with a geometric

modulation technique, and suggest a new and more efficient approach for conducting

such experiments in the future.
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Chapter 1

Introduction

1.1 Motivation

Ultra-Low-Frequency (ULF) Alfvén waves carry significant fluxes of electromagnetic

energy along auroral magnetic field lines and play a major role in the redistribution of

electromagnetic power, particle density, mass, and momentum between the ionosphere

and the magnetosphere at high latitudes. A particularly important feature of these

waves is their casual connection with discrete auroral arcs. Today there is a significant

understanding of mechanisms responsible for the generation of two-dimensional, “lin-

ear” systems of magnetic field-aligned currents associated with ULF Alfvén waves at

high latitudes. But several important questions related to the nonlinear, 3D dynamics

of these waves remain unanswered. These questions include:

• What is the role of ionospheric feedback instability in the ionosphere on the

development of intense field-aligned currents (FACs) and active discrete auroral

forms?
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• Which part of the coupled MI system is responsible for the development of quiet

homogeneous discrete auroral arcs?

• Which part of the coupled MI system is responsible for the intensification, break-

up, and rapid, nonlinear dynamics of the FACs/arcs?

To answer these questions, a nonlinear, 3D, time-dependent, numerical model de-

scribing dynamics of ULF Alfven waves in the magnetosphere and the active electro-

magnetic coupling between these waves and the ionospheric plasma is developed in

this dissertation. This model is used for the investigation of spatiotemporal proper-

ties and dynamics of intense ULF waves and magnetic field-aligned currents at high

latitudes.

Electrodynamics of magnetosphere-ionosphere interactions at high altitudes in-

volving ultra-low-frequency (ULF) Alfvéen waves has been extensively studied for

more than 40 years [e.g., Radoski , 1967; Cummings et al., 1969]. The initial goal of

these studies was to explain geomagnetic pulsations in the Pc5-Pc6 frequency range

measured by ground-based magnetometers in the auroral zone. Later, the interest in

Alfvén waves steadily increased with observations showing that these waves can be re-

sponsible for parallel electron acceleration and the occurrence of discrete auroral arcs

[Xu et al., 1993; Marklund et al., 1994; Samson et al., 1991, 1996; Lotko et al., 1998].

Direct measurements from satellites [Chmyrev et al., 1988; Karlsson and Marklund ,

1996; Chaston et al., 2002; Chaston, 2003; Figueiredo et al., 2005] and rockets [Boehm

et al., 1990] have shown that the discrete fluxes of keV electrons registered at the au-

roral zone are often correlated with intense, localized, electromagnetic disturbances

sometimes interpreted as dispersive Alfvén waves.

An observed connection between ULF waves and discrete auroral arcs can be ex-
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plained by the hypothesis that discrete arcs are produced by magnetic field-aligned

currents (FACs) carried by ULF Alfvén waves propagating along auroral magnetic

field lines. The main questions which remain unanswered, to some extent, are how and

where these waves are generated, and what mechanism defines their frequencies and

relatively small perpendicular wavelengths. Some studies suggest that they are gener-

ated by interactions between solar wind and plasma in the magnetotail and/or equato-

rial magnetosphere, [e.g., Angelopoulos et al., 2002; Keiling et al., 2000], and the wave

frequencies are defined by the external driver (e.g., variations in pressure/density of

the solar wind) [Kepko et al., 2002] or by the parameters of the magnetosphere along

the auroral magnetic field line, inside the so-called magnetospheric field-line resonator

(FLR) [Cummings et al., 1969; Chen and Hasegawa, 1974; Southwood , 1974; Kivel-

son and Southwood , 1985; Samson et al., 1992]. The main idea of FLR is that shear

Alfvén waves can form a standing pattern along a particular magnetic field line, with

eigenfrequency which matches the eigenfrequency of the global magnetospheric cav-

ity/waveguide. Here, the coupling between shear Alfvén waves and fast MHD modes

occurs. This coupling produces standing waves with relatively small perpendicular

wavelengths due to the phase mixing of the resonant oscillations [Mann et al., 1995;

Russell and Wright , 2010].

Other studies suggest that the small-scale ULF waves can be generated by the

electric field in the ionosphere due to the non-linear interaction between magnetic

field-aligned currents and the ionospheric plasma [Atkinson, 1970; Sato, 1978; Watan-

abe et al., 1993]. In general, it is possible that one of these scenarios can be realized

under one type of geophysical condition and another can be realized under different

conditions. Due to the fact that the magnetosphere and the ionosphere form a very

3



Figure 1.1: “Linear” discreet auroral arcs. Courtesy of Jan Curtis.

complex, dynamic, nonlinear coupled system, sometimes it is hard to distinguish the

causes and the consequences of the large-scale geophysical processes based on obser-

vations performed only in one particular location and during the relatively short time

interval. One way to reveal the connection between intense, localized ULF waves and

the discrete auroral arcs is to develop a comprehensive numerical model of the electro-

dynamic coupling between the ionosphere and the magnetosphere and to reproduce in

quantitative detail different characteristic features of the observations. Today there is

a significant understanding of mechanisms responsible for the generation of “linear”

discrete auroral arcs (See Figure 1.1). However, there are a great number of observa-

tions which cannot be explained with these models. For example, observations from

the FAST, Polar, and Cluster satellites [Wygant et al., 2000; Keiling et al., 2000; Aikio

et al., 2004; Dombeck et al., 2005; Figueiredo et al., 2005] show that a significant frac-

tion of the aurora is powered by intense, small-scale Alfvén waves propagating along

the magnetic field lines and passing through the plasma sheet boundary layer. These

magnetic field lines are stretched in the tailward direction and not always well de-
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Figure 1.2: (Left) Auroral “curls” or “vortex chain”. (Right) “Rayed” aurora. Cour-
tesy of Jan Curtis.

fined. Such facts make it hard to explain these waves with the classical, “linear” FLR

theory, which requires closed magnetic field line geometry; although some attempts

have been made [e.g. Rankin et al., 2000]. At the same time, frequencies of the waves

detected in these observations are much lower than the frequencies predicted by the

IAR theory and they are detected in the magnetosphere much above the altitude

where the upper boundary of the IAR is located [Karlsson et al., 2004]. A number

of similar observations have been reported by Cluster scientists from the University

of Stockholm [e.g. Johansson et al., 2004, 2005, 2006]. Other important questions

which also are not answered yet are explaining the 3D structures and 3D dynamics of

the discrete auroral arcs. Figure 1.2 shows two examples of these structures: “curls”

or “vortex chain” (on the top) and “rayed” aurora (on the bottom). The questions

of what physical mechanism in the magnetosphere or in the ionosphere causes devel-

opment of these forms, their spatial sizes, frequencies, and dynamics are the main

focus of this investigation. Some studies suggest that these forms are the result of

Kelvin-Helmholtz instability in the equatorial magnetosphere [Rankin et al., 1993;

Russell and Wright , 2010]. Other studies suggest that they are a result of nonlinear
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magnetosphere-ionosphere interactions at high latitudes [Keskinen et al., 1988; Lysak

and Song , 1996].

1.2 Global Magnetospheric Resonator

Figure 1.3: Schematic diagram of the global magnetospheric resonator formed by the
magnetic dipole flux tube bounded at both ends by highly conducting ionosphere.

The shear Alfvén Field-Line Resonance (FLR) has been studied extensively for

over 70 years. FLRs can be excited in the magnetosphere by the coupling of the

shear Alfvén mode with the MHD compressional wave [Chen and Hasegawa, 1974;

Southwood , 1974]. Ultra-low frequency (1 - 10 mHz) magnetic pulsations have been

measured using networks of ground magnetometers and identified as transverse oscil-

6



lations of dipole magnetic flux tubes [Dungey , 1955]. These transverse hydromagnetic

waves form standing wave patterns along the dipole magnetic flux tube which are

bounded by the conducting ionosphere at both ends [Cummings et al., 1969; Streltsov

et al., 1998a]. Recently, Archer et al. [2019, and references therein] have reported

that magnetopause surface eigenmode ULF waves were measured using multipoint

THEMIS spacecraft observations. Figure 1.3 shows the schematic diagram of the

FLR structure in the inner magnetosphere. In simple terms, the FLR is formed when

the frequency of the compressional signal acting as an energy source matches the

eigenfrequency of the particular magnetic field line [Chen and Hasegawa, 1974; Ra-

doski , 1967; Southwood , 1974]. The fundamental harmonic of standing waves that

are formed inside of the global resonator have antinodes on the equatorial plane and

nodes on the the ionospheric ends. The eigenfrequency of the resonant wave increases

as the radial distance decreases in the dipolar domain of the magnetosphere [Samson

et al., 1992]. The FLR has been investigated in detail in the auroral regions due to

the similarity in structure and behaviour to the auroral arcs. They are commonly

seen in ground-based magnetometer observations [Samson et al., 1992] and HF radar

readings [Ruohoniemi et al., 1991]. Waves produced inside the global resonator are

considered to be large-scale having radial scale size of the order of 0.1RE in the

equatorial magnetosphere.

In the auroral regions of the ionosphere, the latitudinal scale sizes of the waves are

reaching tens of km [Samson et al., 1992; Walker et al., 1992]. Figure 1.4 shows the

ground magnetometer data taken on September 28, 1988 from four stations that were

part of CANOPUS array [Samson et al., 1992]. This array is part of Canadian Auroral

Network. The standing wave model describes the basics of the wave structure along

7



Figure 1.4: Top panel shows the X-component of the magnetic field at four stations
of CANOPUS array on September 28, 1988. ULF pulsations are clearly displayed in
the interval from 04:20 to 04:50 UT at BACK station. Bottom panel shows power
spectrum of the X-component magnetometer data from BACK station in the interval
from 04:00 to 05:00 UT taken on September 28, 1988. The signal has peaks at 1.3
mHz and 3.4 mHz. Figures are adapted from [Samson et al., 1992].

the dipole flux tube and signal polarization [Sugiura and Wilson, 1964; Cummings

et al., 1969]. Numerical MHD Aflvén models are successfully used to determine

spatio-temporal behaviour of the ionosphere and magnetosphere inside the FLR under

various geomagnetic conditions [e.g. Hasegawa, 1976; Chmyrev et al., 1988; Seyler ,

1990; Streltsov et al., 1998b; Rankin et al., 2000]. Simulations with nonlinear MHD

mode showed that these nonlinear effects affect the eigenfrequencies of the FLR. This

8



Figure 1.5: Snapshots of parallel current density j‖ displaying the growth of Alfvén
wave amplitude that are excited in the global magnetospheric resonator. Figures are
adapted from 2D MHD simulations performed by Streltsov et al. [2005].
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in turn changes the behavior of the global resonator significantly. The ionospheric

conductivity is changed when particles are precipitated by the Alfvén waves, the

resonant Alfvén waves themselves are dispersed when the transverse size of the global

resonator layer becomes small. Figure 1.5 shows a numerical output from the 2D

MHD model where the time evolution of the FLR is investigated. These snapshots

indicate how the parallel current density j‖ grows and FLR forms a closed-loop field

aligned current system.

1.3 Ionospheric Alfvén Resonator

Small-scale (λ≤ 10km) Alfvén waves can be trapped in a ionospheric Alfvén resonator

(IAR). This IAR is bounded from below by ionospheric E layer and from above by

the sharp gradient in the electron density above the F layer, which also corresponds

to the sharp gradient in the Alfvén velocity. Figures 1.6 and 1.7 show the schematic

diagram of the ionospheric Alfvén resonator.

The theoretical properties of the IAR were investigated by Polyakov and Rapoport

[1981]; Trakhtengerts and Feldstein [1991]; Trakhtengertz and Feldstein [1984] for the

vertical magnetic field model. They have shown that the typical eigenfrequencies of

the IAR are between 0.1 and 10 Hz. The properties of the IAR are defined by the

medium along the magnetic field. Parameters that affect the properties include the

physical size of the resonator, plasma density profile, plasma composition and the

strength of the magnetic field. Experimental evidence was collected by Belyaev et al.

[1990] which showed that ULF waves exist in the range from 0.1 to 10 Hz in the

background noise. Figure 1.8 shows the spectrum of the horizontal component of the
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Figure 1.6: Schematic diagram of the ionospheric Alfvén resonator formed by the
magnetic dipole flux tube bounded at the bottom by the ionospheric E-layer and the
sharp gradient in the Alfvén speed at the altitude of 0.5-1.0 RE.

magnetic field above the Gorky station, USSR. The data collected indicates a diurnal

variation of the frequencies observed in this range. Further investigations have shown

that the diurnal pattern of these waves is also present at higher (auroral) latitudes

[Yahnin et al., 2003]. A morphological study showed that the waves are affected by

the solar cycle and local geomagnetic activity.

Furthermore, both theory and experimental results suggest that the structure of

the ionosphere can be inferred based on the frequencies measured. A parameter that

11



Figure 1.7: Alfvén speed profile along a magnetic field line (L = 7.07) displaying the
location of the strong gradient and forming the upper boundary of the IAR.

defines the electron density decrease above the F region can be estimated using the

ground magnetometer data [Belyaev et al., 1990; Yahnin et al., 2003]. Latitudinal

variation of the IAR was complemented by the analysis of the data at low latitudes

(L = 1.3). Bösinger [2002] indicated that the main characteristics of the IAR are

similar to the mid and high latitude observations. The eigenfrequencies observed at

L = 1.3 were lower by a factor of 2 and 3 when compared to the L = 5.2 values (0.4 Hz

as compared to 1.0 Hz). Various numerical models are being developed to investigate

the spatio-temporal properties of the IAR.

These models include both active and passive ionospheric boundary conditions

and incorporate different effects. Model results presented by Pokhotelov et al. [2000]

include the effect of the wave frequency dispersion. The results show that the iono-

sphere couples the shear Alfvén waves with the compressional mode. Simulations also

indicate that the Hall conductivity in the ionosphere increases the growth rate of the

12



Figure 1.8: Horizontal components of the magnetic field recorded at Gorky, USSR.
These measurements indicate the local time (LT) dependence of the frequencies
present in the ionosphere above the station. Adapted from Belyaev et al. [1990].

unstable modes. It was shown that IAR may excite the unstable modes at times when

the ionospheric conductivity is both low and high. Study by Pokhotelov et al. [2000]

shows that when the Pedersen conductance in the E-layer is similar to Alfvén wave

conductance the IAR generates waves with the maximum on the ionospheric ends.

These types of waves can be measured by ground magnetometers. However, this is

not always the case. Numerical 2D MHD simulations performed by Streltsov et al.

[2011] show that when the conductances are higher or lower, the only way to detect

these ULF waves is by flying satellites or sounding rockets through the IAR region.

Numerical studies by Streltsov and Lotko [2003] show that the IAR develops large-

amplitude, small-scale waves inside the downward current channels. These regions

13



Figure 1.9: Snapshots of perpendicular electric field E⊥ displaying the growth of
Alfvén wave amplitude that are excited inside the ionospheric Alfvén resonator. Fig-
ures are adapted from Streltsov and Lotko [2003].

14



are theoretically adjacent to the discrete auroral arcs. Figure 1.9 shows the growth

of the resonant waves in the IAR inside the MHD model used by Streltsov and Lotko

[2003].

1.4 Ionospheric Feedback Instability

Currently, the ionospheric feedback instability (IFI) is the widely accepted mechanism

for the generation of small-scale large amplitude structures at high latitudes. It

was first introduced by Atkinson [1970] and later investigated further by Sato [1978]

and Lysak [1990, 1991]. The feedback is produced when the magnetic field-aligned

currents (a system of an upward and downward currents that are connected through

a background current) change the conductivity in the ionosphere by precipitating and

removing electrons from it. Conductivity is directly proportional to density. The field-

aligned currents are formed at the gradients of the conductivity enhancement. The

upward current increases the ionization, and recombination happens in the downward

current region. This results in the conductivity peak moving in the direction of the

background current as indicated in Figure 1.10.

Qualitative analysis by Lysak [1991] has shown that the free source of energy

for the instability comes from the reduced Joule dissipation. A consequent study by

Lysak and Song [2002] concluded that IFI generates structures most effectively when

the background conductivity is low and there is a large background electric field

present in the ionosphere. Qualitatively, the incident small-scale shear Alfven wave

over-reflects in the presence of a large scale electric field [Trakhtengertz and Feldstein,

1984; Lysak and Song , 2002]. Over reflection means that the amplitude of the wave
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Figure 1.10: Ionospheric feedback mechanism explained. Top panel shows an increase
in the background current in the region where a conductivity enhancement is present.
This increase in current is the closure of the field-aligned currents that are generated
on both sides of the conductivity peak. Bottom panel shows the propagation of the
conductivity peak in the direction of the background current. This is a result of
recombination happening on the downstream side of the peak and ionization increase
on the upstream part of the conductivity peak. Figures are adapted from Lysak
[1990].

reflected from the ionosphere is larger than the amplitude of the incident wave. This

occurs when the field aligned current in the small-scale wave locally enhances the

ionospheric conductivity and reduces the Joule dissipation of the large-scale electric

field in this location. The field energy is then released in the form of a magnetic

field-aligned current propagating away from the ionosphere. This additional current

makes the reflection coefficient greater than 1. When this wave interacts with the

active ionosphere multiple times, the wave’s amplitude increases significantly. Figure

1.11 shows the feedback cycle.

16



Figure 1.11: Ionospheric feedback instability mechanism explained.

Various linear [Lysak and Song , 2002; Hiraki and Watanabe, 2011] and nonlinear

[Doe et al., 1995; Streltsov and Lotko, 2004] models are used to study the dynamics

and properties of the IFI in the ionosphere-magnetosphere coupling. These studies

show that the intermediate (10-20 km) and small-scale structures (≤10 km) can be

generated in the ionosphere under the presence of large-scale FACs when the con-

ductivity is low and the background electric field is large (> 20 mV/m). 2D MHD

simulations by Streltsov and Lotko [2004] show that the small-scale structures are

produced in the downward current channels (depleted regions of the FACs). These

results suggest that the small-scale ULF structures should be frequently observed in

low-orbit satellite measurements passing the discrete auroral arcs. The conditions

favorable for the IFI are satisfied in the return current channels associated with the

discrete auroral arcs. These return (downward) current channels have relatively low

conductivity and large perpendicular electric field. Figure 1.12 shows the numerical

output of a simulation where two FACs generated small-scale structures [Streltsov

et al., 2010]. One should observe the fact that small-scale structures are produced in

the downward current channel.

If IFI generated small-scale structures encounter a sharp gradient in the Alfvén

speed in the magnetosphere, they can be reflected and trapped inside the IAR. The
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amplitude growth of these waves will be linear initially but after passing a threshold

will become nonlinear. In the nonlinear regime the amplitudes of the generated waves

are in the order of 100 µA/m2. Such large amplitude currents can produce density

cavities through the ponderomotive force, in the form of a nonlinear Lorentz force

(By

v2A

∂Ex

∂t
)[Streltsov and Lotko, 2008]. Simulations by Streltsov and Karlsson [2008]

show that the ponderomotive force generated in the IAR with IFI creates a cavity in

the ionosphere. The density inside of the cavity produced is ≈10% of the initial back-

ground value. 3D MHD numerical simulations, performed with the active ionospheric

response to the large-scale FACs, show that the IFI plays an important role in the

formation of small-scale vortex chains in the discrete auroral arcs [Jia and Streltsov ,

2014]. The convective nonlinear part of the code shows that the linear discrete auro-

ral arcs can develop a series of curls based on different ionospheric conductivity and

background electric field values.
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Figure 1.12: Ionospheric feedback instability generating small-scale ULF structures
inside the downward current channel adjacent to the discrete aurora. Schematic
plots of the perpendicular electric field and ionospheric E-region conductivity are
superimposed to indicate the favorable conditions for the IFI mechanism. Adapted
from Streltsov et al. [2010].
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Chapter 2

MHD Numerical Model

2.1 Magnetospheric Model

This study is based on the numerical reduced two-fluid MHD (RMHD) model that

describes the interaction of shear Alfven waves with the inhomogeneous magnetized

plasma in the magnetosphere and ionosphere. A non-reduced (full) MHD model in-

cludes the physics of slow (ion-acoustic), intermediate (shear Alfvén), and fast (mag-

netosonic) waves. A previous work by Chmyrev et al. [1988] has shown that the

parallel ion motion can be neglected when focusing on the modeling of the nonlinear

drift Alfvén waves in a low-pressure plasma. By assuming that only electrons are

moving parallel to the background magnetic field, the full MHD model is reduced to

a model that has only shear Alfvén mode in it. The model has been previously dis-

cussed in several papers devoted to electrodynamic coupling between the ionosphere

and magnetosphere at high latitudes [e.g., Streltsov et al., 1998a; Streltsov and Lotko,

2008; Streltsov , 2011; Jia and Streltsov , 2014].
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In the high-latitude region, which is the focus region of this study, the plasma

is assumed to be magnetized and cold (β = pgas
pmag

= 2µ0p
B2 � 1). It was shown by

Hasegawa and Uberoi [1982] that shear Alfvén waves can be developed from the slow

mode. Coupling of the shear and compressible waves is ignored near the resonant sur-

faces due to the fact that the plasma response is mainly magnetically incompressible

near the resonant surface [Hasegawa and Uberoi , 1982]. Due to this assumption, the

magnetospheric part of the model can be described only in terms of three governing

equations.

The first equation in the model includes the electron parallel momentum equation

ne
∂ve

∂t
+ neve · ∇ve = −ene

me

(E + ve ×B)− 1

me

∇pe − neveνe. (2.1)

Here subscripts e and i refer to electrons and ions, respectively; ve is the electron ve-

locity, e is the elementary electron charge, n0 is the background quasi-neutral plasma

density, ne is the electron density, me is the electron mass, νe is the collision frequency,

and pe is the thermal pressure.

The assumption that electrons undergo only a E×B drift perpendicular to the

background magnetic field direction is implemented. This simplifies such that only

the parallel motion of electrons along the ambient magnetic field is considered:

∂v‖e
∂t

+ ve · ∇v‖e + v‖e∇‖v‖e +
e

me

E‖ +
1

men0

∇‖(nTe) = −νev‖e. (2.2)

Here subscripts ‖ and ⊥ indicate parallel and perpendicular vector components to

b = B0/B0, respectively; Te is the background electron temperature, and c is the

speed of light in vacuum. The collisional resistivity is included in the model because

21



some studies [e.g. Borovsky , 1993; Lessard and Knudsen, 2001] suggest that it may

cause an absorption of very small-scale (≤1 km) waves at altitudes below 1000 km.

The effect of the collisional resistivity that slows down the electron motion along the

field line plays an important role in the generation of E‖ at low altitudes [Borovsky ,

1993]. It is implemented in the model as

νe = νe0e
−(r−r3)/RE , (2.3)

where r3 = 600km/RE and νe0 is the electron collision frequency at the altitude r3.

The second equation that controls the magnetospheric part of the model is the

density continuity equation of the disturbed part of the ambient plasma. The plasma

is assumed to be quasi-neutral, i.e. n = ne ≈ ni, leading to the equation:

∂n1

∂t
= −∇ · (nv‖eb)− vE ·∇n. (2.4)

Here, the drift velocity is vE = E⊥ ×B0/B
2
0 .

The third equation used in the model is the current continuity equation which

is coupled with the ion momentum equation. The derivation of this equation starts

from the basic current continuity equation:

∇ · j = 0. (2.5)

It has two components: perpendicular and parallel current densities

∇ · (j⊥ + j‖) = 0. (2.6)
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The assumption that parallel motion of ions can be neglected is implemented in

the model as was shown in the paper by Chmyrev et al. [1988]. It is assumed that

the parallel current is carried only by electrons, j‖ = j‖b, while the perpendicular

current is based on the contribution of both species, j⊥ = en0(v⊥i − v⊥e). The

transverse component of current consists of polarization and displacement currents.

The polarization term can be obtained from the transverse ion momentum equation:

∂vi
∂t

+ vE · ∇vi =
e

m
(E⊥ + vi ×B). (2.7)

By applying ×B on both sides, the following expression is obtained

∂vi
∂t
×B + vE · ∇vi ×B =

e

m
(E⊥ ×B + vi ×B ×B). (2.8)

Knowing that vi × B = E⊥ and vi × B × B = −viB2, the previous equation is

simplified to

∂E⊥
∂t

/B2 + vE · ∇E⊥/B2 =
e

m
(E⊥ ×B/B2 + vi). (2.9)

By rearranging and moving vi to the left, the following expression is obtained

vi = vE −
m

eB2

(
∂E⊥
∂t

+ vE · ∇E⊥
)
. (2.10)

Lets introduce vA = B0/
√
µ0n0mi for the Alfvén speed. The electrons are assumed to

have only anE×B drift in the transverse direction, which means that the polarization

current can be simplified further

j⊥ = ne(vi − ve) =
mn

B2

(
∂E⊥
∂t

+ vE · ∇E⊥
)

=
1

µ0v2A

(
∂E⊥
∂t

+ vE · ∇E⊥
)
. (2.11)
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When using the full derivative form, the polarization current is

jP =
1

µ0v2A

dE⊥
dt

(2.12)

This general expression is not applicable to the cases when the transverse scale size of

the wave is comparable to the ion Larmor radius (ρi =
√
Te/mi/ωci). In such a case,

the effective electric field controls the electric drift of the ion guiding center. This

electric field is proportional to the electric field in the middle of the Larmour circle

by a factor of I0(s)e
−s. In this case I0 is a modified Bessel function, and s = (ρik⊥)2.

All of this was incorporated into the Fourier transform of the perpendicular current

by Cheng [1991]:

j̃P =
1

µ0v2A

1− I0(s)e−s

s

dẼ⊥
dt

. (2.13)

Streltsov et al. [1998b] showed that the Padé approximation (I0(s)e
−s/s ≈ 1/(1 + s))

works well for all of the s values and it can be used to obtain the inverse Fourier

transform of the modified polarization current.

The Fourier transform of displacement current, ε0(1 − ρ2i∇2
⊥)−1 dE⊥

dt
, is added to

the obtained Fourier transform of the polarization current:

j̃⊥ =
1

µ0v2A

1

1 + s

dẼ⊥
dt

+ ε0
1

1 + s

∂Ẽ⊥
∂t

=
1

(µ0(1 + s))

(
1

v2A

dẼ⊥
dt

+
1

c2
∂E⊥
∂t

)
. (2.14)

Once this expression is plugged into the original current continuity expression (Eq.

2.6) and the inverse Fourier transform is performed, the following third governing
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equation is obtained

(1− ρ2i∇2
⊥)∇ · j‖b +

1

µ0

∇ ·
[(

1

v2A
+

1

c2

)
∂E⊥
∂t

+
1

v2A
vE ·∇E⊥

]
= 0. (2.15)

2.2 Numerical Implementation of the Magnetospheric

Model

The equations introduced in the previous section need to be reformatted in order

to be implemented numerically. The background magnetic field is oriented along

the z direction, x indicates the latitudinal variation, and y specifies the longitudinal

variation. The perturbed magnetic field component is expressed in terms of the vector

potential b⊥ = ∇ × (A‖z) and the perpendicular component of the electric field is

E⊥ = −∇⊥ × Φ. The parallel electric field component is calculated as

E‖ = −b ·∇Φ−
∂A‖
∂t

. (2.16)

Partial derivatives in the direction parallel to the b can be calculated in the following

way

∇‖ = b · ∇ = ∇z +
(∇A‖ ×∇)z

B0

, (2.17)

using which the parallel component of electric field becomes

E‖ = −
(
∇zΦ +

(∇A‖ ×∇)z
B0

∇Φ

)
−
∂A‖
∂t

. (2.18)
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It is assumed that the field aligned current is carried by electrons

j‖ = −env‖e =
1

µ0

∇× b⊥ = − 1

µ0

∇⊥2A‖. (2.19)

Using these equations, the three governing MHD equations (Eq.2.2, 2.4, and 2.15)

can be rewritten in the dimensionless form as

∂

∂t
(n0A‖ − δ∇⊥2A‖) + δ∇⊥2A‖

d

dz

(
∇⊥2A‖
n0

)
= ∇zΦ + νe∇⊥2A‖, (2.20)

dn1

dt
= −B0

d

dz

(
∇⊥2A‖
B0

)
, (2.21)

and

∂

∂t
∇ ·
((

1

vA2
+

1

c2

)
∇⊥Φ

)
−∇ ·

[
1

vA2
vE ·∇E⊥

]
= −B0

d

dz

(
∇⊥2A‖
B0

)
. (2.22)

Where

δ =
meB0∗

2

min∗Te∗
.

Normalization was performed similar to the work of Chmyrev et al. [1988]:

t0 = t/ωci∗; l⊥0 =
cs∗
ωci∗

l⊥; l‖0 =
vA∗
ωci∗

l‖;Te0 = Te∗Te;

Φ0 =
Te∗
e

Φ;A‖0 =
Te∗c

evA∗
A‖;n0 = n∗n.

Here ωci∗ is the ion cyclotron gyrofrequency and cs∗ is the speed of sound. ωci∗, cs∗,

vA∗, Te∗, n∗ are constants that are estimated at the magnetospheric equator at a

radial distance that is specific for each simulation. The normalized values used from
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this point in the model will omit the subscript, 0, in order to keep the expressions in

a more elegant form.

The three governing equations include derivatives that need to be defined explicitly

in order for the simulation to work. The scale factors for the coordinate system used

in the model can be converted from the spherical system and are defined as

hx =
r3√

1 + 3cos2θ
, hy = r sin θ, hz =

sin3θ√
1 + 3cos2θ

. (2.23)

Once the scaling factors are defined, the differential operators can be defined using

these metric factors:

d

dt
=

∂

∂t
+

1

B0

{Φ, ...}, (2.24)

d

dz
=

∂

hz∂z
− 1

B0

{A‖, ...}, (2.25)

∇z =
∂

hz∂z
, (2.26)

∇⊥2A‖ =
1

hxhy

[
∂

∂x

(
hy∂hzA‖
hxhz∂x

)
+

∂

∂y

(
hx∂hzA‖
hyhz∂y

)]
, (2.27)

and

∇ ·
((

1

v2A
+

1

c2

)
∇⊥Φ

)
=

1

hxhyhz

[
∂

∂x

(
hyhz∂Φ

(v2A + c2)hx∂x

)
+

∂

∂y

(
hxhz∂Φ

(v2A + c2)hy∂y

)]
.

(2.28)

The notation {α, β} is introduced to simplify the expressions:

{α, β} =
1

hxhy

(
∂α∂β

∂x∂y
− ∂α∂β

∂y∂x

)
. (2.29)

The second term in Eq.2.22 can be approximated in the differential form in the
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following way. Firstly, lets approximate the expression inside of the argument:

vE ·∇E⊥ =
1

B0hxhy

[
∂Φ ∂

∂y∂x

(
∂Φ

hx∂x

)
− ∂Φ ∂

∂x∂y

(
∂Φ

hx∂x

)]
ex

+
1

B0hxhy

[
∂Φ ∂

∂y∂x

(
∂Φ

hy∂y

)
− ∂Φ ∂

∂x∂y

(
∂Φ

hy∂y

)]
ey

= − 1

B0

{Φ, ∂Φ

hx∂x
}ex −

1

B0

{Φ, ∂Φ

hy∂y
}ey = vxex + vyey.

(2.30)

This expression can be placed back into the second term of the differential form of

the ion momentum equation giving

∇ ·
[

1

vA2
vE ·∇E⊥

]
=

1

hxhyhz

(
∂

∂x

(
hyhz
hxv2A

vx

)
+

∂

∂x

(
hxhz
hyv2A

vy

))
. (2.31)

2.3 Numerical Domain

The three dimensional numerical domain used in the model simulates the magnetic

flux tube of the Earth’s dipole magnetic field at high-latitudes. The flux tube is

bounded by the ionosphere in the Northern and Southern Hemispheres. The latitu-

dinal boundaries of the domain are formed by two L magnetic shells. The azimuthal

size of the domain is defined by the parameter φ. The domain is symmetrical with

respect to the magnetospheric equator. The three governing equations defined in the

previous section are implemented in the orthogonal dipole coordinates [Cummings

et al., 1969]:

L = r/sin2(θ), µ = cos(θ)/r2, φ = φ. (2.32)

Where r is the distance to the center of Earth that is normalized by RE = 6371.2km

and θ is the polar angle. The unit vector L is locally perpendicular to the magnetic
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Figure 2.1: Schematic representation of the three-dimensional numerical domain used
in the model. The domain approximates a magnetic flux tube that is bound on both
sides by the Earth’s ionosphere. It is bounded by two L shells in latitude and extends
longitudinally by φ degrees.

shell and is in the ,x axis; and L has a constant value along a magnetic field line.

The unit vector µ is parallel to the local magnetic field, z axis, and µ has a constant

value along a line that is perpendicular to the magnetic field line. The unit vector

φ is locally eastward (y axis) and is perpendicular to the meridian lines and φ mea-

sures a longitudinal angle. This setup takes into account the dipole geometry of the

background magnetic field. The domain is illustrated in Figure 2.1.

Two dimensional computations are performed in the two-dimensional, axisymmet-

ric (∂/∂φ = 0) domain consisting from two parts. One part is the dipole magnetic

flux tube that extends from the ionosphere to the equatorial plane and the second

part is a cylindrical extension attached to the dipole part in the equatorial plane.
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Figure 2.2: (Top.) The dipole part of the computational domain starting at 120
km altitude and ending at the equator. (Bottom.) The zoomed view of the part of
the computational domain near the ionosphere. Only every 2nd parallel grid line is
plotted in the figure.

It has a length of 30.3 RE and it is used as a “buffer” zone where the wave can

propagate before/after it interacts with the ionosphere. The entire domain represents

adequately extended in the magnetotail auroral flux tube in the night side magneto-

sphere. Simulations that require three-dimensions are implemented in a fully dipolar

domain.

The computational grid in the dipole part of the domain has 101 steps in the L

direction, 64 steps in the φ direction, and 101 steps in the µ direction. The grid is

uniform in the L and φ directions, and is strongly nonuniform in the µ direction.
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For example, when the distance between the adjacent nodes in the direction along

B0 is decreased by a factor of 50 from the equator to the ionosphere, the resulting

grid is denser at low altitudes (grid size is 24 km) and is sparser in the equatorial

magnetosphere (grid size is 1200 km). This approach allows the model resolve the

spatio-temporal properties of the IFI interaction with the FACs in the ionospheric

region. Figure 2.2 shows the two-dimensional view of the domain and the zoomed-in

view of the ionospheric border of the domain.

2.4 Boundary Conditions

Boundary conditions play a very important role in the model. The ionospheric feed-

back instability is implemented through the usage of the BCs. The active ionospheric

boundary conditions act as drivers and trigger the instability with a little perturba-

tion, heating effect or with other driver configurations. These active ionospheric BCs

are integrated with the magnetospheric model through the current continuity and

density continuity equations.

The ionospheric boundary of the domain is set at an altitude of 120 km. At this

altitude FACs change the ionospheric density in the conducting E-region of the iono-

sphere and the modified conductivity changes the dynamics of the FACs in return

[Trakhtengerts and Feldstein, 1991; Lysak , 1991; Pokhotelov et al., 2000; Streltsov ,

2011; Jia and Streltsov , 2014]. On the poleward-equatorward parts of the domain

Dirichlet boundary conditions are implemented. Periodic BCs are set for azimuthal

boundaries of the domain. Figure 2.3 schematically shows the BCs that are imple-

mented in the model.
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Figure 2.3: Schematic view of the boundary conditions (BC) implemented in the
model. Both ionospheres have active boundary conditions. Periodic boundary condi-
tions are applied on the E-W boundaries. Dirichlet boundary conditions are applied
on the poleward-equatorward sides of the domain.

The current continuity in a general form is

∇ · j = 0. (2.33)

The simplification of treating the ionosphere as a conducting thin slab is justified by

the results of study performed by Lysak [1991]. It was shown that the ionospheric

current can be integrated by height, with an assumption that there is no current

flowing between the ionosphere and neutral atmosphere. With this assumption, the

current continuity equation can be modified as
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∇⊥ · j⊥ = ±j‖. (2.34)

This can be visualized as a field-aligned current flowing into the ionosphere, then

flowing perpendicular to the magnetic field (as height integrated current j⊥), and

then leaving the ionosphere along a different field line. The sign “+” is used in the

Southern Hemisphere, and the sign “−” is used in the Northern Hemisphere. The

motion of ions and electrons in the ionosphere is affected by neutrals. Ohm’s Law

give the following

J⊥ = σPE⊥ − σH
E⊥×B0

B0

+ j‖b. (2.35)

In this equation σP is the Pedersen conductivity and the first term is the Pedersen

current that is oriented along the perpendicular component of the background electric

field. The second term is the Hall current term: it flows in the E×B direction which

is at an angle to the Pedersen current. σH is the Hall conductivity. The relationship

between the plasma conductivity and collisions with the neutrals was investigated by

Kelley [1989]:

σP =
∑
s

nsqs
2

ms

fs

fs
2 + ωcs2

, (2.36)

σH = −
∑
s

nsqs
2

ms

ωcs

fs
2 + ωcs2

. (2.37)

In which n, q, m, and f define density, charge, mass, and neutral particle collision

frequency, respectively, for each species s which have a gyrofrequency of ωcs. By

integrating these plasma conductivities, the height integrated versions of them are

obtained:

ΣP =

∫ 0

−h
σPdz = neMPh, (2.38)
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ΣH =

∫ 0

−h
σHdz = neMHh. (2.39)

Here, h = 20 km is the effective thickness of the E-region, MP = 104 m2/sV is the ion

Pedersen mobility, and MH is ion Hall mobility. The MH parameter is proportional

to the MP [Brekke et al., 1974]. In the model used in this study, the expression ΣP =

MPnEhe/ cosλ accounts for the tilt angle, λ, between the normal to the ionosphere

and the central L-shell (average of the L1 and L2). By plugging back these expressions

into the Eq.2.34, the following expression of the current continuity is obtained

∇⊥ · (ΣP∇⊥Φ)− b · ∇⊥ΣH ×∇⊥Φ−∇⊥ΣH · (b×∇⊥Φ) = ±j‖. (2.40)

The effect of the displacement current, ε0∂E/∂t, is negligible in the ULF frequency

range. So is the effect of the third term in the last equation as was shown in the study

of Kelley [1989]. This reduces the current continuity to

∇⊥ · (ΣP∇⊥Φ)− b · ∇⊥ΣH ×∇⊥Φ = ±j‖. (2.41)

Using the scaling factors introduced previously, the current continuity in the iono-

sphere can be expressed mathematically as

1

hxhyhz

(
∂

∂x

(
hyhz
hx

ΣP
∂Φ

∂x

)
+

∂

∂y

(
hxhz
hy

ΣP
∂Φ

∂y

))
+ {Φ,ΣH} = ±j‖. (2.42)

The other active boundary condition in the ionosphere is the density continuity
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equation, in the form that was introduced by Sato [1978]:

∂n

∂t
=
j‖
eh

+ α(n0
2 − n2). (2.43)

Where, n0 is the initial unperturbed height-integrated plasma density, α = 3 × 107

cm3/s is the recombination rate showing the rate at which ions and electrons produce

neutrals in the ionosphere. It was shown in a study by Sato [1978] that α controls

the growth rate of the IFI generated structures.

2.5 Background Parameters

The numerical model uses a dipolar background geomagnetic field model which has

a form of

B0 = B∗
RE

3

r3

√
(1 + 3 sin2 θ) nT (2.44)

Here B∗ = 31000 nT, r is the geocentric distance measured in RE = 6371.2 km.

One of the most important parameters of the model is the initial plasma density

distribution. It is modeled as

n0(L, µ, φ) = n01(L)n02(µ)n03(φ). (2.45)

Here n01(L) provides density distribution profile in the equatorward-poleward di-

rection (L); n02(µ) gives the background plasma density profile along the central

magnetic field line; and n03(φ) defines the plasma structure in the azimuthal direc-

tion. Density cavities defined by these functions were observed by FAST satellite at

altitudes above 1000 km [Chaston et al., 2002].
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Plasma density profile along the B is crucial for the confinement of the IFI gen-

erated ULF waves in the IAR. The sharp gradient in the Alfvén speed is modeled

through the density along the magnetic field. The following relationship describes

the background density along the central magnetic field line

n02 =

 a1(r − r1) + a2, if r1 < r < r2

b1e
−20(r−r2) + b2r

−4 + b3, if r > r2.
(2.46)

Where r is the radial distance to the grid point, r1 = 1 + 120/RE, and r2 =

1 + 320/RE. The constants a1, a2, b1, b2, and b3 are chosen to provide some specific

values of the plasma density at the ionospheric E region (altitude of 120 km), F

region (altitude of 320 km) and at the equatorial magnetosphere. Simulations show

that the density in the ionospheric E and F regions are one of the main parameters

of the model and the density in the equatorial magnetosphere is not so important

for the development of the IFI inside the IAR. This value controls the value of the

eigenfrequency of ULF waves in the global resonator. However, due to the high Alfvén

speeds near the equator variation of the plasma density in that region does not affect

results significantly.

In the model, the ionospheric density defines the structure of the ambient electric

field of the entire numerical domain [Streltsov et al., 2005, 2012]. In a case of a

current-free equilibrium, structure of the ambient background electric field, E0⊥, is

defined by the ionospheric density. Due to the assumption that there is no constant

parallel electric field present in the magnetosphere, the ionospheric electric field is

mapped equipotentially along the background magnetic field in the magnetosphere.

Low-orbit satellites frequently observe density cavities in the vicinity of the bright
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discrete auroral arcs [Aikio et al., 2004]. Numerical studies have investigated the

formation of these cavities [Streltsov and Karlsson, 2008]. The results suggest that

the ponderomotive force, associated with the large-amplitude small-scale Alfvé waves,

is responsible for the formation of these cavities. The variation of the ionospheric

density is modeled by n01(L) and n03(φ):

n01(L) =
1 + κ

2
+

1− κ
2

cos
2π(L− L0)

L2 − L1

, (2.47)

and

n03(φ) = 1− βe−γ2r2 . (2.48)

Here κ defines the ratio between the density at the bottom of the cavity to the value

at the edge of it. Value κ = 1 would indicate a homogeneous plasma distribution

in the ionosphere. The size of the cavity is controlled by the parameters L1 and L2.

Azimuthal variation of the plasma density is defined by parameters β and γ which

control range and amplitude of the distribution, respectively.

Electron and ion temperatures are modeled as

Te =
Te∗n∗
n0

, Ti =
Ti∗n∗
n0

. (2.49)

Where Te∗ and Ti∗ are electron and ion temperatures (in eV) at the magnetospheric

equator, and n∗ is the plasma density at the same location. Such an assumption

satisfies equilibrium condition ∇z(n0Te) = 0.
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2.6 Numerical Algorithms

Partial differential equations that are present in the model are solved using a “predictor-

corrector” approach to advance the solution in time. A third-order Adams-Bashforth

(AB) method is used as a “predictor”, while the third-order Adams-Moulton (AM)

method is used as a “corrector” [Burden and Faires , 1991]. The usage of this ap-

proach improves the accuracy and makes computations more efficient. At each time

step predictor (AB) part of the algorithm calculates the new value of A‖ inside the

magnetosphere. Using this new value in the corrector (AM) part, Φ and n are up-

dated.

The spatial derivatives are approximated using a centered finite-difference ap-

proach. This is due to the fact that the numerical domain is rectangular in geometry.

Φ, n and A‖ values are located on nodes that are shifted by a half-step to allow a

better resolution without increasing computational costs. Φ and n grid points are

split evenly along the µ direction making 101 nodes along each magnetic field line

and have end-nodes on both ionospheres. At the same time, A‖ has its points on

a grid that is located in-between of the Φ and n grid-points, making a total of 100

nodes along a magnetic field line. All of them share the same grid system in L and φ

directions.

Two Laplacians, ∇2
⊥A‖ and ∇·

[(
1
vA2 + 1

c2

)
∇⊥Φ

]
, are solved to obtain new values

for Φ and A‖ at each time step. This is implemented by using a discrete Fourier

transform in the azimuthal direction. The tridiagonal matrices that are formed in this

operation are solved efficiently using a Thomas algorithm [Golub and Loan, 1996].

Active ionospheric boundary condition in the form of current continuity Eq.2.41

is solved to obtain a new value for the electric potential Φ at each time steps as
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well. This is a second-order convection-diffusion partial differential equation. Once

discretized, this equation has five non-zero diagonal in the matrix. Each value of Φi,j

is related to its neighbors in a following way:

aLΦi−1,j + aRΦi+1,j + aCΦi,j + aUΦi,j+1 + aDΦi,j−1 = j‖i,j. (2.50)

Where coefficients in front of each Φ value is defined using the metric factors:

aL =
1

∆x2

(
hyhz
hx

ΣP

)
i−1,j

1

hxhyhz i,j
−

ΣHi,j+1
− ΣHi,j−1

hy∆y
, (2.51)

aR =
1

∆x2

(
hyhz
hx

ΣP

)
i+1,j

1

hxhyhz i,j
+

ΣHi,j+1
− ΣHi,j−1

hy∆y
, (2.52)

aU =
ΣPi,j+1

h2y∆y
2

+
ΣHi+1,j

− ΣHi−1,j

hx∆x
, (2.53)

aD =
ΣPi,j−1

h2y∆y
2
−

ΣHi+1,j
− ΣHi−1,j

hx∆x
, (2.54)

aC = −(aL + aR + aU + aD). (2.55)

Depending on the model input parameters, the matrix may lose its diagonal domi-

nance in a case when the right-hand side of the last expression becomes larger than

the left-hand side. This may happen when ΣH becomes larger than ΣP . In order

to account for that, the model implements a PETSc package to solve the current

continuity equation in the ionosphere. This package contains a GMRES numerical

technique that uses the MPI routines to speedup the solving algorithm [Balay et al.,

1997]. This PETSc package is implemented on the VEGA cluster and the model is

adapted to run on its processors efficiently.
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Chapter 3

2D Model: Modeling of MICA

Sounding Rocket Observations

Results presented in this chapter are published in the Journal of Geophysical Research

[Tulegenov and Streltsov, (2017), Ionospheric Alfvén resonator and aurora: Modeling

of MICA observations, 122, 7530, doi:10.1002/2017JA024181].

3.1 Introduction

Origin and dynamics of small-scale, intense electromagnetic waves with frequencies

less than 1 Hz measured, by satellites and sounding rockets in the low-altitude mag-

netosphere and ionosphere, are questions under investigation in this chapter. The

interest in these waves is motivated by their very important role in the electromag-

netic coupling between the ionosphere and magnetosphere, particularly, in the high-

latitude, auroral region. Among three modes of ultra-low-frequency (ULF) MHD

waves, fast or compressible, intermediate or Alfvén, and slow, the small-scale Alfvén
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waves are one of the most interesting from the point of view of the magnetosphere-

ionosphere coupling. They carry magnetic field-aligned currents and fluxes of the

electromagnetic energy from the magnetosphere to the ionosphere. This plays an im-

portant role in the exchange of mass, momentum and energy between the ionosphere

and magnetosphere at high latitudes. In particular, these waves are responsible for

the parallel electron acceleration [Chaston et al., 2002], the heating of the ionosphere,

the outflow of the ionospheric ions, and the formation of density disturbances in the

ionospheric and magnetospheric plasmas.

A large number of observations performed on the ground [Aikio et al., 2004],

through low-orbiting satellites [Karlsson and Marklund , 1996; Marklund et al., 1997;

Rother et al., 2007], and sounding rockets [Cohen et al., 2013] demonstrate that the

small-scale, very intense ULF waves are frequently observed in the vicinity of bright,

discrete auroral arcs. This feature suggest that they are associated with a system

of magnetic field-aligned currents causing auroras. Some studies suggest that these

waves are generated by the magnetic field line resonance. This involves coupling

between fast MHD waves and shear Alfvén waves in the equatorial magnetosphere

and the formation of the standing pattern of the resonant Alfvén waves between

the magnetically conjugate locations in the ionosphere. Other studies suggest that

these waves are the result of the phase mixing of shear waves traveling towards the

ionosphere from the magnetotail.

Currently one of the most promising hypotheses explaining origin of these waves

is the ionospheric feedback instability (IFI) introduced by Atkinson [1970]. It occurs

when the magnetic field-aligned currents (FACs) change the conductivity in the iono-

sphere by precipitating or removing electrons from it, causing the variations in the
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conductivity to positively “feed back” on the structure and amplitude of the origi-

nal FACs, increasing their magnitude. This mechanism had been extensively studied

during last 40 years and these studies show that the favorable conditions for the IFI

development include the low ionospheric conductivity and the large perpendicular

electric field in the ionosphere [Sato, 1978; Lysak and Song , 2002]. Such conditions

occur in the regions where downward FACs interact with the conducting E region of

the ionosphere [Doe et al., 1995; Streltsov and Lotko, 2004; Paschmann et al., 2012].

Qualitatively, the feedback mechanism inside the IAR can be explained in terms

of the “over reflection” of small-scale Alfvén waves in the presence of a large-scale

electric field in the ionosphere [Trakhtengertz and Feldstein, 1984; Trakhtengerts and

Feldstein, 1991; Pokhotelov et al., 2001; Lysak and Song , 2002]. Over reflection means

that the amplitude of the Alfvén wave reflected from ionosphere may be larger than

the amplitude of the incident wave. That may occur when the field-aligned current in

the small-scale wave enhances locally the ionospheric conductivity and thus reduces

the Joule dissipation of the large-scale electric field in this location. The field energy

is then released in the form of the magnetic field-aligned current propagating from the

ionosphere and this contribution of this “additional” current makes the magnitude

of the reflected current greater than the magnitude of the incident one. Therefore,

multiple interactions of the same wave with the active ionosphere may lead to the

increase of the wave amplitude.

To get several reflections from the ionosphere, the waves need to be trapped inside

the resonator cavity in the magnetosphere with at least one of its boundaries sitting on

the ionosphere. One such resonator is the ionospheric Alfvén resonator (IAR), which

is a region in the low-altitude magnetosphere bounded by the conducting bottom of
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the ionosphere (ionospheric E-region) and the strong gradient in the Alfvén speed at

about 1 Re altitude [Polyakov and Rapoport , 1981]. It has eigenfrequencies between

0.1 Hz and 1 Hz [Trakhtengerts and Feldstein, 1987; Lysak , 1991; Pokhotelov et al.,

2000; Hiraki and Watanabe, 2011].

Generation of small-scale, intense shear Alfvén waves inside the IAR in the large-

scale downward FAC adjacent to the upward FAC associated with the bright discrete

auroral arc had been investigated numerically by Streltsov and Lotko [2004, 2008];

Streltsov [2011]. These studies made several quantitative predictions about the gen-

eration mechanism and spatiotemporal properties of these waves. To verify these

predictions it was proposed to perform in situ measurements of the fields and parti-

cles in the vicinity of the discrete aurora by using a sounding rocket launched into

the aurora to compare the experimental results with predictions from the numerical

model developed by Streltsov and Lotko [2008]. Such a rocket experiment, called

Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA), took place on

19 February 2012. This chapter presents results from the numerical simulations, con-

firming that the MICA rocket indeed detected small-scale, intense shear Alfvén waves

generated by the IFI inside IAR. Parameters and location of these waves are in good,

quantitative agreement with the ones predicted by the numerical model [Streltsov and

Lotko, 2008].

3.2 MICA Data

The Magnetosphere-Ionosphere Coupling in the Alfvén Resonator sounding rocket

was launched on 19 February 2012 05:41:06 UT from the Poker Flat Research Range,
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Figure 3.1: Venetie keogram shows the progress of MICA payload through the auroral
arcs (adapted from Lynch et al. [2015]).

Alaska during active geomagnetic conditions. It reaches the apogee of 325.4 km after

297 seconds from the launch. The goal of the experiment was to measure parameters

of the plasma and the electromagnetic field inside, or very close to, the bright discrete

auroral arc. The payload, parameters of the flight, and geophysical conditions during

the flight are described in detail in several recent papers [e.g., Zettergren et al., 2014;

Lynch et al., 2015; Fernandes et al., 2016; Fisher et al., 2016]. The discussion of the

experimental data is limited to only those which are directly relevant to the modeling

efforts. In particular, all the experimental data used in this chapter are taken from

Lynch et al. [2015].

During the flight the rocket went close to the discrete auroral arc (arc A) and then

passed through another arc (arc B). Figure 3.1 shows the keogram from the Venetie

camera of MICA’s progression through the arcs. Figure 3.2 shows an overview of the

data measured by MICA. The electric field measurements were recorded from the

Cornell University subpayload [Lundberg et al., 2012a,b]. The in-situ electron den-

sity measurements were obtained from the Norwegian multineedle Langmuir probe
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(mNLP) [Moen et al., 2012]. The optical observations were obtained from the medium-

field camera at Venetie. The magnetic field measurement were recorded using Billings-

ley fluxgate magnetometer (Billingsley TFM100G2).

The rocket passes close to arc A during the interval between 205 and 245 seconds

from the launch. It then goes through arc B between 280 and 330 seconds as is

seen in the visible auroral intensity at Venetie footprint in Figure 3.2 (fourth panel).

After 330 seconds, the auroral activity shows a significant drop. The DC electric field

components are shown in the first panel in the geomagnetic coordinate system. The

second panel shows the DC magnetic field components that are deflected from IGRF.

The cross product of the electric and magnetic field vectors in the form of Poynting

flux is shown in the third panel. In the coordinate system used for the MICA data,

the cross product of north and east is positive down. This means that magnetic

field, Poynting flux and currents are positive pointing downward towards the earth.

Comparison of the Poynting flux shown in the third panel in Figure 3.2 and the auroral

luminosity shown in the forth panel demonstrates that: 1) no intense small-scale waves

were detected by MICA when the rocket flew through the maximums of luminosity

associated with arcs A and B; 2) intense small-scale electromagnetic structures had

been observed near the edges of arcs A and B. The observed structures have periods of

a few seconds, which suggests that these small-scale, large amplitude electromagnetic

fluctuations are Alfvén waves trapped inside the IAR.

In this study the main focus is on the dynamics of small-scale FACs observed

by the MICA rocket because they are the main participants of the magnetosphere-

ionosphere interactions controlled by the IFI. The parallel current density is obtained

as the curl of the measured magnetic field [Lynch et al., 2015]. The results below
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show the modeling of the small-scale, very intense FAC structures detected in the

vicinity of both arcs.

Figure 3.2: Overview of the MICA flight (adapted from Lynch et al. [2015]). The
first panel shows electric field. The second shows magnetic field. The third panel
shows the Poynting flux calculated from E and B fields (positive is downward). The
fourth panel shows the optical intensity measured by the medium-field camera. And
the fifth panel shows the plasma density measured by the mNLP probe.
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3.3 Numerical Implementation and Boundary Con-

ditions

Computations are performed in the two-dimensional, axisymmetric (∂/∂φ = 0) do-

main consisting from two parts. One part is the dipole magnetic flux tube that

extends from the ionosphere to the equatorial plane and the second part is a cylindri-

cal extension attached to the dipole part in the equatorial plane. It has a length of

30.3 RE and it is used as a “buffer” zone where the wave can propagate before/after

it interacts with the ionosphere. The entire domain represents an adequate extension

of the auroral flux tube in the night side magnetosphere.

In the model the background magnetic field is directed from the ionosphere, as

is the case in the southern hemisphere. In such a configuration, the upward current

which is pointed along the field is positive and the downward current is negative.

Figure 3.3 shows the dipole part of the domain used in the simulation of the Arc B

event: the lateral boundaries of the domain are set at L = 6.87 and L = 7.27 magnetic

shells. Only every 2nd parallel grid line is plotted in the figure. Figure 3.3 also shows,

with a red line, the MICA rocket trajectory mapped into the computational domain

using the 11th generation of the IGRF model [Finlay et al., 2010].

In this study, fields and currents calculated by the model are compared with the

corresponding quantities measured by the MICA rocket. The numerical data is in-

terpolated on the trajectory of the virtual rocket “flying” through the computational

domain with the velocity, along the trajectory, matching the corresponding param-

eters of the real rocket. This interpolation will be done both in time and space in

order to match the time and location of the data obtained by the MICA rocket.
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Figure 3.3: The zoomed view of the part of the computational domain near the
ionosphere with the MICA trajectory on it. Adapted from Tulegenov and Streltsov
[2017].

The following relationship describes the background density profile along the cen-

tral magnetic field line as (in the case of arc B event, the central magnetic field line

is L = 7.07)

n0 =

 a1(r − r1) + a2, if r1 < r < r2

b1e
−20(r−r2) + b2r

−4 + b3, if r > r2.
(3.1)

Here r is the radial distance to the grid point where r1 = 1 + 120/RE, and

r2 = 1 + 320/RE. The constants a1, a2, b1, b2, and b3 are chosen to provide some

specific values of the plasma density at the ionospheric E region (altitude of 120 km),
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F region (altitude of 320 km) and at the equatorial magnetosphere.

Values of the coefficients in Eq. 3.1 were chosen from several test runs of simu-

lations with the goal to reproduce dynamics, spatial structure and amplitude of the

observed small-scale structures with the numerical results. For example, in the sim-

ulations of waves observed near the arc B, values of constants in Eq. 3.1 were chosen

to provide nE = 5.0 × 104 cm−3, nF = 3.0 × 105 cm−3 and neq = 10 cm−3. These

values are close to the density values observed by the MICA mNLP probe.

Simulations are started by specifying large-scale magnetic-field aligned currents

on the magnetospheric boundary of the domain. Structure and amplitude of the

magnetospheric currents define the dynamics of the small-scale FACs observed in the

vicinity of arc A and arc B by the MICA rocket. Because the structure, location and

dynamics of these small-scale FACs are different, the amplitude and structure of the

large-scale magnetospheric currents driving IFI are different as well.

For example, optical observations show that the MICA rocket traversed arc B but

did not traverse arc A. It only “touched” it near the edge, and to model the MICA

rocket flight near the arc A, a full 3D model is needed. To model this passage of

the rocket through the arc the 2D model is used and it is assumed that the rocket

went through arc A. The MICA observations performed in the vicinity of arc A

are modeled using a system of two downward and one upward FACs defined at the

equatorial boundary of the domain as

j‖A = jA(t)

 cos(2π(l − 6.745)/`A), if |l − 6.745| ≤ `A/2

0, if |l − 6.745| > `A/2
(3.2)

Here `A = 0.4(6.88 − 6.61), L = 6.61 and L = 6.88 are the lateral boundaries
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of the domain, and jA(t) linearly increases from 0 to 120 nA/m2 during the first 19

seconds of simulations, then remaining constant after that. This linear “ramp-phase”

provides a gradual increase in the amplitude of the wave propagating from the equator

toward the ionosphere.

The observations performed in the vicinity of arc B are modeled using one upward

and one downward FACs defined on the equatorial boundary of the domain as

j‖B = jB(t)

 sin(2π(l − 7.07)/`B), if |l − 7.07| ≤ `B/2

0, if |l − 7.07| > `B/2
(3.3)

Here `B = 0.6(7.27 − 6.87), L = 6.87 and L = 7.27 are the lateral boundaries

of the domain, and jB(t) linearly increases from 0 to 50 nA/m2 during the first 19

seconds of simulations and remains constant after that.

3.4 Results and Discussions

From the modelling studies of interactions between the system of large-scale magnetic

field-aligned currents and the high-latitude ionosphere performed by Streltsov and

Lotko [2004, 2008] and Streltsov and Karlsson [2008], it is known that the intense,

small-scale structures first appear at the boundary between the upward and downward

currents and propagate into the downward current channel. These dynamics are

explained by the fact that these structures are generated by the strong gradients in

the ionospheric plasma density caused by the precipitation/removal of electrons by

FACs, and they propagate in the direction of the perpendicular electric field induced

by the large-scale currents in the ionosphere. This field moves the ionospheric ions
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across the magnetic field from the location where the electrons are removed by the

downward FAC to the location where they are precipitated by the upward FAC.

Therefore, the intense, small-scale currents produced by the IFI are expected to be

observed in the downward current channels adjacent to the upward current channel

associated with the strong electron precipitation causing discrete auroral arcs.

In application to the small-scale structures observed near arc A and arc B, this

simple physical picture of the development of the ionospheric feedback instability

provides some insight on the structure of large-scale currents driven the instability.

In particular, the small-scale structures have been observed on both edges of arc A

and only on one edge of arc B. These features suggest that the small-scale currents

observed near arc A are the result of interactions between the ionosphere with the

system of two large-scale downward and one upward FACs (given by Eq. 3.2) and the

small-scale waves observed near the B, which are the result of interactions between

the ionosphere and one downward and one upward FACs (given by Eq. 3.3).

Numerical results of modeling small-scale structures observed near arc B is done

first. Figure 3.4 shows six snapshots of j‖ obtained from the simulations at time

t = 370, 400, 430, 480, 530, and 580 s. Trajectory of the MICA rocket is plotted in

each panel for reference. These snapshots show that the pair of upward and downward

currents with an amplitude of 9 µA/m2 reach the ionosphere from the magnetospheric

boundary at t = 370 s. The currents increase in amplitude in the next 8-10 s and the

ionospheric feedback instability starts to produce small scale currents at the boundary

between the two large-scale FACs. The instability starts to grow in size and propagate

along the downward current region. At time t = 390 s the amplitudes of small-scale

currents start to saturate at the value of 273 µA/m2. Panels corresponding to t = 480,
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530, and 580 s illustrate how the small-scale structures “populate” the downward

current channel as time proceeds.

Figure 3.5 shows a snapshot of j‖ from the same simulation taken at t = 600

s at the entire dipole part of the domain: from the ionosphere to the altitude (or

the length along the L = 7.07 magnetic field line) of 5×104 km. The profile of the

Alfvén speed is shown in the figure with a solid black line. The figure confirms that

the small-scale currents are indeed trapped between the ionosphere and the sharp

gradient in the Alfvén speed, which provides the upper boundary of the ionospheric

Alfvén resonator.

The linear theory postulates that the ionospheric feedback instability occurs when

udk⊥ > ω, where ud = MPE⊥ is the ion drift velocity in the ionosphere, k⊥ is

the perpendicular wavenumber, and ω is the angular wave frequency [Trakhtengertz

and Feldstein, 1984; Trakhtengerts and Feldstein, 1991; Lysak and Song , 2002]. In

the simulations illustrated in Figure 3.4 these parameters at t = 400 s are k⊥ =

2π/2.25×10−3 m−1, E⊥ = 128 mV/m, and ω = 2π0.39 s−1. Once these parameters are

plugged into the threshold inequality, it can be noticed that the necessary condition

is satisfied with 128 mV/m > 87.7 mV/m.

The ionospheric feedback instability in the ionospheric Alfvén resonator also can

be characterized by the growth rate. An analytical expression for the linear growth

rate γ is derived by Lysak [1991] and Pokhotelov et al. [2000, 2001] as γL =
√
αPη1m/2,

where αP = ΣPµ0VAI , VAI = 1214km/s is the Alfvén speed in the resonator, and η1m

is the root of J1(η) = 0. The first three roots of J1(η) are 0, 3.8, and 7. At time

t = 400s γsimulation = 1.58, and ΣP = 0.383 mho gives a γL = 1.43. This confirms

that the ionospheric feedback instability generates small-scale structures inside the
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Figure 3.5: ULF current density structures generated in the IAR in the downward
channel at t = 600 s. The red color corresponds to the upward currents and the blue
color corresponds to the downward currents. The Alfvén speed profile shown with a
black line. Adapted from Tulegenov and Streltsov [2017].

IAR. To make a quantitative, detailed, comparison between numerical results and

the MICA observations, the simulated data had been interpolated in space and in

time onto the rocket trajectory mapped onto the computational domain. In other

word, a “virtual” MICA rocket had been launched into the simulation domain with

the parameters (velocity and location) matching the parameters of the real rocket.

Figure 3.6 shows the comparison between the fine-scale density of FACs calculated

from the curl of the MICA magnetic field data [Lynch et al., 2015] and the parallel

current density measured by the virtual MICA “flying” through the simulations. The

pink box in this figure marks the location/time of arc B. The fine-scale MICA current

density measurements have a moving window average width of 1.6 s.

To make the comparison between the numerical results and the observations more

quantitative, the power spectral density (PSD) of the parallel current density is cal-
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Figure 3.6: (Top.) Parallel current density derived from the magnetic field mea-
surements performed by the MICA rocket (adapted from Lynch et al. [2015]). The
fine-scaled current density is smoothed using unweighted moving average with a win-
dow of 1.6 s. (Bottom.) The parallel current density along the trajectory of the
virtual MICA rocket ”flying” through the simulations. The shaded area corresponds
to rocket going through the auroral arc B. Adapted from Tulegenov and Streltsov
[2017].

culated for both the model and experimental output. The current is obtained from

the magnetic field detected by the MICA rocket and from the magnetic field obtained

in the simulations. These PSDs are shown in the right panel in Figure 3.7. It shows

that most of the power in the simulated signal is in the frequency range from 0.30 Hz

to 0.45 Hz, which are typical values for the eigenfrequencies of IAR at high latitudes
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Figure 3.7: Left panel shows the power spectral density (PSD) of j‖ measured by the
MICA rocket near the arc B (dashed red line) and the PSD of j‖ ”measured” by the
virtual MICA rocket in the corresponding simulation (solid black line). Right panel
shows both j‖ in the time domain after filtering them with a bandpass filter with
a passing frequency range from 0.25 Hz to 0.60 Hz. Adapted from Tulegenov and
Streltsov [2017].

[e.g. Streltsov and Lotko, 2008]. It should be mentioned here that the model produces

and maintains stable, intense, small-scale current structures inside the IAR through

800 s of simulation.

MICA signal has most of its power in the frequency range from 0.18 Hz to 0.50

Hz and the peak of PSD of MICA data matches the peak in PSD of simulated data

at 0.38 Hz. The fact that the PSD of the MICA data is broader than PSD of the

simulated currents is quite normal, because the MICA signal contains contributions

from many different physical processes occurring in the real space environment which

are not included in the reduced MHD model implemented here. To make a better

comparison between measured and simulated currents, both signals shown in Figure

3.6 had been filtered by the bandpass filter in the frequency range from 0.25 Hz to 0.60

Hz (This interval is marked in the left frame in Figure 3.7 with the gray rectangle).

The right panel in Figure 3.7 shows the filtered MICA signal with a red, dashed

line and the filtered signal from the simulation with a solid black line. Comparison
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between two plots shown in the right panel in Figure 3.7 confirms that the physical

model presented in this paper produces a reasonable agreement in spatial structure,

dynamics and amplitude between the numerical results and MICA data related to

arc B.

Simulations had also been performed with the goal to model small-scale currents

observed by MICA near arc A. The main difference between these structures and the

ones observed near arc B is that they occur on both edges of the upward current

channel associated with the arc. In this case the system of two downward and one

upward currents given by Eq. 3.3 had been used to drive the instability. The two

downward channels can be easily recognized in the observations by the presence of

intense small-scale current structures in them. The amplitude and the spatial sizes of

the driver and the computational domain are given previously in this chapter. The

virtual rocket had been flown through the simulations along the trajectory of the real

rocket mapped into the simulation domain. The simulated parallel current density

had been compared with the parallel current density calculated from MICA data

that was obtained by Lynch et al. [2015]. One of the main parameters affecting this

comparison is the moment of time when the virtual rocket was “launched” into the

simulation.

The best case comparison between the numerical results and observations related

to arc A is shown in Figure 3.8. There, the simulated parallel current density is shown

with the solid black line and the one obtained from the observations is shown with a

dashed red line. Both signals had been filtered with the bandpass filter in a frequency

range from 0.20 Hz to 0.70 Hz. Figure 3.8 again demonstrates a good, quantitative

agreement between the numerical results and the results derived from the observa-
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Figure 3.8: The parallel current density measured by the MICA rocket near the arc A
(dashed, red line) and the parallel current density ”measured” by the virtual MICA
rocket in the corresponding simulations (solid black line). Both j‖ are filtered with
a bandpass filter with a passing frequency range from 0.20 Hz to 0.70 Hz. Adapted
from Tulegenov and Streltsov [2017].

tions. After a good quantitative agreement between measured and simulated current

densities has been achieved, a comparison between the electric and magnetic fields is

done next. The top panel in Figure 3.9 shows the two components of the measured

electric field and the perpendicular component of electric field from the simulation.

The bottom panel shows the two components of the measured magnetic field and the

perpendicular component of magnetic field from the simulation. The same bandpass

filter had been applied to the model output. Qualitatively, the observed and the sim-

ulated fields are in a good agreement with each other, although they are not identical.

One of the main reasons for the differences between measured and simulated results

is that the measurements had been performed on the spinning payload flying through

the 3D structures. So the electric and the magnetic fields detected by MICA have
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two perpendicular components. The simulated fields have only one perpendicular

component because they are obtained from the 2D model. Obviously, this fact will

lead to the difference between how these fields obtained in simulations and measured

on the rocket should look like in the time domain. However, the spectral properties

of these fields (frequencies and wave numbers) will be close to each other, as it was

demonstrated in the case of the parallel current density.

3.5 Chapter Conclusion

The results from the modeling study of small-scale, intense current structures ob-

served by the MICA sounding rocket in the close vicinity of discrete auroral arcs are

presented in this chapter and in the associated paper Tulegenov and Streltsov [2017].

The goal of this study was to verify the hypothesis given by Streltsov and Lotko [2008],

that the small-scale large amplitude structures can be generated by the ionospheric

feedback instability driven by a system of large-scale magnetic field-aligned currents

interacting with the ionosphere. This hypothesis also predicts that the small-scale

current structures should be observed on the boundaries between upward and down-

ward currents and inside populate the downward current channels adjacent to the

bright discrete auroral arcs.

Simulations of the reduced 2D MHD model derived in the dipole magnetic field ge-

ometry with the background parameters matching the MICA sounding rocket in-situ

observations confirm this hypothesis. In particular, results from simulations repro-

duce spatial structure, frequency, and amplitude of the small-scale, intense magnetic

field-aligned currents observed by MICA rocket at the edges of two bright, discrete
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Figure 3.9: (Top.) In-situ electric fields in geomagnetic coordinates in blue and green
(adapted from Lynch et al. [2015]). Black corresponds to the perpendicular compo-
nent of the electric field from the simulations. The model output is filtered with a
bandpass filter with a passing frequency range from 0.25 Hz to 0.60 Hz. (Bottom.)
In-situ magnetic fields in geomagnetic coordinates in blue and green (adapted from
Lynch et al. [2015]). Black corresponds to the perpendicular component of the mag-
netic field from the simulations. The model output is filtered with a bandpass filter
with a passing frequency range from 0.25 Hz to 0.60 Hz. Adapted from Tulegenov
and Streltsov [2017].

auroral arcs.

Simulations also demonstrate that the important condition for the existence of a

periodic system of small-scale FACs with an amplitude > 100 µA/m2 is the trapping
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of these currents inside the ionospheric Alfvén resonator. Parameters of the plasma

inside the resonator (in particular, the magnitude of the plasma density inside the

ionospheric E and F regions) together with the amplitude of the large-scale currents

producing the aurora and driving the instability define spatiotemporal features of

small-scale currents. In conclusion, simulations presented in this chapter confirm

that the MICA project achieved the scientific goals formulated in their proposal.

It is a significant contribution in the experimental verification of the importance of

the ionospheric feedback instability for the generation of large-amplitude small-scale

structures inside the ionospheric Alfvén resonator in the auroral zone.
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Chapter 4

3D Model: Artificial Aurora

Results presented in this chapter are published in the Journal of Geophysical Research

[Tulegenov et al., (2019), Artificial aurora produced by HAARP, 124,

doi:10.1029/2019JA026607].

4.1 Introduction

Experiments involving ionospheric heating with high-frequency (HF) electromagnetic

waves have been conducted on several heating facilities in Europe, Russia, and the

USA for more than 60 years. They demonstrate many interesting linear and nonlinear

effects observed on the ground, in the ionosphere, and in the magnetosphere of the

Earth. Comprehensive reviews of these experiments and their results are given by

Gurevich [2007] and Streltsov et al. [2018].

One particular direction of these experiments is a generation of artificial luminous

structures in the ionosphere. Actually, the creation of an artificial luminosity was

the main goal of one of the first heating facilities constructed in the Soviet Union
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in 1961 [Gurevich, 2007]. A comprehensive review of early experiments focusing on

an excitation of optical emissions at the EISCAT and HAARP facilities is given by

Kosch et al. [2007].

In general, the heating can be conducted with O-mode or X-mode waves. The

more frequently used is the O-mode heating. Usually, the frequency of the O-mode

pump-wave is chosen close to the maximum frequency of the F2 ionospheric region,

and the electrons in this region are energized via an anomalous absorption mechanism.

This is a “local” heating, and all the effects observed in this case are produced by

the increase in the electron temperature at this altitude. This heating can create

various luminous structures (in particular, rings and solid spots) [Bernhardt et al.,

1988, 1989; Pedersen et al., 2009] and artificial ionization layers, which have been

studied by Mishin et al. [2004, 2005, 2016]; Kosch et al. [2005]; Pedersen et al. [2010].

Another approach to the ionospheric modification is the heating with X-mode HF

waves. The X-mode HF waves can interact with the electrons through the cyclotron

resonance, and this heating is used to change the temperature of the bulk popula-

tion of electrons in the ionospheric D and E regions. The variations in the electron

temperature change the Hall and Pedersen conductances in the ionosphere. And if

there is an electric field in the ionosphere, then the changes in the conductances cause

changes in the Hall and Pedersen currents flowing in the ionosphere, which, in turn,

generate magnetic field-aligned currents (FACs) flowing into the magnetosphere. This

is a so-called Getmantsev’s effect [Getmantsev et al., 1974], which was introduced in

1974 and extensively used after that for the generation of ULF and VLF waves in the

high-latitude ionosphere-magnetosphere system. The auroral and subauroral zones

are particularly favorable for this mechanism because, normally, there is a large-
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scale electric field in the ionosphere associated with the electrojet [Gurevich, 2011;

Stubbe and Kopka, 1977; Stubbe et al., 1981; Robinson et al., 1998]. The injection of

ELF/VLF waves into the magnetosphere via modulated heating of the electrojet by

HAARP has been extensively studied by Papadopoulos et al. [2003], Go lkowski et al.

[2008]; Golkowski et al. [2011], and Cohen et al. [2010].

If the frequency of the ULF wave generated with heating matches one of the

eigenfrequencies of the global magnetospheric resonator, then this wave can form a

standing pattern along the magnetic field line between the conjugate hemispheres. In

this case, a large-amplitude ULF wave can be generated by a relatively small iono-

spheric disturbance modulated with the eigenfrequency of the resonator e.g., [Streltsov

et al., 2005]. The large-amplitude ULF Alfvén waves may have a parallel electric field

due to kinetic or inertial wave dispersion [Hasegawa, 1976; Goertz and Boswell , 1979],

anomalous resistivity [Mozer , 2011], plasma turbulence [Jasperse et al., 2010], mirror

force [Nakamura, 2000], etc. This electric field can accelerate electrons along an am-

bient magnetic field into the ionosphere and cause bright, discrete auroral forms. The

causal connection between magnetic field-aligned currents carried by shear Alfvén

waves and natural luminous auroral structures has been convincingly demonstrated

in many studies reviewed by Stasiewicz et al. [2000]. At the same time, there are

still not many successful experiments reported in the literature, where the heating of

the ionosphere with X-mode waves simultaneously produces disturbances in the mag-

netic field and the artificial airglow. This study reproduces with 3D MHD simulations

results from one of the first successful experiments devoted to this problem.
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4.2 The HAARP Heating Experiment

The experiment was conducted at HAARP on March 12, 2013 from 06:45 to 08:00 UT

(corresponding to March 11, 2013, 22:45-24:00 Alaskan Daylight Time). During the

experiment, HAARP transmitted X-mode electromagnetic waves with a frequency of

4.57 MHz in the direction of the local magnetic zenith (or in the direction of the

ambient magnetic field). It has been shown in many studies, e.g., [Rietveld et al.,

2003; Honary et al., 2011; Streltsov et al., 2018], that heating in the magnetic zenith

is the most efficient for changing the electron temperature in the ionosphere. The

size of the heated spot at the altitude of 120 km for the 3 dB beamwidth of 4.57 MHz

vertical beam is ≈ 20km. The spot does not change its location during the entire

experiment. The total power of the HAARP transmitter was 3.6 MW. The effective

radiated power (ERP) of the transmitter is 1023 MW for the 4.57 MHz wave. The

change in the beam direction from vertical to the MZ (≈ 14.4◦ at HAARP magnetic

latitude) may cause insignificant (≈ 3%) change in the size of the heating spot in the

ionosphere and small variation in the ERP.

The HF signal has been modulated with a 0.9 mHz (556 s ON/OFF) frequency.

This frequency was chosen from the observations of large-amplitude ULF waves de-

tected with the fluxgate magnetometer in Gakona, Alaska, during several experimen-

tal campaigns at HAARP in the years 2011-2013 [Guido et al., 2014]. These observa-

tions frequently demonstrate waves with frequencies of 0.75 mHz and 0.9 mHz during

the periods of strong geomagnetic disturbances. These frequencies are at the low

end of the so-called “magic” frequencies, sometimes attributed to shear Alfvén waves

standing inside the global magnetic field resonator [Samson et al., 1992; Fenrich et al.,

1995].
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During the experiment, three components of the magnetic field have been mea-

sured with the HAARP fluxgate magnetometer in Gakona. The blue line in Figure

4.1a shows the D-component of the magnetic field, measured by the fluxgate mag-

netometer in Gakona on March 12, 2013 from 05:30 to 09:30 UT. The black line in

Figure 4.1a shows the low-frequency (< 0.7 mHz) part of the signal, and Figure 4.1b

shows the high frequency (> 0.7 mHz) part. The vertical red lines in Figures 4.1a

and 4.1b mark the time of the beginning and the ending of the experiment. The time

when the transmitter was ON is marked with pink boxes in Figure 4.1b.

Figure 4.1c shows the power spectral density (PSD) of the signal shown in Figure

4.1b in the frequency range from 0 to 5 mHz. Figure 4.1c shows that the main

power of the signal is in the frequency of modulation 0.9 mHz, and Figure 4.1b shows

very good correlation in phase and frequency between the periodicity of the heater’s

ON/OFF intervals and the oscillations of the magnetic field measured on the ground.

The H-component of the magnetic field measured by the magnetometer during this

time interval also reveals oscillations with the frequency of 0.9 mHz (not shown in the

paper). These results suggest that X-mode heating indeed generates ULF waves and

magnetic field-aligned currents, as was previously suggested by Blagoveshchenskaya

et al. [2001] and Streltsov et al. [2012].

Figure 4.2 shows three sets of 630.0 nm optical images taken during the experiment

by the HAARP telescope. The telescope can take images in 427.8 nm, 557.7 nm, 630.0

nm, and 777.4 nm wavelengths. The first set of images was taken during the time

interval 06:45:00 - 06:54:15 UT, when the heater was ON. This set contains images

with a bright luminous spot in the center. The second set of images was taken

during time interval 06:54:15 - 07:03:31 UT, when the heater was turned OFF and no
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Figure 4.1: (a) The blue line shows the D-component of the magnetic field, BD,
measured by the fluxgate magnetometer in Gakona on 03/12/2013. The black line
shows the low-frequency (≤ 0.7 mHz) part of the signal; (b) high-frequency (≥ 0.7
mHz) part of the BD shown in panel (a); (c) normalized power spectral density (PSD)
of BD shown in panel (b). Adapted from Tulegenov et al. [2019].

luminosity was observed. The third set of images was taken during the time interval

07:03:31 - 07:12:46 UT, when the heater was ON, and this set again shows a luminous

spot in the ionosphere. Thus, the observations with 630.0 nm filter demonstrate

optical emissions during the first two (out of total four) time intervals when the heater

was ON. Observations with 557.7 nm filter demonstrate optical emissions during the

same time intervals as well, although the structures of the emissions in 557.7 nm
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Figure 4.3: Images of the artificial aurora created by HAARP in 557.7 nm wavelength
(left) and 630.0 nm wavelength (right). Adapted from Tulegenov et al. [2019].

wavelength are different compared to the ones observed in 630.0 nm wavelength. For

comparison, Figure 4.3 shows two high resolution images in 630.0 nm and 557.7 nm

wavelengths at times 06:53:28 and 06:53:32 UT correspondingly. The main difference

between these two images is that 630.0 nm luminosity is relatively smooth and 557.7

nm image is more “structured” as was observed previously by Pedersen et al. [2010].

4.3 Numerical Implementation and Boundary Con-

ditions

The 3D MHD model described previously is used to investigate the proposed theory.

The constant heating of the ionosphere by HAARP is modeled by solving the highly

integrated density continuity equation with the reduced recombination in the northern

ionosphere

∂n

∂t
=
j‖
eh

+ α
(
n2
0 − (1−H)n2

)
. (4.1)
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H specifies the heating. It is chosen as H = 0.5 e−(ρ/ρ0)
2
, where ρ is the distance

in the ionosphere from the location of the maximum of the heater beam, and ρ0 =

10 km is a half-width of the beam. Experiments with HF X-mode heating have

shown that the density can be enhanced by up to 70% relative to the background

[Blagoveshchenskaya et al., 2015]. It is assumed that the heater modifies the density

by 20%, which is well within the reported values.

The model equations are written in the orthogonal dipole coordinates (L, φ, µ),

where L = r sin2 θ, µ = cos θ/r2, and r, θ, and φ are standard spherical coordinates.

Computations have been performed in the three-dimensional dipole magnetic flux

tube bounded by the ionosphere in the Northern and Southern Hemispheres. The

latitudinal boundaries of the domain are formed by L = 4.75 and L = 5.05 magnetic

shells. The azimuthal size of the domain is φ ≈ 1◦.

The magnitude of the large scale E⊥ is based on the digisonde drift velocities

presented in Figure 4.4. Using the two components of the electron drift velocity we

calculate the resultant E⊥. The amplitude of the electric field during the first two

periods of the heating was peaking at 6.5 mV/m at 06:50 UT. After 07:15 UT, the

magnitude of the large-scale E⊥ decreases and reaches a minimum of 2.85 mV/m at

07:45 UT.

The profile of the background density along L = 4.90 magnetic field line (corre-

sponding to the location of HAARP) is defined as:

n0 =

 a1(r − r1) + a2, if r1 < r < r2

b1e
−20(r−r2) + b2r

−4 + b3, if r > r2.
(4.2)

Here r is the radial distance to point on the field line, r1 = 1 + 120/Re, and
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r2 = 1 + 320/Re. The constants a1, a2, b1, b2 and b3 are parameters that satisfy a

density of 1.25× 104 cm−3 at E region altitude of 120 km, 1.5× 105 cm−3 at F region

altitude of 320 km and 129 cm−3 in the equatorial magnetosphere.

One of the main parameters in the model is the density in the ionospheric E

region. That density defines the conductivities of the ionosphere, which are supposed

to be modified by the heating. Data from the HAARP digisonde, shown in Figure

4.5, demonstrate that this density is quite low. At the least, it is below the threshold

which can be detected by the digisonde. Because the digisonde can detect densities

starting from 1.25× 104 cm−3 (corresponding to the plasma frequency of 1 MHz), it

was decided to choose this value for the magnitude of the background density in the

simulations. This value of the density provides ΣP = 0.4 mho.

4.4 Results and Discussion

The experiment conducted at HAARP on March 12, 2013, brings two equally impor-

tant and interesting results. First, it demonstrates, for the first time, that heating

of the ionosphere with X-mode HF waves can generate bright luminous structures in

557.7, 630.0, and 777.4 nm wavelengths. On the other hand, there were no luminous

structures observed in the 427.8 nm wavelength (higher energy blue line). Figure 4.2

shows three sets of optical images in 630.0 nm wavelength taken with the HAARP

telescope during the experiments. It is worth mentioning here that normally, the

airglow has been observed in the ionosphere above HAARP only during the O-mode

heating [Kosch et al., 2005].

Of course, the X-mode heater transmissions always contain some level of contam-
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Figure 4.4: Electric field in the ionosphere above HAARP during the experiment.
Adapted from Tulegenov et al. [2019].
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Figure 4.5: Ionospheric density above HAARP during the experiment. Adapted from
Tulegenov et al. [2019].
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inating O-mode polarization. However, the HAARP array controls and monitors the

currents on each dipole independently and can maintain very high isolation between

polarizations. In this case, the measured O-mode component was at least 25 dB be-

low the X-mode level. Furthermore, the sequence of ionograms presented in Figure

4.5 shows that the highest frequency reflected by O-mode transmission, including the

considerable frequency spread, was no greater than 4 MHz, well below the heating

frequency of 4.57 MHz used in this experiment, while fxF2 exceeded the heating

frequency prior to 07:20 UT.

Second, the 03/12/2013 experiment generates oscillations in the magnetic field

with the frequency perfectly matching the frequency of heating modulations. These

observations are shown in Figure 4.1b, which gave a strong reason to conclude that,

during the experiment, HAARP indeed produces magnetic field-aligned currents flow-

ing into the magnetosphere. This conclusion is also supported by Streltsov and Peder-

sen [2011], who showed with 3D MHD simulations that some luminous structures (in

particular, rings and solid spots) produced by HAARP in the O-heating experiments

can be interpreted in terms of ULF waves and field-aligned currents.

In this study, the next step is done in the development of the numerical model used

by Streltsov and Pedersen [2011] by including the Hall conductivity in the ionosphere

and using a more realistic heating mechanism. Namely, the model assumes that the

heating decreases the recombination coefficient in the ionospheric E region, and the

decrease in the recombination increases the density. The model is simulated based

on the geomagnetic conditions observed during the experiment, and the results of the

simulations are shown in Figures 4.6 and 4.7.

Specifically, in the simulations, the heating changes the plasma density in the E
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region in the Northern Hemisphere according to Eq.4.1. Modification of the iono-

spheric density changes the conductivity, which generates field-aligned currents, if

the large-scale electric field exists in the ionosphere according to the Eq.2.41. Figure

4.6 shows a snapshot of the field aligned current density inside the 3D domain at the

time t=158.5 s after the heating has begun. In full agreement with Streltsov and Ped-

ersen [2011], the simulations demonstrate that such constant heating leads to a rapid

formation of two field-aligned currents that are closed through the ionosphere in both

hemispheres. The structure of the currents obtained in the simulations is different

from the structure of currents shown by Streltsov and Pedersen [2011]. Namely, in the

simulation runs performed for this study, the heating produces two current channels

standing side-by-side, and in the simulations by Streltsov and Pedersen [2011], the

currents form an axisymmetric structure. This difference is explained by the different

models for the heating used in these two studies.

The FAC flows from the Southern to the Northern Hemisphere in one channel

(shown with red in Figures 4.6 and 4.7) and flows in the opposite direction along

the adjacent channel (shown with blue). It is assumed that these FACs may cause

some parallel electric field in the current channels (due to the dispersive effect, double

layer formation, anomalous resistivity, or any other mechanisms that depend on the

amplitude and the transverse size of FAC), which can accelerate electrons into the

ionosphere and produce artificial aurora. Figure 4.7 shows snapshots of the parallel

current density and the plasma density in the ionosphere at t = 158.5 s. Specifically,

Figures 4.7a and 4.7c show plasma and current densities produced by the heating

in the ionosphere with E⊥ = 6.5 mV/m, ΣP = 0.4 mho, and ΣH = 2 ΣP . Figures

4.7b and 4.7d show plasma and current densities produced by the heating in the
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Figure 4.6: Snapshot of the parallel current density j‖ taken from the 3D simulation
at t = 158.5 s with ΣH/ΣP=2. Here isosurfaces of j‖ = - 0.002 µA/m2 (blue) and j‖
= 0.002 µA/m2 (red) are shown. Adapted from Tulegenov et al. [2019].

ionosphere with E⊥ = 6.5 mV/m, ΣP = 0.4 mho, and ΣH = 0 (no Hall current). The

contour lines from Figures 4.7a and 4.7c are also shown in Figures 4.7b and 4.7d, to

demonstrate relation between density enhancements produced by the heating and the

structure and location of the corresponding field-aligned currents.

Figure 4.7 demonstrates that there are two important effects associated with

adding a Hall conductivity into the model. First, the Hall conductivity increases the

magnitude of the generated field-aligned current by 50%. This result follows directly

from the eq. 2.41. Second, the Hall conductivity rotates the FAC system around the

center of the heating spot. This is in the agreement with Eq. 2.41 which states that
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Figure 4.7: Panels a) and b) are snapshots of ionospheric density n from the numerical
model at t=158.5 s under different ionospheric conditions: a) with ΣH/ΣP=2 and b)
with ΣH/ΣP=0. Panels c) and d) are the snapshots of ionospheric j‖ at t=158.5 s
with ΣH/ΣP=2 and ΣH/ΣP=0, respectively. The 3D simulations are performed with
E⊥ = 6.5 mV/m. The contour lines from panels a) and c) are mapped to panels b)
and d) correspondingly, to demonstrate the relation between density enhancements
produced by the heating and the structure and location of the corresponding field-
aligned currents. Adapted from Tulegenov et al. [2019].

FACs are generated in the direction of the resultant ionospheric conductivity [Jia and

Streltsov , 2014]. This happens because the field-aligned current is closed through the

ionosphere by the combination of Pedersen and Hall currents. The Pedersen current

is parallel to the background electric field, which is in the north-south direction in
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the simulations, and the Hall current is perpendicular to it. Therefore, when the

Hall conductivity is equal to zero, the field aligned current is closed by the Pedersen

current only, and this current is aligned with the electric field in the direction from L

= 4.75 to L = 5.05. When the Hall conductivity is two times larger than the Pedersen

conductivity, FACs are closed in the ionosphere at some angle to the direction of the

background electric field.

Another interesting effect observed in the simulations is that the maximum of the

downward (red) and upward (blue) field aligned currents do not coincide with the

maximum of the density disturbances or the maximum of the heating power. This

happens because the currents are formed by the gradients in (ΣPE⊥ + ΣHE⊥ × b)

(see Eq. 2.41), and when the background electric field is uniform, these gradients are

produced by the density gradients only. Therefore, simulations predict that when the

large-scale electric field in the ionosphere is relatively uniform, the bright luminous

spot produced by the heating should be observed not exactly where the heating has a

maximum power, but in the close vicinity. The exact location and the orientation of

the luminous structure relative to the heating spot and the orientation of the back-

ground electric field depend on the relation between Pedersen and Hall conductivities.

This conclusion is consistent with the observations which frequently show some off-

set between the heating and the maximum of the luminosity in heating experiments

[Pedersen et al., 2009; Grach et al., 2016].
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4.5 Chapter Conclusion

The reasonable agreement between the observations and results of 3D simulations

lead to the conclusion that the luminous spots and disturbances in the magnetic field

detected during the 03/12/2013 HAARP experiment may be related to the magnetic

field-aligned currents produced by the heating of the ionosphere with the X-mode HF

waves. It is also heavily emphasized that the complete physical model of the cou-

pled and rapidly changing magnetosphere-ionosphere system during X- or O-mode

heating is much more complicated and includes many physical effects which are not

taken into account in the current model. In particular, the model does not resolve

the vertical structure of the ionospheric E region and does not include any electro-

chemistry of photo-ionization mechanism in the ionosphere. It also does not include

any mechanisms producing the parallel electric field in the field-aligned currents in

the magnetosphere, as well as the effects of the electron precipitation in the upward

currents on the ionospheric density. Therefore, more advanced and comprehensive

models of the ionosphere-magnetosphere system are necessary to unambiguously ex-

plain the results from this particular experiment.

The generation of the field-aligned currents by changing the ionospheric conductiv-

ity in the presence of the large-scale electric field in the ionosphere is one of the most

basic and robust results produced by the heating. And these field-aligned currents

will always contribute to the energization of the ionosphere by delivering Poynting

and particle fluxes into it. Hence, it is concluded that the mechanism, considered

in this Chapter and in the associated paper Tulegenov et al. [2019], should always

be taken into account, together with other (local ionospheric) mechanisms, in the

experiments involving artificial modification of the ionosphere (D and E regions).
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Chapter 5

3D Model: Efficient method of

generating ULF/ELF waves

Results presented in this chapter are published in the Geophysical Research Letters

[Tulegenov and Streltsov, (2019), Effects of the Hall conductivity in ionospheric heat-

ing experiments, doi:10.1029/2019GL083340].

5.1 Introduction

Shear Alfvén waves carrying magnetic field-aligned currents (FACs) are one of the

major participants in the redistribution of electromagnetic power, particle density,

mass, and momentum between the ionosphere and magnetosphere at high latitudes

[Inan et al., 1985; Lysak , 1991; Chaston, 2003; Streltsov and Lotko, 2008]. That fact

makes these waves an object of intensive experimental and theoretical study, and a

large number of experiments devoted to the artificial excitation of these waves in the

magnetosphere from the ground-based facilities have been conducted in Europe, Rus-
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sia, and the USA for more than 60 years. Comprehensive reviews of these experiments

and their results can be found in Gurevich [2007] and Streltsov et al. [2018].

One of the most well-known and widely used methods of generation of ULF waves

from the ground is heating the ionosphere with X-mode high-frequency (HF) waves.

These waves increase the bulk temperature of the electron population in the iono-

spheric D and E regions. The variations in the electron temperature change the Hall

and Pedersen conductances in the ionosphere. Ionospheric conductivity is directly

proportional to the ions’ mobility. Studies and observations show that the ion mobil-

ity decreases by a factor of 1.4 or 2.0 when the ions are heated threefold or sevenfold

by the perpendicular electric field, respectively [Aikio et al., 2004; Paschmann et al.,

2012]. If there is a large-scale electric field in the ionosphere, then the changes in

the conductances cause changes in the Hall and Pedersen currents flowing in the

ionosphere, which, in turn, generate magnetic field-aligned current flowing into the

magnetosphere. This is a so-called Getmantsev’s effect [Getmantsev et al., 1974],

which was introduced in 1974 and extensively used after that in the high-latitude

ionosphere-magnetosphere system. The auroral and subauroral zones are particularly

favorable for this mechanism because, normally, there is a large-scale electric field

in the ionosphere associated with the electrojet [Stubbe and Kopka, 1977; Gurevich,

2011; Stubbe et al., 1981; Robinson et al., 1998].

If the frequency of the generated ULF waves matches one of the eigenfrequencies

of the global magnetospheric resonator (formed by the entire magnetic flux tube and

bounded by the ionosphere), then these waves can form a standing pattern along the

magnetic field line between the conjugate hemispheres and reach large amplitudes

after some time. Simulations by Streltsov et al. [2005]; Streltsov [2011] show that
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a large-amplitude (in the order of 50 nT) ULF wave can be generated even by a

relatively small ionospheric disturbance modulated with the eigenfrequency of the

resonator.

Because the HF power available for the ionospheric modification from ground

transmitters is always limited, there are many theoretical and experimental studies

devoted to the efficiency of how this power is used [Streltsov et al., 2018]. Two of

the most efficient methods described in the literature include “beam-painting” and

geometric modulation techniques. The beam painting technique, suggested by Pa-

padopoulos et al. [1989, 1990], means that the beam focuses in a small spot, which

moves rapidly across some area in the ionosphere to heat electrons inside this area.

The entire process is modulated with the frequency of the generated wave. The ge-

ometric modulation means that instead of heating one spot (or some area) in the

ionosphere and turning the transmitter ON and OFF with the wave period, the

transmitter sends a constant beam of HF power and moves it in the ionosphere along

some particular geometrical path. The injection of ELF/VLF waves into the mag-

netosphere by the modulated heating of the electrojet by the High Altitude Active

Research Program (HAARP) facility in Alaska has been extensively studied by Pa-

padopoulos et al. [2003], Go lkowski et al. [2008]; Golkowski et al. [2011], and Cohen

et al. [2010].

Streltsov and Pedersen [2010] proposed a modification to the geometric modula-

tion technique. They suggest to move the heating spot in the ionosphere in the di-

rection of the background electric field with the phase speed of the feedback-unstable

ULF wave. This suggestion was based on numerical simulations of the two-fluid MHD

model describing active ionospheric response (aka feedback) on the structure and am-
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plitude of magnetospheric field-aligned currents interacting with the ionosphere and

modifying conductivity by precipitating electrons in it. The ionospheric feedback

mechanism has been studied for almost 50 years [Atkinson, 1970]. The basic idea

is that the ULF FAC changes the ionospheric conductivity (almost twofold from 2.0

mho to less than 0.5 mho) by precipitating/removing electrons into/from the E layer,

and the variation in the conductivity “feed back” on the structure and amplitude

of the incident FAC. When the large-scale electric field exists in the ionosphere, the

feedback may work in a constructive way and increase the amplitude of the ULF

waves and the density disturbances on the ionosphere, which lead to instability.

Streltsov and Pedersen [2010] used the X-mode heating to trigger and enhance

the ionospheric feedback instability by synchronizing the heating regime with the dy-

namics of the most feedback-unstable ULF mode. This idea had been implemented

during 2014 BRIOCHE research campaign at HAARP and did not produce any pos-

itive results. There are several possible reasons why these particular experiments

were not successful. Among them could be: the absence of the electrojet, the high

density of the ionosphere above the HAARP, unknown information about ionospheric

parameters in the magnetically conjugate location, etc. However, there is one par-

ticular shortage in the Streltsov and Pedersen [2010] model, which may significantly

compromise the applicability of the numerical results to real experiments. This short-

age comes from the fact that the numerical model used was two-dimensional (with

a one-dimensional ionosphere) and did not include effects of the Hall current in the

ionosphere. At the same time, the importance of the Hall current for the ionospheric

feedback mechanism has been emphasized in almost every classical paper about the

instability [e.g. Atkinson, 1970; Sato, 1978; Miura et al., 1982; Trakhtengerts and
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Feldstein, 1991; Borisov and Stubbe, 1997; Pokhotelov et al., 2000].

5.2 Numerical Implementation and Boundary Con-

ditions

The goal of this study is to eliminate the aforementioned shortage and investigate

the effects of the Hall current on the dynamics of the magnetosphere-ionosphere

interactions involving the ionospheric feedback mechanism triggered and controlled

by the artificial ionospheric heating. This study is based on a 3D reduced two-fluid

MHD (RMHD) model described in the previous chapter.

The ionospheric part consists of the modified density continuity equation

∂n

∂t
=
j‖
eh

+ α
(
n2
0 − (1−H)n2

)
. (5.1)

Effect of the X-mode HF heating is modeled via a decrease in the coefficient of the

recombination in the E-region. It is specified by the function H(ρ), which is chosen

as H(ρ) = 0.1 e−(ρ/ρ0)
2
. Here ρ is the distance in the ionosphere from the center of

the heated spot (where the heater power maximizes), and ρ0 = 10 km is a half-width

of the heated spot beam. The maximum amplitude of H at ρ = 0 is 0.1, which means

that the heating changes the coefficient of the recombination by 10%.

The latitudinal boundaries of the domain are formed by the L = 4.6 and L = 5.2

magnetic shells. The azimuthal size of the domain is φ = 1.91◦.

The background parameters of the model are similar to the typical parameters

of the ionosphere-magnetosphere system considered in other studies, e.g., [Streltsov
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and Pedersen, 2010]. The background density along the L = 4.9 magnetic field line,

whose ionospheric footprint corresponds to the HAARP location, is defined as:

n0 =

 a1(r − r1) + a2, if r1 < r < r2

b1e
−20(r−r2) + b2r

−4 + b3, if r > r2.
(5.2)

Here r is the radial distance to point on the field line, r1 = 1 + 100/Re, and

r2 = 1 + 220/Re. The constants a1, a2, b1, b2 and b3 are parameters that satisfy

a density of 1.00 × 104 cm−3 at E region altitude of 100 km, 2.63 × 105 cm−3 at

F region altitude of 220 km and 129 cm−3 in the equatorial magnetosphere. The

density of 1.00 × 104 cm−3 in the E region provides the height-integrated Pedersen

conductivity of 0.32 mho. Inside the computational domain the density is assumed to

be homogeneous in the direction perpendicular to the ambient magnetic field. This is

a reasonable assumption due to the relatively small perpendicular size of the domain

(0.6 L shell in the L direction and less than 2◦ in the φ direction).

The background electric field in the domain is defined as E0 = −∇Φ, where Φ is

the electric potential. In the ionosphere, the potential Φ is chosen to provide a uniform

electric field with a magnitude 20 mV/m pointed in the north-south direction. This

electric potential remains constant along the ambient magnetic field lines, so there is

not any background parallel electric field (or the parallel potential drop) present in

the magnetosphere. This field is comparable with the the background electric field

considered in 2D simulations of the ionospheric heating by Streltsov and Pedersen

[2010].
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Figure 5.1: Isosurfaces of j‖ = -0.1 µA/m2 (blue) and j‖ = 0.1 µA/m2 (red) are
shown from the 3D MHD simulation with ΣH/ΣP = 0. (a) The snapshot of the
parallel current density, j‖, generated by heating the Northern ionosphere at a fixed
location at t = 651 s. (b) Time evolution of j‖ on the Northern ionosphere generated
by heating the Northern ionosphere at a fixed location. Adapted from Tulegenov and
Streltsov [2019].

5.3 Results and Discussion

Firstly, the main results from the 2D simulations by Streltsov and Pedersen [2010]

are verified using a 3D model output. Namely, that the movement of the heating

spot in the ionosphere with the phase velocity of the feedback-unstable mode leads

to a generation of larger amplitude waves in a shorter time, than the heating of

some stationary location in the ionosphere. To verify this result the 3D code is run

with ΣH = 0. In the first run, the heating was focused on a stationary spot in the

ionosphere. The results from this run are shown in Figure 5.1. In particular, Figure

5.1a shows a snapshot of the parallel current density j‖, inside the 3D domain, at time
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t = 651 s after the beginning of heating. Figure 1a shows the surfaces of j‖ = 0.1

µA/m2 in red and surfaces of j‖ = -0.1 µA/m2 in blue. Figure 1b shows the temporal

dynamics of j‖ measured at an altitude of 100 km in the Northern Hemisphere. Again,

the red color is used to show the surfaces of j‖ = 0.1 µA/m2 and the blue color is

used to show the surfaces of j‖ = -0.1 µA/m2. Figure 5.1 illustrates development of

the ionospheric feedback instability driven by the uniform 20 mV/m electric field and

triggered by the constant heating of the ionosphere.

The results from this run had been used to estimate the phase velocity of the

feedback-unstable waves in the ionosphere. Comparison of j‖ in the ionosphere in

several instances in time, shows that the waves generated by the instability propagate

in the direction of the background electric field (in this case it is the L direction) with

a phase speed of ≈100 m/s. This value is equal to the phase velocity calculated from

the linear dispersion relation given for the most unstable mode by Sato [1978], which

for the parameters used in this study is ω/k⊥ = MPE⊥0/2 = 100 m/s.

To model the moving of the heating spot in the ionosphere, we make the H

function in Eq. 5.1 depending on time, namely, H = H(vLt+L0, vφt+ φ0), where vL

and vφ are the wave front’s phase velocity components estimated from the simulation

with stationary heating spot in the ionosphere. In case ΣH = 0, the L-component

of the phase velocity in the ionosphere is 100 m/s and vφ = 0. Figure 5.2 illustrates

a comparison between j‖ obtained in the simulations with a stationary heating spot

(left panels) and with a moving heating spot (right panels). In particular, Figures

5.2c and 5.2d show time evolution of j‖, in the Northern Hemisphere ionosphere, at

a 2D longitudinal cut through the computational domain at L = 4.9 from t = 400 s

to t = 651 s after the heater was turned on. Figures 5.2a and 5.2b show magnitudes
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Figure 5.2: Panels a) and c) are the simulation output where the heater was heating
a fixed location in the Northern ionosphere. Panels b) and d) are the simulation
output in a case where the heating spot was moving in the direction of background
E⊥ with velocity of 100 m/s. Panels c) and d) show the time evolution of FACs on
the Northern ionosphere along the direction of background electric field from L =
4.84 to L = 5.16 in a case when ΣH/ΣP = 0. Panels a) and b) show the amplitude
of the FACs at t = 651 s. Adapted from Tulegenov and Streltsov [2019].

of j‖ in the ionosphere in the northern hemisphere at t = 651 s.

Figure 5.2 demonstrates that the ULF waves are generated faster when the heater

moves along the E⊥. The amplitudes of the waves generated by moving the heat-
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ing spot are ≈ 3 times larger than those generated by heating a fixed spot in the

ionosphere. These results confirm the conclusion made by Streltsov and Pedersen

[2010], that without Hall current in the ionosphere the instability indeed develops

more rapidly when the heating spot moves along the direction of the background

electric field at the phase velocity of the wave front.

Next, 3D simulations are performed for the case when the instability is initiated

by the heating of a stationary spot in the ionosphere when the Hall conductivity is

not equal to zero. Figure 5.3 shows the structure and magnitude of j‖ in the Northern

Hemisphere ionosphere at time t = 356 s in simulations with ΣP = 0.32 mho and a)

ΣH/ΣP = 0, b) ΣH/ΣP = 0.5; c) ΣH/ΣP = 1.0; d) ΣH/ΣP = 1.5; and e) ΣH/ΣP =

2.0. It shows two effects. First, the amplitude of j‖ increases with the increase of ΣH .

This effect follows directly from the ionospheric current continuity (Eq. 2.41), which

shows that the magnitude of j‖ in the ionosphere is proportional to ΣP , ΣH , and E⊥.

Therefore, if one of these three parameters increases and two other remain constant,

then j‖ is expected to increase as well.

The second effect shown in Figure 5.3 is that the feedback-unstable waves prop-

agate across the magnetic field in the direction that makes an angle with the back-

ground E⊥ (which is in the N-S direction in all these simulations). This angle increases

with an increase in ΣH/ΣP . This effect is also expected and it has been previously

reported by Jia and Streltsov [2014] from the simulations of discrete auroral arcs pro-

duced by the ionospheric feedback mechanism involving the Hall conductivity. This

can be explained by the fact that in the magnetosphere-ionosphere coupled system,

the magnetic field-aligned currents are closed in the ionosphere by Hall and Pedersen

currents. Larger Hall conductivity provides a greater contribution from the Hall term,

89



Figure 5.3: Snapshots of j‖ on the Northern ionosphere at t = 356 s under different
ionospheric conditions: (a) ΣH/ΣP = 0; (b) ΣH/ΣP = 0.5; (c) ΣH/ΣP = 1.0; (d)
ΣH/ΣP = 1.5; and (e) ΣH/ΣP = 2.0. The line plots in each panel show the amplitude
of FAC along the dashed arrow. The black circles indicate the propagation in time of
the first wave fronts. The time step between circles is 59.43 seconds. Adapted from
Tulegenov and Streltsov [2019].
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and the entire current system changes its orientation with increase in ΣH/ΣP .

The angles between the wave phase velocity and the background electric field ob-

served in the simulations for different values of ΣH/ΣP are 0◦, 23.4◦, 37.1◦, 49.4◦,

and 57.9◦. The corresponding angles calculated analytically as arctan (ΣH/ΣP ) are

0◦, 26.6◦, 45.0◦, 56.3◦, and 63.4◦. The analytical and numerical sets of angles show

the same dependency on the ΣH/ΣP ratio but they are different in magnitudes. The

possible explanation of the differences between the corresponding values is that the

angle calculated as arctan (ΣH/ΣP ) assumes that the electric field is constant. This

assumption does not work when the amplitude of the feedback-unstable waves reaches

larger value. At this stage, the amplitude of the electric field produced in the iono-

sphere by the waves becomes comparable with the amplitude of the background field:

so the amplitude and the orientation of the total field in the ionosphere differ from

the background/initial field.

To evaluate the effect of the moving heating spot on the development of the

instability, a simulation was performed with the heating spot moving in the ionosphere

with a velocity estimated from the simulations with stationary heating. Thus, the

circles in Figure 5.3 indicate locations of the first wavelength of the generated wave in

time. Figure 5.4 shows j‖ in the Northern ionosphere obtained from the simulations

with ΣH/ΣP = 2.0 at time t = 356 s (a) when the heating spot is fixed in space

and (b) when the heating spot moves at the angle of 57.9◦ to the background E⊥

with a velocity vL = 133 m/s and vφ = 83.4 m/s, which correspond to the phase

velocity of the first wave front. Figure 5.4 demonstrates that, similar to the case

with no Hall current, the ULF waves are generated more efficiently (they reach larger

amplitude faster), when the ionospheric feedback mechanism is “enhanced” by the
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moving heating spot in the ionosphere with the wave phase velocity.

Figure 5.4: The snapshots of the j‖ at t = 356 s on the Northern ionosphere from
simulations with ΣH/ΣP = 2.0 under different heating methods: (a) fixed heating
spot; (b) moving heating spot. The line plots in both panels show the amplitude of
FAC along the dashed arrow. Adapted from Tulegenov and Streltsov [2019].

5.4 Chapter Conclusion

These findings may provide a possible explanation of the failure of the experiments

with the “directional” heating, described in this study and in the associated paper

Tulegenov and Streltsov [2019], in the 2014 BRIOCHE HAARP campaign: These

experiments were based on 2D simulations not taking into account the Hall current
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in the ionosphere. The effect of this current is quite significant, particularly, when

ΣH/ΣP = 2.0. It may also explain the more efficient wave generation observed in

some experiments with the geometric modulation of heating reported by Cohen et al.

[2008, 2010]. The results suggest that the heating is more efficient when the heating

spot moves with a velocity which is close to the phase velocity of the feedback un-

stable waves. The heater must move in the direction of the total ionospheric current.

Possibly, such an agreement between the velocity of the heating spot and the phase

speed of the generated waves happened during some of experiments with geometric

modulation of the ionosphere.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The work presented in this dissertation uses the variations of the non-linear reduced

magnetohydrodynamic 3D model that was presented in Chapter 2. The results pre-

sented in Chapters 3-5 have been published in three papers:

1. Tulegenov and Streltsov, (2017), Ionospheric Alfvén resonator and aurora: Mod-

eling of MICA observations, Journal of Geophysical Research: Space Physics,

122, 7530, doi:10.1002/2017JA024181;

2. Tulegenov et al., (2019), Artificial aurora produced by HAARP, Journal of

Geophysical Research: Space Physics, 124, doi:10.1029/2019JA026607;

3. Tulegenov and Streltsov, (2019), Effects of the Hall conductivity in ionospheric

heating experiments, Geophysical Research Letters, doi:10.1029/2019GL083340.

The results of this dissertation paper has also been presented in various national and
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international conferences and workshops:

1. Tulegenov, B., and A.V. Streltsov, Ionospheric feedback instability in the iono-

spheric Alfvén resonator at high latitudes: Modeling and observations, (talk),

USNC-URSI National Radio Science Meeting, Boulder, CO, January 4-7, 2017;

2. Tulegenov, B., and A.V. Streltsov, ULF Waves in the ionospheric Alfvén res-

onator: Observations and simulations (poster), UN/USA Workshop on the In-

ternational Space Weather Initiative, Boston College, MA, 31 July-4 August,

2017;

3. Tulegenov, B., and A.V. Streltsov, ULF waves in the ionospheric Alfvén res-

onator: Observations and simulations (H42-2 talk), URSI General Assembly

and Scientific Symposium, Montreal, Canada, 19-26 August, 2017;

4. Tulegenov, B., and A.V. Streltsov, ULF Waves in the ionospheric Alfvén res-

onator: Modeling of MICA observations, (SM41A-2676 poster), AGU Fall Meet-

ing, New Orleans, LA, December 11-15, 2017;

5. Tulegenov, B., and A.V. Streltsov, Ionospheric feedback instability in the Alfvén

resonator at high latitudes: 3D modeling, (talk), USNC-URSI National Radio

Science Meeting, Boulder, CO, January 4-7, 2018;

6. Tulegenov, B., and A.V. Streltsov, Ionospheric feedback instability in the Alfven

resonator at high latitudes: 3D modelling, (SM51G-2812 poster), AGU Fall

Meeting, Washington, D.C., December 10-14, 2018;

7. Tulegenov, B., and A.V. Streltsov, E. Kendall, M. McCarrick, I. Galkin, Excita-

tion and modeling of artificial aurora at HAARP, (talk), USNC-URSI National
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Radio Science Meeting, Boulder, CO, January 9-12, 2019;

8. Tulegenov, B., and A.V. Streltsov, Effects of the Hall conductivity in the iono-

spheric heating experiments, (poster), GEM Workshop, Santa Fe, NM, June 25,

2019.

Specific drivers and boundary conditions were designed for each of the scientific tasks

discussed in Chapters 3-5. The first study (discussed in Chapter 3) focused on proving

the existence of small-scale large-amplitude structures next to the auroral arc. The

second study (discussed in Chapter 4) demonstrated that the contribution of FACs

generated with the HF heating is significant for the production of artificial auroras.

The third study (discussed in Chapter 5) focused on improving the efficiency of HF

heating in generating ULF structures. The main conclusions from these studies are

presented in the paragraphs below.

Presence of the small-scale large amplitude dispersive Alfvén waves in the down-

ward current channel associated with bright discrete auroral arc was confirmed nu-

merically and experimentally in Chapter 3 and the associated paper Tulegenov and

Streltsov [2017]. An experimental confirmation of the hypothesis presented by Streltsov

and Lotko [2008] (that the small-scale intense current structures will be formed in a

region where a return field-aligned current associated with the discrete auroral arc)

was obtained through the MICA sounding rocket experiment that was launched into

the discrete auroral arc region. 2D reduced MHD simulations based on the numerical

model derived in Chapter 2 were performed using the MICA measurements as input

parameters. The output produced confirmed the hypothesis that the IFI mechanism

is responsible for the generation of small-scale large amplitude Alfvén waves under

the presence of large-scale current structures in the auroral ionosphere. Numerical
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results reproduced the frequency, spatial structure and the amplitudes of the small-

scale large amplitude FACs that were measured by MICA rocket as it passed next to

one discrete auroral arc and through another arc. It is also shown that these intense

structures are confined and amplified inside the ionospheric Alfvén resonator. Spatio-

temporal characteristics of these small-scale currents depend on the plasma inside the

resonator (in particular, the magnitude of the plasma density inside the ionospheric

E and F regions) together with the amplitude of the large-scale currents producing

the aurora and driving the instability. Simulations presented in this chapter confirm

that the MICA project achieved the goals formulated in their proposal and made

a significant contribution in the experimental verification of the importance of the

ionospheric feedback instability inside the ionospheric Alfvén resonator in the auroral

zone.

Chapter 4 and the associated paper Tulegenov et al. [2019] present results from the

03/12/2013 HAARP experiment, where the ionosphere was heated with the X-mode

HF waves and bright luminous spots in the ionosphere were observed together with

the disturbances of the magnetic field on the ground. It is demonstrated with 3D

MHD simulations that these effects are consistent with the structure and dynamics

of the magnetic field-aligned currents generated by the variation in the ionospheric

density when the large-scale electric field exists in the ionosphere. Simulations reveal

that the X-mode heating of the ionosphere generates field-aligned currents with max-

imum intensity shifted relative to the center of the heating spot, as was observed in

many experiments. Effects of the Hall conductivity on the structure of the generated

currents were investigated: the simulations reveal that Hall conductivity 1) increases

the amplitude of the generated field-aligned currents and 2) changes the location and

97



the orientation of the current flowing into the ionosphere relative to the direction

of the background electric field. Results from the 3D simulations show a reasonable

agreement with the observations. The main conclusion from the work done is that the

field-aligned currents certainly contribute to the total energization of the ionosphere,

and should be taken into account together with other, pure ionospheric mechanisms,

to explain results of experiments involving modification of the ionospheric D and E

regions.

There were two major findings determined in Chapter 5 and the associated paper

Tulegenov and Streltsov [2019]. The first one is that the Hall conductivity indeed plays

an important role in the generation of large-amplitude ULF waves by the ionospheric

feedback mechanism driven by the electric field in the ionosphere. Our simulations

confirm results from earlier studies that the Hall conductivity 1) increases the growth

rate of the instability and 2) changes the direction of propagation of the feedback

unstable waves relative to the background electric field in the ionosphere. The second

conclusion is that the efficiency of generation of ULF waves by the ionospheric HF

heating can be increased significantly by moving the heating spot with a phase velocity

of the feedback unstable waves taking into account the presence of the Hall current

in the ionosphere. The amplitude and direction of this velocity can be estimated

during the experiment from the observations of plasma density, temperature, and the

ion drift speed with phase radars (if they are available) and digisonds, and from 3D

numerical simulations, performed in advance for various possible combinations of the

background parameters.
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6.2 Future Work

The science introduced in this dissertation can be expanded upon in a number of

different ways. The numerical model used in this study could be expanded to in-

clude the effect of multiple species, namely O+, O+
2 , H+, and e−. Currently it only

incorporates two species: electrons and protons. Another improvement to the model

would be the introduction of the ion Joule heating effect. This heating is caused by

the electric field of the large-amplitude ULF waves. The model could also incorporate

the effect of the collisionless transverse ion energization and associated upward lifting

force by the mirror force. Once introduced, the model would be able to explore in

detail the mechanism for transporting heavy ions into the equatorial magnetosphere,

cavity formation, and ion heating. The new model would also explore the effects of

this ion outflow on the spatio-temporal properties of the global and ionospheric Alfvén

resonators. The developed model could be used to study non-linear MI coupling in

the auroral zone and to model observational events selected from the ground-based

optical, satellite (ICON, MMS, THEMIS, Cluster, to name a few), and sounding

rocket experiments.
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