
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 12 Number 2 Article 10

6-30-2017

SQL Injection: The Longest Running Sequel in Programming SQL Injection: The Longest Running Sequel in Programming

History History

Matthew Horner
Norwich University, mhorner@norwich.edu

Thomas Hyslip
Norwich University, thyslip@norwich.edu

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Law Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Horner, Matthew and Hyslip, Thomas (2017) "SQL Injection: The Longest Running Sequel in Programming
History," Journal of Digital Forensics, Security and Law: Vol. 12 : No. 2 , Article 10.
DOI: https://doi.org/10.15394/jdfsl.2017.1475
Available at: https://commons.erau.edu/jdfsl/vol12/iss2/10

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol12
https://commons.erau.edu/jdfsl/vol12/iss2
https://commons.erau.edu/jdfsl/vol12/iss2/10
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol12%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol12%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol12%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2017.1475
https://commons.erau.edu/jdfsl/vol12/iss2/10?utm_source=commons.erau.edu%2Fjdfsl%2Fvol12%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

SQL Injection: The Longest Running Sequel in … JDFSL V12N2

© 2017 ADFSL Page 97

SQL INJECTION: THE LONGEST RUNNING
SEQUEL IN PROGRAMMING HISTORY

Matthew Horner
Norwich University

Northfield, VT
mhorner@norwich.edu

Thomas Hyslip

Norwich University
Northfield, VT

thyslip@norwich.edu

ABSTRACT
One of the risks to a company operating a public-facing website with a Structure Query Language
(SQL) database is an attacker exploiting the SQL injection vulnerability. An attacker can cause
an SQL database to perform actions that the developer did not intend like revealing, modifying,
or deleting sensitive data. This can cause a loss of confidentiality, integrity, and availability of
information in a company’s database, and it can lead to severe costs of up to $196,000 per
successful injection attack (NTT Group, 2014). This paper discusses the history of the SQL
injection vulnerability, focusing on:

• How an attacker can exploit the SQL injection vulnerability
• When the SQL injection attack first appeared
• How the attack has changed over the years
• Current techniques to defend adequately against the attack

The SQL injection vulnerability has been known for over seventeen (17) years, and the
countermeasures are relatively simple compared to countermeasures for other threats like malware
and viruses. The focus on security-minded programming can help prevent a successful SQL
injection attack and avoid loss of competitive edge, regulatory fines and loss of reputation among
an organization’s customers.

Keywords: SQL, SQL Injection, Cybercrime, Intrusion, Database

 INTRODUCTION
The Internet brings humans closer together
than ever before, and in order to take
advantage of the increased connectivity to
customers, many organizations maintain a link
to the Internet. However, with that link,

organizations take on many risks because of
the increased attack surface, but there are
ways to mitigate those risks to an acceptable
level with administrative, physical, and
technical controls. Ultimately, it is the business

JDFSL V12N2 SQL Injection: The Longest Running Sequel in …

Page 98 © 2017 ADFSL

leader’s or authorizing officials’ responsibility
to decide whether the benefits outweigh the
potential negative effects of implementing a
technology, but information security
professionals can add more confidence behind
that decision by having a thorough
understanding of the threats and
vulnerabilities to information systems (NIST,
2010).

One of the risks from a web server
connected to the Internet is an attacker
exploiting an SQL injection vulnerability on an
organization’s website. In fact, the Open Web
Application Security Project (OWASP)
consistently lists injection as the top website
vulnerability while stating that it is
“EXTREMELY simple” to prevent (OWASP,
2013, 2016). A vulnerability that is simple to
fix yet continues to plague website designers
begs the question, “Why haven’t website
programmers eliminated this vulnerability
entirely?” A discussion of the history of the
SQL injection vulnerability may shed light on
how the vulnerability reached its current state
and may offer clues as to why it refuses to go
away. This paper discusses the history of SQL
injection vulnerability, focusing on:

• How an attacker can exploit the SQL
injection vulnerability

• When the SQL injection attack first
appeared

• How the attack has changed over the
years

• Current techniques to defend
adequately against the attack

 HOW AN ATTACKER
CAN EXPLOIT THE

SQL INJECTION
VULNERABILITY

In order to understand the history of the SQL
injection attack, it may help to understand
how the attack works. In general, the principle

behind the SQL injection attack is to take
advantage of a poorly-coded website to
transmit commands directly to a database,
gain access to that database, and then perform
the desired operation like copying, modifying,
or deleting data (McDonald, 2002). To conduct
the attack, a malicious user types SQL coding
language into data entry fields on websites.

A sample injection attack from the
OWASP is shown below to briefly describe one
case of how an attacker can manipulate SQL
coding. Colors are used to highlight where
discussed concepts appear in the coding
language. In this example, a website
application uses typed data from an untrusted
external user to construct the following
vulnerable SQL request for information:

String query= "SELECT*FROM accounts
WHERE custID='" +
request.getParameter("id") + "'";

The attacker can modify the ‘id’ parameter
value in the browser field to send ' or '1'='1;
this could be done by typing a website address
like:

http://example.com/app/accountView?id=' or
'1'='1

In this case, the entry changes the meaning
of the query to return all the records from the
accounts table which can lead to unauthorized
disclosure of confidential or private information
(OWASP, 2013).

Additionally, instead of performing the
injection process manually, attackers have
designed computer programs to complete the
process automatically. Examples of these
programs include BSQL Hacker, SQLmap,
SQLninja, and others (Shankdhar, 2015). To
use these programs, the attacker inputs a
website address; the program then searches for
variations in the website address and returns
the data associated with those different
addresses (Cox, 2015). If an organization stores

SQL Injection: The Longest Running Sequel in … JDFSL V12N2

© 2017 ADFSL Page 99

a file of social security numbers in the same
database as news articles, for example, these
tools could return the social security number
file even though that file was never meant to
be available to the public.

These programs enable someone with a
very low skill level to conduct these attacks, so
the number of possible threats is very high.
Essentially, anyone with a computer, an
Internet connection, and intent could conduct
an SQL injection attack and retrieve private or
sensitive information (OWASP, 2016).
Attackers could also insert, modify, and delete
data in an organization’s database using this
vulnerability (OWASP, 2016). In some cases,
attackers can perform actions normally
restricted to administrators like shutting down
the database management system (OWASP,
2016).

In addition to the relative simplicity of the
attack, widespread SQL injection
vulnerabilities and the perceived value of data
in SQL databases help make SQL injection
attacks common. According the 2016 NTT
Group Global Threat Intelligence Report,
injection attacks composed about a quarter of
all attacks on website applications in 2015
(NTT Group, 2016). Additionally, per the
NTT Group’s 2014 report, each successful SQL
injection attack can cost organizations up to
$196,000 (NTT Group, 2014).

 WHEN THE SQL
INJECTION ATTACK
FIRST APPEARED

The SQL injection vulnerability has been
known for seventeen (17) years, but it
continues to plague security professionals to
this day. The vulnerability was first
documented by “rain.forest.puppy” in the
December 1998 issue of Phrack magazine
which described a Microsoft SQL server
yielding possibly sensitive data through the use

of commands in normal user inputs like “name”
or “phone number” (rain.forest.puppy, 1998).
The author of the issue with the pseudonym
“rain.forest.puppy” is Jeff Forristal, a well-
respected security expert (Forristal, 2016).

Even though it was first documented in
1998, SQL injection did not appear to garner
much attention in the information security
community until 2002. The reason for the
sudden interest in a four-year-old vulnerability
may have been due to the timing of national
events and the appearance of devastating
viruses and worms. For example, the US had
recently been attacked by terrorists using
hijacked planes on September 11, 2001. Shortly
thereafter, the nation’s academics, military
personnel, and politicians focused on increasing
physical security and cybersecurity (Poeter,
2011). The new attention to cybersecurity may
have prompted a critical examination of
vulnerabilities that could weaken the US
government or infrastructure, and SQL
injection may have been highlighted as a
particularly risky weakness to websites
connected to database systems.

In addition to the terrorist attack on the
U.S. homeland, several viruses and worms had
spread across the Internet causing various
amounts of damage prior to 2002.

• In March 1999, the Melissa macro virus
infected PCs with Microsoft Word and
Outlook, and it was estimated to cost
millions of dollars in lost productivity
(Lewis, 1999).

• The ILoveYou virus followed in May
2000, showcasing the power of social
engineering by infecting about 45
million Windows PCs using an enticing
attachment (Ward, 2010).

• The Anna Kournikova virus began
spreading across computers in February
of 2001 (Wood, 2011).

JDFSL V12N2 SQL Injection: The Longest Running Sequel in …

Page 100 © 2017 ADFSL

• The Code Red worm appeared in July
2001 exploiting a vulnerability in
Microsoft’s Internet Information Server
(IIS) (Tham, 2001).

• The Nimda worm followed in
September 2001 exploiting multiple
vulnerabilities in Microsoft systems
(Poore, 2001).

In fact, in 2009, The Telegraph ranked
three of these viruses and worms in their top
10 list of worst computer viruses of all time
(The Telegraph, 2009). The alarming
appearance of rapidly-propagating viruses and
worms in a short period of time may have
shifted the attention of computer experts to
information security.

The increased attention on SQL injection
in 2002 appears to reflect the rising interest in
cybersecurity at the time. Noting that the
viruses and worms discussed above targeted
Windows systems, Bill Gates released a memo
earlier that year describing the new direction
of Microsoft toward Trustworthy Computing,
an initiative to improve the security of
computer technology and software produced by
the company (Gates, 2002). Since then,
numerous academic papers have been written
to address not only SQL injection attacks, but
other well-known attacks as well.

In 2003, Hunag, Huang, Lin, and Tsai
developed a platform for assessing web
application security. The authors realized
rapid development of web applications was
resulting in poor coding, which introduced
vulnerabilities in the applications. Their
project named Web Application Vulnerability
and Error Scanner (WAVES) was one of the
first attempts to assess web applications for
vulnerabilities, including SQL injection.

Halfond and Orso released their tool named
Amensia in 2005, and it is often cited today as
one of the first tools focused exclusively on
SQL injection detection and prevention.

AMNESIA stands for Analysis and Monitoring
for Neutralizing SQL Injection Attacks, and it
combines static analysis and runtime
monitoring (Halfond & Orso, 2005). Amensia
builds a table of expected SQL queries during
the static analysis and then during the runtime
monitoring, all dynamic queries are checked
against the table to identify any unauthorized
attempts (Halfond & Orso, 2005).

In 2008, Kemalis and Tzouramanis
developed an SQL injection detection system
(SQL-IDS) to monitor Java based web
applications and detect SQL injection attacks
in real time. SQL-IDS is a methodology based
detection system that does query specific
detection (Kemalis & Tzouramanis, 2008).
This approach is very efficient and did not
produce any false positives or false negatives in
testing (Kemalis & Tzouramanis, 2008).

Shar and Tan (2013) presented a three-
pronged approach to defeating SQL injection.
They believed a combination of defensive
coding and vulnerability detection, as well as
runtime attack prevention was necessary to
defeat SQL injection (Shar & Tan, 2013). The
authors considered defensive coding the first
line of defense. By replacing dynamic queries
with stored procedures attackers would be
unable to inject additional code (Shar & Tan,
2013). If dynamic queries must be included,
then the authors recommend data validation
and escaping. In addition to defensive coding,
Shar and Tan (2013) recommended
vulnerability detection and runtime attack
prevention. They provide a review of
numerous methods to detect SQL injections
and tools to prevent SQL injections through
runtime analysis (Shar & Tan, 2013).

In 2015, Alghamdi, Ahmad, and Imran
offered a new technique to prevent SQL
injection attacks. By using application layer
detection at both the client and server, they
are able to prevent SQL injection attacks. On
the client side, SQL inputs are checked for

SQL Injection: The Longest Running Sequel in … JDFSL V12N2

© 2017 ADFSL Page 101

special characters used in typical SQL
injections, and only filtered input strings are
passed to the server (Alghamdi, et al., 2015).
The server ensures all passed requests have the
proper rights and permissions to access the
web applications. Used together, these
techniques significantly reduce SQL injection
attacks (Alghamdi, et al., 2015).

 HOW THE ATTACK
HAS CHANGED

Like much of computer technology, SQL
injection attacks rarely stay constant. The
December 1998 issue of Phrack magazine
discussed how an attacker could piggyback
SQL commands in user inputs
(rain.forest.puppy, 1998). While it is certainly
an effective method to allow unauthorized
disclosure of information stored in an SQL
database, there are other types of attacks that
can be used to gain unauthorized access to
valuable data.

• By 2006, Halfond, Viegas, and Orso
had described seven types of SQL
injection attacks, distinguishing
between the mechanisms of injection
and the intent of the attacker (Halfond,
Viegas, & Orso, 2006). While not
attacks themselves, the mechanisms of
injection focused more on how the
attacker could inject SQL commands;
for example, an attacker could
manipulate user fields, cookies, server
variables like HTTP headers, or use
second-order injection to deliver
commands (Halfond, Viegas, & Orso,
2006). The following types of attacks
differ in the underlying vulnerability
rather than the mechanism of injection.

• Tautology-based attacks involve
inserting code into conditional
statements so that the conditional
statements always return a true value

(Halfond, Viegas, & Orso, 2006). The
aforementioned SQL injection example
in this paper is a tautology-based
attack because inserting the conditional
statement ' or '1'='1 causes the query
to become a conditional statement.
Since one will always equal one, the
database will return all rows from the
accounts table as it executes the call for
information.

• Instead of causing unauthorized
disclosure of data stored in the
database, illegal/logically incorrect
queries function as more of a
reconnaissance role (Halfond, Viegas, &
Orso, 2006). In this attack, overly
descriptive error codes can yield
unintended information about the
database such as table names. The
attacker can then target specific parts
of the database that may contain
valuable or sensitive data.

• A union-query attack can cause a
database to return an unintended table
to the attacker with a command
structured as “UNION SELECT <rest
of injected query>” (Halfond, Viegas, &
Orso, 2006).

• Piggybacking is the same attack
discussed in Phrack magazine in 1998
where SQL commands are placed in
user input fields (Halfond, Viegas, &
Orso, 2006).

• Stored procedures, despite being
advertised as the definitive shield
against injection attacks, can become a
method for injection attacks if the
stored procedures contain
vulnerabilities themselves (Halfond,
Viegas, & Orso, 2006). Stored
procedures are discussed in the
countermeasures section of this paper,
but as with many tools used by
humans, if not implemented properly,
they may become useless.

JDFSL V12N2 SQL Injection: The Longest Running Sequel in …

Page 102 © 2017 ADFSL

• Inference attacks are similar to illegal
or logically incorrect queries in that the
attacker is not directly accessing data
in the SQL databases. Instead of
relying on overly descriptive error
messages, however; inference relies on
the behavior of the database after
receiving commands such as whether an
error message appears at all (Halfond,
Viegas, & Orso, 2006). Inference is
further divided into blind injection and
timing attacks (Halfond, Viegas, &
Orso, 2006).

• Finally, alternate encoding involves
masking commands by using
hexadecimal, ASCII, or Unicode
encoding. By itself this will not return
valuable information, so it is combined
with other types of attacks to assist in
evading detection (Halfond, Viegas, &
Orso, 2006). The existence of alternate
encoding is a significant argument
against the use of blacklisting as an
effective countermeasure (Cisco, 2016).

In 2013, Kindy and Pathan composed a
condensed list of only the two most common
SQL injection attacks, tautology-based and
inference attacks (Kindy & Pathan, 2013).
However, the list goes into greater depth about
the subtypes of each attack. Tautology
subtypes are string injection, numerical
injection, and comments attack (Kindy &
Pathan, 2013). Inference subtypes are blind
injection, timing attacks, database backdoors,
and command injection (Kindy & Pathan,
2013). Blind injection and timing attacks were
discussed by Halfond, Viegas, and Orso in 2006
(Halfond, Viegas, & Orso, 2006). While adding
a few new attack methods, the types of SQL
injection attacks remain approximately the
same as those discussed in 2006.

Attackers have used some form of SQL
injection to deface public websites, install
malware, or obtain sensitive information like
social security numbers or credit card details;
any of these consequences are expensive and
embarrassing to the victim. In particular, one
string of high-profile attacks took place over a
seven-year period affecting popular
organizations like 7-Eleven, JCPenney Inc.,
NASDAQ, Dow Jones Inc., and JetBlue
Airways (Kitten, 2013). The attackers most
often used SQL injection to gain initial access
to a targeted system eventually collecting over
160 million credit card numbers and related
personal information from 2005 to 2012
(Department of Justice, 2013). The cost to the
16 affected organizations totaled in the
hundreds of millions of dollars, and three
corporate victims alone had combined losses of
over $300 million (Department of Justice,
2013). This does not include the indirect costs
of identity theft of the individual consumers
whose personal information was stolen. This
streak of attacks suggests that some attackers
are not content with gaining unauthorized
access to personal information from a single
event; if successful, attackers may continue to
use the same exploits to attack multiple
organizations.

In 2011, Sony was attacked multiple times
through the Sony PlayStation Network, Sony
Music Japan, and Sony Pictures. While it is
difficult to confirm that the attackers of the
PlayStation Network used an SQL injection
vulnerability, the attackers of Sony Music
Japan and Sony Pictures certainly did
(Anthony, 2011; Wisniewski, 2011; Henderson,
2011). The attack on the PlayStation Network
compromised the personal information of 100
million users and began a month-long outage
estimated to cost $171 million (Henderson,
2011). While the attack on Sony Music did not
result in a breach of sensitive information, the
Sony Pictures attack resulted in the disclosure

SQL Injection: The Longest Running Sequel in … JDFSL V12N2

© 2017 ADFSL Page 103

of personal information of one million users
(Wisniewski, 2011; Henderson, 2011). Sony’s
eventful year highlights the need to remove
known vulnerabilities and apply lessons learned
to all areas of an organization aggressively.
Otherwise, organizations can expect to
continue to lose money from known and
preventable security issues.

 COUNTERMEASURES
AVAILABLE TO

PROTECT AGAINST
THE THREAT

Luckily, the defense against an SQL injection
attack can be relatively simple, and most of
the solutions involve treating data entered by
users as untrusted or hostile (McDonald,
2002). Some countermeasures against an SQL
injection attack include:

• Whitelisting
• Prepared statements
• Stored procedures
Whitelisting refers to accepting data in an

input field only if it contains predefined,
permitted characters (Cisco, 2016). For
example, if a user input field was associated
with entering numbers like whole dollar
amounts, whitelisting would ensure that entries
with numeric characters only would be
accepted. Any entries with letters or special
characters would be rejected. The inverse of
whitelisting is blacklisting, which rejects
entries with characters known to facilitate SQL
injection attacks. Whitelisting is an “implicit
deny” concept where all entries are rejected
except those explicitly allowed by the
programmer, and blacklisting is an “explicit
deny” concept where all entries are accepted
except those explicitly denied. For SQL
injection attacks, whitelisting is more effective
than blacklisting because attackers can use

sophisticated techniques like alternate encoding
to hide blacklisted characters in search fields
nullifying the effect of the blacklisting feature
(Cisco, 2016).

Prepared statements, also known as
parameterized queries, focus on how
programmers structure data requests based on
what the user types in the input fields
(OWASP, 2016). If done properly, a database
will interpret the user input as it is exactly
written and not as a command. For example,
if a programmer used prepared statements in
the SQL coding in the above example and a
malicious attacker entered ' or '1'='1, the SQL
server would search for an account with the
exact name ' or '1'='1 instead of returning all
data from the accounts table, preventing
unauthorized disclosure of information
(OWASP, 2016).

Stored procedures are very similar to
prepared statements, and they have the same
security benefits as prepared statements
(OWASP, 2016). With stored procedures,
however, the SQL code is kept within the SQL
database (OWASP, 2016).

Other defenses exist to help make SQL
injection attacks less successful. For example,
keeping table names less predictable, like
changing the table name “accounts” to
“acc_pay_mon,” helps make it more difficult
for attackers to guess successful commands
(McDonald, 2002). Additionally, an intrusion
prevention system (IPS) can detect the
signatures of an SQL injection attack and take
automatic action to thwart the attack (Cisco,
2016).

To help reduce the risk of a successful SQL
injection attack, security professionals can
train an organization’s website application
developers to write code with security
techniques like whitelisting, prepared
statements, and stored procedures. While
developers are focused on what their programs

JDFSL V12N2 SQL Injection: The Longest Running Sequel in …

Page 104 © 2017 ADFSL

should do, it is equally important to determine
what their programs could do from a security
standpoint, so code reviews and dynamic
testing of website applications should be
performed to help identify SQL injection
vulnerabilities. Until developers uniformly
begin coding with security in mind, injection
will likely remain the number one website
vulnerability on the OWASP’s Top 10. The
additional time and effort to incorporate secure
coding, static and dynamic testing, and an IPS
can be far less than the cost of a successful
SQL injection attack costing $196,000 or a
string of attacks costing hundreds of millions of
dollars. One hundred million credit and debit
cards were stolen in the 2009 Heartland
Payment Systems breach which was the result
of SQL injection and it is estimated they paid
out approximately $140 million in fines and
other penalties (Lewis, 2015).

 CONCLUSION
From its discovery in 1998 to the current
forms of attack, SQL injection has been a
thorn in the sides of website developers using
associated SQL databases. However, the attack
itself did not receive much attention until 2002
which may have been a function of the
terrorist attacks of September 11, 2001 and the
concentration of viruses and worms appearing
in the years prior to 2002. Between 1998 and
2006, the types of documented SQL injection
attacks expanded from one to seven, but
today’s most common attacks can be grouped
into two major groups: tautology-based and
inference attacks. Countermeasures against an
SQL injection attack include whitelisting,
prepared statements, stored procedures, and an
IPS. Many of those countermeasures rely on a
properly trained programmer with security in
mind, and the cost of countermeasures can be
far less than the cost of a successful injection
attack and the subsequent cleanup. When
defending against SQL injection attacks, “an
ounce of prevention is worth a pound of cure.”

SQL Injection: The Longest Running Sequel in … JDFSL V12N2

© 2017 ADFSL Page 105

REFERENCES
Alghamdi, A., Ahmad, B., & Imran, M.

(November, 2015). SQL injection attack,
still an unaddressed issue with dynamic
web applications. International Journal of
Computer Science Engineering, 4(6).

Anthony, S. (2011, April 27). How the
Playstation Network was hacked. Retrieved
October 16, 2016, from Extreme Tech
website:
http://www.extremetech.com/gaming/8421
8-how-the-playstation-network-was-hacked

Cisco. (2016, February 15). Understanding
SQL injection. Retrieved July 19, 2016,
from Cisco website:
http://www.cisco.com/c/en/us/about/secu
rity-center/sql-injection.html#6

Cox, J. (2015, November 20). The history of
SQL injection, the hack that will never go
away. Retrieved July 17, 2016, from
Motherboard website:
http://motherboard.vice.com/read/the-
history-of-sql-injection-the-hack-that-will-
never-go-away

Department of Justice. (2013, July 25). Five
indicted in New Jersey for largest known
data breach conspiracy. Retrieved October
18, 2016, from Department of Justice
website: https://www.justice.gov/usao-
nj/pr/five-indicted-new-jersey-largest-
known-data-breach-conspiracy

Forristal, J. (2016). Jeff Forristal LinkedIn
profile. Retrieved August 29, 2016, from
LinkedIn website:
https://www.linkedin.com/in/jeffforristal

Gates, B. (2002, January 15). Bill Gates:
Trustworthy computing. Retrieved August
30, 2016, from Wired.com website:

http://www.wired.com/2002/01/bill-gates-
trustworthy-computing/

Halfond, W & Orso, A. (2005). AMNESIA:
Analysis and monitoring for NEutralizing
SQL-Injection attacks. Proceedings of the
Automated Software Engineering
Conference 2005, Long Beach, CA.
Retrieved from http://www-
bcf.usc.edu/~halfond/papers/halfond05ase.
pdf

Halfond, W., Viegas, J., & Orso, A. (2006). A
classification of SQL injection attacks and
countermeasures. Retrieved September 1,
2016, from Georgia Institute of Technology
website:
http://www.cc.gatech.edu/fac/Alex.Orso/p
apers/halfond.viegas.orso.ISSSE06.pdf

Henderson, N. (2011, June 3). Hackers attack
Sony Pictures with single SQL injection.
Retrieved October 18, 2016, from The
Whir website:
http://www.thewhir.com/web-hosting-
news/hackers-attack-sony-pictures-with-
single-sql-injection

Henderson, N. (2011, May 24). Sony estimates
$171M in losses from Playstation Network
outage, more from earthquake. Retrieved
October 18, 2016, from The Whir website:
http://www.thewhir.com/web-hosting-
news/sony-estimates-171m-in-losses-from-
playstation-network-outage-more-from-
earthquake

Hunag, Y., Huang, S., Lin, T., & Tsai, C.
(2003, May). Web application security
assessment by faultinjection and behavior
monitoring. Proceedings of the 12th
International Conference on World Wide
Web, Budapest, Hungary, 148-159.

JDFSL V12N2 SQL Injection: The Longest Running Sequel in …

Page 106 © 2017 ADFSL

Retrieved from
http://dl.acm.org/citation.cfm?doid=77515
2.775174

Kemalis, K., & Tzouramanis, T. (2008,
March). SQL-IDS: a specification-based
approach for SQL-injection detection.
Proceedings of the 2008 ACM Symposium
on Applied Computing, MArch16-20, 2008.
Fortaleza, Brazil. Retrieved from
http://dl.acm.org/citation.cfm?doid=13636
86.1364201

Kindy, D., & Pathan, A. (2013). A Detailed
Survey on various aspects of SQL Injection
in Web Applications; Vulnerabilities,
Innovative Attacks and Remedies.
Internation Journal of Communication
Networks and Information Security , 80-92.

Kitten, T. (2013, July 26). Card fraud scheme:
The breached victims. Retrieved October
18, 2016, from Bank Info Security website:
http://www.bankinfosecurity.com/card-
fraud-scheme-breached-victims-a-5941

Lewis, D. (2015, May). Heartland payment
systems suffers data breach. Forbes.com.
Retrieved from
https://www.forbes.com/sites/davelewis/20
15/05/31/heartland-payment-systems-
suffers-data-breach/#7f5798a2744a

Lewis, P. (1999, April 1). State of the art;
Melissa and her cousins. Retrieved August
30, 2016, from The New York Times
website:
http://www.nytimes.com/1999/04/01/tech
nology/state-of-the-art-melissa-and-her-
cousins.html

McDonald, S. (2002, April 8). SQL injection:
Modes of attack, defence, and why it
matters. Retrieved July 17, 2016, from
SANS Institute:
https://www.sans.org/reading-
room/whitepapers/securecode/sql-injection-
modes-attack-defence-matters-23

NIST. (2010, February). NIST Special
Publication 800-37 Guide for Applying the
Risk Management Framework to Federal
Information Systems Revision 1. Retrieved
August 29, 2016, from NIST website:
http://csrc.nist.gov/publications/nistpubs/
800-37-rev1/sp800-37-rev1-final.pdf

NTT Group. (2016). 2016 NTT Group Global
Threat Intelligence Report. NTT Group
Security.

NTT Group. (2014). NTT Group 2014 Global
Threat Intelligence Report. NTT
Innovation Institute.

OWASP. (2013). OWASP Top 10 - 2013: The
ten most critical web application security
risks. OWASP.

OWASP. (2016, April 10). SQL injection.
Retrieved July 17, 2016, from OWASP
website:
https://www.owasp.org/index.php/SQL_in
jection

OWASP. (2016, May 25). SQL injection
prevention cheat sheet. Retrieved July 19,
2016, from OWASP website:
https://www.owasp.org/index.php/SQL_I
njection_Prevention_Cheat_Sheet

Poeter, D. (2011, September 8). How
cybersecurity has changed since 9/11.
Retrieved August 30, 2016, from PCMag
website:
http://www.pcmag.com/article2/0,2817,23
92642,00.asp

Poore, K. (2001, November 11). Nimda worm -
Why is it different? Retrieved August 31,
2016, from SANS website:
https://www.sans.org/reading-
room/whitepapers/malicious/nimda-worm-
different-98 rain.forest.puppy. (1998,
December 25). NT web technology
vulnerabilities. Phrack Magazine , 8 (54).

SQL Injection: The Longest Running Sequel in … JDFSL V12N2

© 2017 ADFSL Page 107

Shankdhar, P. (2015, April 28). Best free and
open source SQL injection tools. Retrieved
August 29, 2016, from Infosec Institute
website:
http://resources.infosecinstitute.com/best-
free-and-open-source-sql-injection-tools/

Shar, L., & Tan, H. (2013, March). Defeating
SQL injection. Computer. 46(3). Retrieved
from
https://www.computer.org/csdl/mags/co/2
013/03/mco2013030069.pdf

Tham, A. (2001, August 4). What is Code Red
worm? Retrieved August 31, 2016, from
SANSwebsite:
https://www.sans.org/reading-
room/whitepapers/malicious/code-red-
worm-45

The Telegraph. (2009, March 18). Top 10
worst computer viruses. Retrieved August
31, 2016, from The Telegraph website:
http://www.telegraph.co.uk/technology/50
12057/Top-10-worst-computer-viruses-of-
all-time.html

Ward, M. (2010, May 4). A decade on from
the ILoveYou bug. Retrieved August 30,
2016, from BBC website:
http://www.bbc.com/news/10095957

Wisniewski, C. (2011, May 24). Sony Music
Japan hacked through SQL injection flaw.
Retrieved October 18, 2016, from Sophos
website:
https://nakedsecurity.sophos.com/2011/05
/24/sony-music-japan-hacked-through-sql-
injection-flaw/

Wood, P. (2011, February 10). 10th
anniversary of the Anna Kournikova virus.
Retrieved August 31, 2016, from Symantec
website:
http://www.symantec.com/connect/blogs/
10th-anniversary-anna-kournikova-virus

JDFSL V12N2 SQL Injection: The Longest Running Sequel in …

Page 108 © 2017 ADFSL

	SQL Injection: The Longest Running Sequel in Programming History
	Recommended Citation

	SQL Injection: The Longest Running Sequel in Programming History

