
Annual ADFSL Conference on Digital Forensics, Security and Law 2022
Proceedings

Human-Controlled Fuzzing With AFL Human-Controlled Fuzzing With AFL

Maxim Grishin
Bachelor of Information Security, MEPhI; Moscow, Russia

Igor Korkin, PhD
Security Researcher; Moscow, Russia

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Grishin, Maxim and Korkin, PhD, Igor, "Human-Controlled Fuzzing With AFL" (2022). Annual ADFSL
Conference on Digital Forensics, Security and Law. 3.
https://commons.erau.edu/adfsl/2022/presentations/3

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2022
https://commons.erau.edu/adfsl/2022
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2022/presentations/3?utm_source=commons.erau.edu%2Fadfsl%2F2022%2Fpresentations%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 1

HUMAN-CONTROLLED FUZZING WITH AFL

Maxim Grishin

Bachelor of Information Security, MEPhI

Moscow, Russia

grisinmaksim096@gmail.com

Igor Korkin, PhD

Security Researcher

Moscow, Russia

igor.korkin@gmail.com

ABSTRACT

Fuzzing techniques are applied to reveal different types of bugs and vulnerabilities. American Fuzzy Lop

(AFL) is a free most popular software fuzzer used by many other fuzzing frameworks. AFL supports

autonomous mode of operation that uses the previous step output into the next step, as a result fuzzer

spends a lot of time analyzing minor code sections. By making fuzzing process more focused and human

controlled security expert can save time and find more bugs in less time. We designed a new module that

can fuzz only the specified functions. As a result, the chosen ones will be inspected more meticulously by a

fuzzer, without wasting the time on inspecting minor code sections. The module provides API so that an

expert can change which code functions need work in runtime. The module has been integrated with AFL

and successfully responds to the challenge.

Keywords: software security, dynamic analysis, fuzzing, AFL.

1. INTRODUCTION

Fuzzing is a popular method of dynamic program

analysis. It is a technique of automated testing

when a program receives specially modified,

incorrect data that can lead to its emergency state or

undefined behavior. Of course, with the help of

fuzzing, it is possible to identify a large number of

errors and at least a large number of vulnerabilities

that can lead it to incorrect behavior.

Fuzzer uses input data to modify them using

mutation and generation algorithms. It repeatedly

passes them to the input of the tested program. As

usual, the data is changed in such a way as to

increase the coverage of the basic blocks of the

program code.Here are the main stages of a general

fuzzing process:

• To determine the purpose of fuzzing.

• To determine the protocol and input data

type.

• Changing input data using mutation and

generation algorithms.

• Program execution with modified data.

• Error detection based on coverage metrics.

2. AFL TOOL FEATURES

This section covers the analysis of the AFL fuzzing

features.

2.1. SCHEME AND MODES

The following steps describe the principle of AFL,

see Figure 1:

1. Code instrumentation.

2. Moving data to a queue.

3. The next input is extracted from the

queue and trimmed to the smallest size,

which does not change the behavior of

the program.

4. The input is mutated using mutation

algorithms.

5. The program receives a mutated input.

6. If the input has led to a new state of the

program, this input is added to the queue.

7. Go to the step 1.

AFL has built-in modes (Zalewski, 2020) like

Syzygy and QEMU. The first mode allows you to

work in the tool instrument.exe. QEMU is a mode

that allows AFL to realize software fuzzing without

a source code file. The binary file instrumentation

has been added to the qemu tcg binary translation

engine. AFL has a build script

~/AFL/qemu_mode/build_qemu_support.sh, the

result of which is an afl-qemu-trace file that

emulates working in afl-qemu mode.

Master and slave modes allow you to run parallel

fuzzing processes as multiple instances on multiple

cores. The threads are regularly synchronized and

exchange data about the found paths. It is good

practice to run multiple threads, since threads in the

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 2

slave mode choose the mutation algorithm

randomly, but in the master mode, one type of

mutation is repeatedly applied. This can explain

why slave instances find bugs faster and in greater

numbers compared to master ones.

2.2. ANALYSIS OF FUZZING WITH AFL

Despite the considerable list of advantages, AFL

has some disadvantages, see Table 1. It is a single-

platform tool, that means that AFL is intended to be

deployed on UNIX systems. The method of

instrumentation based on random number

generation at a certain program size (many basic

blocks) increases the probability of collisions,

which can lead to a situation where two different

tuples will have the same numerical value and a

certain part of the unique traces will not be

recorded.

AFL can also spend a lot of time implementing

some steps in the fuzzing process. For example, it

can be the selection of an input for an offset relative

to an if-block. Or the selection of a mutation

algorithm to obtain a new state of the program.

These two problems exist at different levels: the

first is at the level of basic blocks, and the second

one is at the level of execution traces.

In the first case, there is a solution that allows you

to determine a branch that is incident to an if-

block, with a large number of blocks not yet

visited. This is the so-called "unidirectional

branches" method. In this case, the use of a

debugger and a recursive search algorithm is

required.

In the second case, it is possible to collect

information about the number of traces on a certain

set and information about the number of new tuples

that were obtained during the mutation of the data

of this set. We can update the information

periodically for each element of the queue. If an

element with the "best statistics" is found, redirect

the execution flow: change the order of the queue

elements and the pointer of the current element.

The software implementation of the second solution

is proposed in this paper. As you can see, this is an

easy way to increase code coverage and, as a result,

find more traces (including emergency ones) for a

certain period without resorting to recursion.

There is an approach called "directed fuzzing". It is

based on the fact that static analysis is first applied

to determine the blocks that may contain a

vulnerability, and then the maximum subgraph (a

connected graph with a maximum subset of such

blocks) is dynamically investigated using fuzzing.

In relation to AFL, this approach has not been

implemented, although its independent

implementation as a fuzzer during tests had better

results than AFL.

Is it a
new stage?FuzzingMutationQueueInput

No

Yes

Figure 1 AFL algorithm scheme

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 3

Table 1. Analysis of AFL fuzzing.

Feature Technical Problem The possible third-party solution

Single-platform unsupported WinAFL usage

External mutators unsupported ─

Multithreading supported ─

Interaction with sanitizers supported ─

QEMU - mode supported ─

Multithreading supported ─

Finding such error types as

memory_leak and out_of_memory
unsupported integration with libFuzzer

3. PROGRAM TOOL DEVELOPING FOR

INTEGRATION WITH AFL

The problem is analyzed and a list of functional

requirements for the program module (PM) is

formed in this section. As already noted in the

previous section, AFL in the fuzzing process

spends a lot of time selecting mutated queue item

data to obtain a new state of the application under

test, even if the coverage does not increase for a

long time. Therefore, it is advisable to consider an

alternative queue element with better indicators, or

which has not yet been investigated, by redirecting

the program execution vector.

3.1. FUNCTIONAL REQUIREMENTS

In this paper program module integration scheme

with AFL is considered, see Figure 2.

The module receives statistics from AFL, analyzes

it and shows it to an expert who decides whether to

continue working with the current element or with

another element of the queue. The module receives

this command and writes the corresponding

changes to the AFL control files and variables.

Then the fuzzing process continues and after a

certain period the cycle repeats.

PM gets access to the file traces.txt shared with

AFL, in which AFL records traces in the form of

tuple sequences and the multiplicity of passing

through the tuple within a single execution. After a

given period T, the module stops the afl-fuzz

process and counts duplicate traces, forming

groups. A queue element is defined for each group.

The group is associated with information about the

coverage share and the number of runs. A report is

generated for each element of the queue, which is

provided to the expert. The expert analyzes the PM

report and the AFL status window and sends a

command to the module. To continue the fuzzing

process, the module sends a SIGCONT signal to

the process and after a period T the cycle repeats.

Otherwise, the module changes the queue order.

The expert-selected element replaces the current

element under study, and the previous set of

elements occupies a position in front of it, as

already tested.

Table 2 shows a set of basic functions that must be

implemented in PM to meet the requirement.

a) b)

Figure 2 AFL interaction scheme: a) without program module (PM) and b) with it

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 4

Table 2. The proposed tool: the main module functions and their descriptions.

Function Name Description

getAflPid() Returns afl-fuzz process id

runAflFuzzing() Runs afl-fuzz process

createStateTable() Create report table for the expert

updateStateTable() Reports table update

doNextCom() Performs the next user command

getTotalList() Analyzes traces set from fuzzer. Returns data structure - list

startNewProcess() Changes queue and run a new process

printMenu() Displays command interface menu for the expert

3.2. CONFIGURATIONS AND

DEPENDENCIES

Since AFL requires a Linux-based platform,

development and configuration is done in the

Ubuntu Desktop 20.04 LTS distribution. To interact

with PM, it is necessary to instrument the source

code in the afl-fuzz.c file so that the fuzzer records

all traces and the multiplicity of tuple execution in

the file. Therefore, the has_new_bits() function was

chosen, which intercepts the new state after the last

run. This function is called at each iteration of the

loop after the execution of the program. The

function updates the trace_bits[] array, in which

the value of the element equal to 1 corresponds to

the label of the tuple included in the current trace,

see Figure 3. After instrumentation and code

compilation afl-fuzz utility is ready to use.

3.3. PROGRAM DEVELOPED STAGE

The programming language Python 3 version 3.9

was chosen to implement the module. The module

code is written in the form of a python script

fuzz.py. The run command is similar to AFL. After

AFL process start, the user receives feedback in the

form of a status window and a report table fuzz.py,

see Figure 4.

0 0 0 1 0 0...

trace_bits trace_bits + tuple

tuple = (prev >>1) curr

Figure 3 Trace_bits[] array structure

Figure 4 Report table from fuzz.py

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 5

The user interacts with the module through the

command interface. The main field of the table is

part_cov. The value of this variable is calculated as

the ratio of the number of new unique tuples found

qcov to the number of runs on the current qrun

element. This is called coverage productivity.

Part_execs is defined as the program runs

percentage on the current element of the total

number of runs of the program. The Figure 5 shows

a detailed fuzzing-system components interaction.

Receiving the run command from the user, fuzz.py

sends control signals to the fuzzer, starting the

afl_fuzz process with certain parameters and report

table update time TRT. During this time, the fuzzer

performs a standard cycle: retrieves the next

element from the queue, mutates it, tests the

program response, updates the queue and displays a

status window for the expert. At the same time, the

specially instrumented has_new_bits() function

writes traces. When time TRT is over, fuzz.py stops

the process, reads the traces, and determines such

characteristics as coverage productivity part_cov,

part_exec, qcov, qrun. The results are represented

in the form of the report table. The operator

analyzes the data in the report table and sends a

command to resume the process or redirect the flow

if, for example, the coverage productivity is small,

but at the same time the part_exec value is high.

You can redirect the execution flow by selecting an

element from the candidate list in the report table.

The candidate list was defined by the module at the

previous stage. These are queue elements that have

not been tested yet or have comparatively better

characteristics. At the same time, unexplored

elements have a higher priority since they can

potentially increase coverage. Having selected an

element from the list, the operator sends a

command to the module, which modifies the queue

order (new element should be in the first place) and

makes appropriate changes for the fuzzer service

variables to avoid conflict. Finally, file with traces

is cleared, the afl_fuzz process resumes, then the

cycle repeats again.

Figure 5 Detailed fuzzing-system components interaction scheme

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 6

4. RESULTS

The developed module was checked using the tiff-

4.0.3 library utilities, which are designed to work

with .tiff files. It is known that many utilities of this

library contain a large number of vulnerabilities

(Begaev, 2020). Therefore, this library is quite

suitable for testing the module and comparing it

with other AFL-like fuzzers. AFL and aflFast were

chosen as such phasers.

The fuzzing time is Tf = 12 h. This is not enough to

have a quality program fuzzing, but it is quite

enough to test the developed module, since the

utilities have already been tested by the developers.

The report table update time TRT = 30 minutes. The

fuzzing results are shown in Table 3 and Figure 6.

For each utility and each fuzzer, the total number of

unique crashes and total coverage were

determined. Having analyzed the results of the

table, we can conclude that the proposed fuzzing

system in most cases finds crashes faster than other

fuzzers.

Comparing with AFLplusplus (AFL++). AFL++

implements a similar mechanism that uses AFLFast

module to analyze and process similar code

sections during fuzzing. The developed module has

been compared with AFLFast project, see Table 3

and Figure 6. The designed module (AFL+ fuzz.py)

is able to find more crashes and bugs in less time as

well as increasing code coverage.

5. CONCLUSION

In this paper, a new human-controlled fuzzing

based on AFL is proposed. This allows to make the

fuzzing process more manageable and flexible. The

results of the fuzzing system tests and their

comparison with other AFL-like fuzzers allow us to

conclude that the speed of searching for unique

emergency traces has been increased. Also, the

total code coverage is greater than the popular AFL

implementation shows.

It is important to note that separate research can be

carried out by determining the dependence of the

fuzzing results on such parameters as the report

table update time TRT and the relative number of

iterations without changing the fuzzer state Q. The

second parameter defines the condition for

redirecting the execution flow by the expert. It

correlates with coverage productivity. In this work

this parameter is defined as Q ≥ 1/3.

In the future, it is planned to expand the

functionality of the fuzzing system by visualizing

the control flow graph (CFG) and displaying

statistics on the graph edges to the expert.

It is also planned to use this fuzzing system

together with static code analyzers to specify and

reduce the attack surface.

Analysis of applying machine learning technique

for improving fuzzing capabilities will be the

subject new research.

Table 3. Fuzzing results.

Library

Name
AFL AFLFast

AFL+

fuzz.py

Giff2tiff 98 32% 135 68% 178 57%

Ppm2tiff 31 44% 54 52% 73 39%

Tiff2pdf 175 53% 193 71% 214 64%

Jpegopt 27 20% 40 29% 57 31%

Figure 6 Fuzzing results

0

50

100

150

200

250

Giff2tiff Ppm2tiff Tiff2pdf Jpegopt

98

31

175

27

135

54

193

40

178

73

214

57

To
ta

l c
ra

sh
e

s

Fuzzing results

AFL AFLFast AFL+fuzz.py

The 15th Annual ADFSL Conference on Digital Forensics, Security and Law, 2022

 7

6. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their

constructive feedback on this work.

7. REFERENCES

[1] Zalewski, M (2020). American Fuzzy Lop.

Retrieved from

https://lcamtuf.coredump.cx/afl/

[2] AFLfast. (2020). AFLFast (extends AFL with

Power Schedules). Retrieved from

https://github.com/mboehme/aflfast

[3] libTiff-4.0.3. (2016). Chapter 10. Graphics and

Font Libraries. Retrieved from

https://linuxfromscratch.org/blfs/view/7.10/gen

eral/libtiff.html

[4] Pramanik, A., Tayade, A. (2017). Study and

Comparison of General Purpose Fuzzers.

University of Wisconsin-Madison, 2017, 19 p.

[5] Mishechkin, M. (2017). Overview of various

fuzzing tools as dynamic software analysis

tools. Retrieved from

https://moluch.ru/archive/186/47575/

[6] Haller, I., Slowinska, A., Neugschwandtner,

M.. (2013). А guided fuzzer to find buffer

overflow vulnerabilities , , pp 49-64.

[7] Begaev, A., Kashin, S. (2020). Identification

of vulnerabilities and undeclared features in

software. ITMO University, 2020, 38 p.

[8] Repkin, A. (2020). Condition branch

prioritization module for the AFL Automated

Vulnerability search system. TUSUR.

https://lcamtuf.coredump.cx/afl/
https://github.com/mboehme/aflfast
https://moluch.ru/archive/186/47575/

	Human-Controlled Fuzzing With AFL
	Scholarly Commons Citation

	1. Introduction
	2. AFL TOOL FEATURES
	2.1. Scheme and modes
	2.2. Analysis of fuzzing with AFL

	3. PROGRAM TOOL DEVELOPING FOR INTEGRATION WITH AFL
	3.1. Functional requirements
	3.2. Configurations and dependencies
	3.3. Program Developed Stage

	4. RESULTS
	5. CONCLUSION
	6. Acknowledgments
	7. References

