
Doctoral Dissertations and Master's Theses

Fall 11-2019

Efficient Privacy-Aware Imagery Data Analysis Efficient Privacy-Aware Imagery Data Analysis

Yifan Tian
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Electrical and Computer Engineering Commons, and the Privacy Law Commons

Scholarly Commons Citation Scholarly Commons Citation
Tian, Yifan, "Efficient Privacy-Aware Imagery Data Analysis" (2019). Doctoral Dissertations and Master's
Theses. 480.
https://commons.erau.edu/edt/480

This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been
accepted for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly
Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fedt%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1234?utm_source=commons.erau.edu%2Fedt%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/480?utm_source=commons.erau.edu%2Fedt%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Embry-Riddle Aeronautical University

Doctoral Dissertation

Efficient Privacy-Aware Imagery Data

Analysis

Author:

Yifan Tian

Advisor:

Dr. Jiawei Yuan

Committee Members:

Dr. Radu Babiceanu

Dr. Yantian Hou

Dr. Remzi Seker

Dr. Houbing Song

Dr. Tianyu Yang

A dissertation submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in Electrical Engineering & Computer Science

Department of Electrical, Computer, Software, & Systems Engineering

November 2019

http://pages.erau.edu/~tiany1/
https://sites.google.com/view/yuanj
https://faculty.erau.edu/Radu.Babiceanu
http://cs.boisestate.edu/~yhou/
https://faculty.erau.edu/Remzi.Seker
http://www.songlab.us/
https://faculty.erau.edu/Tianyu.Yang

“I am not merely seeking an ‘outcome’ since human beings prefer to find shortcuts to

that outcome. Once I am on that shortcut, probably I will miss the truth I am seeking

as well as my passion for the truth. The critical thing is the will to seek the truth, even

if I fail this time, as long as the will exists, I will find the truth someday because I will

always keep going.”

Leone Abbacchio

Abstract

The widespread use of smartphones and camera-coupled Internet of Thing (IoT) devices

triggers an explosive growth of imagery data. To extract and process the rich contents

contained in imagery data, various image analysis techniques have been investigated and

applied to a spectrum of application scenarios. In recent years, breakthroughs in deep

learning have powered a new revolution for image analysis in terms of effectiveness with

high resource consumption. Given the fact that most smartphones and IoT devices have

limited computational capability and battery life, they are not ready for the processing

of computational intensive analytics over imagery data collected by them, especially

when deep learning is involved. To resolve the bottleneck of computation, storage,

and energy for these resource constrained devices, offloading complex image analysis to

public cloud computing platforms has become a promising trend in both academia and

industry. However, an outstanding challenge with public cloud is on the protection of

sensitive information contained in many imagery data, such as personal identities and

financial data. Directly sending imagery data to the public cloud can cause serious

privacy concerns and even legal issues.

In this dissertation, I propose a comprehensive privacy-preserving imagery data analysis

framework which can be integrated in different application scenarios to assist image anal-

ysis for resource-constrained devices with efficiency, accuracy, and privacy protection.

I first identify security challenges in the utilization of public cloud for image analysis.

Then, I design and develop a set of novel solutions to address these challenges. These

solutions will be featured by strong privacy guarantee, lightweight computation, low ac-

curacy loss compared with image analysis without privacy protection. To optimize the

communication overhead and resource utilization of using cloud computing, I investigate

edge computing, which is a promising technique to ameliorate the high communication

overhead in cloud-assisted architectures. Furthermore, to boost the performance of my

solutions under both cloud and edge deployment, I also provide a set of pluggable en-

hancement modules to be applied to meet different requirements for various tasks. By

exploring the features of edge computing and cloud computing, I flexibly incorporate

them as a comprehensive framework to provide privacy-preserving image analysis ser-

vices.

Acknowledgements

First of all, I would like to thank my Ph.D. advisor, Dr. Jiawei Yuan, for supporting

me during the past four years. Dr. Yuan is a professional full of knowledge and wisdom

and he’s one of the smartest people I know. He is a great advisor who always leads me

with patience and also a good and warm friend in daily life. I am very fortunate to have

worked with Dr. Yuan and I hope that I could be as lively, enthusiastic, and energetic

as him and someday be able to flourish in academia works as he does.

I want to thank all my committee members for years of guidance and collaboration in

my Ph.D. life. I am grateful that Dr. Radu Babiceanu provided me kind help with

my career as well as his fantastic mentoring of system engineering related topics. Great

thanks to Dr. Yantian Hou for his long-time collaboration starting from my very first

full paper. I also want to give thanks to Dr. Remzi Seker for his encouragement on my

dissertation and our discussion regarding network security and cryptocurrencies. It has

been an honor to work with Dr. Houbing Song and his SONG Lab. They extended me

a great helping hand when I was stuck on the antenna and hardware issues. I thank

God for meeting Dr. Tianyu Yang on my first day at ERAU and being introduced to

the local community physically and spiritually.

I also need to express my gratitude to everyone who gave me help in academia and

industry. I highly appreciate Dr. Shucheng Yu for his feedbacks on our blockchain

project and our discussion on all the other topics. Many thanks to Prof. Farahzad

Behi, Dr. Keith Garfield and Dr. Timothy Wilson for the opportunity to work as a lab

instructor for CS 225 and I really harvested a lot from the year-long instructing. I owe

Jian Wang and Dr. Yongxin Liu a thank you for their “Build UAV from Scratch 101”

series and “UAV Resurrection” series after rookie pilot Yifan crashed the experimenting

v

drone. I will not forget the discussion on those machine learning theories with Renkun

Ni, which showed me a different angle of machine learning from a statistic/mathematics

perspective. I also want to recognize the best teammate, Ashok Vardhan Raja, best

thank you for all your efforts in our Best of Session UAV paper. Kudos to all my other

collaborators Dr. Laurent Njilla, Alexander Steinbacher, Thaniel Tong, and Jayson

Tinsley in our UAV project. I would like to thank Yushan Jiang as well for his time and

our discussion to optimize resource-constrained neural network implementation. Huge

credit to Dr. Markus Jakobsson for his advising in our anti-phishing research and his

lead during my internship. Cheers to all ACID team members at Agari Data, Inc.,

Crane Hassold, James Linton and Ronnie Tokazowski for the industry-level projects and

insights on cybersecurity and software engineering areas. And I thank Agari and fellow

Agarians for offering me an unforgettable internship experience.

I want to thank my mother, Wenwei Yuan, my father, Xiaodong Tian for their selfless

support so that I am able to explore the world of cybersecurity and become a better me.

I praise the Lord, my Father in heaven for all the wisdom, will and bless he granted me.

Finally and most importantly, I would like to thank my wife, Mengxin Cui for all the

late nights and early mornings, for all the life routines and occasional surprises, and for

always being there for me throughout up and downs in my life. I want to dedicate this

milestone of my life to them for their unconditional love and support.

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.3 Contributions . 6

1.4 Roadmap . 7

2 Problem Formulation 9

2.1 Cloud-assisted Privacy-preserving Descriptor Based Image Analysis 9

2.1.1 System Model . 9

2.1.2 Threat Model . 10

2.2 Edge-assisted Privacy-preserving Deep Learning Based Image Analysis . . 11

2.2.1 System Model . 11

2.2.2 Threat Model . 12

3 Privacy Protection for Descriptor Based Image Analysis 13

3.1 Introduction . 13

3.2 Related Works . 15

3.3 Preliminaries . 17

3.3.1 Image Descriptor Extraction . 17

3.3.2 Integer Vector Encryption (IVE) 18

3.4 Privacy-preserving Distance Comparison 19

3.4.1 Image Similarity Measurement . 19

3.4.2 PL1C: Privacy-preserving L1 Distance Comparison 20

3.4.3 PKLC: Privacy-preserving KL-Divergence Comparison 22

vii

Contents viii

3.5 Cloud Assisted Privacy-preserving Image Annotation 23

3.5.1 System Setup . 24

3.5.2 Dataset Encryption . 25

3.5.3 Secure Annotation Request . 25

3.5.4 Privacy-preserving Annotation on Cloud 26

3.5.5 Final Keyword Selection . 27

3.6 Preliminaries of CPAR . 28

3.6.1 k-dimension Tree . 29

3.6.2 Order-preserving Encryption . 29

3.7 Privacy-preserving Distance Comparison with Randomized k-d Forest . . 29

3.7.1 Randomized k-d Forest Search . 30

3.7.2 PL1C−RF : Privacy-preserving L1 Distance Comparison for Ran-
domized k-d Forest . 32

3.7.3 PKLC −RF : Privacy-preserving KL-Divergence Comparison for
Randomized k-d Forest . 33

3.8 Cloud-Assisted Privacy-preserving Image Annotation with Randomized
k-d Forest . 36

3.8.1 Detailed Construction of CPAR . 36

3.8.1.1 System Setup . 36

3.8.1.2 RKDF Encryption . 37

3.8.1.3 Secure Annotation Request 37

3.8.1.4 Privacy-preserving Annotation on Cloud 38

3.8.1.5 Final Keyword Selection 40

3.9 Conclusion . 40

4 Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 43

4.1 Security Analysis . 43

4.1.1 Security of Outsourcing STL1Ss,L1 and STKLSs,KL 44

4.1.2 Known Ciphertexts-Image Pairs 45

4.1.3 Request Unlinkability . 45

4.2 Evaluation of CAPIA . 47

4.2.1 System Setup and Dataset Encryption 48

4.2.2 Real-time Image Annotation . 49

4.2.3 Communication Cost and Storage Overhead 51

4.3 Evaluation of CPAR . 52

4.3.1 RKDF Construction and Encryption 53

4.3.2 Real-time Image Annotation . 53

4.4 Conclusion . 58

5 Privacy Protection for Deep Learning Based Image Analysis 59

5.1 Introduction . 59

5.2 Related Work . 63

5.3 Preliminaries - Convolutional Neural Network 64

5.4 Privacy-preserving Compute-intense Layers 66

5.4.1 PPCL: Privacy-preserving Convolutional Layer 66

5.4.2 PPFL: Privacy-preserving Fully-connected Layer 68

Contents ix

5.5 Edge-Assisted CNN Inference over Encrypted Imagery Data 69

5.5.1 Offline Phase . 70

5.5.2 Online Phase . 72

5.6 Discussion - Storage and Update of Pre-computed Keys 72

5.7 Discussion - Offloading Pooling Layers . 74

5.8 Enhancement - Integrity Check . 76

5.9 Enhancement - Fast Convolution . 78

5.10 Enhancement - Matrix Compression . 80

5.11 Conclusion . 81

6 Evaluation of Privacy Protection Modules for Deep Learning Based
Image Analysis 82

6.1 Security and Performance Analysis . 82

6.1.1 Security Analysis . 82

6.1.2 Numerical Analysis . 85

6.1.2.1 Computational Cost . 85

6.1.2.2 Communication Cost . 90

6.1.2.3 Storage Overhead . 91

6.1.2.4 Resource Consumption of Integrity Check 91

6.1.2.5 Analysis of Fast Convolution 94

6.2 Evaluation . 97

6.2.1 Efficiency - Offline Phase . 97

6.2.2 Efficiency - Online Phase . 97

6.2.3 Energy Consumption . 101

6.2.4 Accuracy . 101

6.2.5 Evaluation of Sample Rate in Integrity Check 102

6.2.5.1 Evaluation of Matrix Compression 103

6.3 Conclusion . 104

7 Future Works and Conclusion 107

7.1 Extension of Descriptor Based Image Analysis 107

7.2 Extension of Deep Learning Based Image Analysis 108

7.3 A Privacy-preserving Hybrid Cloud-Edge Framework for Image Analysis . 109

7.4 Conclusion . 110

Bibliography 112

List of Figures

3.1 Randomized k-d Forest . 30

3.2 Construction of PL1C −RF . 34

3.3 Construction of PKLC −RF . 35

4.1 Error rate of Approximation and Dimension of Approximated Vector
(PCA− 32) . 46

4.2 (a) System Setup and Encryption Cost (b) Request Generation Cost (c)
Distance Comparison Candidate Generation Cost on Cloud 46

4.3 Precision of CAPIA and Annotation without Encryption 50

4.4 Recall of CAPIA and Annotation without Encryption 50

4.5 Privacy-preserving Annotation Cost on Cloud with Different Approxima-
tion Power . 54

4.6 Speedup Rate with Different Approximation Power 54

4.7 Accuracy (Recall) of CPAR with Different Approximation Power 55

4.8 Speedup rate of CPAR with Different Accuracy Compared with CAPIA . 56

5.1 Examples of a Convolutional Layer and a Fully-connected Layer 65

5.2 Key Update for Power Connected Devices 73

5.3 Example of Pooling Layers . 75

6.1 Evaluation of Sample Rate r and Error Detection Rate 102

6.2 Evaluation of Sample Rate r and Returned Data Size 103

6.3 Evaluation of Convolutional Layers and Offloaded Computation Percentage103

x

List of Tables

4.1 Sample Annotation Results . 52

4.2 Sample Annotation Comparison between CAPIA and CPAR 57

5.1 Summary of Notations . 67

6.1 Numerical Analysis Summary . 86

6.2 Example Numerical Analysis on AlexNet 88

6.3 Example Numerical Analysis on FaceNet 89

6.4 Numerical Analysis of Integrity Check . 92

6.5 Example Comparison with/without Integrity Check 93

6.6 Efficiency Enhancement Analysis on AlexNet 95

6.7 Efficiency Enhancement Analysis on FaceNet 96

6.8 Experimental Evaluation Results on AlexNet 98

6.9 Comparison Between My Scheme and CryptonNets in First Convolutional
Layer of AlexNet . 99

6.10 Experimental Evaluation Results on Integrity Check 100

6.11 Power and Energy Consumption Evaluation 101

6.12 Communication Enhancement on AlexNet 104

6.13 Communication Enhancement on FaceNet 105

xi

Abbreviations

ANN Artificial Neural Network

CNN Convolutional Neural Network

CAPIA Cloud-Assisted Privacy-preserving Image Annotation

CPAR Cloud-assisted Privacy-preserving Image Annotation using

Randomized k-d Forest

DNN Deep Neural Network

FLOP Float Operation

FMV Full-Motion Video

GAN Generative Adversarial Network

HE Homomorphic Encryption

IoT Internet of Thing

IVE Integer Vector Encryption

JL Johnson-Lindenstrauss

KL Kullback-Leibler

LWE Learn with Error

LSTM Long Short-Term Memory

MEC Mobile Edge Computing

MPC Multi-party Computation

xii

Abbreviations xiii

OPE Order-preserving Encryption

OT Oblivious Transfer

PAHE Packed Additive Homomorphic Encryption

PCA Principle Componet Analysis

PKLC Privacy-preserving KL-Divergence Comparison

PKLC-RF Privacy-preserving KL-Divergence Comparison for

Randomized k-d Forest

PL1C Privacy-preserving L1 Distance Comparison

PL1C-RF Privacy-preserving L1 Distance Comparison for

Randomized k-d Forest

PPCL Privacy-preserving Convolutional Layer

PPFL Privacy-preserving Fully-connected Layer

PPT Probabilistic Polynomial Time

ReLU Rectified Linear Unit

RCNN Regional Convolutional Neural Network

RKDF Randomized k-d Forest

SE Searchable Encryption

SMID Single Instruction Multiple Data

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

To my parents and my wife

xiv

Chapter 1

Introduction

1.1 Motivation

From the first digital picture was taken, various research efforts have been spent on image

analysis, since imagery data contain a great amount of rich information. Image analysis

techniques have been adopted in a spectrum of scenarios, including classification [1–5],

annotation [6–8], segmentation [9–12], object detection [13–16], etc. These techniques

greatly fulfill the semantic gap between low level image pixels and high level human

perceivable concepts.

Meanwhile, the widespread use of smartphones brings the explosive growth in the number

of pictures taken. Forever’s Strategy & Business Development team [17] has pointed out

that the number of photos taken by smartphone is estimated to be 8.8 trillion in 2018.

Alongside the thriving mobile computing and Internet of Things (IoTs), the demands of

effective image analysis have become stronger ever. To perform effective imagery data

analysis, there are two major types of approaches: Descriptor Based Approach and Deep

Learning Based Approach.

1

Chapter 1. Introduction 2

• Descriptor Based Approach: In the descriptor based image analysis, a set of fea-

tures (also known as local descriptors), such as color space features and texture

features, will be extracted from images. These features describe images from differ-

ent perspectives, and can be further analyzed to extract information from images

using different algorithms. The descriptor based image analysis has been widely

adopted in computer vision tasks such as image classification [18, 19], annotation

[6–8], object detection [20, 21] etc. For general image analysis without complex

models and subsequent training, a set of global low-level image features including

RGB, HSV, LAB, Gabor and Haar are chosen as the baseline image annotation

technique [22]. Efficiency enhancement and privacy protection modules for these

descriptors will be introduced in Chapter 3.

• Deep Learning Based Approach: Unlike the descriptor based approaches that re-

quire a specific descriptor, the deep learning [23] based approaches train artificial

neural networks (ANNs) to automatically select features for specific image analysis

tasks. One of the most commonly used artificial neural networks is convolutional

neural network (CNN). Compared with descriptor based approaches, CNN based

deep learning models has significantly enhanced the effectiveness in many image

analysis application scenarios, including image classification [1–5], object detection

[13–16], face recognition [24, 25, 25, 26] etc.

1.2 Challenges

While these approaches provide decent functionalities for image analysis, they are re-

source consuming for complex tasks, especially when being executed on resource-

constrained mobile and IoT devices. In the descriptor based approaches, large-scale

Chapter 1. Introduction 3

datasets are required to ensure the accuracy of image analysis tasks, such as object

recognition, image annotation, etc. The involvement of these large-scale datasets in-

evitably cause high computation and storage cost to fulfill the tasks. In deep learning

based approaches, a request image needs to go through each layer of a deep neural net-

work to complete the inference process. In prevailing CNN based deep architectures such

as VGG [3] and ResNet [5], the analysis of an image costs billions of float operations

(FLOPs). In addition, in these deep architectures, fully connected layers need to store

millions of parameters, and thus resulting a considerable storage overhead.

Not only the image analysis task can bring huge burden to mobile and IoT devices,

images per se can yield storage problem to these devices. On-board storage for mobile

and IoT devices becomes limited as the image resolution grows higher. To facilitate

the long-term storage and image analysis task of high-volume photos taken everyday,

majority of smartphones today are synchronizing their photo albums with cloud storage,

such as Apple’s iCloud, Samsung Cloud, and Google Photos. Besides the storage service,

these cloud storage platforms also help analyze and provide a few decent features helping

their users organize their photos. An example is that a large portion of cloud service

providers annotate users’ photos with proper keywords, which is the key enabler for

users to perform popular keyword based search and organization over their photos. In

fact, offloading complex image analysis tasks to public cloud platforms has become a

prevailing trend for resource-constrained devices [27, 28]. Public cloud service not only

offers sufficient computation and storage resources to guarantee the efficiency of image

analysis and storage services, but also provides a higher portability for the deployment

of services.

Despite these decent features brought by public cloud service, it also raises privacy con-

cerns. One outstanding challenge with public cloud, however, is on the protection of

Chapter 1. Introduction 4

sensitive information involved in images while offloading the analysis tasks. As a matter

of fact, many images are sensitive by nature and contain various sensitive information,

such as financial information, personal identities/locations, and healthcare information

[29]. Directly sending images to public clouds can raise not only privacy concerns, but

also legal issues [30]. To protect the privacy of photos, encrypting them with stan-

dard encryption algorithms, e.g., AES, is still the major approach for privacy protection

in cloud storage [31, 32]. However, this kind of encryption also sacrifices many other

attractive functionalities of cloud storage, especially for keyword based search and man-

agement for imagery files. How to protect the privacy of imagery data while utilizing

the fancy features brought by public cloud services becomes an open challenge.

Targeted at privacy-preserving image analysis in public cloud, existing researches have

spent a significant amount of efforts to design solutions for descriptor based image anal-

ysis [33–35] and deep learning based image analysis [36–44] respectively. While these

solutions achieve various functionality of image analysis on public cloud in a privacy-

preserving manner, expensive cryptographic primitives utilized in them (e.g., homomor-

phic encryption and multi-party secure computation) introduce heavy encryption and

communication overhead to mobile and IoT devices. As a result, their efficiency is

restricted for complex tasks due to the intensive computation cost. Specifically, such

a performance limitation makes these solutions far away from practical in support of

time-sensitive deep learning inference tasks on IoT devices. For example, a quad-core

Raspberry Pi, which outperforms most resource-constrained IoT devices in terms of

computational capability, can perform only four Paillier homomorphic encryption per

second [45]. Given a single input of a typical deep learning model, AlexNet [46], which

has 227× 227× 3 elements, it requires more than 10 hours to complete the encryption,

which is impractical for most applications in terms of time efficiency. Moreover, some

Chapter 1. Introduction 5

existing schemes, e.g. CryptoNets [47], utilize approximation to meet security require-

ment of homomorphic encryption and thus introducing an accuracy loss to the image

analysis task.

In additional to the challenge of balancing privacy and computation costs in utilizing

public cloud, another challenge is how to reduce the communication overhead during

imagery data processing, especially for devices that requires real-time data analytics.

Taking cloud-assisted unmanned aerial vehicles (UAVs) as an example, the real-time

transmission of high-definition images or full-motion video (FMV) from UAVs to cloud

is bandwidth demanding. This kind of bandwidth demanding constant transmission can

quickly drain the battery life of UAVs. Moreover, high network latency is also intro-

duced, which limits their applications in time-sensitive tasks that require fast-response

for imagery data analysis, such as disaster detection and search-and-rescue. Motivated

by such a fact, recent research introduced “edge-computing” to ameliorate the commu-

nication cost when utilizing cloud-assisted architecture [48]. By deploying edge comput-

ing resources that are close to devices, initial data processing tasks can be carried out,

and only critical information will be transmitted to the cloud. As a result, the “data

drowning” issue that causes high network latency can be mitigated in cloud-assisted ar-

chitectures. Nevertheless, existing researches either do not consider privacy issues when

using edge devices, or place full trust on them. There still lacks research efforts to ad-

dress privacy concerns when third-party edge computing resources is utilized, which is

analogous to the use of public cloud. As a matter of fact, mobile-edge computing (MEC)

[49] provided by third-party base station is one of the most important edge-computing

resources. This is because MEC can easily offer one-hop communication for most mo-

bile and IoT devices, and can host sufficient computational resources for required data

processing.

Chapter 1. Introduction 6

1.3 Contributions

In order to address the aforementioned challenges and develop a generic methodology

for imagery data analysis under different scenarios, three rubrics, efficiency, accuracy, as

well as privacy need to be taken into consideration at the same time. I made my contri-

butions by figuring out a perfect balance among these three rubrics. Due to the nature

of some deployment environment (e.g. resource-constrained IoT devices), I also evaluate

other rubrics such as storage cost and energy consumption. In this dissertation, I design

a few expendable modules to be plugged in to meet different requirements in various

situations. With the knowledge that imagery data analysis tasks could be deployed in

cloud/edge environments using either descriptor/deep learning based approaches, I ap-

ply these modules and investigate their performance in the following research directions.

Specifically, I make my contribution by demonstrating the practical use and performance

of my modules in these directions.

• Direction 1: Cloud-assisted Privacy-preserving Descriptor Based Image Analysis.

Regarding the direction of descriptor based image analysis, I use one of the most

important image analysis tasks, i.e., automatic image annotation as an applica-

tion scenario to mys privacy-preserving solution for descriptor based image anal-

ysis. Image annotation techniques extract appropriate keywords for an image,

which serve as the fundamental part for in-depth image analysis, e.g., object de-

tection and search in images, similarity measurement of images, etc. My privacy-

preserving solution enables offloading complex automatic image annotation tasks

to public cloud, which will be featured by high efficiency, strong privacy protec-

tion, and low accuracy loss. Efficient data structures and indexing techniques are

Chapter 1. Introduction 7

also explored to further improve the efficiency of privacy-preserving computation.

The results of this research direction are presented in Chapter 3 and Chapter 4.

• Direction 2: Edge-assisted Privacy-preserving Deep Learning Based Image Analy-

sis. In order to provide a privacy-preserving solution in the deep learning based

image analysis direction, I tailor and deploy CNN models on edge devices to pri-

vately assist real-time image analysis on resource-constrained IoT devices. I mainly

focus on the inference stage of deep learning analysis, which directly fits real-time

imagery data analysis nature for most IoT devices. In this task, I first seek to

identify computational and storage intensive layers in the CNN based deep learn-

ing. Then, efficient privacy-preserving offloading schemes will be developed for

these layers to support image analysis. Privacy protection modules are designed

independently for each type of CNN layers, which enables their flexible integration

to support different image analysis tasks relied on various CNN structures. The

research results of this task are presented in Chapter 5 and Chapter 6.

1.4 Roadmap

The rest of this dissertation is organized as follows:

• Chapter 2 defines the overall problem formulation, high level system model and

threat model.

• Chapter 3 presents my research results of a cloud-assisted privacy-preserving im-

age annotation scheme as demonstration of my privacy-preserving modules for

descriptor based image analysis.

Chapter 1. Introduction 8

• Chapter 4 analyzes the security of privacy-preserving distance comparison modules

under cloud-assisted scenarios presented in Chapter 3 and evaluates their practical

performance.

• Chapter 5 states my research results of an edge-assisted offloading scheme of deep

learning models as demonstration of my privacy-preserving modules for deep learn-

ing based image analysis.

• Chapter 6 first discusses the security of edge-assisted privacy-preserving compute-

intense layer modules presented in Chapter 5 and then evaluates their practical

performance.

• Chapter 7 illustrates future research directions and provides a conclusion for this

dissertation.

Chapter 2

Problem Formulation

In order to dive deep into the two research directions mentioned in the end of last chapter,

I formulate the underlying problems and define corresponding system and threat model

for each direction.

2.1 Cloud-assisted Privacy-preserving Descriptor Based Im-

age Analysis

2.1.1 System Model

In the direction of cloud-assisted descriptor based image analysis, I consider two entities:

a Cloud Server and a User. The user stores his/her images on cloud, and then, based

on the extracted and processed image descriptors, the cloud helps the user to analyze

his/her images without learning the contents of images. In this scenario, the user first

performs a one-time system setup that prepares an encrypted large scale dataset, which

is offloaded to the cloud server to assist future privacy-preserving image analysis. Later

9

Chapter 2. Problem Formulation 10

on, when the user has a new image to be analyzed, he/she generates an encrypted

request and sends it to the cloud. After processing the encrypted request, the cloud

returns ciphertexts of analysis results and auxiliary information to the user. Finally, the

user decrypts all the data returned from the cloud, and based on the decrypted data,

the user is able to generate the final analysis result for the requested image.

2.1.2 Threat Model

In this cloud-assisted descriptor based image analysis scenario, I consider the cloud

server to be “curious-but-honest”, i.e., the cloud server will follow a designated scheme

to perform storage and image analysis services correctly, but it may try to learn sen-

sitive information in user’s data. The cloud server has access to all encrypted images,

encrypted descriptors, encrypted auxiliary information, the user’s encrypted requests,

and encrypted analysis results. I also assume the user’s devices are fully trusted and

will not be compromised. The research on protecting user devices is orthogonal to this

research direction. These assumptions are consistent with major research works that

focus on search over encrypted data on public cloud [50–52]. This scenario model fo-

cuses on preventing the cloud server from learning following information: 1) contents of

the user’s images; 2) extracted descriptors and analysis result for each image; 3) request

linkability, i.e., tell whether multiple analysis requests are from the same image.

Chapter 2. Problem Formulation 11

2.2 Edge-assisted Privacy-preserving Deep Learning Based

Image Analysis

2.2.1 System Model

For the research direction of privacy-preserving deep learning based image analysis, in

my setting, there are two entities: IoT Device and Edge Computing Device. The IoT

device collects imagery data and needs to utilize CNN inference over the imagery data

to get analysis result. The edge device obtains a trained CNN model and contributes its

computing capability to the CNN imagery data inference task. There are two scenarios

for the offloading of CNN inference according to the provider of the trained model:

(1) the data holder deploys its own trained model on a computing service platform

and later on submits data for inference tasks [36]; (2) the computing service platform

offers the trained model and performs inference on data submitted by the data holder,

which is known as “machine learning as a service” [41–44]. When privacy is taken into

consideration, both scenarios require the protection of imagery data and inference results

against the computing service platform, and the second scenario also needs to prevent

the data holder from learning the trained model.

In this dissertation, I focus on the first scenario. To be specific, I wish to design a scheme

that the IoT device and edge device engage in, at the end of which the IoT device obtains

the CNN inference result over its image analysis request, whereas the edge device only

assists the computation without learning the details of the image as well as the analysis

result.

Chapter 2. Problem Formulation 12

2.2.2 Threat Model

Similar as the setting of last research direction, I consider the edge device to be “curious-

but-honest”, i.e., the edge device adheres to the protocol that describes the computation,

communication, and storage tasks, but attempts to infer information about the image

input and output of the IoT device’s CNN inference task. Given a CNN based image

analysis inference task, the edge device has access to the trained CNN model (offloaded

convolutional layers and fully-connected layers only) as well as the encrypted image

analysis request and the outputs of all offloaded layers. The IoT device is considered to

be fully trusted and will not be compromised.

I aim at preventing the edge device from learning the IoT devices’ inputs and outputs

of each offloaded layer. The overall purpose of the inference task is not going to be

protected, since the CNN model is known to the edge device. For example, the edge

device knows the CNN inference is used for object detection, but shall not learn the input

image data and the corresponding detection result. I assume that the CNN model is

trained by IoT device owner with data in the clear. To prevent privacy leakage of training

data from the CNN model, a statistical database can be used for training as discussed in

the differential privacy literature [53, 54]. The research on privacy-preserving training

is orthogonal to this work.

Chapter 3

Privacy Protection for Descriptor

Based Image Analysis

To sail in the first research direction regarding privacy-preserving descriptor based image

analysis, I use one of the most important image analysis tasks, i.e., automatic image

annotation in a cloud involved environment as an application. In this application, the

user offloads his/her image to the cloud to get annotated with a set of keywords. My

application scenario and problem formulation is the same as in the corresponding section

of Chapter 2, in which the cloud follows the designated algorithm to assist the annotation

but is curious about the content of the user uploaded image.

3.1 Introduction

Automatic image annotation has been an important and challenging task in computer

vision area. One of the critical contributions of image annotation is to establish a se-

mantic link between imagery data and textual description so that such applications

13

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 14

as keyword-based image search on public cloud can become possible. In order to en-

able keyword-based search and management on encrypted data in cloud, keyword-based

searchable encryption (SE) has been widely investigated in recent years [50–52, 55, 56].

An SE scheme typically provides encrypted search indexes constructed based on proper

keywords assigned to data files. With these encrypted indexes, the data owner can

submit encrypted keyword-based search request to search their data over ciphertexts.

Unfortunately, these SE schemes all assume that keywords are already available for files

to be processed, which is hard to be true for photos taken by smartphones. Specifically,

unlike text files that support automatic keyword extraction from their contents, key-

words assignment for imagery files relies on manual description or automatic annotation

based on a large-scale pre-annotated image dataset. From the perspective of user ex-

perience, manually annotating each image from users’ devices is clearly an impractical

choice. Meanwhile, automatic image annotation that involves large-scale image datasets

is too resource-consuming to be developed on smartphones. Although currently several

cloud storage platforms offer image annotation services [57, 58], these platforms require

access to unencrypted images. Therefore, how to provide efficient and privacy-preserving

automatic annotation for smartphones’ photos becomes the foundation of SE schemes

applications on smartphones.

To address this problem, I introduce a cloud-assisted privacy-preserving image an-

notation scheme (CAPIA). By tailoring homomorphic encryption over vector space,

I first design two privacy-preserving outsourcing schemes for L1 distance comparison

and Kullback-Leibler (KL) Divergence comparison respectively as building modules for

CAPIA. As a result, CAPIA is able to offload the image annotation process to the public

cloud in privacy-preserving manner. In addition, thanks to the underlying linear oper-

ations, CAPIA can be easily parallelized for cloud computing environment. Meanwhile,

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 15

CAPIA achieves comparable annotation accuracy compared with existing no-privacy-

preserving image annotation approaches. Furthermore, as the same keyword may have

different importance for the semantic description of different images, I design a real-time

weight to support accurate final keywords selection in the image annotation process.

To turbocharge CAPIA’s annotation efficiency with privacy protected, I further design

a novel privacy-preserving randomized k-d forest structure for cloud assisted annotation

(CPAR). I first combine operations for image annotation with the data search using

randomized k-d forest [59]. Then, by proposing a set of privacy-preserving comparison

schemes, my scheme enables the cloud server to perform image annotation directly over

an encrypted randomized k-d forest structure. Compared with CAPIA, CPAR offers

an adjustable speedup rate from 4× to 43.1× while achieving 97.7% to 80.3% accuracy

of CAPIA. Note that besides imagery data analysis, my privacy-preserving randomized

k-d forest design can also be used as independent tools for other related fields, especially

for these requiring similarity measurement on encrypted data.

3.2 Related Works

To automate the keywords extraction process for images, a number of research works

have been proposed with the concept of “automatic image annotation” [22, 60–62].

Chapelle et al. [63] trained support vector machine (SVM) classifiers to achieve high

annotation accuracy where the only available image features are high dimensional his-

tograms. In ref [64, 65], SVM was used to learn regional information as well as helped

segmentation and classification process simultaneously. Different from SVM which works

by finding a hyperplane to separate vector spaces, Bayesian network accomplishes the

annotation tasks by modeling the conditional probabilities from training samples. In

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 16

ref [66, 67], Bayesian networks were built by clustering global image features to calcu-

late the conditional probabilities. However, all of these image annotation works raise

privacy issues when delegated to the cloud since unencrypted images need to be out-

sourced. Therefore, to address such privacy concerns, I propose CPAR, which utilizes

the power of cloud computing to perform automatic image annotation for users, while

only providing encrypted image information to the cloud.

As a follow-up issue of automatic image annotation, in order to solve the problem of

how to search over encrypted data, the idea of keyword-based searchable encryption

(SE) was first introduced by Song et.al in ref [55]. Later on, with the widespread use

of cloud storage services, the idea of SE received increasing attention from researchers.

In ref [50, 56], search efficiency enhanced SE schemes are proposed based on novel

index constructions. After that, SE schemes with the support of multiple keywords

and conjunctive keywords are investigated in ref [51], and thus making the search more

accurate and flexible. Recently, fuzzy keyword is considered in ref [52], which enables

SE schemes to tolerate misspelled keyword during the search process. While these SE

schemes offer decent features for keyword-based search, their application to images are

limited given the question that how keywords of images can be efficiently extracted with

privacy protection. It is impractical for cloud storage users to manually annotate their

images.

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 17

3.3 Preliminaries

3.3.1 Image Descriptor Extraction

According to [22], a common baseline image analysis method is based on Global low-

level image features including RGB, HSV, LAB, Gabor and HAAR because they can

be applied to general image analysis without complex models and subsequent training.

In particular, RGB feature is computed as a normalized 3D histogram of RGB pixel,

in which each channel (R,G,B) has 16 bins that divide the color space values from 0 to

255. The HSV and LAB features can be processed similarly as RGB, and thus I can

construct three feature vectors for RGB, HSV and LAB respectively as VRGB, VHSV ,

and VLAB. Texture features of an image are extracted using Gabor and Haar wavelets.

Specifically, an image is first filtered with Gabor wavelets at three scales and four ori-

entations, resulting in twelve response images. Each response image is then divided

into non-overlapping rectangle blocks. Finally, mean filter response magnitudes from

each block over all response images are concatenated into a feature vector, denoted as

VG. Meanwhile, a quantized Gabor feature of an image is generated using the mean

Gabor response phase angle in non-overlapping blocks in each response image. These

quantized values are concatenated into a feature vector, denoted as VGQ. The Haar

feature of an image is extracted similarly as Gabor, but based on differently config-

ured Haar wavelets. HaarQ stands for the quantized version of Haar feature, which

quantizes Haar features into [0,-1,1] if the signs of Haar response values are zero, nega-

tive, and positive respectively. I denote feature vectors of Haar and HaarQ as VH and

VHQ respectively. Therefore, given an image, seven feature vectors will be extracted as

[VRGB,VHSV ,VLAB,VG,VGQ,VH ,VHQ]. For more details about the adopted image

feature extraction, please refer to ref [22].

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 18

3.3.2 Integer Vector Encryption (IVE)

In this section, I describe a homomorphic encryption scheme designed for integer vec-

tors [68], which will be tailored in my construction to achieve privacy-preserving image

annotation. For expression simplicity, following definitions will be used in the rest of

this chapter:

• For a vector V (or a matrix M), define |max(V)| (or |max(M)|) to be the maxi-

mum absolute value of its elements.

• For a ∈ R, define dac to be the nearest integer of a, dacq to be the nearest integer

of a with modulus q.

• For matrix M ∈ Rn×m, define vec(M) to be a nm-dimensional vector by concate-

nating the transpose of each column of M.

Encryption: Given a m-dimensional vector V ∈ Zmp and the secret key matrix S ∈

Zm×mq , output the ciphertext of V as

C(V) = S−1(wV + e)T (3.1)

where S−1 is the inverse matrix of S, T is the transpose operator, e is a random error

vector, w is an integer parameter, q >> p, w > 2|max(e)|.

Decryption: Given the ciphertext C(V), it can be decrypted using S and w as V =

d (SC(V))T

w cq.

Inner Product: Given two ciphertexts C(V1),C(V2) of V1,V2, and their correspond-

ing secret keys S1 and S2, the inner product operation of V1 and V2 over ciphertexts

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 19

can be performed as

vec(ST1 S2)d
vec(C(V1)C(V2)

T)

w
cq = wV1V

T
2 + e (3.2)

To this end, vec(ST1 S2) becomes the new secret key and dvec(C(V1)C(V2)T)
w cq becomes

the new ciphertext of V1V
T
2 .

More details about this IVE encryption algorithm and its security proof are available in

ref [68].

3.4 Privacy-preserving Distance Comparison

3.4.1 Image Similarity Measurement

In CAPIA, similarity of images is measured by seven low-level color and texture fea-

ture vectors [Vi,RGB,Vi,HSV ,Vi,LAB,Vi,G,Vi,GQ,Vi,H ,Vi,HQ]. Specifically, given two

images Ia,Ib, their similarity can be computed as a combined distance

Disab =DL1RGBab +DL1HSVab +DL1Gab +DL1GQab

+DL1Hab +DL1HQab +DKLLABab

where DL1 and DKL denote L1 distance and KL-Divergence of two vectors after

data normalization. I consider these seven basic distances contribute equally to the

total combined distance Disab. Based on this observation, I first propose two privacy-

preserving distance comparison solutions for L1 (namely, PL1C) and KL-Divergence

(namely, PKLC) respectively, which support two key operations in CAPIA.

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 20

3.4.2 PL1C: Privacy-preserving L1 Distance Comparison

In PL1C, I consider a user has three m-dimensional integer vectors Vi, i ∈ {a, b, c} that

will be outsourced to cloud after encryption. The cloud later compares L1 distances

DL1ac and DL1bc directly over ciphertexts to figure out which one is smaller.

Data Preparation: Given a vector Vi = [vi1, · · · , vim], i ∈ {a, b, c}, the user converts

it to a mβ-dimensional binary vector Ṽi = [F (vi1), · · · , F (vim)], where β = |max(Vi)|,

and F (vij) = [1, 1, · · · , 1, 0, · · · , 0] such that the first vij terms are 1 and the rest β− vij

terms are 0. The L1 distance between Va and Vb now can be calculated as

DL1ab =
∑m

j=1 |vaj − vbj | =
∑mβ

j=1(ṽaj − ṽbj)2

Then, the user adopts an approximation method introduced in ref [69] to reduce the

dimension of Ṽi from mβ to m̂ = αm logβ+1
γ based on the Johnson Lindenstrauss (JL)

Lemma [70]. By denoting the approximated vector as V̂i, I have DL1ab =
∑mβ

j=1(ṽaj −

ṽbj)
2 ≈

∑m̂
j=1(v̂aj − v̂bj)2.

The correctness and accuracy of such an approximation have been proved in ref [69].

According to my experimental evaluation in Section 6.2, I set α = 1 and γ = 100 in my

scheme to achieve balanced accuracy and efficiency.

Data Encryption: Given an approximated vector V̂i, i ∈ {a, b}, the user appends two

elements to it as V̂i = [v̂i1, v̂i2, · · · , v̂im̂, r− 1
2

∑m̂
j=1 v̂

2
ij , εi], where r is a random number

and εi is a small random noise. Then, the user encrypts V̂i using the Encryption

algorithm of IVE presented in Section 3.3.2 as

Ci = S−1(wV̂i + ei)
T (3.3)

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 21

where S is the secret matrix, ei is an error vector, and w is an integer parameter. Ca,

Cb, and w are outsourced to the cloud.

Request Generation: Given the approximated vector V̂c, the user selects a positive

random number rc and applies it to V̂c as V̂c = [rcv̂c1, · · · , rcv̂cm̂, rc, 1]. V̂c is then

encrypted as Cc = S−1c (wV̂c + ec)
T , where Sc is the secret key generated for V̂c. Cc

and STSc are sent to the cloud as request.

Distance Comparison: On receiving the request, the cloud computes dvec(CaC
T
c)

w cq,

dvec(CbC
T
c)

w cq, and decrypts them using vec(STSc) to obtain V̂aV̂
T
c and V̂bV̂

T
c as Eq.3.2.

Finally, the approximated L1 distance comparison is performed as

V̂bV̂
T
c − V̂aV̂

T
c (3.4)

= rc

m̂∑
j=1

v̂bj v̂cj −
rc
2

m̂∑
j=1

v̂2bj + rcr + εb

− (rc

m̂∑
j=1

v̂aj v̂cj −
rc
2

m̂∑
j=1

v̂2aj + rcr + εa)

=
rc
2

(
m̂∑
j=1

(v̂aj − v̂cj)2 −
m̂∑
j=1

(v̂bj − v̂cj)2) + (εb − εa)

≈ rc
2

(DL1ac −DL1bc) + (εb − εa)

It is worth to note that PL1C is only interested in which distance is smaller during

the comparison. Therefore, instead of letting the cloud get exact L1 distances for com-

parison, PL1C adopts approximated distance comparison result scaled and obfuscated

by rc and εb − εa as shown in Eq.3.4. As rc is a positive random number, the sign of

rc
2 (DL1ac −DL1bc) is consistent with DL1ac −DL1bc. Meanwhile, since rc >> εb − εa,

the added noise term has negligible influence to the sign of DL1ac−DL1bc unless these

two distances are very close to each other. Fortunately, instead of finding the most

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 22

related one, my CAPIA design will utilize PL1C to figure out top 10 related candidates

during the comparison. Such a design makes important candidates (say top 5 out of

top 10) not be bypassed by the error introduced in εb − εa. This hypothesis is further

validated by my experimental results in Section 6.2.

3.4.3 PKLC: Privacy-preserving KL-Divergence Comparison

In PKLC, I consider a user has three m-dimensional vectors Vi, i ∈ {a, b, c}, and wants

to outsource the comparison of DKLac and DKLbc to the cloud without disclosing the

content of Vi, i ∈ {a, b, c}. The definition of KL-Divergence for two vectors Va, Vb is:

DKLab =

m∑
j=1

vaj × log(
vaj
vbj

) (3.5)

=

m∑
j=1

vaj × log(vaj)−
m∑
j=1

vaj × log(vbj)

where log(
vaj
vbj

) = log(vaj) = log(vbj) = 0 if vaj = 0 or vbj = 0.

Data Encryption: The user first appends m + 2 elements to Vi, i ∈ {a, b} as Vi =

[vi1, vi2, · · · , vim, vi1×log(vi1), · · · , vim×log(vim), r, εi], where r is a random number and

εi is a small random noise. Then, Vi, i ∈ {a, b} are encrypted with the Encryption

algorithm of IVE as

Ci = S−1(wVi + ei)
T (3.6)

Ca and Cb are outsourced to the cloud.

Request Generation: The user processes Vc to generate a privacy-preserving KL-

Divergence comparison request as

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 23

• Replace elements vcj with −rc×log(vcj), and append m+2 elements to Vc as Vc =

[−rc × log(vc1), · · · ,−rc × log(vcm), F (vc1), · · · , F (vcm), rc,−1], where F (vcj) ={
rc, vcj 6= 0

0, vcj = 0
, rc is a positive random number changing for every request.

• Encrypt Vc as Cc using the Encryption algorithm of IVE as Cc = S−1c (wVc +

ec)
T .

Cc and STSc are sent to the cloud as request.

Distance Comparison: On receiving the request, the cloud first computes dvec(CaC
T
c)

w cq,

dvec(CbC
T
c)

w cq and decrypts them using vec(STSc) to get VaV
T
c and VbV

T
c as Eq.3.2.

Then, the cloud compares DKLac and DKLbc by computing

VaV
T
c −VbV

T
c (3.7)

= rc(r +

m∑
j=1

vaj × log(vaj)−
m∑
j=1

vaj × log(vcj))− εa

− rc(r +
m∑
j=1

vbj × log(vbj)−
m∑
j=1

vbj × log(vcj)) + εb

= rc(DKLac −DKLbc) + (εb − εa)

Similar to my PL1C construction, I have rc > 0 and rc >> (εb − εa). Therefore, the

cloud can figure out which KL-Divergence is smaller based on the scaled and obfuscated

comparison result.

3.5 Cloud Assisted Privacy-preserving Image Annotation

After the introduction of my privacy-preserving distance comparison design, in this

section, I illustrate CAPIA by integrating PL1C and PKLC in image annotation task

with cloud deployment. My designs consists of five major procedures. In the System

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 24

Setup, the user selects system parameters, extracts and pre-processes feature vectors

of images in a pre-annotated dataset. Then, the user executes the Data Encryption

procedure to encrypt these processed feature vectors. Both the System Setup procedure

and the Data Encryption procedure are one-time cost in CAPIA. Later on, the user

can use the Secure Annotation Request procedure to generate an encrypted annotation

request. On receiving the request, the cloud server performs the Privacy-preserving

Annotation on Cloud procedure to return encrypted keywords for the requested image.

At the end, the user obtains final keywords by executing the Final Keyword Selection

procedure.

3.5.1 System Setup

To perform the one-time setup of CAPIA system, the user first prepares a pre-annotated

image dataset with n images, which can be obtained from public sources, such as

IAPR TC-12 [71], LabelMe [72], etc. For each image Ii in the dataset, the user ex-

tracts seven feature vectors [Vi,RGB,Vi,HSV ,Vi,LAB,Vi,G,Vi,GQ,Vi,H ,Vi,HQ]. Com-

pared with other five feature vectors that have dimension up to 256, Vi,H and Vi,HQ

have a high dimension as 4096. To guarantee the efficiency while processing feature

vectors, Principal Component Analysis (PCA) [73] is utilized to reduce the dimension

of Vi,H and Vi,HQ. According to my experimental evaluation in Section 4.3.2, PCA

based dimension reduction with proper setting can significantly improve the efficiency

of CAPIA with slight accuracy loss. After that, L1 normalization will be performed

for each feature vector, which normalizes elements in these vectors to [-1,1]. Besides

Vi,LAB, the user also increases each element in Vi,k, k ∈ {RGB,HSV,G,GQ,H,HQ}

as vi,k,j = vi,k,j + 1 to avoid negative values. Next, each element in all feature vec-

tors are scaled by the same value. Given three processed vectors Vi, i ∈ {a, b, c}, it is

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 25

easy to verify that the sign of L1 distance comparison result DL1ab −DL1ac and KL-

Divergence comparison result DKLab−DKLac with processed vectors remain the same

as that using original vectors. Six feature vectors that use L1 distance for similarity

measurement are concatenated as a mL1-dimensional vector Vi,L1. Vi,LAB is denoted

as a mKL-dimensional vector Vi,KL for expression simplicity. It is easy to verify that

DL1L1ab = DL1RGBab +DL1HSVab +DL1Gab +DL1GQab +DL1Hab +DL1HQab .

3.5.2 Dataset Encryption

Given an image Ii in the pre-annotated dataset, its keywords {Ki,t} are first encrypted

using AES. Then, feature vectors Vi,L1 and Vi,KL are encrypted as Ci,L1 and Ci,KL

using the Data Encryption methods in my proposed PL1C and PKLC schemes respec-

tively. During the encryption, same secret keys SL1, SKL, public parameter w, and

random number r will be used for all images. However, different error vector ei and

noise term εi are generated for each image Ii correspondingly. The user also computes

STL1Ss,L1 and STKLSs,KL, in which Ss,L1 and Ss,KL are secret keys for the encryption of

later annotation requests. These Ci,L1, Ci,KL and encrypted keywords of each image Ii,

as well as STL1Ss,L1 and STKLSs,KL are outsourced to the cloud.

3.5.3 Secure Annotation Request

When the user has a new image Is for annotation, he/she first extracts seven feature

vectors as Vs, s ∈ [RGB,HSV,LAB,G,GQ,H,HQ]. These vectors will be normalized

and scaled to output Vs,L1 and Vs,KL as that in the System Setup procedure. Then,

the user processes and encrypts Vs,L1 and Vs,KL as Cs,L1 and Cs,KL using the Request

Generation methods in my PL1C and PKLC schemes respectively. For each annotation

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 26

request, the user generates a new positive random number rs and a new error vector es.

Cs,L1 and Cs,KL are sent to the cloud as the annotation request.

3.5.4 Privacy-preserving Annotation on Cloud

On receiving the request, the cloud first outputs Vi,L1V
T
s,L1 and Vi,KLVT

s,KL for each

image in the pre-annotated dataset as

Vi,L1V
T
s,L1 = vec(STL1Ss,L1)d

vec(Ci,L1C
T
s,L1)

T

w
cq (3.8)

Vi,KLVT
s,KL = vec(STKLSs,KL)d

vec(Ci,KLCT
s,KL)T

w
cq (3.9)

where 1 ≤ i ≤ n. Then, the cloud ranks all the images according to their combined

distances to the request image Is. Specifically, a distance comparison candidate Compi =

−2(Vi,L1V
T
s,L1) + Vi,KLVT

s,KL can be generated for each image Ii. Given Ia and Ib for

example, the cloud can rank them as

Compa − Compb (3.10)

= 2(Vb,L1V
T
s,L1 −Va,L1V

T
s,L1)

+ Va,L1V
T
s,KL −Vb,KLVT

s,KL

= rs(DL1L1as −DL1L1bs) + 2(εb − εa)

+ rs(DKL
LAB
as −DKLLABbs) + (εb − εa)

= rs(Disas −Disbs) + 3(εb − εa)

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 27

As rs is a positive value and rs >> (εb − εa), the cloud can figure out which image is

more relative to Is according to the above distance comparison result. According to

the ranking of all pre-annotated images, the cloud outputs top related images to Is and

denotes them as a set RST. Finally, the cloud returns distance comparison candidates

Compi, i ∈ RST as well as corresponding encrypted keywords back to the user.

3.5.5 Final Keyword Selection

In this stage, the user first decrypts encrypted keywords and obtains Ki,t, i ∈ RST ,

where Ki,t is the t-th pre-annotated keyword in image Ii. Then, the user computes

distances Disis, i ∈ RST as

Disis = (2r +

mL1∑
j=1

v2s,L1,j) +
Compi
rs

= (2r +

mL1∑
j=1

v2s,L1,j) +
−2(Vi,L1V

T
s,L1) + Vi,KLVT

s,KL

rs

To achieve higher accuracy in keywords selection, I consider that keywords in images

that have smaller distance to the requested one are more relevant. Thus, I define a

real-time weight Wt for each keyword based on distances Disis as

WIi = 1− Disis∑
i∈RST Disis

(3.11)

Wt =
∑

WIi , for Ii contains Ki,t (3.12)

Specifically, I first figure out the weight WIi of each image according to their distance

based similarity. As my definition in Eq.3.12, images with smaller distance will receive a

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 28

larger weight value. Then, considering the same keyword can appear in multiple images,

the final weight Wt of a keyword Ki,t is generated by adding weights of images that

contain this keyword. Finally, the user selects keywords for his/her image according to

their ranking of weight Wt.

3.6 Preliminaries of CPAR

In CAPIA, for every single annotation request, linear processing of all encrypted records

in a large-scale dataset is required, which hence becomes the performance bottleneck for

practical usage. In order to bypass the latency brought by this linear processing strategy,

I leverage randomized k-dimension forest (RKDF), a member from space partitioning

tree family, as the parallel search index to boost CAPIA’s performance in terms of

efficiency. Different from many other index structures that are only efficient for low-

dimensional data, RKDF is featured by its performance in handling high-dimensional

data. In CAPIA, data vectors are over 1300-dimension and thus making RKDF an ef-

fective selection. To understand how the randomized k-dimension forest works, I first

investigate its basic component, k-dimension tree (k-d tree), a space partitioning tree

structure which boosts up nearest vector search speed [74]. I tailored it in my con-

struction to achieve efficient vector search in privacy-preserving manner. Due to the

top-down traversal algorithm underlying k-d trees, several single-element comparisons

between a few vectors are required. In order to protect the privacy of these single

elements, order-preserving encryption (OPE) is applied in CPAR.

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 29

3.6.1 k-dimension Tree

A k-d tree, is a data structure used for organizing some number of points in a space

with k dimensions. It is a binary search tree with other constraints imposed on it. k-d

trees are very useful for range and nearest neighbor searches. Each level of a k-d tree

splits all children along a specific dimension, using a hyperplane that is perpendicular

to the corresponding axis. At the root of the tree all children will be split based on

the first dimension. Each level down in the tree divides on the dimension with the

highest deviation. This procedure is performed recursively on both the left and right

sub-trees until the max trees are only composed of one element. More details about this

k-dimension tree structure and its evaluation are available in ref [74].

3.6.2 Order-preserving Encryption

Order-preserving symmetric encryption is a deterministic encryption scheme whose en-

cryption function preserves numerical ordering of the plaintexts. Given two integers a

and b in which a < b, by encrypting with OPE, the order of a and b is preserved as

OPE(a) < OPE(b). More details about this OPE encryption scheme and its security

proof are available in ref [75, 76].

3.7 Privacy-preserving Distance Comparison with Random-

ized k-d Forest

In this section, I first introduce the top-down traversal and back trace search in an

unprotected randomized k-d forest. In addition, in order to address the privacy concerns

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 30

when integrating the randomized k-d forest in the automatic image annotation, I propose

two privacy-preserving distance comparison scheme with RKDF.

3.7.1 Randomized k-d Forest Search

a

b c

gd e f

…
…

…
…

…
…

…
…

!"#$ = [v"(, …… , v"+]
-./01 = -2v"34 < v234

!2 = [v2(, …… , v(+]

-./01 = -6
!6 = [v6(, …… , v6+]

v"37 < v637

h

i j

nk l mclosest leaf node

Fields Values
node-data !8

split -8
left /98

right :98
parent .;:8

<8: v83> = !8[-8]

?0- !@AB,!C > ?0- !@AB,<E

(a)

(a)
(b)

Randomized
k-d forest

Example hyperplane
representation of non-leaf
nodes:

Top-down Traversal Path

Back Trace Search Path

Sibling Branch Top-down
Traversal

Closest Leaf Nodek

?0- !@AB,!C > ?0- !@AB,<>

Figure 3.1: Randomized k-d Forest
Vreq is the request vector and each Vi is stored in each tree node i. Dis(·) is an arbitrary
distance calculation function and Dis(Vreq,Hi) is the distance between the request vector Vreq

and Nodei’s hyperplane. VqL is the least closest vector to Vreq in priority queue Queue. (a)
represents top-down traversal; (b) represents back trace search and (c) represents queue push
process.

As depicted in Figure 3.1, a RKDF is composed of a set of parallel k-d trees. For each

Nodei in a k-d tree [74], it stores a feature vector Vi of dataset image Ii. In addition, each

non-leaf node also stores a split field si to generate a hyperplane that divides the vector

space into two parts. Each Nodej in left sub-tree of Nodei has Nodej [si] ≤ Nodei[si] and

vice versa, as described in ref [74]. To search nodes that store vectors with top-smallest

distances to a request vector Vreq, a parallel search among all trees in the forest is

performed. Specifically, each tree is traversed in a top-down manner by comparing the

split field values of Vreq and the vector Vi stored in each Nodei as an example shown in

Fig.3.1(a). The traversal selects the left branch to continue if Vreq[si] ≤ Vi[si] and vice

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 31

versa. Once the traversal reaches a leaf node, the vector stored in that leaf node is pushed

into a priority queue Queue as a current close candidate to Vreq. The queue push process

is shown in Fig.3.1(c). Note that during the search process, this Queue keeps updating

to hold L closest vectors to Vreq and is shared by all trees in the forest. After that, a

back trace search starts by iterating all the nodes in the path from the parent of the

current node to the root node as an example shown in Fig.3.1(b). When reaching a Nodei

during the back trace, a same queue push is executed to judge whether to add Nodei to

Queue as illustrated in Fig.3.1(c). For each Nodei in this path, a distance comparison

between Dis(Vreq,Hi) and Dis(Vreq,VqL) is compared, where Dis(Vreq,Hi) is the

distance between Vreq and a Nodei’s hyperplane. Hi can be considered as the projection

vector of Vreq on Nodei’s hyperplane. VqL is the Lth vector in Queue which meets

Dis(Vreq,Vqi) ≤ Dis(Vreq,VqL),∀Vqi ∈ Queue. If Dis(Vreq,Hi) > Dis(Vreq,VqL),

the back trace continues to the next node in this path. Otherwise, the sibling branch

of Nodei needs to be searched using the top-down traversal. In RKDF, once a node has

been searched in one k-d tree, it will be marked and does not need to be checked again

in the other trees. To further enhance the search efficiency of a RKDF, approximated

search strategy can be adopted. In particular, based on the hypothesis that feature

vectors of similar images are likely to be grouped in the same branch, there is a high

probability that the targeted optimal top similar vectors will be visited well before

visiting all nodes in each k-d tree. In Section 6.2, I will evaluate the relationship among

the approximation strength, accuracy, and efficiency. The detailed search of a RKDF is

provided in Algorithm 1. For more details about the RKDF, please refer to ref [59].

To protect the privacy of user’s data during the cloud-based annotation, the image data

associated with the RKDF need to be encrypted. Furthermore, these encrypted data

shall support corresponding search operations in RKDF, which include:

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 32

• The comparison between Vreq[si] and Vi[si] in the top-down traversal for path

selection.

• The comparison between Dis(Vreq,Hi) and Dis(Vreq,VqL) during the back trace

process.

• The comparison between Dis(Vreq,Va) and Dis(Vreq,Vb), i.e., distances from

the request vector to two different images’ feature vectors, which is used in the

queue push process.

In order to support these operations, a challenge needs to be resolved: The origi-

nal privacy-preserving comparison scheme for L1 distance (PL1C) and KL-Divergence

(PKLC) in CAPIA cannot be simply re-used in CPAR. That’s because PL1C and

PKLC can only support the privacy-preserving distance comparison between two vec-

tors. However, while searching in a RKDF, the distance comparison between a vector

and a hyperplane needs to be supported in the back trace process and queue push

process of RKDF. In order to resolve this issue, I re-design PL1C and PKLC to get

PL1C−RF and PKLC−RF , standing for PL1C and PKLC for RKDF. PL1C−RF

and PKLC − RF enable the aforementioned privacy-preserving distance comparison

between two vectors as well as between one vector and one hyperplane. In addition, I

integrate order-preserving encryption [75, 76] into CPAR to protect the comparison of

split field values in the top-down traversal of RKDF.

3.7.2 PL1C−RF : Privacy-preserving L1 Distance Comparison for Ran-

domized k-d Forest

In PL1C − RF , I consider two types of L1 distance comparison that are required in

the queue push and back trace process of RKDF: 1) DL1ac and DL1bc for three image

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 33

feature vectors Vi, i ∈ {a, b, c}; 2) DL1hc and DL1bc for a hyperplane projected vector

Ha and two image feature vectors Vb,Vc. DL1hc is measured by the L1 distance between

Ha[sa] and Vc[sa], where sa is the split field of the Nodea. To be more specific, DL1hc is

calculated by projecting Vc on Nodea’s hyperplane and then calculating the L1 distance

between Vc and the projected vector Ha.

Data Preparation: The data preparation for PL1C − RF is the same as PL1C for

the reason that both of them use the same local descriptor in [22] and the JL-Lemma

based approximation in [70]. Given three m-dimensional integer vectors Vi, i ∈ {a, b, c},

an approximated vector V̂i = [v̂i1, v̂i2, · · · , v̂im̂], i ∈ {a, b} is generated using JL-Lemma.

The detailed construction of the rest stages in PL1C-RF is presented in Fig.3.2. The

user first encrypts the image feature vectors and its corresponding hyperplane projected

vector (if exists), and then stores them in the cloud. Later on the user can generate en-

crypted L1 distance comparison request and ask the cloud to conduct privacy-preserving

comparison. On receiving the request, the cloud can conduct two types of L1 distance

comparison using ciphertext only according to user’s request.

Same as PL1C, PL1C − RF maintains its vector privacy protection by keeping the

approximated distance comparison result scaled and obfuscated by rc, εb− εa and εb− ε
′
a

as shown in 3.7.2.

3.7.3 PKLC−RF : Privacy-preserving KL-Divergence Comparison for

Randomized k-d Forest

In PKLC − RF , I also consider two types of KL-Divergence comparison similar to

PL1C −RF : 1) DKLac and DKLbc for three image feature vectors Vi, i ∈ {a, b, c}; 2)

DKLhc and DKLbc for a hyperplane projected vector Ha and two image feature vectors

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 34

Construction of PL1C −RF

Data Encryption:

1. The first step of PL1C − RF ’s encryption stage is similar as in PL1C. Three elements
are added to V̂i and update it to V̂i = [v̂i1, v̂i2, · · · , v̂im̂, r− 1

2

∑m̂
j=1 v̂

2
ij , εi,−1], i ∈ {a, b}.

2. If V̂i is stored in a non-leaf node, generate a (2m̂+ 2)-dimensional hyperplane projected

vector as Ĥi = [0, · · · , v̂isi , · · · , 0, r− 1
2
v̂2isi , ε

′
i, 0, · · · , 0− 1, 0 · · · , 0], where r− 1

2
v̂2isi is the

(m̂+ 1)th element, −1 is the (m̂+ 2 + si)th element, and si is the split field of node i.

3. Encrypt V̂i and Ĥi using the Encryption algorithm of IVE as C(V̂i) = S−1(wV̂i+ei)
T

and C(Ĥi) = S
′−1(wĤi + e

′
i)
T . C(V̂i),C(Ĥi), and w are outsourced to the cloud.

Request Generation:

1. In order to support the privacy-preserving RKDF search, compared to PL1C, one more
element is required to be appended to V̂c as V̂c = [rcv̂c1, · · · , rcv̂cm̂, rc, 1, 1

2
rc

∑m̂
j=1 v̂

2
cj],

in which rc is a positive random number.

2. Generate Ĥc = [rcv̂c1, · · · , rcv̂cm̂, rc, 1, 1
2
rcv̂

2
c1, · · · , 1

2
rcv̂

2
cm̂] as hyperplane projected vec-

tor.

3. V̂c and Ĥc are encrypted as C(V̂c) = S−1
c (wV̂c + ec)

T and C(Ĥc) = S
′−1
c (wĤc + e

′
c)
T .

C(V̂c), C(Ĥc), S
TSc and S

′TS
′
c are sent to the cloud as request.

Distance Comparison:
Type-1: Compare DL1ac, DL1bc

1. Given C(V̂a), C(V̂b) and C(V̂c), compute d vec(C(V̂a)C(V̂c)
T)

w
cq, d vec(C(V̂b)C(V̂c)

T)
w

cq and

decrypt them as V̂aV̂
T

c and V̂bV̂
T

c as Eq.3.2.

2. Compare the approximated L1 distance comparison as V̂bV̂
T

c − V̂aV̂
T

c ≈ rc
2

(DL1ac −
DL1bc) + (εb − εa).

Type-2: Compare DL1hc, DL1bc,

1. Given C(Ĥa), C(V̂b), C(V̂c) and C(Ĥc), compute d vec(C(Ĥa)C(Ĥc)
T)

w
cq,

d vec(C(V̂b)C(V̂c)
T)

w
cq and decrypt them as ĤaĤ

T

c and V̂bV̂
T

c as Eq.3.2.

2. Compare the approximated L1 distance comparison as V̂bV̂
T

c − ĤaĤ
T

c ≈ rc
2

(DL1hc −
DL1bc) + (εb − ε

′
a).

Figure 3.2: Construction of PL1C −RF

Vb,Vc. In addition, the KL-Divergence DKLhc between a image feature vector and

a hyperplane is measured by the KL-Divergence between Ha[sa] and Vc[sa], where sa

is the split field of Nodea. Similar as PL1C − RF , PKLC − RF is also calculated by

projecting Vc on Nodea’s hyperplane and then calculating the KL-Divergence between

Vc and the projected vector Ha.

The detailed construction of PKLC−RF is presented in Fig.3.3. In the data encryption

stage, the image feature vectors and corresponding hyperplane projected vector (if ex-

ists) are encrypted and stored in the cloud. On receiving the encrypted KL-Divergence

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 35

comparison request from the user, the cloud conducts two types of privacy-preserving

KL-Divergence comparison using ciphertext only according to user’s request. Similar to

my PL1C construction, I have rc > 0 and rc >> (εb− εa). Therefore, the cloud can fig-

ure out which KL-Divergence is smaller based on the scaled and obfuscated comparison

result.

Construction of PKLC −RF

Data Encryption:

1. As PKLC, PKLC − RF appends m + 2 elements as Vi = [vi1, vi2, · · · , vim, vi1 ×
log(vi1), · · · , vim × log(vim), r, εi], where r is a random number and εi is a small ran-
dom noise. If Vi is stored in a non-leaf node in RKDF, its corresponding hyperplane
projected vector is processed as Hi = [0, · · · , visi , · · · , 0, · · · , visi × log(visi), · · · , 0, r, ε

′
i],

where si is the split field of the node, visi , visi × log(visi) and r are the sith, (m+ si)th
and (2m+ 1)th elements respectively.

2. Encrypt Vi and Hi with the Encryption algorithm of IVE as C(Vi) = S−1(wVi + ei)
T

and C(Hi) = S−1(wHi + e
′
i)
T .

Request Generation:

1. The request generation stage is exactly the same as in PKLC. Unlike PL1C−RF which
needs to add one more element for the L1 distance comparison between a vector and a
hyperplane, the data encryption stage in PKLC−RF does not append additional element
compared with PKLC. Ciphertext C(Vc) and key STSc are sent to the cloud as request.

KL-Divergence Comparison:
Type-1: Compare DKLac, DKLbc

1. Compute d vec(C(Va)C(Vc)
T)

w
cq, d vec(C(Vb)C(Vc)

T)
w

cq and decrypts them as VaV
T
c and

VbV
T
c using the Decryption of IVE in Section 3.3.2.

2. Compare KL divergence as VaV
T
c −VbV

T
c = rc(DKLac −DKLbc) + (εb − εa).

Type-2: Compare DKLhc, DKLbc

1. Compute d vec(C(Ha)C(Vc)
T)

w
cq, d vec(C(Vb)C(Vc)

T)
w

cq and decrypts as HaV
T
c and VbV

T
c

using the Decryption of IVE as Eq.3.2.

2. Compare KL divergence as HaV
T
c −VbV

T
c = rc(DKLhc −DKLbc) + (εb − ε

′
a).

Figure 3.3: Construction of PKLC −RF

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 36

3.8 Cloud-Assisted Privacy-preserving Image Annotation

with Randomized k-d Forest

3.8.1 Detailed Construction of CPAR

In this section, I show the detail construction of CPAR by adding PL1C − RF and

PKLC − RF to boost the similar images search process during the image annotation

task. CPAR shares a similar high-level major procedures with CAPIA. In the System

Setup, in addition to system parameters selection, image feature extraction and pre-

processing, the user also uses these feature vectors to build a RKDF. Then, the user

executes the RKDF Encryption procedure to encrypt all data associated with nodes

in the RKDF. Both the System Setup procedure and the RKDF Encryption procedure

are one-time cost in CPAR. Then, Secure Annotation Request is performed to generate

an encrypted annotation request. Followed by that, Privacy-preserving Annotation on

Cloud and Final Keyword Selection find the user a group of top similar images and help

the user determine the final keyword set for the requested image.

3.8.1.1 System Setup

The first few steps in system setup procedure follows the same path as CAPIA in Section

3.5.1. mL1-dimensional vector Vi,L1 and mKL-dimensional vector Vi,KL are extracted

for each image from a pre-defined dataset. After that, a RKDF is constructed with

feature vector space {Vi}1≤i≤n, in which each node in a single tree is associated with

one Vi. For each non-leaf node in RKDF, its split field element Vi[si] is stored in a set

SF . In CPAR, the RKDF contains ten parallel k-d trees.

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 37

3.8.1.2 RKDF Encryption

In this stage, CPAR first executes the same process as in Section 3.5.2 to encrypt key-

words {Ki,t} by AES and get the encrypted feature vectors C(Vi,L1) and C(Vi,KL).

C(Vi,L1) and C(Vi,KL) are then stored in the corresponding Nodei of the RKDF.

For each non-leaf node, encrypted hyperplane projected vectors C(Hi,L1),C(Hi,KL)

are generated and added into Nodei using the data encryption processes described in my

PL1C−RF and PKLC−RF . In addition, for the split field element Vi[si] of each non-

leaf node, an order-preserving encryption is executed and the ciphertext OPE(Vi[si]) is

stored in Nodei. After the encryption, each node in the RKDF only contains encrypted

data as

• Non-leaf Node: [C(Vi,L1),C(Vi,KL),C(Hi,L1),C(Hi,KL), OPE(Vi[si]), AES({Ki,t})]

• Leaf Node: [C(Vi,L1),C(Vi,KL), AES({Ki,t})]

During the encryption process, same secret keys SL1, S
′
L1, SKL, public parameter w,

and random number r will be used for all images. However, different error vector ei, e
′
i

and noise term εi, ε
′
i are generated for each image Ii correspondingly. The user also

computes STL1Ss,L1, S
′T
L1S

′
s,L1 and STKLSs,KL, in which Ss,L1, S

′
s,L1 and Ss,KL are secret

keys for the encryption of later annotation requests. The encrypted RKDF, STL1Ss,L1,

S
′T
L1S

′
s,L1 and STKLSs,KL are outsourced to the cloud.

3.8.1.3 Secure Annotation Request

CPAR shares the same process for the secure annotation request with CAPIA as stated in

3.5.3. The user can generate the features of the image to be annotated and then encrypt

them as C(Vs,L1), C(Hs,L1), and C(Vs,KL) using the Request Generation of PL1C−RF

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 38

and PKLC−RF schemes respectively. For each annotation request, the user generates

a new positive random number rs and new error vectors es, e
′
s. Meanwhile, for each

element sfj in the split field set SF generated in System Setup, the user encrypts Vs[sfj]

using order-preserving encryption asOPE(Vs[sfj]). C(Vs,L1), C(Hs,L1), C(Vs,KL) and

{OPE(Vs[sfj])} are sent to the cloud as the annotation request.

3.8.1.4 Privacy-preserving Annotation on Cloud

On receiving the encrypted request, the cloud first performs a privacy-preserving search

over the encrypted RKDF. As described in Algorithm 1, the cloud conducts parallel

search over each encrypted tree in the RKDF. There are three places that require the

cloud to conduct privacy-preserving computation over encrypted data:

• During the top-down traversal, as the split field element of each non-leaf node is

encrypted using order-preserving encryption, the cloud can directly compare their ci-

phertexts (line 7) to determine which node to be checked next.

• In the back trace process, the cloud needs to perform privacy-preserving comparison

to determine whether the current node’s sibling branch needs to be searched (line 24 to

29). In particular, given C(Vs,L1), C(Hs,L1), C(VqL,L1), C(Hparent,L1), C(Vs,KL),

C(VqL,KL), and C(Hparent,KL), the cloud first uses type-2 distance comparison in

PL1C −RF and PKLC −RF to compute

VqL,L1V
T
s,L1, VqL,KLVT

s,KL,

Hparent,L1H
T
s,L1, Hparent,KLVT

s,KL

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 39

Then, the distance comparison is executed as

CompqL = −2(VqL,L1V
T
s,L1) + VqL,KLVT

s,KL

Comph = −2(Hparent,L1H
T
s,L1) + Hparent,KLVT

s,KL

CompqL − Comph (3.13)

= rs(DL1L1qL,s −DL1L1parent,s) + 2(ε
′
parent − εqL)

+rs(DKL
LAB
qL,s −DKLLABparent,s) + (ε

′
parent − εqL)

= rs(Dis(VqL,Vs)−Dis(Hparent,Vs))

+3(ε
′
parent − εqL)

where VqL is the least closest vector to Vreq in priority queue Queue. As rs is a

positive value and rs >> (ε
′
parent− εqL), the sign of CompqL−Comph is consistent with

Dis(VqL,Vs)−Dis(Hparent,Vs).

• In the Queue push process (line 30-37), privacy-preserving distance comparison is

needed to determine whether a new node shall be added. Specifically, given C(Vs,L1),

C(VNode,L1), C(VqL, L1), C(Vs,KL), C(VNode,KL), C(VqL,KL), the cloud use type-1

distance comparison in PL1C −RF and PKLC −RF to perform distance comparison

as

CompNode = −2(VNode,L1V
T
s,L1) + VNode,KLVT

s,KL

CompqL = −2(VqL,L1V
T
qL,L1) + Vcur,KLVT

s,KL

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 40

CompNode − CompqL (3.14)

= rs(DL1L1Node,s −DL1L1qL,s) + 2(εqL − εNode)

+rs(DKL
LAB
Node,s −DKLLABqL,s) + (εqL − εNode)

= rs(Dis(VNode,Vs)−Dis(VqL,Vs))

+3(εqL − εNode)

To this end, the cloud is able to perform all operations required by a RKDF search

in the privacy-preserving manner, and obtain a Queue of nodes that stores data of top

related images to the request. The cloud returns distance comparison candidates (type-1

distance) Compi, i ∈ Queue as well as corresponding encrypted keywords back to the

user.

3.8.1.5 Final Keyword Selection

After the user retrieves the keyword set Ki,t from the the cloud returned data, he/she

can computes distance Dis(Vi,Vs) = (2r +
∑mL1

j=1 v
2
s,L1,j) +

−2(Vi,L1V
T
s,L1)+Vi,KLV

T
s,KL

rs

as in 3.11. Following 3.12, the user can also figure out the weight ranking Wt of each

keyword Ki,t and selects keywords for the image.

3.9 Conclusion

In this chapter, I introduce privacy-preserving distance comparison design PL1C and

PKLC along with their enhanced modules PL1C −RF and PKLC −RF . I integrate

these modules in a practical cloud-assisted image annotation task to show their utility in

imagery data analysis. Moreover, my privacy-preserving distance comparison modules

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 41

Input : Encrypted Search Request (Req) for Vs, Encrypted RKDF with a set of Trees {Tk},
approximation power AP − X

Output: Encrypted Nodes Associated with Top Related Images to the Request.
Initialization Queue = [], Path = [] (Searched Path), V is = [] (Visited Nodes), Nodek=Tk.root;
Each tree Tk executes topDownTraversal() and backTraceSearch() in parallel, Queue and V is
are shared among all trees;

Function topDownTraversal(Req, Nodek):
if Nodek is not null then

return;
end
Vi ←− Nodek.Vi;
if OPE(Vs[si]) ≤ OPE(Vi[si]) then

Nodek = topDownTraversal(Nodek.left-child);
else

Nodek = topDownTraversal(Nodek.right-child);
end
if Nodek 6∈ V is then

V is.push(Nodek);
Queue.push(Nodek);

end
Path.push(Nodek);
return Nodek;

Function backTraceSearch(Req, Nodek):
if V is.length() > AP − X× Nodes Number then

return Queue;
end
if Path is not null then

parent←− Path.pop();
end
if parent 6∈ V is then

V is.push(parent);
Queue.push(parent);

end
//Privacy-preserving distance comparison is achieved by PL1C −RF and PKLC −RF ,
VqL is the least closest vector to Vs in Queue
if Dis(VqL,Vs) < Dis(Hparent,Vs)) then

backTraceSearch(Req, parent);
else

Nodek = topDownTraversal(Req,Nodek.sibling);
end
return Queue;

Function Queue.push(Node):
//Each Nodeq in Queue are ordered by Dis(Vs,VNodeq)
if Queue.length() < Defined Size L then

Add Node into Queue by order;
else

if NodeqL in Queue has Dis(Vs,VNode) < Dis(Vs,VqL) then
Remove NodeqL from Queue;
Add Node into Queue by order;

end

end
Algorithm 1: Privacy-preserving RKDF Search

Chapter 3. Privacy Protection for Descriptor Based Image Analysis 42

and privacy-preserving randomized k-d forest can also be utilized as independent tools

for other related fields, especially for efficient similarity measurement on encrypted data.

In the next chapter, I will analyze the security of my design and provide experiment

results on my prototype implementation.

Chapter 4

Evaluation of Privacy Protection

Modules for Descriptor Based

Image Analysis

In this chapter, I first analyze the security of my design against several attacks. Then

I provide experimental results to evaluate the practical performance of my privacy pro-

tection modules as well as their enhancement for descriptor based image analysis stated

in Chapter 3.

4.1 Security Analysis

In CAPIA, I have the following privacy related data: feature vectors

{Vi,L1,Vi,KL}1≤i≤n and keywords of image Ii in the pre-annotated dataset; feature

vectors Vs,L1, Vs,KL of the image requested for annotation. As keywords are encrypted

using standard AES encryption, I consider them secure against the cloud server as well

43

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 44

as outside adversaries. With regards to Vi,L1, Vi,KL, Vs,L1, Vs,KL, they are encrypted

using the encryption scheme of IVE [68] after pre-processing as presented in my PL1C

and PKLC schemes. The IVE scheme [68] has been proved to be secure based on the

well-known Learning with Errors (LWE) hard problem [77]. Thus, given the ciphertexts

Ci,L1, Ci,KL, Cs,L1, Cs,KL only, it is computational infeasible for the cloud server or

outside adversaries to recover Vi,L1, Vi,KL, Vs,L1, Vs,KL.

4.1.1 Security of Outsourcing STL1Ss,L1 and STKLSs,KL

As STL1Ss,L1 and STKLSs,KL are used in the same manner, I use STSs to denote them

for expression simplicity. Different from the original Encryption algorithm of IVE, the

user in CAPIA also outsources STSs to the cloud besides ciphertexts Ci,L1, Ci,KL,

Cs,L1, Cs,KL. As all elements in S and Ss are randomly selected, elements in their

multiplication STSs have the same distribution as these elements in S and Ss [78].

Thus, given STSs, the cloud server is not be able to extract S or Ss directly and use

them to decrypt Ci,L1, Ci,KL, Cs,L1, Cs,KL. By combining STSs with ciphertexts Ci,L1

and Cs,L1 (same as that for Ci,KL and Cs,KL), the cloud can obtain

STSsCi,L1 = STSsS
−1(wVi,L1 + ei)

T

STSsCs,L1 = STSsS
−1
s (wVs,L1 + ei)

T = ST (wVs,L1 + ei)
T

From the above two equations, it is clear that the combination of STSs, Ci,L1 and

STSs, Cs,L1 only transfer them to the ciphertexts of Vi,L1 and Vs,L1 that encrypted

using the IVE scheme with new keys STSsS
−1 and ST respectively. As STSsS

−1 and

ST are random keys and unknown to the cloud, recovering Vi,L1, Vs,L1 from STSsCi,L1,

STSsCs,L1 still become the LWE problem as proved in ref [68]. To this end, STSs only

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 45

helps the cloud to perform distance comparison in CAPIA, but does not bring advantages

to recover feature vectors compared with the given ciphertexts only scenario.

4.1.2 Known Ciphertexts-Image Pairs

I now consider that the cloud server gets a set of ciphertexts-image pairs from the

background analysis as {Vi,L1,Ci,L1} ({Vs,L1,Cs,L1}, {Vi,KL,Ci,KL}, {Vs,KL,Cs,KL}

respectively). In ref [79], a linear analysis attack based on ciphertext-image pairs is

introduced to recover vectors from their distance comparison result. In particular, in-

stead of trying to recovering feature vectors or secret keys directly from ciphertexts,

such an attack attempts to recover the vectors from the distance comparison result by

constructing and solving enough number (i.e., greater than the dimension of vector) of

linear equations. To launch this kind of linear analysis attack to CAPIA, there are two

necessary requirements that need to be fulfilled simultaneously: 1) The cloud obtains at

least m ciphertext-image pairs, where m is the dimension of feature vectors; 2) The cloud

has access to the exact L1 distance and KL Divergence comparison results. As shown in

Eq.3.4 and Eq.3.7, CAPIA only provides scaled and obfuscated comparison results by

adding noise terms εi and random scaling factor rc. As a result, the cloud cannot fulfill

the second requirement to launch a successful linear analysis attack to CAPIA. To this

end, CAPIA is secure even a set of ciphertexts-image pairs are obtained by the cloud

server.

4.1.3 Request Unlinkability

The request unlinkability in CAPIA is guaranteed by the randomization for each request.

Specifically, each query request Vs,L1,Vs,KL is element-wise obfuscated with different

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 46

Value of .
(a)

0 100 200 300 400 500 600 700 800 900 1000

L1
 D

is
ta

nc
e

Er
ro

r R
at

e
(%

)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
Set , = 1

Value of .
(b)

0 100 200 300 400 500 600 700 800 900 1000

D
im

en
si

on
 o

f A
pp

ro
xi

m
at

ed
 V

ec
to

r

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Set , = 1

Value of ,
(c)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

L1
 D

is
ta

nc
e

Er
ro

r R
at

e
(%

)

0

5

10

15

Set . = 100

Value of ,
(d)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

D
im

en
si

on
 o

f A
pp

ro
xi

m
at

ed
 V

ec
to

r

0

500

1000

1500

2000

2500

3000
Set . = 100

Figure 4.1: Error rate of Approximation and Dimension of Approximated Vector
(PCA− 32)

PCA Setting
(a)

NO-PCA PCA-8 PCA-16 PCA-32 PCA-64 PCA-128

C
om

pu
ta

tio
na

l C
os

t (
m

s)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
...

1200
1400 Setup

Encryption

PCA Setting
(b)

NO-PCA PCA-8 PCA-16 PCA-32 PCA-64 PCA-128

R
eq

ue
st

 G
en

er
at

io
n

(m
s)

0

500

1000

1500

2000

2500

3000

PCA Setting
(c)

NO-PCA PCA-8 PCA-16 PCA-32 PCA-64 PCA-128

D
is

ta
nc

e
C

om
pa

ris
on

C
an

di
da

te
 G

en
er

at
io

n
(m

s)

0
20
40
60
80
...

1200
1400
1600

...
4000
4200
4400

Figure 4.2: (a) System Setup and Encryption Cost (b) Request Generation Cost (c)
Distance Comparison Candidate Generation Cost on Cloud

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 47

random error terms es and random number rs during the encryption, which makes the

obfuscated Vs,L1,Vs,KL have the same distribution as these random values in es and rc

[78]. Thus, by changing es and rc during the encryption of different requests, CAPIA

outputs different random ciphertexts, even for requests generated from the same image.

4.2 Evaluation of CAPIA

To evaluate the performance of CAPIA, I implemented a prototype using Python 2.7.

In my implementation, Numpy [80] is used to support efficient multi-dimension array

operations. OpenCV [81] is used to extract the color-space features of the images and

build the filter kernels to generate the Gabor filter results. Pywt [82] is adopted to

perform Haar wavelet and get the corresponding Haar results. Sklearn [83] is used to

perform the PCA transformation. I use the well-known IAPR TC-12 [84] as the pre-

annotated dataset, which contains 20,000 annotated images and the average number of

keywords for each image is 5.7. All tests are performed on a 3.1 GHz Intel Core i7

Macbook Pro with OS X 10.11.6 installed.

In the rest of this section, n is the total number of images in the pre-annotated dataset;

mL1 and mKL are dimensions of vectors Vi,L1 and Vi,KL after pre-processing respec-

tively; PCA−X is used to denote the strength of PCA transformation applied to Vi,H

and Vi,HQ in Vi,L1, which compresses their dimensions from 4096 to 4096
X . PCA− 128,

PCA − 64, PCA − 32, PCA − 16, and PCA − 8 are evaluated in my experiments to

balance the efficiency and accuracy of CAPIA. I also use DOTm to denote a dot product

operation between to two m-dimensional vectors.

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 48

4.2.1 System Setup and Dataset Encryption

To perform the one-time setup in CAPIA, the user pre-processes feature vectors of each

image in the pre-annotated image dataset. Specifically, the user first performs JL-Lemma

based approximation over Vi,L1 to make Vi,L1 compatible with my PL1C. As discussed

in Section 3.4.2, there is a trade-off between the approximation accuracy of L1 distance

and length of the approximated vector that determines efficiency of follow up privacy-

preserving operations. To balance such a trade-off, I evaluate different parameters for

approximation as shown in Fig.4.1 (a)-(d). According to my results, I suggest to set

α = 1 and γ = 100 which introduces 3.61% error rate for L1 distance computation, and

extends the dimension of Vi,L1 from 864 to 1296 under the setting of PCA − 32. The

selection of PCA strength will be discussed and evaluated in Section 4.3.2. Specifically,

the error rate drops fast when α < 1 and becomes relative stable when α > 1. Meanwhile,

the dimension of the approximated vector increases linearly to the value of α. With

regard to γ, the dimension of the approximated vector becomes relative stable when

γ > 100, however, the error rate still increases when γ > 100. As shown in Fig.4.2

(a), such an approximation setting makes the pre-processing procedure cost 1471ms to

118ms for each image with PCA setting from No PCA to PCA− 128.

After the pre-processing, {Vi,L1,Vi,KL}1≤i≤n will be encrypted using the Data Encryp-

tion procedures of my PL1C and PKLC schemes respectively. As shown in Eq.3.3 and

Eq.3.6, the encryption of each Vi,L1 and Vi,KL requires (mL1)DOTmL1 and

(mKL)DOTmKL operations respectively. Fig.4.2 (a) shows the total encryption cost for

Vi,L1 and Vi,KL of a pre-annotated image decreases from 1436ms to 4.7ms by increas-

ing the strength of PCA from No PCA to PCA − 128. This is because the dimension

of Vi,L1, i.e., mL1, is determined by the strength of PCA, which is directly correlated

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 49

to the encryption cost of Vi,L1. Same as the system setup, encrypting feature vectors

is also a one-time cost, which does not impact the performance of later on real-time

privacy-preserving image annotation.

4.2.2 Real-time Image Annotation

Efficiency: To annotate a new image in a privacy-preserving manner, the user generates

an encrypted request by pre-processing and encrypting feature vectors of the requested

image. By varying the PCA strength from No PCA to PCA − 128, Fig.4.2 (b) shows

that the request generation spends from 2775ms to 268ms. On receiving the encrypted

request, the cloud first computes distance comparison candidate Compi for each image

Ii, 1 ≤ i ≤ n in the pre-annotated dataset, which requires a (mL1+1)DOTmL1 operation

and a (mKL + 1)DOTmKL operation as shown in Eq.3.8 and Eq.3.9. By changing the

strength of PCA from No PCA to PCA−128, the computational cost for Compi changes

from 4334ms to 16.9ms as shown in Fig.4.2 (c). This is because the dimension of Vi,L1,

i.e., mL1, is determined by the strength of PCA and mL1 >> mKL (e.g., 1296 v.s. 48

in PCA− 32). Afterwards, the cloud selects encrypted keywords according the ranking

of Compi as Eq.3.10. It is worth to note that the annotation process on cloud can be

easily parallelized for performance optimization. In particular, computation of Compi

for different pre-annotated images are independent with each other, and thus can be

easily parallelized in the cloud computing environment.

Accuracy: I now evaluate the accuracy of CAPIA. In my evaluation, I use the standard

average precision and recall rates to measure the accuracy of keywords annotation as

that in automatic annotation using plaintext images. I use 50 images as annotation

requests, and each image will be assigned ten keywords after automatic annotation.

Each request has two or more related images in the pre-annotated dataset. I use set

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 50

[K1,K2, · · · , ...Kx] to denote distinct keywords annotated for all 50 requested images.

The annotation precision and recall rate for a keyword Kj , 1 ≤ j ≤ x in these 50 requests

are defined as

• precisionKj : number of images assigned Kj correctly in CAPIA divided by the

total number of images assigned Kj in CAPIA.

• recallKj : number of images assigned Kj correctly in CAPIA divided by the number

of images assigned Kj in the ground-truth annotation.

PCA Setting
NO-PCA PCA-8 PCA-16 PCA-32 PCA-64 PCA-128

Pr
ec

is
io

n
(%

)

42

43

44

45

46

47

48

49

50

51

CAPIA
Annotation Without Encryption

Figure 4.3: Precision of CAPIA and Annotation without Encryption

PCA Setting
NO-PCA PCA-8 PCA-16 PCA-32 PCA-64 PCA-128

R
ec

al
l (

%
)

82

84

86

88

90

92

94

96

98

CAPIA
Annotation Without Encryption

Figure 4.4: Recall of CAPIA and Annotation without Encryption

To compare the annotation accuracy of CAPIA, I also evaluate the no-privacy-preserving

annotation using the same 50 requests. As shown in Fig.4.3 and Fig.4.4, while providing

strong privacy guarantee, CAPIA introduces less than 2.5% and 7.5% accuracy loss in

terms of average precision and recall rates with PCA setting from No PCA to PCA−

128. In addition, Fig.4.3 and Fig.4.4 also demonstrate that the increasing of PCA

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 51

strength reduces the annotation accuracy of CAPIA to some extent, especially from

PCA− 32 to PCA− 64. Taking the efficiency enhancement brought by PCA together

into consideration, I suggest to use PCA − 32 as an appropriate setting for practical

usage. Specifically, Fig.4.2 demonstrates the efficiency improvement from PCA becomes

relative stable after PCA − 32. Meanwhile, the accuracy loss of CAPIA still increases

quickly after PCA− 32.

In Table 4.2, I present samples of automatically annotated images using CAPIA. On

one hand, CAPIA is highly possible to assign correct keywords to images compared

with human annotation. This observation also confirms the high average recall rate

of CAPIA, since these ground-truth annotations are likely to be covered in CAPIA.

On the other hand, CAPIA also introduces additional keywords that frequently appear

together with these accurate keywords in top related images. These additional keywords

are typically not directly included in human annotations, but are potentially related to

correct keywords. Such a fact also explains why the average precision rate of CAPIA

is relatively low compared with the average recall rate. Overall, my evaluation results

demonstrate that although CAPIA cannot provide perfect keywords selection all the

time compared with human annotation, it is still promising for automatically assigning

keywords to images, and hence fulfilling the fundamental gap between SE schemes and

images.

4.2.3 Communication Cost and Storage Overhead

The communication cost in CAPIA comes from two major parts: annotation request

and encrypted results returned from the cloud server. The encrypted request consists of

a mL1-dimensional vector Cs.L1 and a mKL-dimensional vector Cs.KL. In the PCA−32

setting, the total communication cost for a request is 26KB. Meanwhile, the returned

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 52

Image CAPIA Annotation Human Annotation

floor-tennis-court,
man, woman

floor-tennis-count,
man

sky-blue, highway,
vegetation, ground, bush,

trees, lake, ocean

highway, sky-blue,
trees, vegetation

cloud, sky-blue,
ground, mountain, horse

man, road, grass

ground, cloud
sky-blue, mountain

snow, grass

group-of-persons, sky-blue,
ground, trees, mountain,
ruin-archeological, hat

cloud, hill

trees, ground, man,
sky-blue, group-of-persons

Table 4.1: Sample Annotation Results

result contains encrypted keywords and distance comparison candidates Compi of top 10

related images. Using AES-256 for keywords encryption, the total size for the returned

result is 488 Bytes with the average number of keywords for each pre-annotated image as

5.7. With regard to the storage overhead of CAPIA, it includes two parts for each pre-

annotated image Ii: 1) encrypted feature vectors Ci.L1 and Ci.KL, which are 26KB in

total. 2) Encrypted keywords, which are 480 Bytes as average using AES-256 encryption.

4.3 Evaluation of CPAR

To evaluate the performance of CPAR, I use Python 2.7 to build the prototype of my

privacy-preserving randomized k-d forest. I utilize FLANN library [59] to implement the

non-privacy randomized k-d forest for comparison. All tests are performed on a 3.1 GHz

Intel Core i7 Macbook Pro with OS X 10.14.2 installed as User and a Microsoft Azure

cloud E4-v3 VM with Ubuntu 18.04 LTS installed as Cloud Server. Other experiment

environment configurations, dataset selection and notations stay aligned with CAPIA.

In the rest part of this section, I first provide numerical analysis as well as experimental

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 53

evaluation for each stage of CPAR. Then, I compare CPAR with CAPIA in terms of

efficiency and accuracy.

4.3.1 RKDF Construction and Encryption

To construct an encrypted RKDF, the user first constructs an unencrypted RKDF using

20,000 pre-annotated images, and then replaces data of each node in the RKDF with

their corresponding ciphertexts. The construction of an unencrypted RKDF with 10

k-d trees costs 28.56 seconds. Then, for the pre-processed feature vectors Vi,L1 and

Vi,KL of each image, the user can encrypt them using PL1C − RF and PKLC − RF

with (mL1)DOTmL1 and (mKL)DOTmKL operations respectively, which costs 8.4ms in

total in my implementation. If an image is associated with a non-leaf node in any tree

of the RKDF, encryption for the hyperplane projected vectors Hi,L1 and Hi,KL with

(m
′
L1)DOTm′L1

and (mKL)DOTmKL operations respectively, which costs 54.7ms in total.

In addition, for each non-leaf node, an order-preserving encryption is needed for the split

field, each of which costs 1.4ms. Therefore, to build a 10-tree encrypted RKDF with a

20,000 pre-annotated image dataset, it takes 74.78 minutes in my implementation. It is

noteworthy that the encrypted RKDF construction is one-time offline cost, which does

not impact the performance of later on real-time privacy-preserving image annotation.

4.3.2 Real-time Image Annotation

Request Generation: To annotate a new image in a privacy-preserving manner, the

user pre-processes and encrypts its feature vectors Vs,L1 and Vs,KL using PL1C −RF

and PKLC − RF . Specifically, the encryption of Vs,L1 requires (mL1)DOTmL1 +

(m
′
L1)DOTm′L1

for shown in Fig.3.2, and the encryption of Vs,KL requires (mKL)DOTmKL

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 54

operations as shown in Fig.3.3. In addition, for each element sfj in the split field element

set SF with size of 348 in my implementation, order-preserving encryption are executed

for Vs[sfj]. As a result, the encrypted request can be efficiently generated with only

534.16ms.

Approximation Power (%)
0102030405060708090100

C
lo

ud
 A

nn
ot

at
io

n
C

os
t (

se
co

nd
)

0

20

40

60

80

100

120

140

Figure 4.5: Privacy-preserving Annotation Cost on Cloud with Different Approxima-
tion Power

Approximation Power (%)
0102030405060708090100

Sp
ee

du
p

R
at

e

0×

10×

20×

30×

40×

50×

60×

70×

0×

Figure 4.6: Speedup Rate with Different Approximation Power

Privacy-preserving Annotation on Cloud : On receiving the encrypted request, the cloud

performs privacy-preserving RKDF search with top-down traversal, back trace search,

and queue push processes. The top-down traversal only requires a direct comparison

between the ciphertexts under order-preserving encryption, whose cost is negligible com-

pared with the other two processes. In the back trace search, privacy-preserving type-2

distance comparison needs to the executed using PL1C − RF and PKLC − RF . In

particular, two comparison candidates CompqL and Comph are computed with (mL1 +

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 55

1)DOTmL1 +(mKL+1)DOTmKL operations and (m
′
L1+1)DOT

m
′
L1

+(mKL+1)DOTmKL

operations respectively. With regards to the queue push process, privacy-preserving

type-1 distance comparison are executed using PL1C − RF and PKLC − RF , which

requires 2(mL1 + 1)DOTmL1 + 2(mKL+ 1)DOTmKL operations in total. Another impor-

tant parameter that affects the search efficiency is the selection of approximation power

AP − X . As depicted in Fig.4.5, by increasing the approximation power from AP −100

to AP−2.5, the privacy-preserving annotation using encrypted RKDF reduces from

143.72 seconds to 2.98 seconds. Compared with CAPIA [85] that requires 218.46 sec-

onds for one privacy-preserving annotation on cloud and does not support approximate

dataset checking, CPAR can significantly speed it up as depicted in Fig.4.6.

Final Keyword Selection: This process only involves AES decryption and the weights

generation that only requires a small number of additions. As a result, the final keyword

selection can be completed by the user within 318ms.

Approximation Power (%)
0102030405060708090100

R
ec

al
l o

f C
PA

R
 (%

)

65

70

75

80

85

90

Figure 4.7: Accuracy (Recall) of CPAR with Different Approximation Power

Accuracy : I use the same average recall rates as defined in Section 6.2 to evaluate the

accuracy of CPAR. In my evaluation, annotation requests for 50 different images are

submitted, in which each requested image has two or more related images in the pre-

annotated dataset. As shown in Fig.4.7, the accuracy of CPAR reduces from 88.42% to

67.59% when the approximation power increases from AP −100 to AP−2.5. Compared

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 56

Accuracy Compared with CAPIA (%)
767880828486889092949698100

Sp
ee

du
p

R
at

e

0x

10x

20x

30x

40x

50x

60x

70x

0x

Figure 4.8: Speedup rate of CPAR with Different Accuracy Compared with CAPIA

with CAPIA [85] my scheme achieves the same accuracy by setting the approximation

power as AP − 100. While the increasing of approximation power reduces the accuracy

of CPAR to some extent, it also boosts the efficiency significantly as shown in Fig.4.5.

Compared with CAPIA, Fig.4.8 shows that CPAR can speed up CAPIA by 4×, 11.5×,

18.7×, 25.8×, 43.1× when achieving 97.7%, 91.4%, 88.9%, 84.7%, 80.3% accuracy of

CAPIA respectively. Therefore, CPAR can greatly promote the efficiency the of CAPIA

while retaining comparable accuracy. To balance the efficiency speedup and annotation

accuracy of CPAR, I suggest to set the approximation power as AP − 10, i.e. achieves

88.9% accuracy of CAPIA with 18.7× speedup.

In Table 4.2, I present samples of automatically annotated images using CAPIA and

CPAR with approximation power as AP−10. In the last column I list the human anno-

tation results (ground-truth) for comparison. On one hand, CPAR is highly possible to

assign correct keywords to images compared with human annotation. This observation

also confirms the high average recall rate of CPAR, since these ground-truth annotations

are likely to be covered in CPAR. On the other hand, CPAR also introduces additional

keywords that frequently appear together with these accurate keywords in top related

images. These additional keywords are typically not directly included in human anno-

tations, but are potentially related to correct keywords. Compared with CAPIA, CPAR

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 57

only misses a small portion of ground-truth keywords due to the approximation strat-

egy, which is consistence with my evaluation result in Fig.4.7 and Fig.4.8. Overall, my

evaluation results demonstrate that although CPAR cannot provide perfect keywords se-

lection all the time compared with human annotation, it can still maintain comparable

accuracy as CAPIA and is promising for automatically assigning keywords to images.

Table 4.2: Sample Annotation Comparison between CAPIA and CPAR

Image CPAR Annotation CAPIA Annotation Human Annotation

floor-tennis-court,
man, grass

floor-tennis-court,
man, woman

floor-tennis-court,
man

highway, sky-blue,

trees, vegetation,

ground, ship,
sky, ocean, bush

sky-blue, highway,

vegetation, ground,

bush, trees,
lake, ocean

highway, sky-blue,
trees, vegetation

group-of-persons,
ground, cloud,

man, sky-light,
mountain, door,
chair, floor-other,

column

cloud, sky-blue,

ground, mountain,

horse man,
road, grass

ground, cloud,
sky-blue,
mountain,
snow, grass

group-of-persons,

hat, hill, cloud,
sky-blue, ground,

sky, fabric,
couple-of-persons,

grass

group-of-persons,

sky-blue, ground,

trees, mountain,
ruin-archeological,

hat, cloud, hill

trees, ground,
man, sky-blue,

group-of-persons

In each cell of CPAR and CAPIA annotation results, ground-truth human annotation
results are underlined and bold out.

Communication Cost : The communication cost of CPAR does not have big differ-

ence compared with CAPIA. The encrypted request introduces an additional m
′
L1-

dimensional vector C(Hs,L1) and a set of encrypted split field elements SF . C(Hs)

and SF add 48K and 4KB communication respectively and make the total communi-

cation cost for a request to be 80KB. Meanwhile, since the size of the returned results

contain encrypted keywords and distance comparison candidates is not changed, the

total size for the returned result is maintained at 488 Bytes. Therefore, CPAR does

Chapter 4. Evaluation of Privacy Protection Modules for Descriptor Based Image
Analysis 58

not introduce heavy communication on the basis of CAPIA and the communication cost

for each privacy-preserving annotation can be efficiently handled in today’s Internet

environment.

4.4 Conclusion

In this chapter, I conduct thorough security analysis to show the security of my design.

I also provide a set of prototype implementation over the well-known IAPR dataset to

demonstrate the practical usage of my privacy-preserving distance comparison design

PL1C and PKLC along with their enhanced modules PL1C −RF and PKLC −RF .

Extensive experiments results show that my modules can achieve promising performance

in terms of efficiency and accuracy while protecting the privacy of user in descriptor based

image analysis tasks.

Chapter 5

Privacy Protection for Deep

Learning Based Image Analysis

To continue with the second research direction on privacy-preserving deep learning based

image analysis, I apply one of the most well-known deep learning models, convolutional

neural network (CNN), in an edge computing setting as an example use case. In this case,

the resource-constrained IoT device offloads its image to the edge device to get analyzed.

My case scenario and problem formulation is the same as in the corresponding section

of Chapter 2, in which the edge device follows the designated algorithm to assist the

analysis but is curious about the content of the IoT uploaded image.

5.1 Introduction

With the recent advances in artificial intelligence, the integration of deep neural networks

and IoT is receiving increasing attention from both academia and industry [86–88]. As

59

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 60

the representative of deep neural networks, convolutional neural network has been iden-

tified as an prevailing structure to enable a spectrum of intelligent IoT applications [89],

including visual detection, smart security, audio analytics, health monitoring, infras-

tructure inspection, etc. In these applications, pre-trained CNN models are deployed on

IoT devices, with which the corresponding CNN inference tasks can be executed when

real-time application requests are initiated. Nevertheless, due to the high computation

in the inference tasks, deploying CNNs on resource-constrained IoT devices for time-

sensitive services becomes very challenging. For example, popular CNN architectures

(e.g., AlexNet [46], FaceNet [90], and ResNet [91]) for visual detection require billions of

operations for the execution of a single inference task. My evaluation results show that

a single inference task using AlexNet can cost more than two minutes on an IoT device

with comparable computing capability as a Raspberry Pi (Model A).

To soothe IoT devices from heavy computation and energy consumption, offloading CNN

inference tasks to public cloud computing platforms has become a popular choice in the

literature. However, this type of “cloud-backed” system may raise privacy concerns by

sending sensitive data to remote cloud [92]. Moreover, connecting to the cloud can cause

additional latency to the system under network congestion and even make the system

dysfunction when network is off [93]. While research efforts have been made towards

enabling CNN inference over encrypted data using cloud computing [36–44], expensive

cryptographic primitives utilized in them (e.g., homomorphic encryption and multi-party

secure computation) introduce heavy encryption and communication overhead to IoT

devices. Such a performance limitation makes these solutions far away from practical

in support of time-sensitive CNN inference tasks on IoT devices, especially for complex

CNN architectures. For example, a quad-core Raspberry Pi, which outperforms most

resource-constrained IoT devices in terms of computational capability, can perform only

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 61

four Paillier homomorphic encryption per second [45]. Given a single input of AlexNet

which has 227 × 227 × 3 elements, it requires more than 10 hours to complete the en-

cryption, which is impractical for most applications in terms of time delay and energy

consumption. Besides, these research adopt batch processing to improve their perfor-

mance, which is more suitable for the “Data Collection and Post-Processing” routine,

while differently, real-time processing is desired for IoT devices to fulfill time-sensitive

tasks. To the best of my knowledge, enabling real-time execution of complex CNN

inference tasks over encrypted data remains as an open problem.

Besides privacy-preserving real-time CNN inference offloading, one of the other chal-

lenges is regarding data integrity. Since the offloaded computation is resource consum-

ing, the edge devices may not be willing to allocate expensive computational resources

and may tend to cheat the IoT devices by returning random data with the same size

of the desired data. According to [94], in some cases, dishonest edge service may even

discard the data to save resources. Unfortunately, resource-constraint IoT devices are

not able, or need to pay a considerable computational cost, to judge the correctness of

the returned results from the cloud. How to effectively detect such dishonest behaviors

while maintaining the lightweight computation on IoT devices and overall performance

in time-sensitive CNN inference tasks is also an essential challenge to be solved.

In this chapter, I design privacy-preserving execution module for compute-intense layers

to address such a challenging problem. I apply my designed modules in a time-sensitive

deep learning based image analysis task to enable a real-time privacy-preserving CNN

inference scheme for resource-constrained IoT devices. Different from existing “cloud-

backed” designs, my design leverages edge computing to promote the efficiency of offload-

ing IoT data, because it can effectively ameliorate the network latency and availability

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 62

issue [95]. More importantly, my privacy-preserving modules include a novel online/of-

fline encryption to assure the real-time CNN inference over encrypted IoT data can be

efficiently executed by general edge computing devices (e.g., regular laptop computers),

and hence avoiding the reliance on powerful cloud servers for computing capabilities.

To be specific, since linear operations of CNNs over input data and random noise are

linearly separable, decryption of noise can be conveniently computed offline. In prac-

tical CNN architectures such as AlexNet and FaceNet, linear operations are dominant

due to their vast number. Therefore, it is rewarding to trade offline computation and

storage (of random noise) for online computation to assure the real-time performance

of CNN inference tasks. Thanks to the online/offline encryption, IoT devices are able

to securely offload over 99% CNN operations to edge devices. In addition, my scheme

does not introduce any accuracy loss as compared to CNN inferences over unencrypted

data, because it does not utilize any approximation for all required operations. In order

to detect dishonest behaviors of edge devices, I design an integrity check mechanism

as a pluggable module to help the IoT devices detect incorrect returned results from

edge devices with a success rate over 99%. Minor computation overhead (1.1% drop

of offload percentage in worst case) is introduced when this integrity check module is

plugged. It is also worth to note that my scheme can be customized to support flexible

CNN architectures that fulfill the requirements of different applications.

To further boost the efficiency of my scheme, two more pluggable modules can be in-

tegrated to enhance the performance in terms of convolution efficiency and communi-

cation cost reduction. Convolution operation, which generates the major computation

consumption in a CNN model, consists of multiplications mostly. I investigate the fast

convolution algorithm in [96] and integrate it to speed up the convolution cost by 26.89×

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 63

for AlexNet. I also leverage the fast and efficient floating-point data compression algo-

rithm in [97] and utilize it to reduce my communication cost by over 72% in AlexNet

and FaceNet.

5.2 Related Work

The problem of privacy-preserving deep learning based image analysis has been studied

in recent years under the cloud computing environment [36–44]. These works focus on

the “machine learning as a service” scenario, wherein the cloud server has a trained neu-

ral network model and users submitted encrypted data for predication. One recent line

of research uses somewhat or fully homomorphic encryption (HE) to evaluate the neural

network model over encrypted inputs after approximating non-linear layers in the neural

network [36–38]. Combining multiple secure computation techniques (e.g., HE, Secure

multi-party computation (MPC), oblivious transfer (OT)) is another trend to support

privacy-preserving neural network inference [39, 41, 42, 44]. The idea behind these

mixed protocols is to evaluate scalar products using HE and non-linear activation func-

tions using MPC techniques. In particular, SecureML [39] utilized the mixed-protocol

framework proposed in ABY [42], which involves arithmetic sharing, boolean sharing,

and Yao’s garbled circuits, to implement both privacy-preserving training and inference

in a two-party computation setting. In [44], MiniONN is proposed to support privacy-

preserving inference by transforming neural networks to the corresponding oblivious

version with the Single Instruction Multiple Data (SMID) batch technique. Trusted

third-party is invoked in Chameleon [43] and hence greatly reducing the computation

and bandwidth cost for a privacy-preserving inference. In [41] GAZELLE is proposed

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 64

by leveraging lattice-based packed additive homomorphic encryption (PAHE) and two-

party secure computation techniques. GAZELLE deploys PAHE in an automorphism

manner to achieve fast matrix multiplication/convolution and thus boosting the final

run-time efficiency. A multi-sever solution, named SecureNN, is proposed in [40], which

greatly improves the privacy-preserving inference performance, i.e., 42.4× faster than

MiniONN [44], and 27×, 3.68× faster than Chameleon [43] and GAZELLE [41].

While the performance of evaluating neural network over encrypted data for image

analysis keeps being improved, the existing research works only focus on small-scale

neural networks. Taking the state-of-the-art SecureNN [40] as an example, the network-

A evaluated (also used by [39]) only requires about 1.2 million FLOPs for an inference,

which costs 3.1s with wireless communication in their 3PC setting. As a comparison, the

AlexNet evaluated in my scheme contains 2.27 billion FLOPs for one inference, which

costs 3.508s in my scheme with similar wireless transmission speed. It is also worth to

note that SecureNN utilizes powerful cloud server (36 vCPU, 132 ECU, 60GB memory)

for evaluation, whereas the edge computing device in this paper is just a regular laptop

computer. Scaling up the network size is not a trivial task. For example, compared

with the type-A network in [41], its type-C network with 500× multiplication increases

the computational cost and communication cost to 430× and 592×. Therefore, how to

support real-time execution of complex CNN inference tasks over encrypted IoT data

remains as an open problem.

5.3 Preliminaries - Convolutional Neural Network

A CNN contains a stack of layers that transform input data to outputs with label

scores. There are four types of most common layers in CNN architectures, including:

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 65

Convolutional Layers, Pooling Layers, Activation Layers, and Fully-connected Layers.

Convolutional layers extract features from input data. Fig.5.1 depicts an example of

convolutional layer that has an input data of size n× n×D and H kernels, each of size

k × k ×D. The input will be processed into all H kernels independently to extract H

different features. Considering the input and each kernel as D levels, where each level

of the input and kernel are a n× n matrix and a k × k matrix respectively. Each level

of a kernel starts scanning the corresponding input level from top-left corner, and then

moves from left to right with s elements, where s is the stride of the convolutional layer.

Once the top-right corner is reached, the kernel moves s elements downward and scans

from left to right again. This convolution process is repeated until the kernel reaches the

bottom-right corner of this input level. For each scan, an output is computed using the

dot product between the scanned window of input and the kernel as an example shown

in Fig.5.1. For each kernel, the output for all D levels will be summed together.

2 5

3 1 1 -1

3 1

2*1+5*(-1)+3*3+1*1=7
n

n

D

k

k

…

D

neuronsw0,0w0,1 !
"#$

%
&" ∗ ($, "

v0

v1

v2

v3

v4

v5

v6

Example of Convolutional Layer Example of Fully-Connected Layer

Figure 5.1: Examples of a Convolutional Layer and a Fully-connected Layer

Pooling layers and activation layers are usually non-linear layers. A pooling layer is pe-

riodically inserted between convolutional layers. Pooling layers progressively reduce the

spatial size of outputs from convolutional layers, and thus to make data robust against

noise and control overfitting. An activation layer utilizes element-wise activation func-

tions to signal distinct identification of their input data. There are a number of popular

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 66

pooling strategies (e.g., max-pooling and average-pooling) and activation functions (e.g.,

rectified linear units (ReLUs) and continuous trigger functions), which are extremely

computational efficient compared with convolutional layers and fully-connected layers.

In my scheme, these two efficient layers will be directly handled on the IoT devices.

Fully-connected layers are usually the final layers of a CNN to output the final results

of the network. In case of a fully-connected layer, all neurons in it have full connections

to all outputs from the previous layer. As an example shown in Fig.5.1, the connection

between each neuron and input element has a weight. To obtain the output of a neuron,

elements connected to it will be multiplied with their weights and then accumulated.

More details about CNN can be found in ref [98].

5.4 Privacy-preserving Compute-intense Layers

In my scheme, the user needs to offload compute-intense convolution and fully-connected

layer to the edge device. For the purpose of privacy protection, the offloaded data is

encrypted. To enable accurate and efficient convolution/fully-connected layer execution

over encrypted data, I design privacy-preserving convolution layer (PPCL) module and

privacy-preserving fully-connected layer (PPFL) module respectively. Before I dive into

the details of my modules. I summarize important notation in Table 5.1.

5.4.1 PPCL: Privacy-preserving Convolutional Layer

In PPCL, I consider a general convolutional layer with a n × n ×D input, stride as s,

padding as p, and H kernels with each size of k × k ×D. The dth level of the input is

denoted as a m×m matrix Id.

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 67

Table 5.1: Summary of Notations

n× n the size of each level of a convolutional layer’s
input

D
the depth of the input of a convolutional layer
and kernel

k × k the size of a convolutional layer’s kernel matrix

H the number of kernels of a convolutional layer

s the size of stride used for a convolutional layer

p the size of padding used for a convolutional layer

Rc,d n× n random matrices to encrypt the input of a
1 ≤ d ≤ D convolutional layer

αi (n−k+2p
s + 1)× (n−k+2p

s + 1) matrices to decrypt
1 ≤ i ≤ H a convolutional layer’s output from H kernels

m the size of a fully-connected layer input vector

T the number of neurons of a fully-connected layer

Rf
a m-dimensional random vector to encrypt the
input of a fully-connected layer

β
a T -dimensional decryption vector to decrypt
fully-connected layer outputs

Input Encryption: The IoT device encrypts the input using the pre-stored keys {Rc,d}

for this convolutional layer as

Enc(Id) = Id +Rc,d (5.1)

where {Enc(Id)}, 1 ≤ d ≤ D are sent to the edge device.

Privacy-preserving Execution: The edge device takes each Enc(Id), 1 ≤ d ≤ D as

the input of kernels to perform the convolution process. For the ith kernel, the edge

device outputs

D∑
d=1

Conv(Enc(Id), ith) (5.2)

=
D∑
d=1

Conv(Id, ith) +
D∑
d=1

Conv(Rc,d, ith)

∑D
d=1 Conv(Enc(Id), ith), 1 ≤ i ≤ H are returned back to the IoT device as intermediate

results.

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 68

Decryption and Preparation for the Next Layer: Given the returned∑D
d=1 Conv(Enc(Id), ith), 1 ≤ i ≤ H, the IoT device quickly decrypts them as

D∑
d=1

Conv(Enc(Id), ith)− αi =

D∑
d=1

Conv(Id, ith) (5.3)

where {αi =
∑D

d=1 Conv(Rc,d, ith)}, 1 ≤ i ≤ H are the pre-stored decryption keys for

this layer. Afterwards, the IoT device performs the activation layer and pooling layer

directly over convolutional output, which are extremely compute-efficient. For example,

one of the most popular activation layer ReLU only requires translating negative values

in the input to 0. The popular max-pooling (or average-pooling) layer simply shrinks

the data by taking the max value (or average value respectively) every few values.

The output will be encrypted and sent to the edge device using PPCL for the next

convolutional layer (or PPFL respectively for a fully-connected layer).

5.4.2 PPFL: Privacy-preserving Fully-connected Layer

In PPFL, I consider a general fully-connected layer with T neurons and takes a m-

dimensional vector V as input.

Input Encryption: Given the input, the IoT device encrypts it using the pre-stored

encryption key Rf for this layer as

Enc(V) = V +Rf (5.4)

Enc(V) is then sent to the edge device.

Privacy-preserving Execution: On receiving Enc(V), the edge device takes Enc(V)

as the input of the fully-connected layer. Specifically, the encrypted outcome Enc(O[j]),

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 69

1 ≤ j ≤ T of each neuron is computed as

Enc(O[j]) =
m∑
i=1

Enc(V)[i]× wi,j = O[j] + β[j] (5.5)

where wi,j is the weight between the ith element of input vector and the jth neuron.

Enc(O) = {Enc(O[1]), Enc(O[2]), · · · ,

Enc(O[T])} is sent back to the IoT device as intermediate results.

Decryption and Preparation for the Next Layer: Given the returned Enc(O),

the IoT device decrypts each Enc(O) with the pre-stored decryption key β of this layer

as

O = Enc(O)− β (5.6)

Then, the IoT device executes the activation layer with O as input. The output from

the activation layer will be encrypted and sent to edge device using PPFL if there are

any additional fully-connected layers in the CNN.

5.5 Edge-Assisted CNN Inference over Encrypted Imagery

Data

In this section, I demonstrate the practical application of my PPCL and PPFL module

in an edge-assisted IoT image analysis task. To assure the real-time performance of the

image analysis tasks, I use a novel online/offline strategy to design my scheme. The

online phase refers to the duration when a CNN inference is being executed for the

data collected by an IoT device. The offline phase refers to the “no-inference” status

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 70

of the IoT device and time before the IoT device is deployed. Specifically, the owner of

an IoT device pre-computes multiple sets of encryption and decryption keys during the

offline phase and loads them into the IoT device. In the online phase, the IoT device

uses these pre-computed keys to efficiently encrypt data to be offloaded and decrypt

results returned by the edge device. In my system, the IoT device offloads expensive

convolutional layers and fully-connected layers to the edge device, and only keeps the

compute-efficient layers at local. This is motivated by the fact that convolutional and

fully-connected layers occupy majority of computation and parameters storage in typical

CNNs [99]. All CNN operations performed by the edge device are over encrypted imagery

data.

5.5.1 Offline Phase

In the offline phase, the user generates encryption and decryption keys for all convo-

lutional layers and fully-connected layers in a trained CNN. I consider each element in

the input image matrix of convolutional layers and fully-connected layers is γ-bit long,

and λ is the security parameter. To ensure the security 1
2λ−γ−1 shall be a negligible

value in terms of computational secrecy [100], e.g., < 1
2128

. Detailed selection of security

parameter is discussed in Section 6.1.1.

As described in Algorithm.2, given a convolutional layer with a n×n×D input, stride as

s, padding as p, and H kernels (k× k matrices), the owner generates {Rc,d, 1 ≤ d ≤ D}

as the encryption keys and {αi, 1 ≤ i ≤ H} as its decryption keys, where Rc,d is a n×n

random matrix and αi is a (n−k+2p
s +1)×(n−k+2p

s +1) matrix. For expression simplicity,

I use Conv(Rc,d, ith) to denote the convolution operation for the ith kernel with Rc,d as

input.

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 71

Given a fully-connected layer with a m-dimensional vector as input and T neurons, the

owner first generates a m-dimensional random vector Rf . Then, the owner takes Rf as

the input of the fully-connected layer to output a T -dimensional vector β. Rf and β are

set as the encryption key and decryption key respectively for this layer.

For a CNN with x convolutional layers and y fully-connected layers, x sets of

{Rc,d, αi}1≤d≤Dx,1≤i≤Hx and y sets of {Rf , β} are generated by the owner as a final set

of keys {Enckey, Deckey}. Note that , each set of keys is only valid for one CNN request

in the later online phase. Thus, the owner will generate multiple sets of keys according

to the necessity of application scenarios as discussed in Section 5.6.

Input : Input size n× n×D, stride s, padding p, H kernels
Output: Encryption keys Rc,d, 1 ≤ d ≤ D, Decryption keys αi, 1 ≤ i ≤ H
Generate random n× n matrices Rc,d, 1 ≤ d ≤ D ;
for 1 ≤ i ≤ H do

for 1 ≤ d ≤ D do
Take Rc,d as input for the ith kernel for convolution and output Conv(Rc,d, ith);
d++;

end

Set αi =
∑D

d=1 Conv(Rc,d, ith);
i+ +;

end
Algorithm 2: Offline Preparation of Convolutional Layer

Input : Input Data & Trained CNN
Output: CNN Execution Result
Set the Layer Input M = Input Data;
Set Layers = the collection of all Convolutional Layers and Fully-connected Layers in CNN;
Set Layer = the first Layer from Layers;
while Layer is not null do

if Layer = Convolutional Layer then
Execute the PPCL with M as input.;
Set M = output from PPCL;

end
if Layer = Fully-connected Layer then

Execute the PPFL with M as input.
Set M = output from PPFL;

end
Set Layer = Layers.next();

end
return M as result;

Algorithm 3: Online CNN Inference

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 72

5.5.2 Online Phase

During the online phase, the IoT device can efficiently interact with the edge device to

conduct CNN inference over encrypted data. The overall process of my online phase is

depicted in Algorithm.3. Specifically, the IoT device offloads encrypted data to the edge

device for performing compute-intense convolutional layers and fully-connected layers.

Intermediate results are returned back to the IoT device for decryption. Then, these

decrypted results are processed with the follow up activation layer and pooling layer (if

exists). Outputs are encrypted and offloaded again if the next layer is a convolutional

layer or a fully-connected layer. This procedure is conducted iteratively until all CNN

layers are executed.

To fulfill these tasks, I apply PPCL and PPFL to enable the IoT device to efficiently

handle each layer in a CNN. Compute-intense convolutional and fully-connected layers

are securely offloaded to the edge using PPCL and PPFL. Since I develop PPCL and

PPFL as independent modules, they can be customized and recursively plugged into

any CNN no matter how many different convolutional layers and fully-connected layers

it contains.

5.6 Discussion - Storage and Update of Pre-computed Keys

Our scheme considers two major types of resource-constrained IoT devices that run

CNN-driven applications.

• Type-1: Mobile IoT devices with limited battery life and computational capability,

such as drones.

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 73

• Type-2: Static devices with power supply but has limited computational capability,

such as security cameras.

The type-1 devices are usually deployed to perform tasks for a period time. Therefore,

before each deployment, the device owner can pre-load enough keys to support its CNN

tasks. With regards to the type-2 devices, the owner can perform an initial key pre-

loading and then use remote update to securely add new offline keys as described in

Fig.5.2.

IoT Device Owner

2. New offline keys encrypted using the IoT device’s secret key (e.g., AES)

Edge Device
IoT Devices

3. Send encrypted keys
during devices’ idle time

1. Initial Key
Deployment

4. Decrypt Keys

Figure 5.2: Key Update for Power Connected Devices

Our scheme proposes to ensure the timely processing of CNN requests when they are

needed on IoT devices. Instead of performing real-time CNN requests on every piece of

data collected, resource-constrained IoT devices usually require in-depth analytics using

CNN when specific signals are detected. Taking real-time search and monitoring using

drones as an example application for type-1 devices, fast local processing will be first

performed for data collected to get estimated results [101]. Once suspicious signs are

detected in estimated results, CNN based analytics are further conducted for a small set

of data (e.g., video frames with the detected suspicious object). Given the high efficiency

of my scheme, the performance of such CNN requests will be timely supported when

enough pre-computed keys are available. For example, when the average frequency CNN

requests is every one per ten seconds for a drone, only 360 sets of pre-computed keys

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 74

are needed for one-hour deployment, which is longer than most current drones’ battery

life [102]. Security camera is an example of type-2 devices, which requires CNN-based

analytics to extract detailed information only when alarm is triggered by motion or

audio sensors of the camera. Similar to the drone case, my scheme can timely support

the peak CNN requests when suspicious signs are detected.

Assuming the average frequency of CNN-required alarm in a security camera is one per

10 minutes, and each alarm requires 5 CNN requests, 720 sets of pre-computed keys

are needed for one-day usage. As evaluated in Section 6.1.2.3, an IoT device with a

32GB SD card is able to store enough keys to support 1600 requests for AlexNet. Such

a result indicates 4.4 deployments and a 2.22-day support for type-1 and type-2 devices

respectively when using AlexNet.

Note that, my scheme is designed for low-cost resource-constrained devices that require

timely processing of moderate (or low) frequent CNN requests. For application scenarios

that involve a large number of constant CNN requests, e.g., security critical surveillance

systems, computational powerful devices are suggested to handle CNN requests directly

at local.

5.7 Discussion - Offloading Pooling Layers

While pooling layers are usually compute-efficient in a CNN, they can also be securely

offloaded to edge devices using my online/offline strategy to further promote the effi-

ciency. Particularly, I focus on the offloading of average pooling layer as the example

shown in Fig.5.3, which performs down-sampling by dividing the input into rectangular

pooling regions and computing the average values of each region. Given a n × n × D

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 75

matrix as input to an average pooling layer with q × q pooling regions and s as stride,

a (n−qs + 1)× (n−qs + 1) matrix is generated as output.

2 5
3 8

2 -1 3 2
1 -3 5 1
3 2 3 5
-1 1 4 8 Max-Pooling

-1/4 11/4

5/4 5
Average-Pooling

Figure 5.3: Example of Pooling Layers

To enable the offloading of an average pooling layer, the following changes will be made

for the offline phase and online phase:

• Offline Phase : For each use of the average pooling layer, the IoT device owner

generates D random matrices {Rp,d} with each size of n×n, and processes it with

the average pooling layer to obtain (n−qs + 1) × (n−qs + 1) matrices {Rc,d}. The

owner then runs Algorithm.2 using {Rc,d} as encryption keys to generate {αi}.

• Online Phase : The online offloading of an average pooling layer can be combined

with its follow up convolutional layer. Specifically, the IoT device encrypts each

level of input Id for the average pooling layer as Enc(Id) = Id +Rp,d, and sends

Enc(Id) to the edge device. The edge processes the pooling layer with Enc(Id)

as input and output Enc(Op,d). Then, the edge executes the convolutional layer

with {Enc(Op,d)}1≤d≤D as input and outputs Enc(Oi), 1 ≤ i ≤ H for H kernels.

Finally, the IoT device can decrypt {Enc(Oi)} using {αi} as Oi = Enc(Oi) −

αi, 1 ≤ i ≤ H.

It is worth to note that my design combines the offloading of the average pooling layer

and its follow up convolutional layer. Thus, the IoT device only needs to encrypt the in-

put of pooling layer and decrypt the outputs from the convolutional layers using efficient

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 76

matrix additions.

I now analyze the correctness for offloading average-pooling layer and convolutional layer

together. By denoting the average-pooling operation as AvgP (·), I have the fact that

AvgP (Enc(Id)) = AvgP (Id) +AvgP (Rp,d)

In addition, according to the correctness of PPCL as discussed in Section 5.4.1, I have

D∑
d=1

(Convi(AvgP (Id) +AvgP (Rp,d)))

=

D∑
d=1

Convi(AvgP (Id)) +

D∑
d=1

Convi(AvgP (Rp,d))

where Convi(·) is the processing of ith kernel in the convolutional layer. Since αi =∑D
d=1Conv(AvgP (Rp,d)), I get

Oi = Enc(Oi)− αi =

D∑
d=1

Convi(AvgP (Id)), 1 ≤ i ≤ H (5.7)

Therefore, after the decryption, the IoT device can obtain the correct output for the

average-pooling layer and convolutional layer.

5.8 Enhancement - Integrity Check

Due to the heavy computation and storage overhead brought by convolutional and fully-

connected layers, untrusted edge devices may perform dishonest behaviors so that they

can save their resource utilities. After receiving inference requests from the IoT devices,

the edge devices may cheat the IoT devices by skipping the heavy convolutional op-

erations and sending back random, apparently not correct, results to the IoT devices.

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 77

These incorrect results can badly effect or even completely ruin the final result of the

entire CNN inference. In order to ensure the integrity of returned data from edge de-

vices, my scheme also provides an optional integrity check functionality with only a

minor efficiency cost. By enabling the integrity check, the IoT device can achieve an

error detection rate of 99% while only losing 1.1% in offload percentage in the worst

case compared with integrity check plugged in. The users can decide whether to turn

on this functionality based on the actual deployment scenario and the trustworthiness

of the edge devices.

The basic strategy of integrity check is to first sample a small portion of elements from

returned data in each layer and then check whether there is an incorrect result occurring

in the selected elements. To validate the correctness of a single element, the IoT device

needs to go through the corresponded convolution operations locally. Although resource

consuming, with high probability, this validation process can block IoT devices from

taking incorrect results into next layer.

The error detection rate Pr(ED) can be calculated as below:

Pr(ED) = 1−
((1−θ)N

rN

)(
N
rN

) (5.8)

where N , r and θ is the size, sample rate and error rate of returned data in a con-

volutional layer.
((1−θ)N

rN

)
is the combination operation for selecting r × N elements

from (1− θ)×N elements. In order to increase the error detection rate while lowering

the additional validation computation on IoT device, I provide detailed evaluation by

performing numerical analysis and practical experiments in Section 5.8 and Section 6.2

respectively. Based on my experiment results on AlexNet, my scheme with integrity

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 78

check turned on could achieve over 99% error detection rate while maintaining a similar

computation offload rate compared with unplugging integrity check.

5.9 Enhancement - Fast Convolution

In order to improve the efficiency of the compute-intense convolutional layer, I investigate

and integrate the fast convolution algorithm in [96]. Given matrix In×n as convolutional

layer input in one channel and matrix Kk×k as one filter of that convolutional layer, an

original convolution filtering Conv(I,K) requires (n− k + 1)2k2 element-wise multipli-

cation (set stride = 1 and padding = 0 for simplification). Take n = 4, k = 3 as an

example, the convolutional layer output is a 2 × 2 matrix. An original convolutional

computation would cost (n − k + 1)2k2 = 22 × 32 = 36 multiplications. The multipli-

cation number can be minimized by applying the fast filtering algorithm in [96, 103] to

transform Conv(·) into:

Conv(I,K) =
[
AT
[
[GKGT]� [BTIB]

]
A
]T

(5.9)

where � represents element-wise multiplication and:

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 79

BT =

1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1

G =

1 0 0

1
2

1
2

1
2

1
2 −1

2
1
2

0 0 1

AT =

1 1 1 0

0 1 −1 −1

K =

g0 g1 g2

g3 g4 g5

g6 g7 g8

T

I =

d0 d1 d2 d3

d4 d5 d6 d7

d8 d9 d10 d11

d12 d13 d14 d15

T

(5.10)

in which B, G and A are auxiliary coefficient matrices. Details of generating these ma-

trices are stated in [103]. It can be easily proved that Equation 5.12 achieves equilibrium

by applying values from Equation 5.10. Note that under my scenario, the trained CNN

does not require frequent update and GKGT can be precomputed once the CNN is de-

ployed on the edge servers. Moreover, operations with A and B involved are considered

as additions instead of multiplications because both A and B are composed of 0, 1 and

-1. Thus, the total number of multiplications |[GKGT]� [BTIB]| = 16 is calculated by

counting the participating elements in the element-wise multiplication.

To be more generic, according to the 1-D minimal filtering algorithm in [103, 104],

computing m-dimension outputs with an r-dimension filter, denoted as F (m, r), requires

µ(F (m, r)) = m+ r−1 multiplications. By nesting this 1-D algorithm with itself, a 2-D

version can be achieved as µ(F (m×m, r× r)) = µ(F (m, r))× µ(F (m, r)). Thus, in my

scenario, during a convolution filtering, the minimal number of multiplications required

for computing (n− k + 1)× (n− k + 1) outputs with k × k filter can be derived as:

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 80

µ(F ((n− k + 1)2, k2)) = µ(F (n− k + 1, k))2

= (n− k + 1 + k − 1)2

= n2

(5.11)

This is also consistent with the above example where n = 4, k = 3 and the overall

number of multiplications is 16. In my model, the plaintext input Id, key Rc,d and

encrypted input Id + Rc,d share the same size and since all the operations in the fast

filtering algorithm are linear operations, my scheme can perfectly enhance its efficiency

by applying Id and Rc,d in Equation 5.12 and obtain:

Conv(Id +Rc,d,K)

=
[
AT
[
[GKGT]� [BT (Id +Rc,d)B]

]
A
]T

Conv(Rc,d,K) =
[
AT
[
[GKGT]� [BTRc,dB]

]
A
]T

(5.12)

By integrating the fast filtering algorithm, my scheme can reduce the multiplication

overhead by ((n−2p+k)ksn)2 times in each convolutional layer. And since the fast filtering

algorithm can yield exactly the same result as the original convolution, there is no

accuracy loss introduced.

5.10 Enhancement - Matrix Compression

In order to save communication overhead in my design, I investigate and integrate the

well-known fast and efficient float data compression [97] before transmitting data be-

tween edge devices and IoTs. [97] proposed an efficient compressor for both 32-bit and

64-bit images. by placing emphasis on both 2D and 3D data for rendering. The compres-

sion algorithm leverages the Lorenzo predictor [105] to predict the data and meanwhile,

Chapter 5. Privacy Protection for Deep Learning Based Image Analysis 81

it also utilizes a Schindler’s quasistatic probability model [106] based range coder to

encode the residual. Details of the fast and efficient float data compression is stated in

[97].

5.11 Conclusion

In this chapter, I proposed a novel online/offline scheme that enables resource-

constrained IoT devices to efficiently execute CNN requests with privacy protection.

My scheme uniquely designs a lightweight online/offline encryption scheme to provide

private, efficient and accurate offloading of CNN inference tasks. By discovering the

fact that linear operations in CNNs over input and random noise can be separated, my

scheme pre-computes decryption keys to remove random noises and thus boosting the

performance of real-time CNN requests. By integrating local edge devices, my scheme

ameliorates the network latency and service availability issue. My scheme also makes

the privacy-preserving operation over encrypted data on the edge device as efficient

as that over unencrypted data. Moreover, the privacy protection in my scheme does

not introduce any accuracy loss to the CNN inference. In addition, I design a few

enhancement modules to bring more features and improve the performance of my scheme

in terms of efficiency and data integrity protection. In the next chapter, I will analyze the

security and performance of my design followed by experiment results on my prototype

implementation.

Chapter 6

Evaluation of Privacy Protection

Modules for Deep Learning Based

Image Analysis

In this chapter, I first theoretically audit the security and performance of my design in

my application scenario. Then I provide experimental results to evaluate the practical

performance of my privacy protection modules as well as their enhancement for deep

learning based image analysis stated in Chapter 5.

6.1 Security and Performance Analysis

6.1.1 Security Analysis

In this section, I first prove the security of my online/offline encrypted used in PPCL

and PPFL, and then show the security of the overall CNN inference in my setting as

82

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 83

described in Chapter 2 Section 2.

Theorem 6.1. Given the ciphertext C of a γ-bit random message M generated using

PPCL or PPFL, the probability for a probabilistic polynomial time (PPT) adversary A

to output a correct guess for M shall have

Pr[(M∗ =M)|C]− Pr[M∗ =M] ≤ ε (6.1)

where ε is a negligible value in terms of computational secrecy [100], M∗ is A’s guess

for M, and Pr[M∗ = M] is the probability A makes a correct without ciphertext.

Specifically, the corresponding ciphertext generated using PPCL or PPFL only introduces

negligible additional advantages to A for making a correct guess of M.

Proof. Given an input matrix Id in PPCL (input vector V in PPFL respectively), each

γ-bit element (M) is encrypted by adding a λ-bit random number from uniform distri-

bution (denoted as R) as shown in Eq.5.1 and Eq.5.4.

To make a correct guess of M without the ciphertext, the adversary A has Pr[M∗ =

M] = 1
2γ , where M∗ is A’s guess for M. By given the ciphertext C = M + R, C ∈

[0, 2γ + 2λ] there are two cases according to the value of C

1. 2γ ≤ C ≤ 2λ. In this case, I have Pr[M∗ = M] = 1
2γ , since C has the uniform

looking as R in the range of [2γ , 2λ].

2. C < 2γ or C > 2λ. In this case, I have Pr[M∗ =M] = 1
C or Pr[M∗ =M] = 1

C−2λ ,

where Pr[M∗ =M] > 1
2γ This is because the distribution of C is affected by M

and the total possible inputs are now reduced to C or C − 2λ.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 84

The second case can happen when R < 2γ or R > 2λ − 2γ . As Pr[R < 2γ] = Pr[R >

2λ − 2γ] = 2γ

2λ
, I have

Pr[R < 2γ or R > 2λ − 2γ] = Pr[R < 2γ] + Pr[R > 2λ − 2γ] =
1

2λ−γ−1

Thus, to guarantee 1
2λ−γ−1 is a negligible probability, such as 1

2128
, my scheme can set the

security parameter λ according to size of input message, i.e., λ− γ− 1 > 128. I now use

ε = 1
2λ−γ−1 to denote the negligible probability, and get the probability Pr[(M∗ =M)|C]

as

Pr[(M∗ =M)|C] ≤ 1

2γ
∗ (1− ε) + 1 ∗ ε =

1

2γ
+ (1− 1

2γ
)ε

where 1
2γ ∗ (1 − ε) is the probability for a correct guess for 2γ ≤ C ≤ 2λ, and the “1”

in 1 ∗ ε is best probability for a correct guess A can have when C < 2γ or C > 2λ. As a

result, I get

Pr[(M∗ =M)|C]− Pr[M∗ =M] ≤ (1− 1

2γ
)ε < ε

As ε is negligible value, Theorem 6.1 is proved.

I now discuss the security of the overall CNN inference. Without loss of generality, I use

layer-x to denote a convolutional layer or a fully-connected layer needs to be offloaded,

Ix and Ox are the input and output of layer-x. With regards to the offloading of

layer-x, Ix is encrypted using my online/offline encryption, which has been proved to

be secure as shown in Theorem 6.1. When moving to the next layer, i.e., layer-(x+1),

Ox is processed through non-linear layers by the IoT device to generate the input of

layer-(x+1) as I(x+1). Before being offloaded, each element M in I(x+1) is encrypted

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 85

by adding a random number R from uniform distribution. By selecting an appropriate

security parameter λ, there will be only a negligible probability 1
2λ−γ−1 that M affects

the uniform looking of ciphertextM+R as proved in Theorem 6.1, where γ is the length

of M in bits. To be specific, by re-encrypting the input of each offloaded layer in my

scheme, the negligible additional advantages introduced by each offloaded layer for the

adversary to learn its input and output will not be accumulated for later layers in the

CNN inference. Therefore, the security of the overall CNN inference is achieved in my

scheme with proper selection of λ.

6.1.2 Numerical Analysis

The numerical analysis of my scheme is summarized in Table 6.1. For expression simplic-

ity, I use one floating point operation (FLOP) to denote an addition or a multiplication.

I use an AlexNet [46] model as the study case for analysis.

6.1.2.1 Computational Cost

In the Online phase, the IoT device offloads compute-intense convolutional layers and

fully-connected layers to the edge devices. Given a general convolutional layer, the IoT

device only needs to perform D matrix addition with Dn2 FLOPs for encryption and

H(n−k+2p
s + 1)2 FLOPs for decryption respectively. Compared with executing the same

convolutional layer fully on the IoT device, which takes 2DHk2(n−k+2p
s + 1)2 FLOPs,

my scheme significantly reduces real-time computation on the IoT device. It is worth

to note that the stride s in a convolutional layer is typically a small value (e.g., 1 or

2). For a general fully-connected layer, the IoT device needs to perform m FLOPs for

encryption and T FLOPs for decryption as shown in Eq.5.4 and Eq.5.6 respectively.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 86

Table 6.1: Numerical Analysis Summary

O
u

r
S

ch
e
m

e

In
p

u
t

Io
T

C
o
m

p
u

ta
ti

o
n

(F
L

O
P

s)
O

ffl
o
a
d

e
d

C
o
st

C
o
m

m
u

n
ic

a
ti

o
n

S
to

ra
g
e

S
iz

e
In

p
u

t
R

e
su

lt
s

to
th

e
E

d
g
e

C
o
st

O
v
e
rh

e
a
d

E
n

c
ry

p
ti

o
n

D
e
c
ry

p
ti

o
n

(F
L

O
P

s)
(E

le
m

e
n
ts

)
(E

le
m

e
n
ts

)

C
o
n
v
o
lu

ti
o
n

a
l

n
×
n

D
n
2

H
(n
−
k
+
2
p

s
+

1)
2

2D
H
k
2
×

D
n
2
+

D
n
2
+

×
D

(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

F
u

ll
y
-c

o
n

n
e
c
te

d
m

m
T

2
m
T

m
+
T

m
+
T

O
ffl

o
a
d

in
g

u
si

n
g

P
la

in
te

x
t

w
it

h
o
u

t
P

ri
v
a
c
y

P
ro

te
c
ti

o
n

C
o
n
v
o
lu

ti
o
n

a
l

n
×
n

N
/
A

N
/A

2D
H
k
2
×

D
n
2
+

N
/A

×
D

(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

F
u

ll
y
-c

o
n

n
e
c
te

d
m

N
/
A

N
/A

2
m
T

m
+
T

N
/A

In this table: s is the stride, p is the size of padding, H is the number of kernels,
k × k is the size of kernels of a convolutional layer; T is the number of neurons of a
fully-connected layer. Each element is 20 Bytes.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 87

Differently, if the IoT device executes such a fully-connected layer at local, 2mT FLOPs

are needed.

Besides the offloading of convolutional layers and fully-connected layers, the IoT de-

vice also needs to process non-linear layers locally. These non-linear layers are highly

compute-efficient. Taking the widely adopted activation layer - ReLU as an example,

it only requires 1
2Dk2

of its previous convolutional layer’s cost or 1
2m of its previous

fully-connected layer’s cost.

I now discuss the computational cost of my scheme using AlexNet and FaceNet. As

shown in Table 6.2 and Table 6.3, my scheme can offload over 99.9% computational

cost for convolutional layers and fully-connected layers in both models, and only leaves

lightweight encryption and decryption on the IoT device. Compared with the offloaded

convolutional layers and fully-connected layers, the local execution of all non-linear lay-

ers only requires 0.08% operations for AlexNet and 0.50% operations for FaceNet. This

result further affirms my motivation to offload convolutional layers and fully-connected

layers. Meanwhile, as FaceNet requires more computation (additional 0.9 billion FLOPs)

in compute-intense layers compared with AlexNet, I observe that the offloaded compu-

tation ratio maintains over 99%. This observation supports that my scheme is able to

be scaled up and reduce the local computation cost of IoT devices when dealing with

more complex deep learning models.

With regards to the encrypted execution on the edge device, my scheme achieves the

same computational cost as that directly using unencrypted data as shown in Table 6.1.

This is because my encryption (Eq.5.1 and Eq.5.4) in PPCL and PPFL schemes make

the ciphertexts Enc(Id) and Enc(V) remain the same dimension as their plaintexts Id

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 88

Table 6.2: Example Numerical Analysis on AlexNet

P
a
ra

m
e
te

rs
In

p
u

t
Io

T
O

ffl
o
a
d

e
d

O
ffl

o
a
d

e
d

C
o
m

m
u

n
ic

a
ti

o
n

S
to

ra
g
e

S
iz

e
C

o
m

p
u

ta
ti

o
n

C
o
st

P
e
rc

e
n
ta

g
e

C
o
st

O
v
e
rh

e
a
d

(F
L

O
P

s)
(F

L
O

P
s)

C
o
n
v
-1

n
=

2
27

,H
=

9
6

2
27
×

22
7

44
4,

98
7

21
0,

83
0,

40
0

99
.7

9%
86

91
.1

5
K

B
86

91
.1

5
K

B
k
=

11
,s

=
4

×
3

C
o
n
v
-2

n
=

2
7,

H
=

25
6

2
7
×

27
25

6,
60

8
89

5,
79

5,
20

0
99

.9
7%

50
11

.8
8

K
B

50
11

.8
8

K
B

k
=

5
,s

=
1

×
96

C
o
n
v
-3

n
=

1
3,

H
=

38
4

1
3
×

13
10

8,
16

0
29

9,
04

0,
76

8
99

.9
6%

21
12

.5
0

K
B

21
12

.5
0

K
B

k
=

3
,s

=
1

×
2
56

C
o
n
v
-4

n
=

1
3,

H
=

38
4

1
3
×

13
12

9,
79

2
44

8,
56

1,
15

2
99

.9
7%

25
35

.0
0

K
B

25
35

.0
0

K
B

k
=

3
,s

=
1

×
3
84

C
o
n
v
-5

n
=

1
3,

H
=

25
6

1
3
×

13
10

8,
16

0
29

9,
04

0,
76

8
99

.9
6%

21
12

.5
0

K
B

21
12

.5
0

K
B

k
=

3
,s

=
1

×
3
84

F
C

-1
m

=
9
21

6,
T

=
40

96
92

16
13

,3
12

75
,4

97
,4

72
99

.9
8%

26
0.

00
K

B
26

0.
00

K
B

F
C

-2
m

=
4
09

6,
T

=
40

96
40

96
8,

19
2

33
,5

54
,4

32
99

.9
8%

16
0.

00
K

B
16

0.
00

K
B

F
C

-3
m

=
4
09

6,
T

=
10

00
40

96
5,

09
6

8,
19

2,
00

0
99

.9
4%

99
.5

3
K

B
99

.5
3

K
B

T
o
ta

l
C

o
st

N
/
A

N
/A

1,
07

4,
30

7
2,

27
0,

51
2,

19
2

99
.9

5%
20

.4
9

M
B

20
.4

9
M

B

C
o
m

p
u

ta
ti

o
n

fo
r

A
ll

A
c
ti

v
a
ti

o
n

a
n

d
P

o
o
li
n

g
L

a
y
e
rs

o
n

th
e

Io
T

:
6
5
0
,0

8
0

F
L

O
P

s
a
n

d
1
,1

0
2
,1

7
6

F
L

O
P

s

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 89

Table 6.3: Example Numerical Analysis on FaceNet

P
a
ra

m
e
te

rs
In

p
u

t
Io

T
O

ffl
o
a
d

e
d

O
ffl

o
a
d

e
d

C
o
m

m
u

n
ic

a
ti

o
n

S
to

ra
g
e

S
iz

e
C

o
m

p
u

ta
ti

o
n

C
o
st

P
e
rc

e
n
ta

g
e

C
o
st

O
v
e
rh

e
a
d

(F
L

O
P

s)
(F

L
O

P
s)

C
o
n
v
-1

n
=

2
2
0,

H
=

64
2
20
×

22
0

1,
30

6,
80

0
34

1,
51

0,
40

0
99

.6
2%

25
52

3.
4
4

K
B

2
55

23
.4

4
K

B
k
=

7
,

s=
2

×
3

C
o
n
v
-2

a
n

=
55

,
H

=
6
4

5
5
×

55
38

7,
20

0
24

,7
80

,8
00

98
.4

4%
7
56

2.
5
0

K
B

75
62

.5
0

K
B

k
=

1
,

s=
1

×
6
4

C
o
n
v
-2

n
=

5
5
,

H
=

19
2

5
5
×

55
77

4,
40

0
66

9,
08

1,
60

0
99

.8
8%

15
12

5.
0
0

K
B

1
51

25
.0

0
K

B
k
=

3
,

s=
1

×
6
4

C
o
n
v
-3

a
n

=
2
8
,

H
=

19
2

2
8
×

28
30

1,
05

6
57

,8
02

,7
52

99
.4

8%
5
88

0.
0
0

K
B

58
80

.0
0

K
B

k
=

1
,

s=
1

×
1
92

C
o
n
v
-3

n
=

2
8
,

H
=

38
4

2
8
×

28
45

1,
58

4
1,

04
0,

44
9,

53
6

99
.9

6%
8
82

0.
0
0

K
B

88
20

.0
0

K
B

k
=

3
,

s=
1

×
1
92

C
o
n
v
-4

a
n

=
1
4
,

H
=

38
4

1
4
×

14
15

0,
52

8
57

,8
02

,7
52

99
.7

4%
2
94

0.
0
0

K
B

29
40

.0
0

K
B

k
=

1
,

s=
1

×
3
84

C
o
n
v
-4

n
=

1
4
,

H
=

25
6

1
4
×

14
12

5,
44

0
34

6,
81

6,
51

2
99

.9
6%

2
45

0.
0
0

K
B

24
50

.0
0

K
B

k
=

3
,

s=
1

×
3
84

C
o
n
v
-5

a
n

=
1
4
,

H
=

25
6

1
4
×

14
10

0,
35

2
25

,6
90

,1
12

99
.6

1%
1
96

0.
0
0

K
B

19
60

.0
0

K
B

k
=

1
,

s=
1

×
2
56

C
o
n
v
-5

n
=

1
4
,

H
=

25
6

1
4
×

14
10

0,
35

2
23

1,
21

1,
00

8
99

.9
6%

1
96

0.
0
0

K
B

19
60

.0
0

K
B

k
=

3
,

s=
1

×
2
56

C
o
n
v
-6

a
n

=
1
4
,

H
=

25
6

1
4
×

14
10

0,
35

2
25

,6
90

,1
12

99
.6

1%
1
96

0.
0
0

K
B

19
60

.0
0

K
B

k
=

1
,

s=
1

×
2
56

C
o
n
v
-6

n
=

1
4
,

H
=

25
6

1
4
×

14
10

0,
35

2
23

1,
21

1,
00

8
99

.9
6%

1
96

0.
0
0

K
B

19
60

.0
0

K
B

k
=

3
,

s=
1

×
2
56

F
C

-1
m

=
1
25

4
4
,T

=
4
09

6
12

54
4

16
,6

40
10

2,
76

0,
44

8
99

.9
8%

3
25

.0
0

K
B

3
25

.0
0

K
B

F
C

-2
m

=
40

9
6
,T

=
4
09

6
4
0
96

8,
19

2
33

,5
54

,4
32

99
.9

8%
1
60

.0
0

K
B

1
60

.0
0

K
B

F
C

-7
1
2
8

m
=

40
9
6,

T
=

12
8

4
0
96

4,
22

4
1,

04
8,

57
6

99
.6

0%
82

.5
0

K
B

82
.5

0
K

B

T
o
ta

l
C

o
st

N
/
A

N
/A

3,
92

7,
47

2
3,

18
9,

41
0,

04
8

99
.8

8%
7
4.

9
1

M
B

7
4.

9
1

M
B

C
o
m

p
u

ta
ti

o
n

fo
r

A
ll

A
c
ti

v
a
ti

o
n

a
n

d
P

o
o
li
n

g
L

a
y
e
rs

o
n

th
e

Io
T

:
2
,3

3
4
,8

4
8

F
L

O
P

s
a
n

d
1
3
,6

5
1
,4

5
6

F
L

O
P

s

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 90

and V. Such a decent property guarantees real-time computational performance on the

edge device.

In the Offline phase, the IoT device owner first prepares encryption keys by choosing ran-

dom matrices for convolutional layers and fully-connected layers that will be offloaded.

Meanwhile, the owner will take these encryption keys as inputs for their corresponding

convolutional layers or fully-connected layers to obtain results as the decryption keys.

In Section 6.2, I show that the offline phase can be efficiently executed using a regular

laptop.

6.1.2.2 Communication Cost

The communication cost of my scheme comes from the transmission of encrypted inputs

and outputs of convolutional layers and fully-connected layers. In my implementation,

I use 160-bit random numbers (i.e., λ = 160) during all encryption processes in Eq.5.1

and Eq.5.4. Thus, each element in the ciphertext (a matrix or a vector) is 20-Byte long.

To offload a convolutional layer with a n × n × D input, the IoT device first sends its

corresponding ciphertext contains D encrypted matrices with Dn2 elements in total.

Then, H encrypted result matrices are received from the edge device with each size of

(n−k+2p
s +1)×(n−k+2p

s +1). With regards to the offloading of a fully-connected layer that

takes a m-dimensional vector as input, the IoT device needs to send a m-dimensional

vector as encrypted input and receive a T -dimensional vector as encrypted output from

the edge device. As shown in Table 6.2, the communication cost for an offloading of

the AlexNet is 20.49MB, which can be efficiently handled under the edge computing

environment [107].

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 91

6.1.2.3 Storage Overhead

For the offloading of a convolutional layer with a n × n × D input, the IoT device

needs to store D random matrices with n2 elements each as the encryption keys, and

H matrices with size of (n−k+2p
s + 1)× (n−k+2p

s + 1) as the decryption keys. To offload

a fully-connected layer with a m-dimensional vector as input, a m-dimensional vector

and a T -dimensional vector need to be pre-stored as the encryption key and decryption

key respectively. Table 6.2 shows the offloading of an AlexNet request needs 20.49MB

storage overhead. With the rise of IoT devices, low-power-consumption SD memory

card has become an excellent fit to economically extend the storage of IoT devices [108],

which usually have more than 32GB capacity. As discussed in Section 5.6, IoT devices

deployed for one-time tasks can easily pre-load enough keys with a SD card. Meanwhile,

remote key update can be adopted long-term deployment.

In this Table 6.4, s is the stride, p is the size of padding, H is the number of kernels,

k × k is the size of kernels of a convolutional layer; θ is the error rate of the returned

data; r is the sample rate of the returned data. Each element is 20 Bytes.

6.1.2.4 Resource Consumption of Integrity Check

Turning on the integrity check leads to additional resource consumption to local IoT

device. As shown in Table 6.4, given a returned matrix of size H(n−k+2p
s + 1)2 and

a sample rate of r, the validation process in Section 5.8 brings drH(n−k+2p
s + 1)2e

additional computation and makes the total computational cost of IoT devices rise to

2Dk2drH(n−k+2p
s +1)2e. Since any convolutional result in the entire set of response map

can be incorrect, IoT devices need to store all kernel parameters of each convolutional

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 92

Table 6.4: Numerical Analysis of Integrity Check

C
o
m

p
u

ta
ti

o
n

o
f

th
e

Io
T

(F
L

O
P

s)
O

ffl
o
a
d

e
d

C
o
st

C
o
m

m
u

n
ic

a
ti

o
n

S
to

ra
g
e

O
v
e
rh

e
a
d

In
p

u
t

R
e
su

lt
s

R
e
su

lt
s

to
th

e
E

d
g
e

C
o
st

E
n

c
ry

p
ti

o
n

D
e
c
ry

p
ti

o
n

V
a
li
d

a
ti

o
n

(F
L

O
P

s)
(E

le
m

e
n
ts

)
(E

le
m

e
n
ts

)

In
te

g
ri

ty
D
n
2

H
(n
−
k
+
2
p

s
+

1)
2

2D
k
2
×

2D
H
k
2
×

D
n
2
+

D
n
2

+
H
k
2
+

C
h

e
ck

dr
H

(n
−
k
+
2
p

s
+

1)
2
e

(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

N
o

In
te

g
ri

ty
D
n
2

H
(n
−
k
+
2
p

s
+

1)
2

0
2D

H
k
2
×

D
n
2
+

D
n
2
+

C
h

e
ck

(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

H
(n
−
k
+
2
p

s
+

1)
2

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 93

Table 6.5: Example Comparison with/without Integrity Check

Computation of IoT (FLOPs) Offloaded Percentage
No Integrity Integrity No Integrity Integrity

Check Check Check Check

Conv-1 444,987 866,793 99.79% 99.59%

Conv-2 256,608 2,944,608 99.97% 99.67%

Conv-3 108,160 2,504,320 99.96% 99.16%

Conv-4 129,792 3,724,032 99.97% 99.17%

Conv-5 108,160 3,398,272 99.96% 98.86%

Communication Cost (KB) Storage Overhead (KB)
No Integrity Integrity No Integrity Integrity

Check Check Check Check

Conv-1 8691.15 8691.27 8691.15 8918.03

Conv-2 5011.88 5011.98 5011.88 5136.88

Conv-3 2112.50 2112.60 2112.50 2180.00

Conv-4 2535.00 2535.10 2535.00 2602.50

Conv-5 2112.50 2112.59 2112.50 2157.50

The results in this table is generated based on error rate θ = 1% and sample rate
r = 0.2%, 0.3%, 0.8%, 0.8%, 1.1% for Conv-1 - Conv-5 respectively.

layer locally, which adds on Hk2 storage overhead and makes the total IoT storage

overhead to be Dn2 +H(n−k+2p
s + 1)2 +Hk2.

Table 6.5 shows the resource consumption comparison between integrity check plugged

in and plugged off. The results are calculated when error rate θ = 1% and sample rate

r = 0.2%, 0.3%, 0.8%, 0.8%, 1.1% for Conv-1 - Conv-5 respectively. Under this setting,

IoT device can achieve 99%+ error detection rate in each convolutional layer. Since all

the multiplication results of rθ are less equal to 1.1×10−4, the additional communication

costs resulted from integrity check are tiny. As a result, the communication increments

are less than 4.74 × 10−3% of the original communication costs. Compared with the

heavy parameters in fully-connected layers, the parameters in convolutional layers only

stand for a minor portion of the entire neural network model. Thus, even the highest

additional storage overhead is only 227 KB while the lowest increment can be as low as

45 KB.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 94

6.1.2.5 Analysis of Fast Convolution

In this section, I analyze the performance improvement introduced by the fast filter-

ing algorithm. I scrutinize the multiplication number of each convolutional layer in

both AlexNet and FaceNet to demonstrate that fast filtering algorithm could enhance

convolution efficiency under different models.

From Table 6.6 I observe that the second convolutional layer in AlexNet achieves a

highest multiplication speedup rate of 26.89×. That’s because its filters are with a

small size of 5× 5, which is a perfect use case for fast filtering algorithm as indicated by

[96]. Moreover, the outputs of that layer shrink a lot in size compared with its inputs.

The first convolutional layer does not achieve a similar high speedup rate due to its

bigger filters and so do the last two convolutional layers since they lack notable shrink

in the output size.

Regarding FaceNet, I perform analysis for both categories where the first category in-

cludes all 11 convolutional layers while the second one does not apply layers whose filter

sizes are 1 × 1 (in other words, a-suffix layers). Table 6.7 indicates that convolution

in these a-suffix layers with 1 × 1 filters is indeed element-wise multiplication. Con-

sidering the nature of fast filtering algorithm stated in Section 5.9, speeding up such

element-wise multiplication is unrealistic under my settings. Thus it is understandable

that the speedup rate for the a-suffix layer is 1×, which also explains the reason that

first category’s speedup rate is about 1.5× lower than the second category’s. The cases

of AlexNet and FaceNet both demonstrate that the fast filtering algorithm can boost

the performance of my design in terms of convolution efficiency.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 95

Table 6.6: Efficiency Enhancement Analysis on AlexNet

P
a
ra

m
e
te

rs
In

p
u

t
S

iz
e

O
ri

g
in

a
l

C
o
n
v
o
lu

ti
o
n

F
a
st

C
o
n
v
o
lu

ti
o
n

S
p

e
e
d

u
p

M
u

lt
ip

li
c
a
ti

o
n

N
u
m

b
e
r

M
u

lt
ip

li
c
a
ti

o
n

N
u

m
b

e
r

R
a
te

C
o
n
v
-1

n
=

22
7
,

H
=

96
2
27
×

22
7
×

3
12

3,
37

0,
63

2
14

,8
4
0,

3
52

8.
31
×

k
=

11
,

s=
4

C
o
n
v
-2

n
=

27
,

H
=

2
56

27
×

2
7
×

96
48

1,
68

9,
60

0
17

,9
1
5,

9
04

26
.8

9×
k
=

5
,

s=
1

C
o
n
v
-3

n
=

13
,

H
=

3
84

1
3
×

13
×

2
5
6

35
3,

89
4,

40
0

16
,6

1
3,

3
76

21
.3

0×
k
=

3
,

s=
1

C
o
n
v
-4

n
=

13
,

H
=

3
84

1
3
×

13
×

3
8
4

26
0,

11
2,

38
4

24
,9

2
0,

0
64

10
.4

4×
k
=

3
,

s=
1

C
o
n
v
-5

n
=

13
,

H
=

2
56

1
3
×

13
×

3
8
4

17
3,

40
8,

25
6

16
,6

1
3,

3
76

10
.4

4×
k
=

3
,

s=
1

T
o
ta

l
N

/
A

N
/
A

1,
39

2,
47

5,
27

2
90

,9
0
3,

0
72

15
.3

2×

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 96

Table 6.7: Efficiency Enhancement Analysis on FaceNet
P

a
ra

m
e
te

rs
In

p
u

t
S

iz
e

O
ri

g
in

a
l

C
o
n
v
o
lu

ti
o
n

F
a
st

C
o
n
v
o
lu

ti
o
n

S
p

e
e
d

u
p

M
u

lt
ip

li
c
a
ti

o
n

N
u

m
b

e
r

M
u

lt
ip

li
c
a
ti

o
n

N
u

m
b

e
r

R
a
te

C
o
n
v
-1

n
=

22
0
,

H
=

64
2
20
×

22
0
×

3
17

0,
75

5,
20

0
13

,9
3
9,

2
00

1
2.

25
×

k
=

7,
s=

2

C
o
n
v
-2

a
n

=
5
5
,

H
=

64
55
×

5
5
×

64
12

,3
90

,4
00

12
,3

9
0,

4
00

1
.0

0×
k
=

1,
s=

1

C
o
n
v
-2

n
=

55
,

H
=

1
92

55
×

5
5
×

64
33

4,
54

0,
80

0
37

,1
7
1,

2
00

9
.0

0×
k
=

3,
s=

1

C
o
n
v
-3

a
n

=
28

,
H

=
1
92

2
8
×

28
×

1
92

28
,9

01
,3

76
28

,9
0
1,

3
76

1
.0

0×
k
=

1,
s=

1

C
o
n
v
-3

n
=

28
,

H
=

3
84

2
8
×

28
×

1
92

52
0,

22
4,

76
8

57
,8

0
2,

7
52

9
.0

0×
k
=

3,
s=

1

C
o
n
v
-4

a
n

=
14

,
H

=
3
84

1
4
×

14
×

3
84

28
,9

01
,3

76
28

,9
0
1,

3
76

1
.0

0×
k
=

1,
s=

1

C
o
n
v
-4

n
=

14
,

H
=

2
56

1
4
×

14
×

3
84

17
3,

40
8,

25
6

19
,2

6
7,

5
84

9
.0

0×
k
=

3,
s=

1

C
o
n
v
-5

a
n

=
14

,
H

=
2
56

1
4
×

14
×

2
56

12
,8

45
,0

56
12

,8
4
5,

0
56

1
.0

0×
k
=

1,
s=

1

C
o
n
v
-5

n
=

14
,

H
=

2
56

1
4
×

14
×

2
56

11
5,

60
5,

50
4

12
,8

4
5,

0
56

9
.0

0×
k
=

3,
s=

1

C
o
n
v
-6

a
n

=
14

,
H

=
2
56

1
4
×

14
×

2
56

12
,8

45
,0

56
12

,8
4
5,

0
56

1
.0

0×
k
=

1,
s=

1

C
o
n
v
-6

n
=

14
,

H
=

2
56

1
4
×

14
×

2
56

11
5,

60
5,

50
4

12
,8

4
5,

0
56

9
.0

0×
k
=

3,
s=

1

C
a
te

g
o
ry

1
N

/A
N

/A
1,

52
6,

02
3,

29
6

2
49

,7
5
4,

1
12

6
.1

1×
T

o
ta

l

C
a
te

g
o
ry

2
N

/A
N

/A
1,

43
0,

14
0,

03
2

1
53

,8
7
0,

8
48

9
.2

9×
T

o
ta

l

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 97

6.2 Evaluation

I implemented a prototype of my scheme using Python 2.7. In my implementation,

TensorFlow and Keras libraries are adopted to support CNNs. The resource-constrained

IoT device is a Raspberry Pi (Model A) with Raspbian Debian 7, which has 700 MHz

single-core processor, 256MB memory, and 32GB SD card storage. The edge device

and the IoT device owner is a Macbook Pro laptop with OS X 10.13.3, 3.1 GHz Intel

Core i7 processor, 16GB memory, and 512GB SSD. The IoT device and the edge device

are connected using WiFi in the same subnet. I use the well-known ImageNet [109] as

the dataset for the evaluation of AlexNet. The security parameter λ is set as 160 in

my implementation. I also implemented a privacy-preserving AlexNet using CryptoNets

[36] for comparison.

6.2.1 Efficiency - Offline Phase

To generate the encryption and decryption keys for the execution of one AlexNet request,

my scheme only requires 114ms for the IoT device owner. While each set of keys will

only be used for one request, the owner can efficiently compute more than 2600 sets of

keys for AlexNet using 5 minutes.

6.2.2 Efficiency - Online Phase

I summarize the evaluation results of a real-time AlexNet inference task in Table 6.8.

Compared with executing the entire inference task on the IoT device, my scheme signifi-

cantly reduces execution time from 124.99s to 3.508s, which indicates a 35.63× speedup

rate. More importantly, with the increasing complexity of convolutional layers and fully-

connected layers, my scheme retains or increases the high speedup rate as shown in the

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 98

Table 6.8: Experimental Evaluation Results on AlexNet

Io
T

w
it

h
o
u

t
O

u
r

S
ch

e
m

e
O

ffl
o
a
d

in
g

Io
T

C
o
m

p
u

ta
ti

o
n

E
d

g
e

C
o
m

p
u

ta
ti

o
n

C
o
m

m
u

n
ic

a
ti

o
n

T
o
ta

l
S

p
e
e
d

u
p

(s
e
c
o
n

d
)

(s
e
c
o
n

d
)

(s
e
c
o
n

d
)

(s
e
c
o
n

d
)

(s
e
c
o
n

d
)

C
o
n
v
-1

10
.0

1
0
.0

3
7

0.
01

03
0.

8
49

0
.8

9
6

11
.1

7×
C

o
n
v
-2

40
.6

8
0
.0

4
05

0.
04

35
0.

4
89

0
.5

7
3

70
.9

9×
C

o
n
v
-3

19
.9

3
0
.0

4
37

0.
01

3
0.

2
06

0
.2

6
3

75
.7

8×
C

o
n
v
-4

29
.7

8
0
.0

4
98

0.
01

84
0.

2
48

0
.3

1
6

94
.2

4×
C

o
n
v
-5

19
.8

8
0
.0

4
20

0.
01

27
0.

2
06

0
.2

6
1

76
.1

7×
F

C
-1

2
.2

2
0
.0

0
13

0.
00

43
0.

0
25

0
.0

3
1

71
.6

1×
F

C
-2

1
.0

8
0
.0

0
1

0.
00

25
0.

0
16

0
.0

1
9

56
.8

4×
F

C
-3

0
.2

7
0
.0

0
08

0.
00

09
0.

01
0
.0

1
2

22
.5
×

N
o
n

-l
in

e
a
r

1.
13

7
1
.1

3
7

N
/A

N
/
A

1
.1

3
7

N
/A

T
o
ta

l
C

o
st

1
24

.9
9

1
.3

5
3

0.
10

6
2.

0
49

3
.5

0
8

35
.6

3×

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 99

Table 6.9: Comparison Between My Scheme and CryptonNets in First Convolutional
Layer of AlexNet

Our Scheme A-CryptoNets
(seconds) (seconds)

Encryption 0.012 459.93
Convolution 0.0103 625.86
Decryption 0.025 N/A

last column of Table 6.8. Taking AlexNet as an example, the highest speedup rates for

them are all achieved with these more complex layers. Therefore, my scheme is promis-

ing to be scaled up to support more complex CNN architectures according to practical

requirements.

It is noteworthy that the communication occupies 58.4% (2.049s/3.508s) cost of an

offloaded inference task in my scheme. In my implementation, I use a wireless network

with 10MB/s transmission speed between the IoT device and the edge device. In a real-

world scenario, the devices are likely to be connected via wired or cellular connection,

which allows a higher transmission speed than my experimental environment. Moreover,

the upcoming 5G era for MEC environment will significantly improve the transmission

speed [107] and further optimize the communication performance of my scheme.

To compare my scheme with homomorphic encryption-based solution [36] for CNN infer-

ence, I also implemented AlexNet using the CryptoNets scheme proposed in [36], denoted

as A-CryptoNets. During my implementation, I use the same linear approximation and

YASHE cryptosystem [110] as that in [36]. Table 6.9 shows the cost of processing the

first convolutional layer in my scheme and A-CryptoNets. Due to the large input size

required in AlexNet, A-CryptoNets requires 459.93s for encrypting the input data on

the IoT device, and 625.86s for the convolutional operations on the edge device. This

level of computational cost makes CryptoNets become hardly to satisfy time-sensitive

tasks with complex CNN inference. As a comparison, my scheme can handle the first

convolutional layer using 0.047s. Even considering the entire AlexNet inference task, my

scheme only requires 3.508s to complete.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 100

Table 6.10: Experimental Evaluation Results on Integrity Check

Io
T

w
it

h
o
u

t
O

u
r

S
ch

e
m

e
O

ffl
o
a
d

in
g

In
te

g
ri

ty
C

h
e
ck

S
p

e
e
d

u
p

N
o

In
te

g
ri

ty
C

h
e
ck

S
p

e
e
d

u
p

(s
e
c
o
n

d
)

(s
e
c
o
n

d
)

(s
e
c
o
n

d
)

C
o
n
v
-1

10
.0

1
0.

91
6

10
.9

3×
0.

89
6

11
.1

7×
C

o
n
v
-2

40
.6

8
0.

65
5

62
.1

1×
0.

57
3

70
.9

9×
C

o
n
v
-3

19
.9

3
0.

40
2

49
.5

8×
0.

26
3

75
.7

8×
C

o
n
v
-4

29
.7

8
0.

52
4

56
.8

3×
0.

31
6

94
.2

4×
C

o
n
v
-5

19
.8

8
0.

47
0

42
.3

0×
0.

26
1

76
.1

7×
F

C
-1

2.
22

0.
03

1
71

.6
1×

0.
03

1
71

.6
1×

F
C

-2
1.

08
0.

01
9

56
.8

4×
0.

01
9

56
.8

4×
F

C
-3

0.
27

0.
01

2
22

.5
×

0.
01

2
22

.5
×

N
o
n

-l
in

e
a
r

1.
13

7
1.

13
7

N
/A

1.
13

7
N

/A

T
o
ta

l
C

o
st

12
4.

99
4.

16
6

30
.0

0×
3.

50
8

35
.6

3×

I also provide evaluation on my proposed integrity check module. In Table 6.10 I observe

that even when the integrity check is plugged in, my scheme can still achieve a high

speedup rate of 30.00× compared with AlexNet local execution. This demonstrates the

practical usage of the utility of integrity check model. Users can opt whether to plug in

the module and achieve the ability of detecting dishonest behavior of edge devices with

a little efficiency trade-off.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 101

Table 6.11: Power and Energy Consumption Evaluation

IoT Local Executing Idle IoT Our Scheme
AlexNet without with Network IoT IoT

Network Connection Connection Computation Communication
Power (W) 0.81 0.78 1.17 1.42
Energy (J) 101.24 N/A 1.58 2.91

6.2.3 Energy Consumption

Compared with fully executing AlexNet inference tasks on the IoT device with high

energy consumption, my scheme significantly saves the energy consumption for compu-

tation of the IoT device while introducing slight extra energy consumption for commu-

nication. In my evaluation, the IoT device (Raspberry Pi Model A) is powered by a

5V micro-USB adapter. The voltage and current is measured using a Powerjive USB

multimeter [111] and the power is calculated by the multiplication of voltage and cur-

rent. Table 6.11 shows the average IoT power consumption under different IoT device

status. I observe that the network connection is a major power cost in IoT device. An

idle IoT device with network connection can have a comparable power cost (0.78W)

as executing AlexNet locally without network connection (0.81W). This local AlexNet

execution power indicates an energy consumption of 101.24J when fully executing an

inference task on the IoT device in 124.99 seconds. Differently, my scheme reduces the

computation time on the IoT device to 1.353 seconds (1.59J energy consumption) with

2.049 seconds extra communication (2.90J energy consumption). Therefore, my scheme

can save IoT energy consumption by 101.24−(1.58+2.91)
101.24 = 95.56%.

6.2.4 Accuracy

To validate that there is no accuracy loss in my scheme, I also implemented original

AlexNet without privacy protection as baseline. By using the same parameters, I achieve

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 102

exact the same accuracy (80.1%) as that obtained using original AlexNet [46] without

privacy protection. On one hand, no approximation for non-linear layers is required in

my scheme. On the other hand, the random noise introduced in my encryption can be

perfectly eliminated during the decryption process.

6.2.5 Evaluation of Sample Rate in Integrity Check

In order to achieve a high error detection rate, different sample rate r needs to be

calculated based on different settings in each convolutional layer. As shown in Figure

6.1, to make the error detection rate to surpass 99%, Conv-1 - Conv-5 need to set r to

be 0.2%, 0.3%, 0.8%, 0.8%, 1.1% respectively. Figure 6.2 shows that as the size of the

returned data rises, the sample rate r required to reach 99%+ error detection rate drops

correspondingly. From this observation combined with Figure 6.3, the scalability of the

integrity check feature is ensured and the additional resource consumption of a larger,

more complex CNN is always minor compared with its original costs.

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r D
et

ec
tio

n
R

at
e

(%
)

0
10
20
30
40
50
60
70
80
90
100

Conv1
Conv2
Conv3
Conv4
Conv5

Figure 6.1: Evaluation of Sample Rate r and Error Detection Rate

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 103

1 2 3 4 5 6 7 8 9 10 11 12

Si
ze

 o
f R

et
ur

ne
d

D
at

a
(E

le
m

en
ts

)

#105

0

0.5

1

1.5

2

2.5

3
Size of Returned Data

Figure 6.2: Evaluation of Sample Rate r and Returned Data Size

Convolutional Layers

O
ffl

oa
de

d
C

om
pu

ta
tio

n
Pe

rc
en

ta
ge

 (%
)

98.8

99

99.2

99.4

99.6

99.8

100

LEP-CNN without Integrity Check
LEP-CNN with Integrity Check

Figure 6.3: Evaluation of Convolutional Layers and Offloaded Computation Percent-
age

6.2.5.1 Evaluation of Matrix Compression

In order to evaluate the performance of the matrix compression module, I perform ex-

periments on both AlexNet and FaceNet to illustrate the integration of ZFP compression

can alleviate the communication cost in different models. From Table 6.12 and Table

6.13, it is clear that the communication cost of my scheme is reduced by 72%+ in both

models.

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 104

Table 6.12: Communication Enhancement on AlexNet

P
a
ra

m
e
te

rs
In

p
u

t
S

iz
e

O
ri

g
in

a
l

C
o
m

p
re

ss
e
d

C
o
m

m
u

n
ic

a
ti

o
n

C
o
m

m
u

n
ic

a
ti

o
n

R
e
d

u
c
e
d

O
v
e
rh

e
a
d

O
v
e
rh

e
a
d

R
a
ti

o

C
o
n
v
-1

n
=

22
7,

H
=

96
22

7
×

22
7
×

3
86

91
.1

5
K

B
24

11
.8

5
K

B
7
2.

2
5%

k
=

11
,

s=
4

C
o
n
v
-2

n
=

27
,

H
=

25
6

27
×

27
×

96
50

11
.8

8
K

B
13

78
.2

7
K

B
7
2.

5
0%

k
=

5,
s=

1

C
o
n
v
-3

n
=

13
,

H
=

38
4

13
×

13
×

25
6

21
12

.5
0

K
B

5
80

.0
2

K
B

7
2.

5
4%

k
=

3,
s=

1

C
o
n
v
-4

n
=

13
,

H
=

38
4

13
×

13
×

38
4

25
35

.0
0

K
B

6
98

.4
7

K
B

7
2.

4
5%

k
=

3,
s=

1

C
o
n
v
-5

n
=

13
,

H
=

25
6

13
×

13
×

38
4

21
12

.5
0

K
B

5
82

.0
6

K
B

7
2.

4
5%

k
=

3,
s=

1

F
C

-1
m

=
92

16
,T

=
40

96
92

16
26

0.
0
0

K
B

7
0.

2
7

K
B

7
2.

9
7%

F
C

-2
m

=
40

96
,T

=
40

96
40

96
16

0.
0
0

K
B

4
3.

6
4

K
B

7
2.

7
3%

F
C

-3
m

=
40

96
,T

=
10

00
40

96
99

.5
3

K
B

2
7.

1
4

K
B

7
2.

7
3%

T
o
ta

l
N

/A
N

/A
20

.4
9

M
B

5
.6

6
M

B
7
2.

3
8%

6.3 Conclusion

In this chapter, I give out detailed security analysis to show that my scheme is se-

cure with formal proof. By performing extensive numerical analysis as well as prototype

implementation over the well-known CNN architectures and datasets, I present the prac-

tical performance of my privacy-preserving compute-intense CNN layers along with a

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 105

Table 6.13: Communication Enhancement on FaceNet

P
a
ra

m
e
te

rs
In

p
u

t
S

iz
e

O
ri

g
in

a
l

C
o
m

p
re

ss
e
d

C
o
m

m
u

n
ic

a
ti

o
n

C
o
m

m
u

n
ic

a
ti

o
n

R
e
d

u
c
e
d

O
v
e
rh

e
a
d

O
v
e
rh

e
a
d

R
a
ti

o

C
o
n
v
-1

n
=

2
20

,
H

=
6
4
,

k
=

7,
s=

2
22

0
×

22
0
×

3
25

52
3.

44
K

B
66

46
.7

3
K

B
73

.9
6
%

C
o
n
v
-2

a
n

=
55

,
H

=
6
4
,

k
=

1,
s=

1
55
×

55
×

64
75

62
.5

0
K

B
21

02
.3

4
K

B
72

.2
0
%

C
o
n
v
-2

n
=

5
5,

H
=

19
2
,

k
=

3,
s=

1
55
×

55
×

64
15

12
5.

00
K

B
42

04
.6

7
K

B
72

.2
0
%

C
o
n
v
-3

a
n

=
2
8,

H
=

19
2
,

k
=

1,
s=

1
28
×

28
×

19
2

58
80

.0
0

K
B

15
88

.6
7

K
B

72
.9

8
%

C
o
n
v
-3

n
=

2
8,

H
=

38
4
,

k
=

3,
s=

1
28
×

28
×

19
2

88
20

.0
0

K
B

23
83

.0
0

K
B

72
.9

8
%

C
o
n
v
-4

a
n

=
1
4,

H
=

38
4
,

k
=

1,
s=

1
14
×

14
×

38
4

29
40

.0
0

K
B

8
10

.7
0

K
B

72
.4

3
%

C
o
n
v
-4

n
=

1
4,

H
=

25
6
,

k
=

3,
s=

1
14
×

14
×

38
4

24
50

.0
0

K
B

6
75

.5
8

K
B

72
.4

3
%

C
o
n
v
-5

a
n

=
1
4,

H
=

25
6
,

k
=

1,
s=

1
14
×

14
×

25
6

19
60

.0
0

K
B

5
42

.5
4

K
B

72
.3

1
%

C
o
n
v
-5

n
=

1
4,

H
=

25
6
,

k
=

3,
s=

1
14
×

14
×

25
6

19
60

.0
0

K
B

5
42

.5
4

K
B

72
.3

1
%

C
o
n
v
-6

a
n

=
1
4,

H
=

25
6
,

k
=

1,
s=

1
14
×

14
×

25
6

19
60

.0
0

K
B

5
42

.5
4

K
B

72
.3

1
%

C
o
n
v
-6

n
=

1
4,

H
=

25
6
,

k
=

3,
s=

1
14
×

14
×

25
6

19
60

.0
0

K
B

5
42

.5
4

K
B

72
.3

1
%

F
C

-1
m

=
1
2
54

4
,T

=
4
0
96

12
54

4
32

5.
00

K
B

91
.0

0
K

B
72

.0
0
%

F
C

-2
m

=
40

9
6
,T

=
4
09

6
40

96
16

0.
00

K
B

43
.6

4
K

B
72

.7
3
%

F
C

-7
1
2
8

m
=

40
9
6,

T
=

12
8

40
96

82
.5

0
K

B
22

.5
0

K
B

72
.7

3
%

C
a
te

g
o
ry

1
N

/
A

N
/A

74
.9

1
M

B
2
0.

2
5

M
B

72
.9

7
%

T
o
ta

l

C
a
te

g
o
ry

2
N

/
A

N
/A

55
.0

8
M

B
1
4.

8
0

M
B

73
.1

3
%

T
o
ta

l

Chapter 6. Evaluation of Privacy Protection Modules for Deep Learning Based Image
Analysis 106

set of pluggable modules. Experiment results prove that my designed modules are able

to efficiently, accurately protect the privacy of deep learning based image analysis by

greatly tranfering the heavy computation burden from IoT devices to edge devices with

no accuracy loss in a privacy-preserving manner.

Chapter 7

Future Works and Conclusion

In this chapter, I discuss several future research tasks of this dissertation and then

conclude this dissertation.

7.1 Extension of Descriptor Based Image Analysis

As presented in Chapter 3, I design the privacy-preserving randomized k-d forest index

to improve the search efficiency my initial design CAPIA. However, the k-d tree as well

its derivatives have large construction cost in the setup stage, which makes them not

suitable for frequently updating datasets. To overcome this limitation, one possible

direction is to investigate data structures more fit to frequent dataset insertion (e.g.,

graphs, R-Tree [112], etc.). Then the challenge to be solved is how to incorporate the

potential data structure into image annotation task in a privacy-preserving manner.

Furthermore, in my privacy-preserving distance comparison design, the major type of

operations is matrix multiplication. I plan to convert matrix multiplications into simple

element multiplications, and then make them compatible with MapReduce [113], which

107

Chapter 7. Future Works and Conclusion 108

is an extremely efficient model for the processing of a large number of simple operations

over big datasets. In addition, it’s also worth to migrate my design to other popular

imagery data analysis tasks such as image classification, object detection, information

retrieval etc.

7.2 Extension of Deep Learning Based Image Analysis

In Chapter 5, I present privacy-preserving convolution and fully connected layer along

with the novel online/offline strategy to enable efficient, accurate and private image

analysis using CNN. In my design, I offload the convolutional layer and fully connected

layer due to that their representation of heavy computation and storage overhead. A

possible next move can be targeted at securely offloading all the non-linear layer in the

CNN model. This can bring huge boost to the efficiency of CNN inference due to that

once both the linear and non-linear layers are offloaded, the communication between

IoT and edge device will be reduced to just two rounds. Instead of uploading encrypted

results after local execution of non-linear layer, the IoT device only needs to submit

the encrypted image matrix before the first layer and then just waits for the final infer-

ence results. In addition, as the flourishing of different deep learning models, I expect

to investigate other deep structures such as Long Short-Term Memory (LSTM) and

other recurrent neural networks, Regional Convolution Neural Network (RCNN) and its

follow-up regional CNNs, Generative Adversarial Network (GAN) and other adversarial

networks etc. Different privacy-preserving schemes should be designed to adapt unique

characteristics for these models. Moreover, recently, federated learning [114] got increas-

ing attraction in the field since it provides an efficient methodology to train deep learning

models among multiple registered ad-hoc imagery data contributors. Unlike traditional

Chapter 7. Future Works and Conclusion 109

collaborative learning frameworks which need to upload imagery data to perform the

multi-party training, federated learning enables the participants to upload the weight

update after each local training epoch. This greatly reduces the communication cost

and alleviate the potential risk for information leakage from uploading the entire image.

However, even the weight update can still be compromise the privacy of user image if

attacked by a well trained GAN [115]. How to prevent image reconstruction or mem-

bership attack launched by GAN is an open challenge to traditional defense strategy in

traditional threat model definition.

7.3 A Privacy-preserving Hybrid Cloud-Edge Framework

for Image Analysis

Another promising research direction is regarding performing image analysis tasks on

mobile edge computing (MEC), and utilize MEC to overcome the limitation of high

network latency in cloud-assisted architectures. I first plan to utilize MEC to resolve

the “data drowning” issue in cloud-assisted architectures in the sense that not all the

imagery data collected by devices worth an in-depth analysis. For example, in video

data captured by a surveillance camera, only frames that contain suspect objects need

additional analytics on them. Therefore, I will utilize MEC to detect imagery data that

has a high potential to contain critical information, and only offload these critical data

to cloud for further analysis. Considering the third-party deployment nature of MEC,

I will design and develop privacy-preserving solutions for popular imagery data filtering

techniques, such as fast object detection, content-based sampling of video sequences, etc.

In addition, while cloud computing is a prevalent choice for the offloading of image anal-

ysis, I argue that many image analysis tasks can be completed directly using resources

Chapter 7. Future Works and Conclusion 110

on MEC. For example, many CNN architectures can be handled efficiently by moderate

GPUs, which can be provided by MEC infrastructures. In my design, I will investigate

how to utilize computation resources of MEC to provide light-weight privacy-preserving

image analysis services. This design will be extremely suitable for time-sensitive imagery

analysis tasks (e.g., hazard detection, intelligence, and reconnaissance), since MEC is

typically within one-hop communication range with devices and is able to provide the

fastest response to them. Finally, I will integrate my designs for MEC and public cloud

as a coherent framework, which will provide privacy-preserving image analysis services in

a hybrid manner to fulfill the performance requirement of different application scenarios.

7.4 Conclusion

In this dissertation, I address the challenge of how to leverage the power of cloud/edge

server to perform efficient and accurate image analysis in a privacy-preserving manner.

I develop a generic methodology for imagery data analysis under different scenarios

and take efficiency, accuracy, as well as security into consideration at the same time. I

also evaluate other rubrics such as storage cost and energy consumption for some specific

deployment environment (e.g. resource-constrained IoT devices). To be specific, I design

a few novel modules to be plugged in to meet different requirements in various situations.

PL1C, PKLC along with their enhancement module PL1C − RF and PKLC − RF

is designed to protect the privacy of image per se and corresponding feature vectors

while enabling accurate and efficient image annotation. PPCL and PPKL is proposed

to efficiently support privacy protection of user image in CNN inference stage with

no accuracy loss. Pluggable integrity check, fast convolution and matrix compression

module are also introduced to further bring fancier features to the scheme and enhance its

Chapter 7. Future Works and Conclusion 111

performance in terms of efficiency. With the knowledge that imagery data analysis tasks

could be deployed in cloud/edge environments using either descriptor/deep learning

based approaches, I integrate these modules in cloud-assisted descriptor based image

annotation task and edge-assisted deep learning based image analysis task. Thorough

security analysis is provided to show that my modules are secure in their application

scenarios. Extensive numerical analysis as well as prototype implementation over the

well-known dataset and CNN architectures demonstrate the practical performance of

my design.

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[2] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1–9, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[6] Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. A new baseline for image

annotation. Computer Vision–ECCV 2008, pages 316–329, 2008.

112

Bibliography 113

[7] Changbo Yang, Ming Dong, and Jing Hua. Region-based image annotation using

asymmetrical support vector machine-based multiple-instance learning. In Com-

puter Vision and Pattern Recognition, 2006 IEEE Computer Society Conference

on, volume 2, pages 2057–2063. IEEE, 2006.

[8] Gustavo Carneiro, Antoni B Chan, Pedro J Moreno, and Nuno Vasconcelos. Su-

pervised learning of semantic classes for image annotation and retrieval. IEEE

transactions on pattern analysis and machine intelligence, 29(3):394–410, 2007.

[9] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[10] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image

segmentation. International journal of computer vision, 59(2):167–181, 2004.

[11] Robert M Haralick and Linda G Shapiro. Image segmentation techniques. Com-

puter vision, graphics, and image processing, 29(1):100–132, 1985.

[12] Nikhil R Pal and Sankar K Pal. A review on image segmentation techniques.

Pattern recognition, 26(9):1277–1294, 1993.

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,

2014.

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

Bibliography 114

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv

preprint arXiv:1703.06870, 2017.

[17] Richard Oneslager. How Many Photos Were Taken Last

Year? https://blog.forever.com/forever-blog/2018/1/22/

how-many-photos-were-taken-last-year, 2018.

[18] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid

matching using sparse coding for image classification. In Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1794–1801.

IEEE, 2009.

[19] Peter Gehler and Sebastian Nowozin. On feature combination for multiclass object

classification. In Computer Vision, 2009 IEEE 12th International Conference on,

pages 221–228. IEEE, 2009.

[20] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-baseline

stereo from maximally stable extremal regions. Image and vision computing, 22

(10):761–767, 2004.

[21] Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based

object detection in images by components. IEEE transactions on pattern analysis

and machine intelligence, 23(4):349–361, 2001.

https://blog.forever.com/forever-blog/2018/1/22/how-many-photos-were-taken-last-year
https://blog.forever.com/forever-blog/2018/1/22/how-many-photos-were-taken-last-year

Bibliography 115

[22] Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. Baselines for image

annotation. Int. J. Comput. Vision, 90(1):88–105, October 2010. ISSN 0920-

5691. doi: 10.1007/s11263-010-0338-6. URL http://dx.doi.org/10.1007/

s11263-010-0338-6.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, 2015.

[24] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recog-

nition: A convolutional neural-network approach. IEEE transactions on neural

networks, 8(1):98–113, 1997.

[25] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face recognition.

In BMVC, volume 1, page 6, 2015.

[26] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-

bedding for face recognition and clustering. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 815–823, 2015.

[27] M Shamim Hossain and Ghulam Muhammad. Cloud-assisted industrial internet of

things (iiot)–enabled framework for health monitoring. Computer Networks, 101:

192–202, 2016.

[28] Rajesh Bahadur Thapa and Yuji Murayama. Urban mapping, accuracy, & image

classification: A comparison of multiple approaches in tsukuba city, japan. Applied

geography, 29(1):135–144, 2009.

[29] Privacyrights.org. The Privacy Implications of Cloud Computing. https://www.

privacyrights.org/blog/privacy-implications-cloud-computing, 2017.

http://dx.doi.org/10.1007/s11263-010-0338-6
http://dx.doi.org/10.1007/s11263-010-0338-6
https://www.privacyrights.org/blog/privacy-implications-cloud-computing
https://www.privacyrights.org/blog/privacy-implications-cloud-computing

Bibliography 116

[30] Centers for Medicare & Medicaid Services et al. The health insurance portability

and accountability act of 1996 (hipaa). Online at http://www. cms. hhs. gov/hipaa,

1996.

[31] Boxcryptor. Encrypt your files in your dropbox.

https://www.boxcryptor.com/en/dropbox. [Online; accessed Aug. 2016].

[32] Amazon Simple Storage Service. Protecting data using encryption.

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html. [On-

line; accessed Aug. 2016].

[33] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. Image feature extraction

in encrypted domain with privacy-preserving sift. IEEE Transactions on Image

Processing, 21(11):4593–4607, 2012.

[34] Qian Wang, Jingjun Wang, Shengshan Hu, Qin Zou, and Kui Ren. Sechog:

Privacy-preserving outsourcing computation of histogram of oriented gradients

in the cloud. In Proceedings of the 11th ACM on Asia Conference on Computer

and Communications Security, pages 257–268. ACM, 2016.

[35] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-

gendijk, and Tomas Toft. Privacy-preserving face recognition. In Interna-

tional Symposium on Privacy Enhancing Technologies Symposium, pages 235–253.

Springer, 2009.

[36] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael

Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted

data with high throughput and accuracy. In Proceedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York City, NY, USA, June

19-24, pages 201–210, 2016.

Bibliography 117

[37] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and

Emmanuel Prouff. Privacy-preserving classification on deep neural network. IACR

Cryptology ePrint Archive, 2017:35, 2017.

[38] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural

networks over encrypted data. CoRR, abs/1711.05189, 2017. URL http://arxiv.

org/abs/1711.05189.

[39] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving

machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages

19–38, May 2017.

[40] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: Efficient and

private neural network training. (PETS 2019), February 2019.

[41] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.

{GAZELLE}: A low latency framework for secure neural network inference. In

27th {USENIX} Security Symposium ({USENIX} Security 18), pages 1651–1669,

2018.

[42] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for

machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS ’18, pages 35–52, New York, NY, USA,

2018. ACM. ISBN 978-1-4503-5693-0. doi: 10.1145/3243734.3243760. URL

http://doi.acm.org/10.1145/3243734.3243760.

[43] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure compu-

tation framework for machine learning applications. In Proceedings of the 2018 on

Asia Conference on Computer and Communications Security, ASIACCS ’18, pages

http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://doi.acm.org/10.1145/3243734.3243760

Bibliography 118

707–721, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5576-6. doi: 10.1145/

3196494.3196522. URL http://doi.acm.org/10.1145/3196494.3196522.

[44] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions

via minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’17, pages 619–631, New York,

NY, USA, 2017. ACM. ISBN 978-1-4503-4946-8. doi: 10.1145/3133956.3134056.

URL http://doi.acm.org/10.1145/3133956.3134056.

[45] Cornejo Mario and Poumeyrol Mathieu. Benchmark-

ing Paillier Encryption. https://medium.com/snips-ai/

benchmarking-paillier-encryption-15631a0b5ad8, 2018. [Online; accessed

July-2018].

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Proceedings of the 25th In-

ternational Conference on Neural Information Processing Systems - Volume 1,

NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc. URL http:

//dl.acm.org/citation.cfm?id=2999134.2999257.

[47] Abdul Ghafoor and Sead Muftic. Cryptonet: Softwareprotection and secure exe-

cution environment. Int. J. Computer Science and Network Security, 10(2):19–26,

2010.

[48] Arif Ahmed and Ejaz Ahmed. A survey on mobile edge computing. In Intelligent

Systems and Control (ISCO), 2016 10th International Conference on, pages 1–8.

IEEE, 2016.

http://doi.acm.org/10.1145/3196494.3196522
http://doi.acm.org/10.1145/3133956.3134056
https://medium.com/snips-ai/benchmarking-paillier-encryption-15631a0b5ad8
https://medium.com/snips-ai/benchmarking-paillier-encryption-15631a0b5ad8
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257

Bibliography 119

[49] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji. Mobile edge computing empowered

energy efficient task offloading in 5g. IEEE Transactions on Vehicular Technology,

PP(99):1–1, 2018. ISSN 0018-9545. doi: 10.1109/TVT.2018.2799620.

[50] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked keyword

search over encrypted cloud data. In Proceedings of the 2010 IEEE 30th Interna-

tional Conference on Distributed Computing Systems, ICDCS ’10, pages 253–262,

Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4059-7.

doi: 10.1109/ICDCS.2010.34.

[51] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y. Thomas Hou,

and Hui Li. Privacy-preserving multi-keyword text search in the cloud supporting

similarity-based ranking. In Proceedings of the 8th ACM SIGSAC Symposium on

Information, Computer and Communications Security, ASIA CCS ’13, pages 71–

82, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1767-2. doi: 10.1145/

2484313.2484322.

[52] Bing Wang, Shucheng Yu, Wenjing Lou, and Y Thomas Hou. Privacy-preserving

multi-keyword fuzzy search over encrypted data in the cloud. In INFOCOM, 2014

Proceedings IEEE, April 2014.

[53] Phan NhatHai, Wu Xintao, Hu Han, and Dou Dejing. Adaptive laplace mech-

anism: Differential privacy preservation in deep learning. In Proceedings of the

2017 IEEE International Conference on Data Mining, ICDM ’17. IEEE, 2017.

[54] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Communications

Bibliography 120

Security, CCS ’16, pages 308–318, New York, NY, USA, 2016. ACM. ISBN 978-

1-4503-4139-4.

[55] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques

for searches on encrypted data. In Proceedings of the 2000 IEEE Symposium on

Security and Privacy, SP ’00, pages 44–55, Washington, DC, USA, 2000. IEEE

Computer Society. ISBN 0-7695-0665-8.

[56] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public key encryption with keyword search. In Advances in Cryptology - EURO-

CRYPT 2004, pages 506–522. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-

21935-4. doi: 10.1007/978-3-540-24676-3 30.

[57] Google. Cloud Vision API. https://cloud.google.com/vision/, 2016.

[58] Scale. Scale Image Annotation API. https://www.scaleapi.com/

image-annotation.

[59] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high di-

mensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(11):2227–2240, 2014.

[60] Xin-Jing Wang, Lei Zhang, Feng Jing, and Wei-Ying Ma. Annosearch: Image

auto-annotation by search. In Computer Vision and Pattern Recognition, 2006

IEEE Computer Society Conference on, volume 2, pages 1483–1490. IEEE, 2006.

[61] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.

Labelme: a database and web-based tool for image annotation. International

journal of computer vision, 77(1-3):157–173, 2008.

https://cloud.google.com/vision/
https://www.scaleapi.com/image-annotation
https://www.scaleapi.com/image-annotation

Bibliography 121

[62] Yashaswi Verma and C. V. Jawahar. Image annotation using metric learning in

semantic neighbourhoods. In Proceedings of the 12th European Conference on

Computer Vision - Volume Part III, ECCV’12, pages 836–849, Berlin, Heidelberg,

2012. Springer-Verlag. ISBN 978-3-642-33711-6. doi: 10.1007/978-3-642-33712-3

60. URL http://dx.doi.org/10.1007/978-3-642-33712-3_60.

[63] Olivier Chapelle, Patrick Haffner, and Vladimir N Vapnik. Support vector ma-

chines for histogram-based image classification. IEEE transactions on Neural Net-

works, 10(5):1055–1064, 1999.

[64] Claudio Cusano, Gianluigi Ciocca, and Raimondo Schettini. Image annotation

using svm. In Electronic Imaging 2004, pages 330–338. International Society for

Optics and Photonics, 2003.

[65] Rui Shi, Huamin Feng, Tat-Seng Chua, and Chin-Hui Lee. An adaptive image

content representation and segmentation approach to automatic image annotation.

In International conference on image and video retrieval, pages 545–554. Springer,

2004.

[66] Aditya Vailaya, Mário AT Figueiredo, Anil K Jain, and Hong-Jiang Zhang. Image

classification for content-based indexing. IEEE transactions on image processing,

10(1):117–130, 2001.

[67] Shi Rui, Wanjun Jin, and Tat-Seng Chua. A novel approach to auto image an-

notation based on pairwise constrained clustering and semi-naive bayesian model.

In Multimedia Modelling Conference, 2005. MMM 2005. Proceedings of the 11th

International, pages 322–327. IEEE, 2005.

http://dx.doi.org/10.1007/978-3-642-33712-3_60

Bibliography 122

[68] Hongchao Zhou and Gregory Wornell. Efficient homomorphic encryption on inte-

ger vectors and its applications. In Information Theory and Applications Workshop

(ITA), 2014, pages 1–9. IEEE, 2014.

[69] S. Rane, W. Sun, and A. Vetro. Privacy-preserving approximation of l1 distance for

multimedia applications. In 2010 IEEE International Conference on Multimedia

and Expo, pages 492–497, July 2010. doi: 10.1109/ICME.2010.5583030.

[70] B Johnson William and Lindenstrauss Joram. Extensions of lipschitz mappings

into a hilbert space. Contemporary mathematics, 26:189–206, 1984.

[71] Hugo Jair Escalante, Carlos A. Hernández, Jesus A. Gonzalez, A. López-López,

Manuel Montes, Eduardo F. Morales, L. Enrique Sucar, Luis Villaseñor, and

Michael Grubinger. The segmented and annotated iapr tc-12 benchmark. Comput.

Vis. Image Underst., 114(4):419–428, April 2010. ISSN 1077-3142. doi: 10.1016/

j.cviu.2009.03.008. URL http://dx.doi.org/10.1016/j.cviu.2009.03.008.

[72] MIT Computer Science and Artificial Intelligence Laboratory. Labelme dataset.

http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php, 2017.

[73] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

ISBN 0387310738.

[74] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, 1975.

[75] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-

preserving symmetric encryption. In Proceedings of the 28th Annual International

http://dx.doi.org/10.1016/j.cviu.2009.03.008

Bibliography 123

Conference on Advances in Cryptology: The Theory and Applications of Crypto-

graphic Techniques, EUROCRYPT ’09, pages 224–241, Berlin, Heidelberg, 2009.

Springer-Verlag. ISBN 978-3-642-01000-2. doi: 10.1007/978-3-642-01001-9 13.

URL http://dx.doi.org/10.1007/978-3-642-01001-9_13.

[76] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.

Pope: Partial order preserving encoding. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’16, pages 1131–

1142, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/

2976749.2978345. URL http://doi.acm.org/10.1145/2976749.2978345.

[77] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based

homomorphic encryption. In 16th International Conference on Practice and The-

ory in Public-Key Cryptography (PKC), pages 1–13, February 2013.

[78] Jonathan Katz and Yehuda Lindell. Chapter 11, Introduction to Modern Cryptog-

raphy. Chapman & Hall/CRC, 2007.

[79] B. Yao, F. Li, and X. Xiao. Secure nearest neighbor revisited. In Data Engineering

(ICDE), 2013 IEEE 29th International Conference on, pages 733–744, April 2013.

doi: 10.1109/ICDE.2013.6544870.

[80] NumPy Developers. Numpy. NumPy Numpy. Scipy Developers, 2013.

[81] Gary Bradski et al. The opencv library. Doctor Dobbs Journal, 25(11):120–126,

2000.

[82] Filip Wasilewski. PyWavelets - Wavelet Transforms in Python. https://

pywavelets.readthedocs.io/en/latest/, 2006.

http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://doi.acm.org/10.1145/2976749.2978345
https://pywavelets.readthedocs.io/en/latest/
https://pywavelets.readthedocs.io/en/latest/

Bibliography 124

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[84] Guang-Hai Liu and Jing-Yu Yang. Content-based image retrieval using color dif-

ference histogram. Pattern Recognition, 46(1):188–198, 2013.

[85] Yifan Tian, Yantian Hou, and Jiawei Yuan. Capia: Cloud assisted privacy-

preserving image annotation. In Communications and Network Security (CNS),

2017 IEEE Conference on, pages 1–9. IEEE, 2017.

[86] M. Verhelst and B. Moons. Embedded deep neural network processing: Algo-

rithmic and processor techniques bring deep learning to iot and edge devices.

IEEE Solid-State Circuits Magazine, 9(4):55–65, Fall 2017. ISSN 1943-0582. doi:

10.1109/MSSC.2017.2745818.

[87] S. Kodali, P. Hansen, N. Mulholland, P. Whatmough, D. Brooks, and G. Y. Wei.

Applications of deep neural networks for ultra low power iot. In 2017 IEEE Inter-

national Conference on Computer Design (ICCD), pages 589–592, Nov 2017. doi:

10.1109/ICCD.2017.102.

[88] Matt Burns. Arm chips with Nvidia AI could change the

Internet of Things. https://techcrunch.com/2018/03/27/

arm-chips-will-with-nvidia-ai-could-change-the-internet-of-things/,

2018. [Online; accessed July-2018].

[89] Mohammadi Mehdi, Al-Fuqaha Ala, Sorour Sameh, and Guizani Mohsen. Deep

learning for iot big data and streaming analytics: A survey. arXiv:1712.04301,

2017.

https://techcrunch.com/2018/03/27/arm-chips-will-with-nvidia-ai-could-change-the-internet-of-things/
https://techcrunch.com/2018/03/27/arm-chips-will-with-nvidia-ai-could-change-the-internet-of-things/

Bibliography 125

[90] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for

face recognition and clustering. In 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 815–823, June 2015. doi: 10.1109/CVPR.

2015.7298682.

[91] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, June 2016. doi: 10.1109/CVPR.2016.90.

[92] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos. Security and privacy for cloud-

based iot: Challenges. IEEE Communications Magazine, 55(1):26–33, January

2017. ISSN 0163-6804. doi: 10.1109/MCOM.2017.1600363CM.

[93] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and chal-

lenges. IEEE Internet of Things Journal, 3(5):637–646, Oct 2016. ISSN 2327-4662.

doi: 10.1109/JIOT.2016.2579198.

[94] Balachandra Reddy Kandukuri, Atanu Rakshit, et al. Cloud security issues. In

Services Computing, 2009. SCC’09. IEEE International Conference on Services

Computing, pages 517–520. IEEE, 2009.

[95] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[96] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4013–4021, 2016.

Bibliography 126

[97] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-

point data. IEEE transactions on visualization and computer graphics, 12(5):

1245–1250, 2006.

[98] Wikipedia. Convolutional neural network . https://en.wikipedia.org/wiki/

Convolutional_neural_network. [Online; accessed July-2018].

[99] Jason Cong and Bingjun Xiao. Minimizing Computation in Convolutional Neural

Networks, pages 281–290. Springer International Publishing, Cham, 2014. ISBN

978-3-319-11179-7. doi: 10.1007/978-3-319-11179-7 36.

[100] Jonathan Katz and Yehuda Lindell. Chapter 3.3, Introduction to Modern Cryp-

tography. Chapman & Hall/CRC, 2007.

[101] J. Lee, J. Wang, D. Crandall, S. Šabanović, and G. Fox. Real-time, cloud-based

object detection for unmanned aerial vehicles. In 2017 First IEEE International

Conference on Robotic Computing (IRC), pages 36–43, April 2017. doi: 10.1109/

IRC.2017.77.

[102] Airdata UAV. Drone Flight Stats. https://airdata.com/blog/2017/

drone-flight-stats-part-1, 2018. [Online; accessed July-2018].

[103] Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam, 1980.

[104] Shmuel Winograd. On multiplication of polynomials modulo a polynomial. SIAM

Journal on Computing, 9(2):225–229, 1980.

[105] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej Szymczak. Out-

of-core compression and decompression of large n-dimensional scalar fields. In

Computer Graphics Forum, volume 22, pages 343–348. Wiley Online Library, 2003.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://airdata.com/blog/2017/drone-flight-stats-part-1
https://airdata.com/blog/2017/drone-flight-stats-part-1

Bibliography 127

[106] Michael Schindler. A fast renormalisation for arithmetic coding. In Proceedings

DCC’98 Data Compression Conference (Cat. No. 98TB100225), page 572. IEEE,

1998.

[107] B. P. Rimal, D. P. Van, and M. Maier. Mobile edge computing empowered fiber-

wireless access networks in the 5g era. IEEE Communications Magazine, 55(2):

192–200, February 2017. ISSN 0163-6804. doi: 10.1109/MCOM.2017.1600156CM.

[108] Paul, Norbury. Now Trending: SD Memory Cards. https://www.sdcard.org/

press/thoughtleadership/180118_Now_Trending_SD_Memory_Cards.html,

2018. [Online; accessed July-2018].

[109] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-

Scale Hierarchical Image Database. In CVPR09, 2009.

[110] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved se-

curity for a ring-based fully homomorphic encryption scheme. In Martijn Stam,

editor, Cryptography and Coding, pages 45–64, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg. ISBN 978-3-642-45239-0.

[111] Raspberry Pi Dramble. Power Consumption Benchmarks. http://www.

pidramble.com/wiki/benchmarks/power-consumption, 2018. [Online; accessed

April-2019].

[112] Antonin Guttman. R-trees: A dynamic index structure for spatial searching, vol-

ume 14. ACM, 1984.

[113] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

https://www.sdcard.org/press/thoughtleadership/180118_Now_Trending_SD_Memory_Cards.html
https://www.sdcard.org/press/thoughtleadership/180118_Now_Trending_SD_Memory_Cards.html
http://www.pidramble.com/wiki/benchmarks/power-consumption
http://www.pidramble.com/wiki/benchmarks/power-consumption

Bibliography 128

[114] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for

improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[115] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi.

Beyond inferring class representatives: User-level privacy leakage from federated

learning. In IEEE INFOCOM 2019-IEEE Conference on Computer Communica-

tions, pages 2512–2520. IEEE, 2019.

	Efficient Privacy-Aware Imagery Data Analysis
	Scholarly Commons Citation

	Tian-Yifan-2019-11-12
	Tian-Yifan-sig-page
	Tian-Yifan-2019-11-12

