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ABSTRACT

This article proposes a cyber-event detection framework to aid in incident identification and digital
forensics cases aimed at investigating cyber crime committed against the critical infrastructure
power grid. However, unlike other similar investigative techniques, the proposed approach examines
only the physical information to derive a cyber conclusion. The developed framework extracts
information from the physical parameters stored in historical databases of SCADA systems. The
framework uses a pseudo-trusted model derived from randomly selected power system observations
found in the historical databases. Afterwards, a technique known as Bayesian Model Averaging
is used to average the models and create a more trusted model. Results indicate a successful
classification of on average 89% for the simulated cyber events of varying magnitudes.

Keywords: event detection, infrastructure protection, industrial control system, cyber security

1. INTRODUCTION

Industrial Control Systems (ICSs) can be found
across many industries ranging from transporta-
tion to utilities (Macaulay, Tyson (2012)). An
ICS is comprised of multiple controllers, each
functioning as logic engines using conditional
processing. One of the most prevalent ICSs
is the critical infrastructure power grid. This
meshed network of geographically distributed
control systems (DCSs) has recently seen an in-
flux of solid-state devices with Internet/intranet
networking capabilities. Benefits of this in-
flux include the command and control ability
granted to the governing ICS. This governing

ICS contains the supervisory control and data
acquisition (SCADA) system. However, with
this influx of smart network capable devices, the
potential for various cyber threats arises (Miller
and Rowe (2012)). Several works have been
published on the difficulties and possible solu-
tions associated with the live detection of cyber-
incidents targeting the critical infrastructure
power grid (Lo, Zeng, Marchand, and Pinkerton
(1992); Nian-de, Shi-ying, and Er-keng (1982);
Gu, Liu, Wang, Guan, and Xu (2013); L. Liu,
Esmalifalak, and Han (2013); Yano, de Abreu,
Gustavsson, and Åhlfeldt (2015)).

The solutions provided for live detection of
cyber-incidents may work in theory and in prac-
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tice for certain circumstances; however, it is
not feasible for these methods to be installed
across all utilities and co-ops at once. The re-
sources required for such installations decrease
the probability that such innovative methods
will be implemented in the near future. How-
ever, in the mean time it is still desired, for
the systems lacking extensive live detection ca-
pabilities, to be able to identify if and when a
cyber-incident occurred. Furthermore, the live
detection of data-injection attacks detects these
attacks via bad data filters in the state estima-
tion calculation. These solutions do not address
possible post measurement attacks that seek to
compromise the historical databases of SCADA
systems. Such databases provide extensive op-
erational information including purchasing, sell-
ing, billing, and other business intelligence met-
rics.

This paper proposes an incident response
identification framework capable of detect-
ing cyber-incidents targeting the historical
databases of the power grid. The proposed ap-
proach seeks to identify attacks against power
system applications by utilizing physical data
stored in the historical databases of SCADA
systems. The approach uses a ”pseudo-trusted”
model derived from a set of power system obser-
vations located in the database to investigate a
region of the database that is believed to contain
an event. Principal Component Analysis (PCA)
is used to represent the pseudo-trusted observa-
tions in a new space where a classification fea-
ture is extracted. Multiple models are averaged
together using a technique known as Bayesian
Model Averaging to create a ”trusted” model.
Using the classification feature, each instance
in the suspected region is tested and classified
accordingly.

This article is organized into the following
sections. First, the background in Section 2 pro-
vides information describing the SCADA infras-
tructure of power systems including an exami-
nation of the amount of information that is pro-
vided by the smart grid. Section 3 explains the
14-Bus power system used during the testing
of the developed approach. The attack model
or cyber-incident model is described in Section

4. The approach is outlined in Section 5 fol-
lowed by a section outlining how the approach
is evaluated. Section 6 provides the evalutation
approach overview. The next section, Section 7,
provides details on the experimental setup and
results of the developed approach followed by
conclusion.

2. BACKGROUND

The power grid, like other industrial control sys-
tem applications, is becoming more and more
governed by a cyber infrastructure. Cyber at-
tacks that take advantage of the interconnected
nature of these systems are on the rise. Figure
1 shows a graphic representing the typical com-
munication infrastructure used in a SCADA en-
vironment. These environments are distributed
across large geographic distances and offer sev-
eral entry points an attacker may exploit to gain
access to the SCADA network. Every node and
every link of the communication infrastructure,
theoretically, is an entry point. Here, a cyber
infrastructure is used to control a physical ap-
plication. For instance, in the case of the critical
infrastructure power grid, packets traverse the
cyber infrastructure to either monitor or control
the generation, transmission, or distribution of
power to paying customers. Such systems are
called cyber-physical systems (CPS) and can
range from an oil refinery to a nuclear power
plant.

The energy management system (EMS) man-
ages the generation of electrical power while effi-
ciently delivering that power to customers. This
management is made possible via the commands
and measurements sent via the infrastructure
outlined in Figure 1. Once new measurements
are received by the infrastructure, the SCADA
system performs a state estimation calculation
to determine the best representation of the sys-
tem and filters out any bad data that may be the
result of noise or failing equipment. Afterwards,
the derived state of the system along with a cor-
responding timestamp is stored in the historical
database known as The Historian. Information
is retrieved from these databases for the pur-
poses of billing, purchasing, and other business
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Figure 1. SCADA Communication Infrastructure for Distributed Control System

related intelligence metrics.

Traditional approaches to intrusion detec-
tion in these systems are based on bad data
detection via the state estimation calculation.
Some of these techniques and statistical mea-
sures for securing the power grid focus on ex-
amining reported state parameters and the re-
sulting state estimation. Such techniques in-
clude the bad data detection schemes presented
in (Lo et al. (1992); Nian-de et al. (1982); Gu
et al. (2013); L. Liu et al. (2013)) and anal-
ysis of variance techniques as those presented
in (Wehenkel (1998)). These approaches exam-
ine reported state parameters on an instance by
instance basis and utilize circuit theory equa-
tions for the detection of anomalies in the re-
sulting power system state estimation calcu-
lation. Data anomalies are then labeled as
bad data resulting from measurement errors or
faulty equipment.

Early implementation knowledge discovery
approaches to bad data detection include the
works of (Abbasy and El-Hassawy (1996); Shyh-
Jier and Jeu-Min (2002); Teeuwsen and Erlich
(2006); Huang, Lee, Shih, and Wang (2010);
Gastoni, Granelli, and Montagna (2003)),
wherein neurons are created that use pat-
terns formulated based on historical or train-
ing datasets. Artificial intelligence is used in
some of these approaches; however, these ap-

proaches do not utilize historical state param-
eters to reach conclusions, rather these tech-
niques use neurons for faster convergence of the
state estimation process. Bad data detection
in power systems can be accomplished along-
side the state estimation process. Throughout
most of the literature, the objective function to
be minimized in the state estimation process is
considered to be related to a Chi square distri-
bution.

An extensive survey of data mining ap-
proaches for power system security was con-
ducted in (Hatziargyriou, Papathanassiou, and
Papadopoulos (1995); Mori (2006); Fozdar,
Arora, and Gottipati (2007)) with a full text
on the subject presented in (Wehenkel (1998))
and (Momoh and El-Hawary (2000)). Most of
the classification approaches use decision trees.
However, the actual objects being analyzed
range from transient stability to steady state
power flows. Though not specific to the context
of intrusion detection, the works of (Van Cut-
sem, Wehenkel, Pavella, Heilbronn, and Goubin
(1993); Hatziargyriou, Contaxis, and Sideris
(1994); Yang and Hsu (1994); Hatziargyriou
et al. (1995)) demonstrate successful imple-
mentations of machine learning algorithms for
power system security focusing on control re-
liability. Using decision trees, actual (Yang
and Hsu (1994); C. Liu, Rather, Chen, and
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Bak (2013)) and modeled (Hatziargyriou et al.
(1994)), power system data is used to build
models for the purpose of establishing preven-
tive measures for stabilization in instances of re-
quired contingencies. In (Yang and Hsu (1994)),
decision trees are also used for contingency anal-
ysis; however, the technique utilized is the Itera-
tive Dichotomizer 3 (ID3) process and is based
on the entropy of the dataset being analyzed.
This ID3 algorithm is similar to the one utilized
for power flow contingency analysis in (Yang
and Hsu (1994)).

2.1 Power Grid Data

The growing source of data is a result of
two relatively new intelligent electronic devices;
the Phasor Measurement Unit (PMU) and the
smart meter. The smart meter is the base el-
ement of the advanced metering infrastructure
(AMI). This is in part a result of the estab-
lishment of the Smart Grid Investment Grant
(SGIG) program by the Energy Independence
and Security Act of 2007 (Energy Independence
and Security Act of 2007. (2007)), Section 1306,
and amended under the American Recovery and
Reinvestment Act of 2009 (The American Re-
covery and Reinvestment Act of 2009 (2009)).
In July of 2012, the Department of Energy
(DOE) published a progress report of the SGIG
program stating that PMUs offer the essential
wide-area visibility needed in the power grid due
to its sampling rate of 30 to 120 times per sec-
ond. The report then goes on to state that
there are currently over 950 networked PMUs
installed in North America funded by the SGIG
program. The SGIG AMI projects support the
installation of smart meters capable of transmit-
ting data at 15-, 30-, or 60- minute intervals for
customer billing information, interval load data,
system voltage levels, and power quality. There
are currently a total of 65 SGIG AMI projects,
with an end goal of installing a total of 15.5 mil-
lion smart meters (U.S. Department of Energy
(2012)). As of mid 2014, the total number of
AMI meter installations reported to the Smart-
Grid Integrated Project Reporting Information
System (SIPRIS) (U.S. Department of Energy
(2014b)) was 16.2 million, well past the end goal

(U.S. Department of Energy (2014a)).

As of 2015 there were an estimated 65 mil-
lion smart meters installed nationwide. The
RF meshed AMI network is operated predom-
inately on the unlicensed Industrial, Scientific,
and Medical (ISM) band between 902 to 928
MHz and is defined in Part 15 of the FCC reg-
ulations. A proprietary protocol that is op-
timized for AMI meshed network communica-
tion is described in (Geelen, van Kempen, van
Hoogstraten, and Liotta (2012)). When in ini-
tiation mode, each packet is 32 bytes in length
with a header of 15 bytes that is capable of con-
taining the packet’s route. Metering nodes are
capable of caching the previously established
packet routes for future communication. The
security of packet transmission can be based on
key pairs (Lichtensteiger, Bjelajac, Mu andller,
and Wietfeld (2010)). However, this protocol
and others have been found to contain vulner-
abilities as demonstrated by Brinkhaus et al.
(Brinkhaus and Carluccio (2011)).

At the distribution level, the electrical loads
are determined by the power consumption
of the customers. This example of inter-
dependence, amongst others, allows for a
unique opportunity for the development of an
analytical framework that, in the event of a
cyber incident, will detect a certain number of
inconsistencies in the reported power system
state variables. Database and historical data
can be analyzed for its trending information
and will contain information that can be used
to detect high-level periodic malware similar to
the Stuxnet worm.

3. POWER SYSTEM
MODEL

The example power system utilized is the IEEE
14-bus standard test case, operating at 135 kV
with a base power of 100 MVA. This particular
system has been used extensively in the liter-
ature (Yuma and Kusakana (2012); Moghbel,
Mokui, Masoum, and Mohseni (2012); Fitiwi
and Rao (2009); Hashim, Hamzah, Latip, and
Sallehhudin (2012)) for the purposes of simula-
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Figure 2. IEEE 14-Bus Power System

tion and development of power control applica-
tions. The system, shown in Figure 2, is com-
prised of 11 load busses and 2 generation busses.
The generation busses are located on Bus 1 and
2 while busses 3, 6, and 8 supply a purely re-
active power. The developed approach for the
detection of database attacks is based on a set of
models to simulate power system dynamics and
to produce a set of possible state estimation at-
tacks. The attack models include the changing
of an observed power system instance in a man-
ner that targets power system state variables.
It is considered, as described in Section 4, that
this change can take on many forms.

3.1 Modeling Power Systems

Figure 3. Power System Notation

The following describes the simulation ap-
proach taken to best recreate the physical pa-
rameters associated with the critical infrastruc-
ture power grid. In an attempt to mirror
live power systems for the development pro-
cess, power flow simulations include such fac-

tors as line impedances along with shunt ca-
pacitance for transmission lines greater than
50 miles. This approach is often utilized in
both academia and industry and is considered
the standard approach for power flow studies
(Glover (2012)). An illustration of a power sys-
tem model is shown in Figure 3, where G1 is a
generator (load), Vi is the voltage at bus i, and
Z(Ω) is the impedance. The apparent power
Si,j is made up of the real and reactive powers
Pi,j and Qi,j , respectively.

4. CYBER-INCIDENT
MODEL

The cyber-incident model seeks to recreate two
possible power system cyber attacks. The
first includes a data injection attack and is
when an individual injects falsified measure-
ments into the communication infrastructure
of the SCADA system. The detectability of
such data injection attacks depends on the ap-
proach taken by the bad data detection filters
performed during the state estimation process.
This type of attack involves spoofing the iden-
tity of the source so the destination believes the
information is coming from the trusted source.
These types of attacks can have a devastating

c© 2017 ADFSL Page 9



JDFSL V12N2 A Power Grid Incident Identification Based ...

impact on the system if the received state mea-
surement is used to make control decisions. In
the event the data injection attack goes unno-
ticed, the malicious reading will still be stored in
the historical database of the SCADA system.

The second type of attack is considered a
post–state estimation attack and involves the
direct manipulation of state variable values in
the historical SCADA databases. Not only are
the measured state variables used for the control
and monitoring of the power system, they are
also used for business intelligence. Such busi-
ness intelligence includes the selling and pur-
chasing of power to and from neighboring util-
ities and more recently to and from residen-
tial and commercial customers. The purchas-
ing of power from residential and commercial
customers is the product of the micro-grid ini-
tiatives. These micro-grids allow the standard
consumers to sell power they have generated
back to the utility providers. Motivated by prof-
its, any one of these actors may be motivated
to change values in the historical databases to
make it appear as though they have purchased
less or sold more power.

The cyber-incident model developed by this
paper seeks to recreate these potential attacks
by manipulating different state parameters at
varying factors. Each attack type is mathemat-

ically based on the Hadamard product,
−→
Xi
′ =−→

Xi ◦ I ′System. For instance, a single variate at-

tack type, which is a random instance,
−→
Xr, from

data matrix X, was selected according to a ran-

dom index i such that
−→
Xr|r=i and {i ε Z| ≤M}

where Mxn is the size of X. Next, an initial-
ization vector, ISystem = [a1 · · · an] = [1 · · · 1],
of all ones and of length n was created. To
determine which variable will simulate the at-
tack, a random index l is selected such that
{l ε Z|1 ≤ l < 15}, where 1 ≤ l < 15 is
the voltage state variables attacked. The el-
ement of ISystem defined by random index l
is then changed to the factor f to simulate
the attack. For this assessment, a total of 5
different attack factors are simulated and in-
clude f = 0.99, 0.95, 0.90, 0.85, and 0. Each at-
tack factor represents a possible alteration on

that state variable as defined by the Hadamand
product.

5. APPROACH

The fostered approach is designed to aid in an
incident response investigation with the devel-
oped method determining attack occurrences.
This approach uses power system state variables
stored in a SCADA Historian server to identify
when a system intrusion has occurred. Iterating
through each suspected power system observa-
tion, the approach then compares the observa-
tion to a pseudo-trusted model. The pseudo-
trusted model is derived by randomly select-
ing power system observations from the entire
database. These random instances may or may
not include observations between the suspecting
region. Once determined, a dimensional trans-
formation technique known as principal compo-
nent analysis (PCA) is used to transform the
power system data to a reduced dimensional
space. From here a distance metric is used as
a detection feature and is based on Hotelling’s
T2 value associated with each power system ob-
servation. When a suspect instance has been
labeled as containing a cyber-incident, the in-
stance can be set aside for further investigation.

5.1 Principal Component Analysis

PCA serves in the creation of the pseudo-
trusted model by converting each power sys-
tem instance, including suspect instances, into
a new dimensional space for comparison. PCA
is a quantitative process for achieving a sys-
tem simplification by converting each multivari-
ate observation into a lower dimensional space.
This simplification is made possible through a
transformation where all basis vectors are or-
thogonal. Each orthogonal vector is referred to
as a principal component (PC) (Cios, Pedrycz,
Swiniarski, and Kurgan (2010)). PCA is based
on the statistics of a training set to linearly
transform the set in such a way that the new pri-
mary basis are independent of each other. PCA
finds a linear transformation such that

Y = XW (1)

Page 10 c© 2017 ADFSL
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where X and Y are mxn matrices related by a
transformation W of size pxp. Based on Equa-
tion (1), the following variables can be defined:
wi are the rows of W, xi are the columns of
X, and yi are the columns of Y. The row vec-
tors of W {w1, ..., wm} are called the principal
components of X.

Before PCA can be applied to a data set, it is
customary to first perform sanitization on the
data. This sanitization guarantees there is no
unintended biasing of the new components. Af-
ter sanitizing, the normalized covariance, SX,
was determined using the unbiased estimator for
normalization.

SX =
1

n− 1
XXT (2)

This produced a covariance matrix with dimen-
sions mxm with the diagonal terms representing
the variances and off-diagonal terms represent-
ing the covariances of data matrix X. The closer
the off-diagonal terms are to zero the closer the
variables, represented by the indices of SX, are
to being completely uncorrelated. Conversely,
the higher these off-diagonal terms are the more
correlated the two variables are. Also the higher
the off-diagonal terms are the higher the redun-
dancy is in the data matrix X.

The linear transformation produced by PCA
selects a transformation W such that the prin-
cipal components or basis vectors wi produced
are completely orthonormal. Orthonormality is
ensured due to the fact that the dot product
of each basis vector with another produces the
Kronecker delta function, wi · wj = δij . In ad-
dition to being orthonormal, the basis vectors
are ordered based on the amount of variance
that is being accounted for by that basis vector
or principal component. This corresponds to
the fact that PCA will produce a transforma-
tion matrix W such that the variance of data
matrix X is mostly accounted for by principal
component w1. The lower the diagonal terms of
the covariance matrix are the lower the redun-
dancy is in the data. Therefore, the solution to
PCA seeks a covariance matrix SY such that
the off-diagonal terms are zero where,

SY =
1

n− 1
YYT (3)

Plugging Eq. (1) into Eq. (3), we have

SY =
1

n− 1
W(XXT )WT (4)

With this solution to PCA, it can be shown that
the principal components of data matrix X are
the eigenvectors of XXT or are the rows of W.
Also, the ith diagonal term of SY is the vari-
ance of X projected onto the ith principal com-
ponent, pi.

5.1.1 Hotelling’s T2

The Hotelling’s T2 value, Eq. (5), is an exten-
sion of the t-test, a test to determine the dif-
ference between means of two independent vari-
ables. This extension of the t-test allows for a
statistical measure of the multivariate distance
of each instance from the center of a data set.
The result allows for the detection of instances
that occur at far distances from the data center
as defined by data matrix X.

T 2 = n(X− µ)′S−1(X− µ) (5)

The identification approach presented in this ar-
ticle is a probabilistic approach in describing
how likely an instance is to occur. Instances
that fit to the dynamics of the data matrix X,
or control set, have a high likelihood of occur-
ring while instances that lie on the boundaries
are less likely to occur.

It can also be shown that the Hotelling’s T2

value follows the F distribution as defined by
Eq. (6) (Härdle and Simar (2012)),

T 2 ∼ (n− 1)p

(n− p)
Fp,n−p(x) (6)

where p is the number of principal components
retained and n is the number of instances in
the sample space. The F cumulative probabil-
ity distribution function returns the cumulative
probability of obtaining a value x for given pa-
rameters p and n. By rearranging Eq. (6) we
can calculate that the probability of observing
at least T2 is

P (≥ T 2) = 1− Fp,n−p(z) (7)

where,

z = T 2 (n− p)
p(n− 1)

c© 2017 ADFSL Page 11
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This allows for a probabilistic metric to deter-
mine whether or not an instance is in-control.
If the instance is in-control, then it follows the
dynamics as defined by the data matrix X. A
low probability for observing T2, as defined by
Eq. (7), corresponds to a high T2 value. This
means that the instance is far away from the
multivariate center and therefore is least likely
to occur. Conversely, a high probability corre-
sponds to a low T2 value and is therefore closer
to the center of the data.

Any in-control instance can be considered an
instance whose variables follow the dynamics
of the system. These instances can be consid-
ered instances that would occur under normal
operation. An out-of-control instance would
be an instance whose dynamics do not fit uni-
formly in with the dynamics of the in-control
instances. Out-of-control instances are not con-
sidered normal operation, and therefore, any op-
eration that exists outside of normal operation
can be classified as an out-of-control instance.

The Hotelling’s T2 value and the probabilis-
tic metric aided in the classification of the in-
stances into either an in-control set or an out-of-
control set. An in-control instance would have a
low T2 value and high probability of occurring.
While an out-of-control instance would have a
low probability and a high T2 value. This sta-
tistical metric classification of instances can be
made such that instances that are not in-control
are classified as a cyber-event.

Detection using the Hotelling’s T2 value is
based on creating a quantile threshold. By
transforming the trusted model into the new di-
mensional space, where redundancy is reduced,
and plotting the Hotelling’s T2 value of each
power system instance of the trusted model, a
threshold value, T 2

th, can be created. By letting
Tth = Qα = inf{q : P [T 2 < q] ≥ α}, where α is
the quantile value, a maximum threshold is de-
termined. If any newly observed power system
instance’s Hotelling’s T2 value is found to be
greater than T 2

th, then it can be classified as an
out-of-control instance. To limit the number of
false positive classifications a quantile threshold
value of α = 0.99 was used for detection.

Figure 4. Experimental Setup

5.2 Implementation

The approach of this work involves first choos-
ing a total of m random observations to develop
a single pseudo-trusted model of size m. This is
repeated a total of ten times. Looking at Figure
4, there are a total of M possible instances that
can be used to construct the trusted models.
PCA is then used to transform each model into
the new dimensional space where the threshold
value of each model is extracted and is based
on the Hotelling’s T2 value described in Sec-
tion 5.1.1. Once extracted for each model, the
T2 values are averaged together resulting in the
threshold value, T̄th. Next the Hotelling’s T2

value of the ith suspect power system observa-
tion, T ′i , is determined and compared against
the threshold value. If T ′i > T̄th, then the
ith observation is flagged as containing a pos-
sible event. This process is then repeated for
each suspect observation xi. The overall imple-
mentation algorithm is described in Algorithm
1 shown below. Here the threshold value Tth
is determined for this model and is based on
the 99% quantile Hotelling’s T2 value associated
with the model. This is repeated a total of ten
times with the resulting T ith averaged together
to get T̄th.
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Algorithm 1 Detection/Identification Ap-
proach

Input: Data Matrix X, Suspect Region R
Output: Malicious Instance xi
for ri in R do

for n=1 to 10 do
I=rand(m,size(X)) . m random

indices
X ′ = X(I) . Pseudo-Trusted Model
Y ′ = X ′W . Perform PCA
T 2
n = T 2(Y ′)

end for
T̄ 2
th = avg(T 2

1 . . . T
2
10)

if T 2
ri ≥ T̄ 2

th then
ri contains cyber-incident

else
No observed attack

end if
end for

6. EVALUATING
IDENTIFICATION

APPROACH

Actual
Class[A]

Prediction Class [P]
c1 c2 total

c1
′ True

Negative
False
Positive

C1
′

c2
′ False

Negative
True
Positive

C2
′

total C1 C2

Figure 5. Classification Matrix

The following methods described are some of
the most common evaluation methods for as-
sessing the success of a classifier (Cios et al.
(2010)). Figure 5 shows the classification ma-
trix (contingency table) used to keep track of
successes and failures for each attack type con-
sidered. In the case of this analysis, positive
logic is used corresponding to the classification
of instance x into class c2, the malicious class.

Using positive logic the following terms can be
defined.

• Sensitivity- or recall is the measure of how
often we find what we are looking for. It is
the measure of how often we classify x into
c2.

Recall(R) = TP Rate =
TP

(TP + FN)
(8)

• Precision- used often in text analysis

Precision(P ) =
TP

(TP + FP)
(9)

• F-Measure- harmonic mean of precision (P)
and recall (R).

F =
2*P*R

(P + R)
(10)

7. EXPERIMENTAL SETUP
AND RESULTS

The suspect region, R, is comprised of 1000 ob-
servations while the pseudo-trusted region, X,
is comprised of a total of 90,000 power system
observations. An attack is performed only on
the voltage values of the power system topol-
ogy. Simulation of the detection tool is per-
formed for different attack factors f and in-
cludes f = 0.99, 0.95, 0.90, 0.80, and 0. In ad-
dition to changing the attack factor, the train-
ing model size is changed in an effort to de-
termine the optimal training size. The differ-
ent sizes of the training models include m =
100, 500, 1000, 2500, and 5000. In each case, a
total of 100 power system observations are ran-
domly selected from the region R. Next, a ran-
dom voltage state variable is selected and mul-
tiplied by the attack factor f . This produces a
suspect region R with a total of 100 malicious
power system instances and 900 non-malicious
instances for a total of 1000 observations. To
test the developed approach, each instance in
the suspect region R is tested according to the
approach presented in Algorithm 1. For each
simulation, the True Negative, False Negative,
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Figure 6. F-Measure of Detection Approach
for Model Size M

False Positive, and True Positive counts are
recorded. Afterwards, the F-Measure is calcu-
lated according to Eq. (10).

The results of the detection approach include
the detection classification matrices outlined in
Table 1 and the F-measure results shown in Fig-
ure 6. It was determined that the hardest attack
factor to detect was one where the original value
was multiplied by 0.99, f = 0.99. This attack
factor produces a value that has been altered
by only 1% of its original value. Nonetheless,
the developed approach was able to return on
average 68.2% true positive classification with
a false positive classification of 4.1%. As ex-
pected, the greatest success for detection oc-
curred when the attack factor was zero, f = 0.
For this attack type, the average true positive
classification was found to be 99% while the
false positive was 3.8%.

8. CONCLUSION

Currently, little literature exists on evaluat-
ing the data integrity of historical SCADA
databases after the power system state estima-
tion calculations have been performed. These
databases are used for the purposes of billing,

purchasing, and other business related intelli-
gence metrics. Given the value of the informa-
tion held in these databases, it may be advan-
tageous for malicious actors to alter the val-
ues stored within them. Motivation may in-
clude price manipulation in the energy mar-
kets or adjusting power consumption. This re-
search suggests using the physical power system
state variables stored within these databases to
detect alterations of these values. Such alter-
ations are the result of possible cyber-intrusions
into the critical control local area network and
therefore are labeled as a cyber-incident. Using
the approach developed by this paper, results
show that depending on the magnitude of the
alteration it is possible to detect such system
breaches.

A technique known as principal component
analysis (PCA) is used to represent the power
system state variables in a new space. Here, in-
formation is extracted allowing for the creation
of a detection feature and is based on the dis-
tances between each observation plotted in the
new space. The output of the framework reveals
the target time of the attack. Because the at-
tack could happen live with the database storing
the injected values or after the fact, the frame-
work does not distinguish between the two sce-
narios. Bayesian Model Averaging is used to av-
erage extracted features in an effort to decrease
any negative biasing a malicious instance may
have on the developed pseudo-trusted model.
Results show the highest average classification
accuracy for a model size of 1000 to be 89.2%.
This includes the detection of an attack that
changes a state variable by only 1%. For at-
tacks that altered the historical value to zero,
the framework was able to classify with an av-
erage accuracy of 99.9% true positive classifica-
tion.
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Table 1. Classification Matrix for Varying Model Size m

Attack Factor f
0.99 0.95 0.90 0.85 0

m A\P c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

100
c1’ 890 10 885 15 887 13 896 4 894 6
c2’ 33 67 23 77 9 91 12 88 1 99

500
c1’ 895 5 893 7 893 7 896 4 893 7
c2’ 34 66 20 80 6 94 6 94 0 100

1000
c1’ 894 6 894 6 888 12 890 10 892 8
c2’ 28 72 12 88 11 89 3 97 0 100

2500
c1’ 890 10 892 8 892 8 890 10 893 7
c2’ 31 69 17 83 11 89 8 92 1 99

5000
c1’ 894 6 894 6 895 5 894 6 895 5
c2’ 33 67 15 85 12 88 6 94 0 100
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