
Doctoral Dissertations and Master's Theses

Fall 12-2019

Multirotor UAS Sense and Avoid with Sensor Fusion Multirotor UAS Sense and Avoid with Sensor Fusion

Jonathan Mark Buchholz
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Automotive Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Buchholz, Jonathan Mark, "Multirotor UAS Sense and Avoid with Sensor Fusion" (2019). Doctoral
Dissertations and Master's Theses. 496.
https://commons.erau.edu/edt/496

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1319?utm_source=commons.erau.edu%2Fedt%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/496?utm_source=commons.erau.edu%2Fedt%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

MULTIROTOR UAS SENSE AND AVOID

WITH SENSOR FUSION

A Thesis

Submitted to the Faculty

of

Embry-Riddle Aeronautical University

by

Jonathan Mark Buchholz

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Unmanned and Autonomous Systems

Engineering

December 2019

Embry-Riddle Aeronautical University

Daytona Beach, Florida | Prescott, Arizona

ACKNOWLEDGEMENTS

I would like to thank Dr. Sam Siewert for dedicating a great deal of time and

patience to advising my progress on this project. To Dr. Richard Stansbury, for his thesis

committee membership, and also for ensuring my transition between sister campuses was

well received. I am thankful to Dr. Steven Bruder and Dr. Douglas Isenberg for their

membership in my thesis committee and for their excellent advice. I would also like to

thank Dr. Ken Bordignon for allowing my use of his previous work. I owe thanks to the

Embry-Riddle ICARUS Research group for their assistance with testing procedures.

Without the constant support of my girlfriend, my parents, my siblings, and my friends

old a new, such work would not have been possible. I am forever thankful to all of you.

Finally, were it not for Dr. Iacopo Gentilini and his belief in my academic capabilities, I

would not have pursued a graduate degree in the first place. Thank you.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion iii

Table of Contents
ABBREVIATIONS ... iv

LIST OF TABLES ...v

LIST OF FIGURES ... vi

ABSTRACT .. vii

1.0 Introduction ..1

1.1 Problem Definition ..1

1.2 Literature Review ..1

1.3 Constraints and Assumptions ...8

2.0 Experimental Configuration...9

2.1 Sensor Suite ...9

2.3 Flight Platform ...11

3.0 Algorithm Overview ..13

3.1 Obstacle Detection ...13

3.2 Obstacle Avoidance ...14

3.3 Point Cloud Image Fusion ...15

4.0 Simulated Environment ...17

4.1 Multirotor Simulation ..17

4.2 Obstacle Simulation ...20

5.0 Test Procedures ..23

5.1 Static Tests ...23

5.2 Ground Mobile Tests ...25

5.3 Aerial Mobile Tests ...26

6.0 Analysis..30

7.0 Conclusion and Recommendations ..31

8.0 Future Work ...32

8.1 Fusion of LIDAR and EO/IR and Obstacle Detection ..32

8.1 Path Planning ...32

8.2 Experimental Data and Processing ..32

REFERENCES ..33

APPENDIX ..36

MATLAB Source Code ...36

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion iv

ABBREVIATIONS

ADS-B Automatic Dependent Surveillance-Broadcast

DOF Degree of Freedom

EO/IR Electro-Optical/InfraRed

FAA Federal Aviation Administration

FOV Field of View

GA General Aviation

GPS Global Positioning System

IMU Inertial Measurement Unit

IR InfraRed

LIDAR Light Detection and Ranging

OODA Observe Orient Decide Act

RADAR Radio Detection and Ranging

RGB Red, Green, Blue (camera/image)

RGBD RGB Depth

ROS Robot Operating System

RPM Rotations per Minute

SAA Sense and Avoid

ToF Time of Flight

UAS Unmanned Aircraft System

UV UltraViolet

VFH Vector Field Histogram

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion v

LIST OF TABLES

Table 5.1: Flyby Test UAVs…………………………………………………………….25

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion vi

LIST OF FIGURES

Figure 2.1: Sensor Suite Wiring Diagram………………………………………………. 9

Figure 2.2: Mounted Sensor Suite………………………………………………………. 10

Figure 2.3: Experimental Flight Data Capture System…………………………………. 12

Figure 3.1: Example Point Cloud Image Coarse Fusion………………………………... 16

Figure 4.1: Hexrotor Trajectory and Orientation Visualization………………………… 19

Figure 4.2: Example Kalman Filter Output……………………………………………... 22

Figure 5.1: Example LIDAR Scan of Room……………………………………………. 23

Figure 5.2: Example Segmented Point Cloud…………………………………………... 24

Figure 5.3: Mobile Testing Point Cloud ………………………………………………... 25

Figure 5.4: Image Distortion Correction………………………………………………... 27

Figure 5.5: Average Reprojection Error by Image……………………………………… 28

Figure 5.6: Camera Linear Region……………………………………………………… 29

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion vii

ABSTRACT

 In this thesis, the key concepts of independent autonomous Unmanned Aircraft

Systems (UAS) are explored including obstacle detection, dynamic obstacle state

estimation, and avoidance strategy. This area is explored in pursuit of determining the

viability of UAS Sense and Avoid (SAA) in static and dynamic operational

environments. This exploration is driven by dynamic simulation and post-processing of

real-world data. A sensor suite comprised of a 3D Light Detection and Ranging (LIDAR)

sensor, visual camera, and 9 Degree of Freedom (DOF) Inertial Measurement Unit (IMU)

was found to be beneficial to autonomous UAS SAA in urban environments. Promising

results are based on to the broadening of available information about a dynamic or fixed

obstacle via pixel-level LIDAR point cloud fusion and the combination of inertial

measurements and LIDAR point clouds for localization purposes. However, there is still

a significant amount of development required to optimize a data fusion method and SAA

guidance method.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 1

1.0 Introduction

1.1 Problem Definition

Considering potential large-scale implementations of autonomous UAS

operations in urban environments, complete reliance on external networks or broadcasts

such as Global Positioning System (GPS) or Automatic Dependent Surveillance-

Broadcasting (ADS-B) presents concerns for system contingencies should network

reliability be compromised. Further, the possible presence of non-cooperative UAS in

urban environments threatens the safety of systems which cannot autonomously Sense

and Avoid (SAA) aerial dynamic obstacles. For this reason, the methods by which

autonomous UAS can continue to operate in these conditions are reliant on independent

sensing and processing capabilities. To the author’s best knowledge, no current systems

which operate independently of external networks such as GPS or ADS-B have

simultaneously considered both independent localization (determination of the system’s

position) and obstacle detection.

1.2 Literature Review

1.2.1 SAA Methods

The Observe Orient Decide Act (OODA) Loop is a conceptual avoidance tool

originally used to train US Air Force fighter pilots. Intended for use in adversarial

situations involving enemy planes, the OODA Loop encouraged pilots to reacting to

assumed enemy actions preemptively. Pilots would observe enemy behavior as well as

any environmental factors. With that information, they would reorient themselves with

respect to their enemy’s position, considering how they would be likely to react. They

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 2

would then decide on the best way to confuse the enemy and act out that decision. The

OODA Loop also saw use outside of aircraft as a generalized tactical tool for outsmarting

one’s enemy. This system is not entirely relevant to UAS SAA as the goal for the latter is

to avoid rather than offensively confront dynamic obstacles. The general framework is

reminiscent of reactive autonomous SAA systems and subsequently has been adapted to a

command and control setting [1], [2].

Another GA SAA technique is the Traffic Collision Avoidance System II (TCAS

II). TCAS II was developed in 1989 to actively prevent midair collisions between

compliant GA aircraft [3]. If the paths of two aircraft would intersect or become

uncomfortably close, signals would be sent between them specifying a change in course

that would deconflict their trajectories. This results in a separation between the aircraft

that can be accounted for miles before the intersection would have taken place.

Due to the complexity of adapting OODA to autonomous UAS and the required

compliance of TCAS II, methods for obstacle avoidance that are typically used in mobile

robotics applications seemed favorable.

In mobile robotics, the potential field model functions on the principle of artificial

attraction and repulsion [4]. When a mobile robot becomes close enough to an obstacle, a

repulsive force is applied to control the system away from the obstacle. Conversely, an

attractive force is applied to draw the system closer to its desired position. While this may

work for certain situations, this algorithm is incapable of handling local minima, which

can trap it in a position where the repulsive and attractive forces cancel each other out.

This occurs more often in 2D systems than in 3D.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 3

Alternatively, the Vector Field Histogram (VFH) is a robust reactive avoidance

system for 2D mobile robots [5]. This algorithm uses ranged data to build a polar

histogram that defines directions that the mobile robot can safely travel in. This system,

like the potential field algorithm, is susceptible to local minima if implemented without

additional modifications. Since both potential field and VFH methods possess the same

limitations, the simplicity of the potential field was preferable.

1.2.2 Available Sensors

Autonomy for UAS requires specific sensing capabilities to acquire information

about the environment and the UAS itself. The information that is most important to SAA

is location of obstacles and self-localization. Without range data, obstacles could not be

detected in 3D space. Without self-localization, the UAS has no global reference for

where itself or a detected obstacle are positioned. For an independent system, this data

must be captured entirely from the on-board sensors [6]. The usefulness of various

sensors in terms of their applicability to independent autonomous SAA is assessed in this

section.

Considering the following sensors, each can be classified as either passive of

active. Passive sensors acquire data by accepting energy already present in the

environment. Active sensors require stimulation of the environment and detection of a

respective response. Both passive and active sensors have benefits and disadvantages in

specific scenarios. Most notably, active sensor stimulus can be detected by external

systems, not only by the sensor itself. This makes passive sensors more viable for

situations where stealth is of higher importance. For some autonomous UAS applications,

this may be worth consideration, but for applications like parcel delivery, stealth is

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 4

largely unnecessary. A benefit of active sensing is a lack of dependence on existing

energy in the environment. A simple analogy for this is a passive visible camera equipped

with a light source. The visible camera alone is most useful during the day, but a light

source can be used to stimulate the environment at night.

Active Ranging Sensors

Direct ranging sensors are capable of raw distance measurements. The primary

purpose of these sensors is to detect physical structures. The following sensors are

classified as active, meaning they emit energy, unlike passive sensors.

Radio Detection and Ranging (RADAR) is a widely used and well-established

method of detecting structures such as buildings, planes, and ships based on their

reflection of emitted Radio Frequency (RF) signals. The reflections of these signals can

be detected as far away as several kilometers. It is also worth noting the emerging

technology of passive RADAR. Rather than emitting an RF signal like active RADAR,

passive RADAR relies on existing RF signals in the environment.

Light Detection and Ranging (LIDAR) is a distance measurement method which

uses infrared lasers in a similar way that RADAR uses RF signals. A beam of light is

emitted by the sensor, absorbed and reradiated by an obstruction, and then detected by the

sensor. By knowing the speed of light and the timing between emission and detection, the

distance that the beam traveled can be determined. LIDAR using a single beam,

appropriately named beam LIDAR, provide a single distance reading along one direction.

A beam LIDAR moving in a rasterized fashion creates a plane LIDAR, which can read

measurements at various angles within a single plane. Rasterizing multiple beam LIDAR

at distinct angles creates a 3D LIDAR, which can read measurements at various angles

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 5

within multiple planes or conical regions. The Doppler effect can also be used to

determine speed of an obstacle by measuring the frequency shift between emitted and

returned light waves.

 Time of Flight (ToF) cameras use the same principle as LIDAR, but to a different

extent. Much like the pixels of a visible camera, ToF cameras organize distance readings

in a grid format. This is possible by using an array of light sensors. The result is a dense

set of measurement data across a narrow Field of View (FOV).

 Ultrasonic sensors operate by timing the reflection of sound waves. These sensors

are typically used in UAS for altitude measurement and detection of nearby obstacles.

While ultrasonic sensors are simple in design and relatively inexpensive compared to

other active sensors, they are limited to detection in a single direction. Arrays of

ultrasonic sensors are a potential solution to this, but these are susceptible to “chatter” in

which sensors mistake a returned sound wave originating from other sensors as their own.

 Infrared ranging sensors emit a pulse of infrared light that returns via reflection to

an infrared-sensitive receiver. The intensity of the return is used to calculate the distance

to the reflecting object, within an operating range. While these sensors are useful in

indoor settings, the natural infrared light coming from the Sun can drastically effect

sensor functionality.

RGB Depth (RGBD) sensors are active sensors that use recognizable infrared

projections that can evaluate relative distance when objects in the field of view distort

that projection. These sensors also come with visual cameras that can provide a

corresponding color image. Like infrared ranging, RGBD sensors are typically limited to

indoor applications away from direct sunlight.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 6

Passive Ranging Sensors

The emerging technology of passive RADAR is also worth considering for UAS

SAA. Rather than emitting an RF signal like active RADAR, passive RADAR relies on

existing RF signals in the environment. This allows for covert detection, which as stated

before is not necessarily a requirement for autonomous UAS SAA. However, the reliance

on external RF signals disqualifies it for consideration in independent UAS SAA.

Passive Imaging Sensors

 Imaging sensors, also known as Electro-Optical/InfraRed (EO/IR) cameras,

operate via arrays of passive light detectors that are sensitive to specific wavelengths of

light ranging from UltraViolet (UV) to InfraRed (IR). These wavelengths can be visible

(300 to 700 nm) as in typical RBG cameras, or in various regions of the infrared

spectrum (700 nm to 14 µm). The choice of which type of sensor to use is dependent on

its use case.

 Visual cameras are preferred in situations where analogs for human vision are

possible and useful but share similar limitations. Visual cameras are reliant on the

presence of external light sources. This makes them useful for daylight or indoor

applications but hinders their utility at night.

 Infrared cameras can detect wavelengths of light outside the visual spectrum. This

can be leveraged for thermal imaging in the case of long-wave infrared (LWIR) or to

visually penetrate cloud cover in the case of short-wave infrared (SWIR).

Navigational Sensors

Inertial Measurement Units (IMUs) are the most widely used independent

navigational sensors. The components of an IMU are typically a combination of multiple

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 7

accelerometers, gyroscopes, and magnetometers aimed in orthogonal directions. This

provides up to a three-axis representation of a body’s linear motion, angular motion, and

orientation. IMUs are typically paired with GPS because without position measurements,

the system’s localization will experience drift caused by numerical integration of

accumulating errors in acceleration measurements.

1.2.3 Existing Systems

 Current UAS systems have focused on addressing GPS loss in urban

environments, independent sensing, and SAA, but not simultaneously.

 An urban UAS navigation system based on LIDAR, GPS, and known maps is

described by Chen et al [7]. This system is designed to be resilient to losses in GPS by

leveraging maps and feature recognition in LIDAR point clouds. However, the system’s

dependence on map truth models hinders its flexibility to unexpected or truly unknown

environments.

 Scannapieco et al [8] present a proof-of-concept RADAR odometry system for

small fixed-wing UAS. This system used RADAR exclusively to receive two-

dimensional motion and had potential for real-time operations. Still, they claim that

independent localization in urban environments is an open problem.

 GPS-denied localization can be possible through downward-facing optical flow,

as presented by Pestana et al [9]. Their system was proven to work for both indoor and

outdoor environments. While this system can effectively handle independent localization,

its situational awareness to potential obstacles was not considered.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 8

1.3 Constraints and Assumptions

 To clearly state the decided approach for this thesis, constraints and assumptions

are made regarding the project’s scope.

For constraints, the UAS SAA system will assume no prior knowledge of the

environment. The functionality of this SAA must be useful in a general context, and not

particular to specific types of dynamic obstacles that appear in urban environments. The

SAA system is further constrained by the exclusive use of independent sensing rather

than reliance on ground-based systems, external networks, or cooperative UAS.

It is assumed that the environment which the UAS inhabits is primarily static,

with potentially a single unknown dynamic obstacle. The nature of this dynamic obstacle

will be indifferent such that the presence of the UAS will not have an effect on the path

of the obstacle. Finally, the capability of the UAS to operate in real-time was not

considered but could be approached in future work. All analysis is applied to post-

processed data and simulation.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 9

2.0 Experimental Configuration

2.1 Sensor Suite

The sensor suite can be separated into three elements; sensors, processor, and

power supply. The sensors included in this setup are a 3D LIDAR (Velodyne Puck LITE)

[10], a 720p optical webcam (Logitech C270) [11], and an IMU/GPS unit (VectorNav

VN200) [12]. A wiring diagram for the sensor suite is shown in Figure 2.1 below.

Figure 2.1: Sensor Suite Wiring Diagram

 In the wiring diagram, the battery pack supplies power to the Raspberry Pi 3B+

and the LIDAR. Power and serial communication for the visual camera and IMU are

provided through USB connection to the Raspberry Pi 3B+. Serial communication with

the LIDAR is provided via an ethernet cable. The physical system is shown in Figure 2.2.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 10

Figure 2.2: Mounted Sensor Suite

Often used in autonomous driving systems, the 3D LIDAR possesses a wide field

of view (360°H x 30°V) and an effective measurement range of 1 to 100 meters (accurate

to (+/-) 3 centimeters). The vertical field of view is spanned by sixteen (16) emitter and

receiver pairs placed every 2° between +15° and -15° from horizontal. With rasterization,

the result is a series of measurement bands. The horizontal resolution of this LIDAR is

dependent on the speed at which the sensor rasterizes. The tradeoff between horizontal

resolution and frequency of data return is dependent on this speed. For this project, a

default speed of 600 RPM is used, resulting in a horizontal resolution of 0.01° with an

accuracy of (+/-) 0.005° at a framerate of 10 Hz. The RPM range for the LIDAR is

between 300 and 1200 RPM, which linearly scales the resolution between 0.005° and

0.02° and the framerate between 20 Hz and 5 Hz, respectively.

IMU

LIDAR

Processor

Visual
Camera

GPS Antenna

Power
Bank

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 11

The IMU/GPS unit serves two purposes; first by emulating an independent system

and second by having a relative truth model for localization. In an independent system,

the IMU would be used exclusively in conjunction with other independent sensors for

localization purposes. For testing purposes, a fused IMU/GPS localization method can be

used as a truth model to compare against independent localization.

The sensor suite processor is a Raspberry Pi 3B+ running ROS (Robot Operating

System) [13] on an Ubuntu Linux distribution. ROS is generally used in embedded

software as a base architecture for various robotics applications. In this case, ROS is used

for synchronized collection of LIDAR and camera data. Existing user-made packages for

the LIDAR and visual camera are used for interfacing to ROS. The INS/GPS unit data is

recorded via a separate Linux Bash script1.

2.3 Flight Platform

The system for capture of mid-flight data consists of a manually controlled carrier

drone and an isolated sensor suite. The carrier drone is a Freefly ALTA 6, a hexrotor with

a span of over 1 meter capable of lifting a payload of 6 kilograms [14]. The Figure 2.3

presents the flight capture system in its entirety.

1 VN200 Bash script provided by David Stockhouse, ERAU ICARUS Research Group.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 12

Figure 2.3: Experimental Flight Data Capture System

This system was selected in part due to simplicity in adapting sensor suite

components to an existing drone platform, and in part due to isolation of the sensor suite

dynamic behavior from the carrier drone dynamic behavior.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 13

3.0 Algorithm Overview

3.1 Obstacle Detection

 Obstacle detection is dependent on ranged data and is therefore primarily driven

by measurements provided by LIDAR. This method of recursive voxelized point cloud

segmentation is adapted from work by Vo et al [15]. Initially, points are separated into

bins called voxels based on their Cartesian location. A best-fit plane is defined for each

voxel based on a least-squares approach as defined using the following equations.

{

 𝑥𝑐 = [𝑝1,𝑥, 𝑝2,𝑥 , … , 𝑝𝑛,𝑥]
𝑇
− �̅�𝑥

𝑦𝑐 = [𝑝1,𝑦, 𝑝2,𝑦 , … , 𝑝𝑛,𝑦]
𝑇
− �̅�𝑦

𝑧𝑐 = [𝑝1,𝑧, 𝑝2,𝑧, … , 𝑝𝑛,𝑧]
𝑇
− �̅�𝑧 }

 Equation 3.1

𝑠𝑝(𝑥𝑐, 𝑦𝑐) = ∑ 𝑥𝑐,𝑖 ∗ 𝑦𝑐,𝑖
𝑛
𝑖=1 Equation 3.2

𝑛 = [

𝑠𝑝(𝑦𝑐, 𝑧𝑐) ∗ 𝑠𝑝(𝑥𝑐, 𝑦𝑐) − 𝑠𝑝(𝑥𝑐, 𝑧𝑐) ∗ 𝑠𝑝(𝑦𝑐, 𝑦𝑐)

𝑠𝑝(𝑥𝑐, 𝑦𝑐) ∗ 𝑠𝑝(𝑥𝑐, 𝑧𝑐) − 𝑠𝑝(𝑥𝑐, 𝑥𝑐) ∗ 𝑠𝑝(𝑦𝑐, 𝑧𝑐)

𝑠𝑝(𝑥𝑐, 𝑥𝑐) ∗ 𝑠𝑝(𝑦𝑐, 𝑦𝑐) − 𝑠𝑝(𝑥𝑐, 𝑦𝑐) ∗ 𝑠𝑝(𝑥𝑐, 𝑦𝑐)

] Equation 3.3

�̂� =
𝑛

‖𝑛‖2
 Equation 3.4

where 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐 are the coordinates of the voxel points 𝑝1through 𝑝𝑛 from their

centroids, �̅�𝑥, �̅�𝑦, and �̅�𝑧, respectively. The function 𝑠𝑝(∙,∙) is used as shorthand for the

element-wise sum of products. The resultant vector �̂� is normal to the best-fit plane

passing through the centroid of the voxel. From the normal vector, the residual noise can

be characterized through Equations 3.5 and 3.6.

𝑑𝑖 = 𝑝𝑖
𝑇 − [�̅�𝑥 �̅�𝑦 �̅�𝑧] ∗ �̂� Equation 3.5

𝑟 = √
1

𝑘
∑ 𝑑𝑖

2𝑘
𝑖=1 Equation 3.6

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 14

where 𝑑𝑖 is the distance of each point in the voxel to the best-fit plane, and 𝑟 is the

residual error of all points in the voxel.

 Moving from the voxel preparation stage to the voxel reduction stage, the residual

error is checked against a threshold. If this threshold is exceeded, the voxel undergoes

reduction, by which it splits into 8 octant voxels. These new voxels will be processed the

same way as the initial voxel, until a threshold for residual or minimum voxel size is met.

 Once the set of voxels is sufficiently reduced, region growth begins. Starting with

the voxel with the least residual error, neighboring voxels will be considered for region

growth. If that voxel’s residual is sufficiently low and its normal vector is sufficiently

aligned with the seed normal, then the voxels are joined as a region. Region growth

continues until there is no valid seed voxel to consider.

 Applying this method to obstacle detection, regions from separate LIDAR point

clouds can be compared and motion can be extrapolated from regions that otherwise

inexplicably moved between point clouds.

3.2 Obstacle Avoidance

The path which the UAS takes is defined by a series of points, globally

prescribing the position which the UAS must reach and the velocity it must maintain

when reaching the position. The inclusion of velocity allows for preemptive course

correction to aim the UAS toward subsequent waypoints with manageable overshoot.

When a dynamic obstacle is detected, its location is compared to the current

position of the UAS. If the two are within a distance threshold of each other, a fictitious

force is applied to the control law of the UAS, proportional to the inverse square of the

distance between the bodies.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 15

This method is functional, but not optimal for smooth avoidance paths. As the

UAS is pushed by this fictitious force, the error from the path following command is

accumulated. After avoidance, when the fictitious force is no longer in effect, the

compiled error from path following results in an abrupt return to the path.

3.3 Point Cloud Image Fusion

 The LIDAR and camera fusion method explored in this project is primarily reliant

on coordinate transformations. Initially, point clouds are captured in the LIDAR

coordinate frame and designated by a vector in that frame. The location of each point can

be defined as pi,L for each i point in the complete point cloud. The location and

orientation of the camera frame is assumed to be known relative to the LIDAR frame.

The transformation of point pi,L in the LIDAR frame to pi,C in the camera frame is given

in Equation 3.1.

𝑝𝑖,𝐶 = (𝑅𝐶
𝐿)−1 ∗ (𝑝𝑖,𝐿 − 𝑜𝐿

𝐶) Equation 3.1

where 𝑅𝐶
𝐿 is the rotation matrix to orient the LIDAR frame with the camera frame, and 𝑜𝐿

𝐶

is the location of the camera in the LIDAR frame. With each point transformed to the

camera frame, the field of view of the camera can be modeled as a region in a spherical

coordinate system. By converting each camera frame point into spherical coordinates, the

points which lie within the field of view of the camera can be isolated. Once these visible

points are isolated, their relative position within the field of view can be used to associate

those points with pixels in a camera image. Assuming a similar coordinate frame to that

of the LIDAR, the bounds of the field of view of the camera can be defined by the

following equations.

𝜑𝑚𝑖𝑛 = −
𝐻𝐹𝑂𝑉

2
, 𝜑𝑚𝑎𝑥 =

𝐻𝐹𝑂𝑉

2
 Equation 3.2

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 16

𝜃𝑚𝑖𝑛 = 90° −
𝑉𝐹𝑂𝑉

2
, 𝜃𝑚𝑎𝑥 = 90° +

𝑉𝐹𝑂𝑉

2
 Equation 3.3

where 𝜑 is defined as a right-hand rotation about z, starting at x, and 𝜃 is defined as a

downward rotation from z toward the xy plane. HFOV and VFOV represent the camera’s

horizontal and vertical field of view (in degrees). The associated pixel for a point within

the field of view is given by Equation 3.4 and 3.5.

𝑟𝑜𝑤𝑖 = 𝑐𝑒𝑖𝑙 (ℎ ∗
𝜃𝑖,𝐶−𝜃𝑚𝑖𝑛

𝑉𝐹𝑂𝑉
) Equation 3.4

𝑐𝑜𝑙𝑢𝑚𝑛𝑖 = 𝑐𝑒𝑖𝑙 (𝑤 ∗
𝜑𝑚𝑎𝑥−𝜑𝑖,𝐶

𝐻𝐹𝑂𝑉
) Equation 3.5

where h and w represent the height and width of the reference image in pixels, and 𝜑𝑖,𝐶

and 𝜃𝑖,𝐶 are the angular spherical coordinates of point 𝑝𝑖,𝐶. Use of the ceiling function

should only be done if indexing at 1; floor can be used for languages indexing at 0. Since

the index i has not changed for each point, the color of the pixel located in the image at

(𝑐𝑜𝑙𝑢𝑚𝑛𝑖, 𝑟𝑜𝑤𝑖) is associated to the point in the LIDAR point cloud. Figure 3.1 shows an

example of this fusion.

Figure 3.1: Example Point Cloud Image Fusion

 The accuracy of this fused data set is dependent on several factors including

accuracy of known coordinate transformations, camera distortion properties, camera

resolution, and redundant overlap between LIDAR and image field of view.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 17

4.0 Simulated Environment

4.1 Multirotor Simulation

 Simulation is an essential tool when developing autonomous systems, especially

for aerial platforms. However, a simulation is only as useful as its model is accurate. For

that reason, an existing hexrotor dynamic simulation was created in Simulink and

provided by Dr. Ken Bordignon and Dr. Iacopo Gentilini from their work in optimal UAS

path planning [16] specifically for adaptation into this thesis. Their dynamic model and

closed-loop control system provided the basis for the following simulation, which was

significantly modified. The following section describes original experimentation in path

definition and visual presentation.

 The path prescribed to the hexrotor is defined by a series of waypoints, each

prescribing position, velocity and acceleration in 3 dimensions. The path through these

points is generated via cubic spline, following the boundary conditions. The trajectory

planning system considers two consecutive points at a time [17]. Between these points,

we specify a trajectory with continuous, differentiable position and velocity using the

following cubic equation.

𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 Equation 4.1

 This cubic equation is specified for x but can be expanded to each dimension

independently. Using this equation between just two points will not allow for boundary

conditions aside from position to be met. Instead, two additional intermediate waypoints

must be specified. These waypoints do not have boundary conditions, instead they

maintain continuity between multiple spline segments. Since there are effectively three

consecutive pairs of waypoints, there are not three separate cubic spline equations that

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 18

contribute to a continuous piecewise trajectory. Consolidating these equations across all

dimensions into a single diagonalized matrix system of equations results in the following

equation.

𝐴𝑥 = 𝑏 Equation 4.2

where A is a 12x12 matrix built from the components of t, x is a 12x1 vector containing

each coefficient a0 through a3, and b is a 12x1 vector of boundary conditions. The number

of columns of A is determined by the number of splines needed to span each pair of

waypoints, in this case, four points require three lines. For each of these lines, four

constants (a0 through a3) are required to constrain them. The number of rows of A is

determined by the number of boundary conditions needed to define spline intersections

and endpoints. The multiplication of Ax provides the system of equations for each of the

splines; equal to each respective boundary condition. Since A is square and upper

triangular, it has an inverse, provided t is increasing between each spline segment.

Inverting A and pre-multiplying each side isolates the vector x, containing the constants

for each spline segment.

 To command the defined set of splines, at any time t between two waypoints, the

desired position, velocity, and acceleration can be gathered from the derivatives of

Equation 4.1, substituting the appropriate coefficients. Typically, the time at which each

waypoint or intermediate waypoint is to be crossed is determined ahead of time.

However, the time to completion can be estimated based on an average desired velocity

and a distance between waypoints. The times for intermediate waypoints can be any

distinct times between and not including the start and end times. The desired position,

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 19

velocity, and acceleration is used to create an error signal when subtracted from the

current state which drives the input to the dynamic model.

 The second modification of this simulation is a visual reference for the hexrotor’s

trajectory and attitude. This model utilizes basic surface geometry in MATLAB to create

a wireframe representation of a hexrotor, as shown in Figure 4.1.

Figure 4.1: Hexrotor Trajectory and Orientation Visualization

 On the left of Figure 4.1, the trajectory of the UAS is plotted in blue squares. The

vertices of the underlying black line are the desired set of waypoints which have a red

vector showing the direction of the desired velocity at that waypoint. Looking the path

that this simulated hexrotor took around sharp corners, the smoothness of the cubic spline

command can be seen. It is worth noting that the corners visible in the trajectory plot are

cropped from their original position and are intentionally overshot. On the right, the

orientation of the hexrotor is illustrated. The coordinate frame of the hexrotor is presented

in red, green, and blue representing forward, left, and up, respectively. The trajectory and

orientation are separated to avoid overloading the information within a single plot.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 20

4.2 Obstacle Simulation

 In addition to modifying the path definition and visual representation of the

provided hexrotor simulation, a dynamic obstacle model has also been introduced. The

trajectory truth model for simulating a dynamic obstacle is based on the recorded

trajectory of the same multirotor model, but previously simulated. Dynamic obstacle

detection is implemented via zero-mean Gaussian noise added to truth model. This

emulates the noise in the point cloud segmentation detection caused by reducing an

inconsistent region of points to their centroid.

 Since the measurement received from the point cloud is a position, a state

estimator is needed to estimate the future motion of the obstacle. To estimate this motion

and reduce the noise on the position reading, a discretized Kalan Filter is used.

“Discretized” in this case refers to the discretized state transition based on numerical

integration.

 The discretized Kalman filter begins with an initial state estimate x0, defined by

the first position reading of the obstacle, followed by zeros for the initial velocity,

acceleration, and jerk. This model is adapted from a constant acceleration model, but

since constant acceleration cannot be assumed for the dynamic obstacle, the state vector

is expanded to include jerk. While constant jerk is then assumed, its process noise

covariance is nonzero, meaning it is expected to abruptly change. The following

Equations 4.1 through 4.6 define the constants and initial states that are used in this

Kalman filter. While all three Cartesian directions are considered in the simulation, only

the x direction is shown in this example.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 21

�̂�0 = [

𝑥0
0
0
0

] Equation 4.1

𝐹 =

[

 1 𝑇

1

2
𝑇2

1

6
𝑇3

0 1 𝑇
1

2
𝑇2

0 0 1 𝑇
0 0 0 1]

 Equation 4.2

𝑃0 = [

0.3
0
0
0

0
0.1
0
0

0
0
0.2
0

0
0
0
0.1

] Equation 4.3

𝑄 = [

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0

0.00001

] Equation 4.4

𝑅 = 0.04 Equation 4.5

𝐻 = [1 0 0 0] Equation 4.6

 Here, �̂�𝑘 is the state estimate at time k, F is the discrete state transition matrix, P0

is the initial state-estimate error covariance matrix, Q is the process noise covariance

matrix, R is the measurement noise covariance matrix, and H is the measurement matrix.

The measurement noise covariance is determined by estimating the noise present in

obstacle detection based on the centroid location of a point cloud region. The state

estimate update, as presented by Simon [18], is calculated as follows.

𝑃𝑘+1
− = 𝐹𝑃𝑘^ + 𝐹

𝑇 + 𝑄 Equation 4.7

𝐾𝑘 = 𝑃𝑘+1
− 𝐻𝑇(𝐻𝑃𝑘+1

− 𝐻𝑇 + 𝑅)−1 Equation 4.8

𝑃𝑘+1
+ = 𝑃𝑘+1

− − 𝐾𝑘𝐻𝑃𝑘+1
− Equation 4.9

�̂�𝑘+1 = 𝐹�̂�𝑘 + 𝐾(𝑦 − 𝐻𝐹�̂�𝑘) Equation 4.10

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 22

 Where 𝑃𝑘+1
− is the a priori estimate error covariance matrix, 𝐾𝑘 is the Kalman

gain matrix, 𝑃𝑘+1
+ is the a posteriori estimate error covariance matrix, and y is the

measurement of x plus some gaussian zero-mean noise. Continuing this cycle calculates

each subsequent state estimate. A plot of this for all three cartesian dimensions is shown

in Figure 4.2.

Figure 4.2: Example Kalman Filter Output

 In the upper half of the Figure 4.2, the true position of the dynamic obstacle is

given as a solid black line. The measurements recorded from that model added with some

Gaussian noise are represented as x’s. The red solid line is the state estimate at the

current timestamp. By propagating the state forward (removing the second right-hand

term in Equation 4.10), the predicted path can be plotted against the actual path. The

bottom half of the figure shows the error with respect to the original signal. Overall, the

error increases the further the prediction is placed in the future, which makes sense

intuitively, and is shown by the growth of P in Equation 4.7.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 23

5.0 Test Procedures

Sensor suite test scenarios progressed from static bench testing to mobile aerial

testing to test various functional aspects. The preparation, goals, and outcomes of each of

the scenarios is presented in this section.

5.1 Static Tests

 Static tests were performed by mounting the LIDAR on a tripod with an external

power supply. At this time, the LIDAR was the only sensor considered for testing due to

prioritization of implementing the segmentation method. Static tests were performed both

indoors on the bench as well as in the field. Static testing served two purposes; first to

verify data acquisition was functional, and second to observe the point cloud

representations of various obstacles.

Bench Tests

The first of the static tests was performed indoors, as shown in Figure 5.1.

Figure 5.1: Example LIDAR Scan of Room

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 24

The color of points in Figure 5.1 indicates object reflectivity. From this test, it

was observed that static objects between 1 and 10 meters of the LIDAR have a distinct

appearance thanks to the relatively high point density (excluding objects outside of the

field of view). This data set was also used to test the point cloud segmentation method,

the results of which are shown in Figure 5.2.

Figure 5.2: Example Segmented Point Cloud

It was discovered here that the segmentation method is not ideal for point clouds

without predominantly flat surfaces. This makes sense as this method was originally

designed for use on dense point clouds of buildings.

Field Tests

 Static field tests were performed with the intent of determining how consistently

various UAVs appeared in LIDAR point clouds. All testing was performed under either

FAA Part 101 or Part 107. The drones tested using this method are consolidated in the

Table 5.1.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 25

Table 5.1: Flyby Test UAVs

UAV
Diagonal

Span (cm)

Height

(cm)

Maximum Consistent

Capture Distance (m)

RYZE Tech Tello [19] 13.4 4.1 --

DJI Mavic [20] 40.2 8.4 4.2

DJI Phantom 4 [21] 35.0 8.9 6.5

 The Tello, the smallest of the UAVs, presented an issue in that it was small

enough to be undetectable at sub 3-meter range from the sensor. Even with the medium-

scale Mavic and Phantom, the distance for consistent capture is still close to the sensor

compared to its maximum readable distance. Based on the geometry of the LIDAR’s

scan, the body height is the primary factor for consistent detectability.

5.2 Ground Mobile Tests

 The first of the mobile tests were performed on the ground, using a car LIDAR

mount. For safety reasons, this test scenario was used to emulate dual drone flight. From

these tests, it was discovered that there was not a considerable difference between

stationary and mobile LIDAR in terms of visibility of UAVs. Figure 5.3 shows a Mavic 2

being detected during this test.

Figure 5.3: Mobile Testing Point Cloud

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 26

 In Figure 5.3, the same point cloud is shown at two different angles. As indicated

by the red circles, the Mavic 2 was able to be captured by the LIDAR in motion.

5.3 Aerial Mobile Tests

 The final tests for this project were performed with the complete sensor suite

mounted on the ALTA 6 flying over an urban setting. These tests were performed

primarily to observe the quality of data gathered at low altitudes (<80 meters AGL).

Figure 3.1 is an example of this data set. From these tests, it was noticed that the visual

camera was less limited in returns based on distance than the LIDAR. As a result, visual

imaging could likely be used for further-ranged detection if needed by this system.

5.4 Visual Camera Linearity Tests

 All lensed visual cameras naturally possess some level of image distortion. This

negatively effects the accuracy with which images and point clouds are registered. To

mitigate this, the distortion can be characterized and then compensated. There are many

existing camera calibration tools, in this case MATLAB’s cameraCalibrator tool was

used [22].

 The cameraCalibrator tool accepts images of checkerboard patterns which

provide references of straight lines. Because of distortion, these lines will not appear

perfectly straight. The two basic image distortion forms are pincushion and barrel

distortion, which cause pixels in the image to appear compressed toward the center of the

image or expanded out from the center, respectively. Figure 5.4 shows examples of pre-

corrected and post-corrected checkerboard detection images from the visual camera.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 27

a) b)

c) d)

Figure 5.4: Image Distortion Correction

a) Original Image at 1 meter b) Original Image at 8 meters

c) Corrected Image at 1 meter d) Corrected Image at 8 meters

 In the Figure 5.4, the corrected images draw pixels away from the edges and

toward the center, implying the image originally had pincushion distortion. These images

are from a set of 95 with increasing distance from 1 to 8 meters. The reprojection error in

a checkerboard image is the average movement required to align perceived and expected

checkerboard corners. Figure 5.5 shows the comprehensive reprojection error in the

complete set of images.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 28

Figure 5.5: Average Reprojection Error by Image

 The general trend shown in the above figure is that reprojection error decreases as

distance increases. In actuality, it is more accurate to say that distortion in the center of

the image is less severe than at the image edges, which was expected. While this test is

useful in determining image distortion, it is also useful to know if the size of an observed

object in the camera is inversely proportional to its distance from the camera. This is

known as the linear region of the camera and it can be found by measuring the length of a

checkerboard square in images taken at known distances. Figure 5.6 shows the

relationship between distance from camera and the inverse of checkerboard pixel length.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 29

Figure 5.6: Camera Linear Region

 As shown in Figure 5.6, between 3 and 15 meters, the relationship between

distance from camera is inversely proportional to checkerboard square length. While the

exact distance of the shift between the nonlinear and linear regions is not known

precisely, it can be assumed to be under 3 meters. This verifies that fusion of point cloud

points farther than 3 meters away is not influenced by nonlinear camera effects.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 30

6.0 Analysis

 The consideration of this specific sensor suite for use in detection and avoidance

of dynamic obstacle in unknown urban environments shows some promise but requires

significant development before implementation.

 The utilization of voxel-based point cloud segmentation methods is not applicable

to scnareios evhibiting sparse point clouds with minimal flat surfaces. Theoretically,

fused LIDAR and visual imaging data sets could provide a different route for

segmentation that could yield stronger results. By considering similar color between

voxels as candidacy for region growth, the computational demand of normal and residual

calculation can be circumvented. This may provide faster and more accurate region

definition in sparse or non-primarily planar point clouds.

Dynamic obstacle prediction via a discretized Kalman filter allows for preemptive

determination of potential collisions but is entirely reliant on a consistent tracking

method. The lack of consistent range data of smaller UAVs at safe distances is

concerning for the proposed detection system.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 31

7.0 Conclusion and Recommendations

 In this thesis, UAS SAA topics of obstacle detection, path planning, and dynamic

obstacle avoidance are explored through simulation and post-processing of real-world

data. Point cloud segmentation is found to be a method for obstacle avoidance that would

benefit from fused point cloud and visual camera image data. A preliminary method for

this fusion is described, involving pixel fusion via coordinate transformations and

alignment of fields of view. Avoidance strategies for detected dynamic obstacles are

explored via trajectory planning and potential field methods, but more optimal

alternatives such as trajectory modification are discussed. While the scope of this thesis is

relatively broad, the assessment of various urban UAS SAA aspects is largely

compartmentalized. For further development of such systems, the compliance between

each of the components—sensing, detection, command, and control—must be considered

in greater depth. Specific concepts such as independent localization, static obstacle

avoidance, and multiple dynamic obstacle avoidance are topics that were not explored in

this work but would be necessary for thorough development of independent urban UAS

SAA.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 32

8.0 Future Work

8.1 Fusion of LIDAR and EO/IR and Obstacle Detection

 The approached method for LIDAR and EO/IR fusion could be replaced with

feature-level registration and consolidate the obstacle detection process. Instead of basing

detection on fused point cloud segmentation, features could be extracted from the image

and given depth via registered point cloud measurements.

8.2 Path Planning

To improve upon the avoidance algorithm explored in this thesis, a dynamic

trajectory could provide a smoother response to dynamic obstacles. One way to do this

would be to adjust the set of waypoints mid-flight as avoidance scenarios are

encountered. This modification could be limited to incorporating new waypoints so that

the path of the UAS does not intersect with observed obstacles but will also maintain its

originally prescribed waypoint set as best as possible.

8.3 Experimental Data and Processing

 The capture method utilized in testing scenarios could benefit from a more

automated approach. For instance, having the capture begin immediately on Raspberry Pi

3B+ startup would have simplified data capture and avoided the need for field displays

and keyboards. Further, the methods by which data was processed can be improved

significantly if the capture and processing were performed in the same environment.

Adapting the system entirely within ROS would allow for a centralized system that

would have greater potential of utility in real-time.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 33

REFERENCES

[1] P. Patrón and D. M. Lane, "Adaptive mission planning: the embedded OODA

loop," in 3rd SEAS DTC Technical Conference, Edinburgh, Scotland, 2008.

[2] M. Révay and M. Líška, "OODA Loop in Command & Control Systems," Armed

Forces Academy of Gen. M. R. Štefánik, 2017.

[3] U.S. Department of Transportation Federal Aviation Administration, "Introduction

to TCAS II Version 7.1," 2011.

[4] E. Burgos and S. Bhandari, "Potential Flow Field Navigation with Virtual Force

Field for UAS Collision Avoidance," in International Conference on Unmanned

Aircraft Systems, Arlington, VA, 2016.

[5] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for

mobile robots," IEEE Transactions on Robotics and Automation, vol. 7, no. 3,

1991.

[6] X. Yu and Y. Zhang, "Sense and avoid technologies with applicaitons to unmanned

aircraft systems: Review and prospects," Progress in Aerospace Sciences, vol. 74,

pp. 152-166, 2015.

[7] D. Chen and G. Gao, "Probabilistic Graphical Fusion of LiDAR, GPS, and 3D

Building Maps for Urban UAV Navigation," Navigation, vol. 66, no. 1, pp. 151-

168, 2019.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 34

[8] A. F. Scannapieco, A. Renga, G. Fasano and A. Moccia, "Experimental Analysis of

Radar Odometry by Commercial Ultralight Radar Sensor for Miniaturized UAS,"

Journal of Intelligent & Robotic Systems, vol. 90, no. 3, 2018.

[9] J. Pestana, J. Sanchez-Lopez and I. Mondragón, "A General Purpose Configurable

Controller for Indoors and Outdoors GPS-Denied Navigation for Multirotor

Unmanned Aerial Vehicles," Journal of Intelligent & Robotic Systems, vol. 73, no.

1, pp. 387-400, 2014.

[10] Velodyne Lidar, "Puck LITE™," Velodyne Lidar, 2019. [Online]. [Accessed 2019].

[11] Logitech, "Logitech C270 HD Webcam," 2019. [Online]. Available:

https://www.logitech.com/en-us/product/hd-webcam-c270. [Accessed 2019].

[12] VectorNav, "VN-200," 2019. [Online]. Available:

https://www.vectornav.com/products/vn-200. [Accessed 2019].

[13] Open Source Robotics Foundation, "ROS Wiki," 2018. [Online]. Available:

https://wiki.ros.org/. [Accessed 2019].

[14] Freefly Systems, "ALTA 6 Specs," 2019. [Online]. Available:

https://freeflysystems.com/alta-6/specs. [Accessed 2019].

[15] A. Vo, L. Truong-Hong, D. Laefer and M. Bertolotto, "Octree-based region

growing for point cloud segmentation," ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 104, pp. 88-100, 2015.

[16] K. Vicencio, T. Korras, K. Bordignon and I. Gentilini, "Energy-Optimal Path

Planning for Six-Rotors on Multi-Target Missions," in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Hamburg, Germany, 2015.

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 35

[17] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo, "Trajectory Planning," in

Robotics Modelling, Planning and Control, Springer, 2009, pp. 161-167.

[18] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches, Wiler-Interscience, 2006.

[19] Ryze Robotics, "Tello," 2019. [Online]. Available:

https://www.ryzerobotics.com/tello. [Accessed 2019].

[20] DJI, "DJI Mavic 2," 2019. [Online]. Available: https://www.dji.com/mavic-2.

[Accessed 2019].

[21] DJI, "DJI Phantom 4," 2019. [Online]. Available: https://www.dji.com/phantom-4.

[Accessed 2019].

[22] MathWorks, "Single Camera Calibrator App," 2019. [Online]. Available:

https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html.

[Accessed 2019].

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 36

APPENDIX

MATLAB Source Code

Voxelized Point Cloud Segmentation

% VoxelSegmentation

% Jonathan Buchholz

% Summer 2019

% ERAU ICARUS

%==========PARAMETERS===========%

% Test Parameter Set

% Point cloud file

scan_file = 'testscan3.csv';

% Voxel grid creation

radius = 70; % range for point consideration from origin (m)

res = 1; % initial voxel grid resolution (m)

max_divisions = 4; % number of allowable voxel octant divisions

min_residual = 0.0005; % amount of allowable voxel "noise" without

division

% Region growth

allow_normal_drift = false; % compare either recent neighbor normal

(true) or initial seed normal (false)

r_th = 0.0005; % residual threshold for considering voxels for seeding

t_th = 0.97; % normal alignment for considering voxels

pl_th = 0.2; % planarity threshold of centroids perpendicular to normal

minimumPoints = 50; % minimum number of points for a valid region

%===============================%

Scan = importdata(scan_file);

numPoints = length(Scan.data(:,1));

min_resolution = res/(2^max_divisions); % minimum reduced resolution

(m)

sSquare = round(radius*2/res); % number of elements along each side of

occupancy grid

voxelGrid = cell(sSquare,sSquare,sSquare);

% Organize points into voxel bins

maxRet = 1;

% j = 1;

% k = 1;

min_xidx = 2*radius;

max_xidx = 1;

min_yidx = 2*radius;

max_yidx = 1;

min_zidx = 2*radius;

max_zidx = 1;

for i = 1:numPoints

 % Limit returns to within box boundry

 xidx = ceil((radius + Scan.data(i,1))/res);

 yidx = ceil((radius + Scan.data(i,2))/res);

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 37

 zidx = ceil((radius + Scan.data(i,3))/res);

 if xidx > sSquare || yidx > sSquare || zidx > sSquare || xidx < 1

|| yidx < 1 || zidx < 1

 continue;

 end

 % max and min index bounds (for cropping empty cells)

 % x

 if xidx < min_xidx

 min_xidx = xidx;

 end

 if xidx > max_xidx

 max_xidx = xidx;

 end

 % y

 if yidx < min_yidx

 min_yidx = yidx;

 end

 if yidx > max_yidx

 max_yidx = yidx;

 end

 % z

 if zidx < min_zidx

 min_zidx = zidx;

 end

 if zidx > max_zidx

 max_zidx = zidx;

 end

 if isempty(voxelGrid{xidx,yidx,zidx})

 voxelGrid{xidx,yidx,zidx}.returns = 1;

 voxelGrid{xidx,yidx,zidx}.points = Scan.data(i,:);

 else

 voxelGrid{xidx,yidx,zidx}.returns =

voxelGrid{xidx,yidx,zidx}.returns + 1;

 voxelGrid{xidx,yidx,zidx}.points =

[voxelGrid{xidx,yidx,zidx}.points; Scan.data(i,:)];

 if voxelGrid{xidx,yidx,zidx}.returns > maxRet

 maxRet = voxelGrid{xidx,yidx,zidx}.returns;

 end

 end

 if ~isfield(voxelGrid{xidx,yidx,zidx},'location')

 voxelGrid{xidx,yidx,zidx}.location = [...

 xidx*res - radius - res/2;...

 yidx*res - radius - res/2;...

 zidx*res - radius - res/2];

 end

 if ~isfield(voxelGrid{xidx,yidx,zidx},'resolution')

 voxelGrid{xidx,yidx,zidx}.resolution = res;

 end

end

% Crop voxel grid to remove majority of empty voxels

voxelGrid([1:(min_xidx - 1), (max_xidx + 1):end],:,:) = [];

voxelGrid(:,[1:(min_yidx - 1), (max_yidx + 1):end],:) = [];

voxelGrid(:,:,[1:(min_zidx - 1), (max_zidx + 1):end]) = [];

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 38

[x_crop, y_crop, z_crop] = size(voxelGrid);

% Find voxel centroid, normal, errors

for xx = 1:x_crop

 for yy = 1:y_crop

 for zz = 1:z_crop

 % Find occupied voxels

 if ~isempty(voxelGrid{xx,yy,zz})

 % Find voxels containing 3 or more points

 if min(size(voxelGrid{xx,yy,zz}.points)) >= 4

 % Get voxel centroid, normal, and errors

 voxelGrid{xx,yy,zz} =

getVoxelCNE(voxelGrid{xx,yy,zz});

 % Reduce voxel size for large point errors

 voxelGrid{xx,yy,zz} =

reduceVoxel(voxelGrid{xx,yy,zz},min_residual,min_resolution);

 else

 voxelGrid{xx,yy,zz} = zeros(0,0);

 end

 end

 end

 end

end

% Sort by residual and find neighbors

ResList = sortResiduals(voxelGrid);

ResList = voxelNbyRL(ResList);

%% Region growing

A = ResList; % expendable voxel list

% r_th = min_residual; % residual threshold for seed list creation

Regions = cell(0);

i = 1; % Element of A to being next seed list;

j = 1;

while ~isempty(A)

 currentPoints = 0;

 currentRegion = cell(0);

 currentSeeds = cell(0);

 % Get smallest residual voxel remaining

 while isempty(A{i})

 i = i + 1;

 if i > length(A)

 break;

 end

 end

 if i > length(A)

 break;

 end

 v_min = A{i};

 A{i} = zeros(0);

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 39

 % If the smallest residual remaining is too great, stop region

growing

 if v_min.residual > r_th

 break;

 end

 % Assign voxel to seed list and start of region

 currentSeeds{1} = v_min;

 currentRegion{1} = v_min;

 % Look through each seed voxel's neighbors for matches

 success_ms = zeros(0);

 k = 0;

 while k ~= length(currentSeeds)

 k = k + 1;

 for m = currentSeeds{k}.neighbors

 % If that neighbor is not already part of a region, add to

 % current region

 if ~isempty(A{m})

 % Check angular alignment of neighboring normals

against

 % threshold

 if allow_normal_drift

 % Recent neighbor seed normal comparison

 t_allign =

abs(dot(currentSeeds{k}.normal,A{m}.normal));

 nonplanarity = abs(dot(...

 (currentSeeds{k}.centroid - A{m}.centroid)/...

 norm(currentSeeds{k}.centroid -

A{m}.centroid),...

 currentSeeds{k}.normal));

 else

 % First seed normal comparison

 t_allign =

abs(dot(currentSeeds{1}.normal,A{m}.normal));

 nonplanarity = abs(dot(...

 (currentSeeds{1}.centroid - A{m}.centroid)/...

 norm(currentSeeds{1}.centroid -

A{m}.centroid),...

 currentSeeds{1}.normal));

 end

 if t_allign >= t_th && nonplanarity < pl_th

 % Add neighbor voxel to current region

 currentRegion = [currentRegion; A(m)];

 currentPoints = currentPoints +

length(A{m}.points(:,1));

 % Add neighbor voxel to seed list if residual fits

 % threshold

 if A{m}.residual < r_th

 currentSeeds = [currentSeeds {A{m}}];

 end

 % Erase neighbor from available set

 A{m} = zeros(0);

 success_ms = [success_ms, m];

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 40

 end

 end

 end

 end

 % Save region if it is sufficiently occupied

 if currentPoints >= minimumPoints

 Regions{j} = currentRegion;

 j = j + 1;

 % Do not consider this region's voxels in future region growth

 for p = success_ms

 ResList{p}.allocated = true;

 end

 end

end

%% Refinement

for rs = 1:length(Regions)

 SeedR = cell(0);

 for ss = 1:length(Regions{rs})

 % Search for boundary voxels

 if length(Regions{rs}{ss}.neighbors) < minNeighbors

 SeedR = [SeedR, {Regions{rs}{ss}}];

 end

 end

 added_points = zeros(0,13);

 ks = 0;

 while ks ~= length(SeedR)

 ks = ks + 1;

 for ms = SeedR{ks}.neighbors

 if ResList{ks}.allocated == false

 for ps = 1:length(ResList{ms}.points(:,1))

 ds = (ResList{ms}.points(ps,1:3)'-

SeedR{ks}.centroid)'*SeedR{ks}.normal;

 if abs(ds) < d_th

 added_points = [added_points;

ResList{ms}.points(ps,:)];

 end

 end

 end

 end

 end

 if ~isempty(added_points)

 Regions{rs} = [Regions{rs}; {added_points}];

 end

end

%% Plotting

% Residual list

ResListStats(ResList);

% Original scan and regions

figure(1);

clf;

hold on;

plotVeloScan(scan_file);

voxelRegionPlot(Regions);

xlim([-3,3]);

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 41

ylim([-4,3]);

zlim([-1,2]);

xlabel('X (m)');

ylabel('Y (m)');

zlabel('Z (m)');

% Original scan and occupied voxels

figure(2);

hold on;

plotVeloScan(scan_file);

xlim([-3,3]);

ylim([-4,3]);

zlim([-1,2]);

axis vis3d;

voxelGridPlot(voxelGrid, 'normal', maxRet, true);

Funciton to calculate centroids, normals, and residuals of individual voxels

function voxelStruct = getVoxelCNE(voxelStruct)

% Finds centroid, normal, errors, and residual of a voxel's points.

% Stores outputs in fields '.centroid', '.normal','.errors', and

% '.residual', respectively.

% Centroid

voxelStruct.centroid = mean(voxelStruct.points(:,1:3),1)';

% Normal

x_c = voxelStruct.points(:,1) - voxelStruct.centroid(1);

y_c = voxelStruct.points(:,2) - voxelStruct.centroid(2);

z_c = voxelStruct.points(:,3) - voxelStruct.centroid(3);

voxelStruct.normal = [...

 (sum(y_c.*z_c)*sum(x_c.*y_c)) - (sum(x_c.*z_c)*sum(y_c.*y_c));...

 (sum(x_c.*y_c)*sum(x_c.*z_c)) - (sum(x_c.*x_c)*sum(y_c.*z_c));...

 (sum(x_c.*x_c)*sum(y_c.*y_c)) - (sum(x_c.*y_c)*sum(x_c.*y_c))];

voxelStruct.normal = voxelStruct.normal/norm(voxelStruct.normal);

% Errors

voxelStruct.errors = zeros(0,0);

for i = 1:length(voxelStruct.points(:,1))

 voxelStruct.errors(i) = (voxelStruct.points(i,1:3)'-

voxelStruct.centroid)'*voxelStruct.normal;

end

voxelStruct.errors = voxelStruct.errors';

% Residuals

voxelStruct.residual =

sqrt(sum(voxelStruct.errors.^2)/length(voxelStruct.errors));

% Placeholder for region growth refinement

voxelStruct.allocated = false;

end

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 42

Discretized Kalman Filter Testing

% Descretized Kalman Filter Test in 3D

%% Settings

% File to read

simout_file = 'samplesimout6.mat';

% Estimator error covariance matrix

p0eec = 0.3; % initial position estimator error covariance

v0eec = 0.1; % "" velocity

a0eec = 0.2; % "" acceleration

j0eec = 0.1; % "" jerk

% R Matrix

sigmax = 0.2;

sigmay = 0.2;

sigmaz = 0.2;

% Q matrix (constant)

pQ = 0;

vQ = 0;

aQ = 0;

jQ = 0.00001;

% Measurements

measureValidRate = 1; % percentage of measurements that are not lost

(>0)

% Predictions

predictions = 2;

timeStBwPred = 3;

jetPred = jet(predictions);

%% Preparation

% Read path data

load(simout_file);

t_s = simout(:,7)';

x_s = simout(:,1)';

y_s = simout(:,2)';

z_s = simout(:,3)';

T = t_s(2) - t_s(1); % assumes constant sampling period

maxPoints = length(t_s);

csi_s = zeros(12,maxPoints);

y_ms = zeros(3,maxPoints);

% Estimator error covariance matrix

P_prep = [p0eec, 0, 0, 0;

 0, v0eec, 0, 0;

 0, 0, a0eec, 0;

 0, 0, 0, j0eec];

P = [P_prep, zeros(4,8);

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 43

 zeros(4,4), P_prep, zeros(4,4);

 zeros(4,8), P_prep];

% State vector

csi = [x_s(1) + normrnd(0,sigmax); 0; 0; 0; y_s(1) +

normrnd(0,sigmay); 0; 0; 0; z_s(1) + normrnd(0,sigmaz); 0; 0; 0];

% x, dx/dt, d2x/dt2, d3x/dt3, "y", "z"

% R Matrix

R = diag([sigmax^2, sigmay^2, sigmaz^2]); % covariance matrix (scalar

in 1D)

% Discretized state transition matrix (diagonalized)

F_setup = [1, T, 0.5*T^2, (1/6)*T^3;

 0, 1, T, 0.5*T^2;

 0, 0, 1, T;

 0, 0, 0, 1];

F = [F_setup, zeros(4,8);

 zeros(4,4), F_setup, zeros(4,4);

 zeros(4,8), F_setup];

% Discretized state transition matrix for state prediction

F_p_setup = [1, (timeStBwPred*T), 0.5*(timeStBwPred*T)^2,

(1/6)*(timeStBwPred*T)^3;

 0, 1, (timeStBwPred*T), 0.5*(timeStBwPred*T)^2;

 0, 0, 1, (timeStBwPred*T);

 0, 0, 0, 1];

F_p = [F_p_setup, zeros(4,8);

 zeros(4,4), F_p_setup, zeros(4,4);

 zeros(4,8), F_p_setup];

% Q matrix

Q = diag([pQ, vQ, aQ, jQ, pQ, vQ, aQ, jQ, pQ, vQ, aQ, jQ]);

% Measurement matrix

H = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0;

 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]; % Measurement matrix

xPred = zeros(predictions,maxPoints + predictions - 1);

yPred = zeros(predictions,maxPoints + predictions - 1);

zPred = zeros(predictions,maxPoints + predictions - 1);

tPred = zeros(predictions,maxPoints + predictions - 1);

%% Kalman Filter

for i = 1:maxPoints

 % A priori estimator error covariance (time i-1)

 Pm = F*P*F' + Q;

 % Kalman gain matrix

 K = Pm*H'/(H*Pm*H' + R);

 % A posteriori estimator error covariance

 P = Pm - K*H*Pm;

 % Gather measurement

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 44

 if rand() <= measureValidRate

 v = [normrnd(0,sigmax);

 normrnd(0,sigmay);

 normrnd(0,sigmaz)];

 y = [x_s(i); y_s(i); z_s(i)] + v;

 y_ms(:,i) = y;

 % A posteriori state estimate

 csi = F*csi + K*(y - H*F*csi);

 else

 % Propagate without measurement

 csi = F*csi;

 end

 csi_s(:,i) = csi;

 % State predictions

 csi_p = csi;

 t_p = t_s(i);

 PredLegend = {};

 % Predictions based on state transition propagation

 for j = 1:predictions

 PredLegend{end + 1} = sprintf('Ahead %2.2fs',j*timeStBwPred*T);

% F_p_setup = [1, (j*timeStBwPred*T), 0.5*(j*timeStBwPred*T)^2,

(1/6)*(j*timeStBwPred*T)^3;

% 0, 1, (j*timeStBwPred*T),

0.5*(j*timeStBwPred*T)^2;

% 0, 0, 1, (j*timeStBwPred*T);

% 0, 0, 0, 1];

% F_p = [F_p_setup, zeros(4,8);

% zeros(4,4), F_p_setup, zeros(4,4);

% zeros(4,8), F_p_setup];

% F_pmod = F_p*diag(repmat([1, 0.8, 0.75, 0],[1,3]));

% % F_pmod = F_p;

 csi_p = F^(timeStBwPred)*csi_p;

 t_p = t_p + timeStBwPred*T;

 if i>=(j*(timeStBwPred-1))

 xPred(j,i+((j)*(timeStBwPred-1))) = csi_p(1);

 yPred(j,i+((j)*(timeStBwPred-1))) = csi_p(5);

 zPred(j,i+((j)*(timeStBwPred-1))) = csi_p(9);

 tPred(j,i+((j)*(timeStBwPred-1))) = t_s(i);

 end

 end

end

%% Plotting

figure(1);

clf;

TotLegend = {'Truth', 'Measurement', 'Estimate'};

% x

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 45

subplot(2,3,1);

hold on;

plot(t_s,x_s,'k-','linewidth',1.5); % Truth

plot(t_s,y_ms(1,:),'kx','markersize',8); % Measurement

plot(t_s,csi_s(1,:),'r-','linewidth',1.5); % State Estimate

axis tight;

ylim([-5,5]);

grid on;

title('x Position Estimate');

xlabel('time (s)');

ylabel('x (m)');

legend(TotLegend,'location','SW');

subplot(2,3,4);

hold on;

plot(t_s,x_s - csi_s(1,:),'r-','linewidth',1.5);

axis tight;

ylim([-2,2]);

grid on;

title('x Position Estimate Error');

xlabel('time (s)');

ylabel('x - x_{hat} (m)');

% y

subplot(2,3,2);

hold on;

plot(t_s,y_s,'k-','linewidth',1.5); % Truth

plot(t_s,y_ms(2,:),'kx','markersize',8); % Measurement

plot(t_s,csi_s(5,:),'r-','linewidth',1.5); % State Estimate

axis tight;

ylim([-5,5]);

grid on;

title('y Position Estimate');

xlabel('time (s)');

ylabel('y (m)');

% legend(TotLegend);

subplot(2,3,5);

hold on;

plot(t_s,y_s - csi_s(5,:),'r-','linewidth',1.5);

axis tight;

ylim([-2,2]);

grid on;

title('y Position Estimate Error');

xlabel('time (s)');

ylabel('y - y_{hat} (m)');

% z

subplot(2,3,3);

hold on;

plot(t_s,z_s,'k-','linewidth',1.5); % Truth

plot(t_s,y_ms(3,:),'kx','markersize',8); % Measurement

plot(t_s,csi_s(9,:),'r-','linewidth',1.5); % State Estimate

axis tight;

ylim([-5,5]);

grid on;

title('z Position Estimate');

xlabel('time (s)');

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 46

ylabel('z (m)');

% legend(TotLegend);

subplot(2,3,6);

hold on;

plot(t_s,z_s - csi_s(9,:),'r-','linewidth',1.5);

axis tight;

ylim([-2,2]);

grid on;

title('z Position Estimate Error');

xlabel('time (s)');

ylabel('z - z_{hat} (m)');

ThreeDLegend = {'Truth','Estimate'};

if predictions > 0

 EstLegend = {'Estimate'};

 TotLegend = [TotLegend,PredLegend];

 EstLegend = [EstLegend,PredLegend];

 ThreeDLegend= [ThreeDLegend,PredLegend];

 %x

 subplot(2,3,1);

 hold on;

 plot(t_s,xPred(:,1:maxPoints)); % State Predictions

 legend(TotLegend,'location','SW');

 subplot(2,3,4);

 hold on;

 plot(t_s,x_s - xPred(:,1:maxPoints),'-');

 legend(EstLegend);

 %y

 subplot(2,3,2);

 hold on;

 plot(t_s,yPred(:,1:maxPoints)); % State Predictions

% legend(TotLegend);

 subplot(2,3,5);

 hold on;

 plot(t_s,y_s - yPred(:,1:maxPoints),'-');

% legend(EstLegend);

 %z

 subplot(2,3,3);

 hold on;

 plot(t_s,zPred(:,1:maxPoints)); % State Predictions

% legend(TotLegend);

 subplot(2,3,6);

 hold on;

 plot(t_s,z_s - zPred(:,1:maxPoints),'-');

% legend(EstLegend);

end

% subplot(2,3,4);

% hold on;

% plot(t_s,sigmax*ones(1,numel(t_s)),'k--');

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 47

% plot(t_s,-sigmax*ones(1,numel(t_s)),'k--');

%

% subplot(2,3,5);

% hold on;

% plot(t_s,sigmay*ones(1,numel(t_s)),'k--');

% plot(t_s,-sigmay*ones(1,numel(t_s)),'k--');

%

% subplot(2,3,6);

% hold on;

% plot(t_s,sigmaz*ones(1,numel(t_s)),'k--');

% plot(t_s,-sigmaz*ones(1,numel(t_s)),'k--');

figure(2);

clf;

hold on;

plot3(x_s,y_s,z_s,'k-','linewidth',1.5);

plot3(csi_s(1,:),csi_s(5,:),csi_s(9,:),'r-','linewidth',1.5);

legend('Truth','Estimate');

xlabel('x (m)');

ylabel('y (m)');

zlabel('z (m)');

axis equal;

view([-1,-1,1]);

grid on;

if predictions > 0

 plot3(xPred',yPred',zPred');

end

Point Cloud Image Fusion

function [UASxyz, PCcolors, ref_image] =

allignIMG2PC(PCdata,Rb_PC,ob_PC,IMGdata,Rb_IMG,ob_IMG,IMGFOV)

% Color a point cloud with correlated image given FOV parameters and

% transformations for image to point cloud frame

IMGsize = size(IMGdata);

PCx = PCdata.data(:,1)';

PCy = PCdata.data(:,2)';

PCz = PCdata.data(:,3)';

num_points = numel(PCx);

PCxyz = [PCx; PCy; PCz];

UASxyz = zeros(3,num_points);

PCcolors = 0.5*ones(3,num_points);

ref_image = IMGdata;

% Transform points to camera frame

for current_point = 1:num_points

Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 48

 UASxyz(:,current_point) = Rb_PC\PCxyz(:,current_point) + ob_PC;

 IMGxyz = Rb_IMG*(UASxyz(:,current_point) - ob_IMG);

 IMGx = IMGxyz(1);

 % Skip points behind the camera

 if IMGx < 0

 continue;

 end

 IMGy = IMGxyz(2);

 IMGz = IMGxyz(3);

 IMGazimuth = wrapTo180(atan2d(IMGy,IMGx));

 IMGelevation = wrapTo180(atan2d(IMGz,sqrt(IMGx^2 + IMGy^2)));

% disp([IMGazimuth, IMGelevation]);

 % Find points that land within camera field of view

 if IMGazimuth >= -IMGFOV(1)/2 && IMGazimuth <= IMGFOV(1)/2 &&...

 IMGelevation >= -IMGFOV(2)/2 && IMGelevation <= IMGFOV(2)/2

 PixelX = IMGsize(2) - (floor((IMGazimuth +

IMGFOV(1)/2)/IMGFOV(1)*IMGsize(2)));

 PixelY = IMGsize(1) - (floor((IMGelevation +

IMGFOV(2)/2)/IMGFOV(2)*IMGsize(1)));

 if sum(abs(double(IMGdata(PixelY,PixelX,:)) - cat(3,112, 112,

112)) > 35) == 3

 ref_image(PixelY,PixelX,1) = 255 -

IMGdata(PixelY,PixelX,1);

 ref_image(PixelY,PixelX,2) = 255 -

IMGdata(PixelY,PixelX,2);

 ref_image(PixelY,PixelX,3) = 255 -

IMGdata(PixelY,PixelX,3);

 else

 ref_image(PixelY,PixelX,1) = 0;

 ref_image(PixelY,PixelX,2) = 0;

 ref_image(PixelY,PixelX,3) = 0;

 end

 PCcolors(:,current_point) =

double(IMGdata(PixelY,PixelX,:))/255;

 end

end

	Multirotor UAS Sense and Avoid with Sensor Fusion
	Scholarly Commons Citation

	tmp.1578582853.pdf.0yR3L

