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ABSTRACT 

 In this thesis, the key concepts of independent autonomous Unmanned Aircraft 

Systems (UAS) are explored including obstacle detection, dynamic obstacle state 

estimation, and avoidance strategy. This area is explored in pursuit of determining the 

viability of UAS Sense and Avoid (SAA) in static and dynamic operational 

environments. This exploration is driven by dynamic simulation and post-processing of 

real-world data. A sensor suite comprised of a 3D Light Detection and Ranging (LIDAR) 

sensor, visual camera, and 9 Degree of Freedom (DOF) Inertial Measurement Unit (IMU) 

was found to be beneficial to autonomous UAS SAA in urban environments. Promising 

results are based on to the broadening of available information about a dynamic or fixed 

obstacle via pixel-level LIDAR point cloud fusion and the combination of inertial 

measurements and LIDAR point clouds for localization purposes. However, there is still 

a significant amount of development required to optimize a data fusion method and SAA 

guidance method. 
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1.0 Introduction 

1.1 Problem Definition 

Considering potential large-scale implementations of autonomous UAS 

operations in urban environments, complete reliance on external networks or broadcasts 

such as Global Positioning System (GPS) or Automatic Dependent Surveillance-

Broadcasting (ADS-B) presents concerns for system contingencies should network 

reliability be compromised. Further, the possible presence of non-cooperative UAS in 

urban environments threatens the safety of systems which cannot autonomously Sense 

and Avoid (SAA) aerial dynamic obstacles. For this reason, the methods by which 

autonomous UAS can continue to operate in these conditions are reliant on independent 

sensing and processing capabilities. To the author’s best knowledge, no current systems 

which operate independently of external networks such as GPS or ADS-B have 

simultaneously considered both independent localization (determination of the system’s 

position) and obstacle detection. 

1.2 Literature Review 

1.2.1 SAA Methods 

The Observe Orient Decide Act (OODA) Loop is a conceptual avoidance tool 

originally used to train US Air Force fighter pilots. Intended for use in adversarial 

situations involving enemy planes, the OODA Loop encouraged pilots to reacting to 

assumed enemy actions preemptively. Pilots would observe enemy behavior as well as 

any environmental factors. With that information, they would reorient themselves with 

respect to their enemy’s position, considering how they would be likely to react. They 



Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 2 

would then decide on the best way to confuse the enemy and act out that decision. The 

OODA Loop also saw use outside of aircraft as a generalized tactical tool for outsmarting 

one’s enemy. This system is not entirely relevant to UAS SAA as the goal for the latter is 

to avoid rather than offensively confront dynamic obstacles. The general framework is 

reminiscent of reactive autonomous SAA systems and subsequently has been adapted to a 

command and control setting [1], [2]. 

Another GA SAA technique is the Traffic Collision Avoidance System II (TCAS 

II). TCAS II was developed in 1989 to actively prevent midair collisions between 

compliant GA aircraft [3]. If the paths of two aircraft would intersect or become 

uncomfortably close, signals would be sent between them specifying a change in course 

that would deconflict their trajectories. This results in a separation between the aircraft 

that can be accounted for miles before the intersection would have taken place. 

Due to the complexity of adapting OODA to autonomous UAS and the required 

compliance of TCAS II, methods for obstacle avoidance that are typically used in mobile 

robotics applications seemed favorable. 

In mobile robotics, the potential field model functions on the principle of artificial 

attraction and repulsion [4]. When a mobile robot becomes close enough to an obstacle, a 

repulsive force is applied to control the system away from the obstacle. Conversely, an 

attractive force is applied to draw the system closer to its desired position. While this may 

work for certain situations, this algorithm is incapable of handling local minima, which 

can trap it in a position where the repulsive and attractive forces cancel each other out. 

This occurs more often in 2D systems than in 3D. 
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Alternatively, the Vector Field Histogram (VFH) is a robust reactive avoidance 

system for 2D mobile robots [5]. This algorithm uses ranged data to build a polar 

histogram that defines directions that the mobile robot can safely travel in. This system, 

like the potential field algorithm, is susceptible to local minima if implemented without 

additional modifications. Since both potential field and VFH methods possess the same 

limitations, the simplicity of the potential field was preferable. 

1.2.2 Available Sensors 

Autonomy for UAS requires specific sensing capabilities to acquire information 

about the environment and the UAS itself. The information that is most important to SAA 

is location of obstacles and self-localization. Without range data, obstacles could not be 

detected in 3D space. Without self-localization, the UAS has no global reference for 

where itself or a detected obstacle are positioned. For an independent system, this data 

must be captured entirely from the on-board sensors [6]. The usefulness of various 

sensors in terms of their applicability to independent autonomous SAA is assessed in this 

section. 

Considering the following sensors, each can be classified as either passive of 

active. Passive sensors acquire data by accepting energy already present in the 

environment. Active sensors require stimulation of the environment and detection of a 

respective response. Both passive and active sensors have benefits and disadvantages in 

specific scenarios. Most notably, active sensor stimulus can be detected by external 

systems, not only by the sensor itself. This makes passive sensors more viable for 

situations where stealth is of higher importance. For some autonomous UAS applications, 

this may be worth consideration, but for applications like parcel delivery, stealth is 
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largely unnecessary. A benefit of active sensing is a lack of dependence on existing 

energy in the environment. A simple analogy for this is a passive visible camera equipped 

with a light source. The visible camera alone is most useful during the day, but a light 

source can be used to stimulate the environment at night. 

Active Ranging Sensors 

Direct ranging sensors are capable of raw distance measurements. The primary 

purpose of these sensors is to detect physical structures. The following sensors are 

classified as active, meaning they emit energy, unlike passive sensors. 

Radio Detection and Ranging (RADAR) is a widely used and well-established 

method of detecting structures such as buildings, planes, and ships based on their 

reflection of emitted Radio Frequency (RF) signals. The reflections of these signals can 

be detected as far away as several kilometers. It is also worth noting the emerging 

technology of passive RADAR. Rather than emitting an RF signal like active RADAR, 

passive RADAR relies on existing RF signals in the environment. 

Light Detection and Ranging (LIDAR) is a distance measurement method which 

uses infrared lasers in a similar way that RADAR uses RF signals. A beam of light is 

emitted by the sensor, absorbed and reradiated by an obstruction, and then detected by the 

sensor. By knowing the speed of light and the timing between emission and detection, the 

distance that the beam traveled can be determined. LIDAR using a single beam, 

appropriately named beam LIDAR, provide a single distance reading along one direction. 

A beam LIDAR moving in a rasterized fashion creates a plane LIDAR, which can read 

measurements at various angles within a single plane. Rasterizing multiple beam LIDAR 

at distinct angles creates a 3D LIDAR, which can read measurements at various angles 
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within multiple planes or conical regions. The Doppler effect can also be used to 

determine speed of an obstacle by measuring the frequency shift between emitted and 

returned light waves. 

 Time of Flight (ToF) cameras use the same principle as LIDAR, but to a different 

extent. Much like the pixels of a visible camera, ToF cameras organize distance readings 

in a grid format. This is possible by using an array of light sensors. The result is a dense 

set of measurement data across a narrow Field of View (FOV). 

 Ultrasonic sensors operate by timing the reflection of sound waves. These sensors 

are typically used in UAS for altitude measurement and detection of nearby obstacles. 

While ultrasonic sensors are simple in design and relatively inexpensive compared to 

other active sensors, they are limited to detection in a single direction. Arrays of 

ultrasonic sensors are a potential solution to this, but these are susceptible to “chatter” in 

which sensors mistake a returned sound wave originating from other sensors as their own. 

 Infrared ranging sensors emit a pulse of infrared light that returns via reflection to 

an infrared-sensitive receiver. The intensity of the return is used to calculate the distance 

to the reflecting object, within an operating range. While these sensors are useful in 

indoor settings, the natural infrared light coming from the Sun can drastically effect 

sensor functionality. 

RGB Depth (RGBD) sensors are active sensors that use recognizable infrared 

projections that can evaluate relative distance when objects in the field of view distort 

that projection. These sensors also come with visual cameras that can provide a 

corresponding color image. Like infrared ranging, RGBD sensors are typically limited to 

indoor applications away from direct sunlight. 
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Passive Ranging Sensors 

The emerging technology of passive RADAR is also worth considering for UAS 

SAA. Rather than emitting an RF signal like active RADAR, passive RADAR relies on 

existing RF signals in the environment. This allows for covert detection, which as stated 

before is not necessarily a requirement for autonomous UAS SAA. However, the reliance 

on external RF signals disqualifies it for consideration in independent UAS SAA. 

Passive Imaging Sensors 

 Imaging sensors, also known as Electro-Optical/InfraRed (EO/IR) cameras, 

operate via arrays of passive light detectors that are sensitive to specific wavelengths of 

light ranging from UltraViolet (UV) to InfraRed (IR). These wavelengths can be visible 

(300 to 700 nm) as in typical RBG cameras, or in various regions of the infrared 

spectrum (700 nm to 14 µm). The choice of which type of sensor to use is dependent on 

its use case. 

 Visual cameras are preferred in situations where analogs for human vision are 

possible and useful but share similar limitations. Visual cameras are reliant on the 

presence of external light sources. This makes them useful for daylight or indoor 

applications but hinders their utility at night. 

 Infrared cameras can detect wavelengths of light outside the visual spectrum. This 

can be leveraged for thermal imaging in the case of long-wave infrared (LWIR) or to 

visually penetrate cloud cover in the case of short-wave infrared (SWIR). 

Navigational Sensors 

Inertial Measurement Units (IMUs) are the most widely used independent 

navigational sensors. The components of an IMU are typically a combination of multiple 
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accelerometers, gyroscopes, and magnetometers aimed in orthogonal directions. This 

provides up to a three-axis representation of a body’s linear motion, angular motion, and 

orientation. IMUs are typically paired with GPS because without position measurements, 

the system’s localization will experience drift caused by numerical integration of 

accumulating errors in acceleration measurements. 

1.2.3 Existing Systems 

 Current UAS systems have focused on addressing GPS loss in urban 

environments, independent sensing, and SAA, but not simultaneously. 

 An urban UAS navigation system based on LIDAR, GPS, and known maps is 

described by Chen et al [7]. This system is designed to be resilient to losses in GPS by 

leveraging maps and feature recognition in LIDAR point clouds. However, the system’s 

dependence on map truth models hinders its flexibility to unexpected or truly unknown 

environments. 

 Scannapieco et al [8] present a proof-of-concept RADAR odometry system for 

small fixed-wing UAS. This system used RADAR exclusively to receive two-

dimensional motion and had potential for real-time operations. Still, they claim that 

independent localization in urban environments is an open problem. 

 GPS-denied localization can be possible through downward-facing optical flow, 

as presented by Pestana et al [9]. Their system was proven to work for both indoor and 

outdoor environments. While this system can effectively handle independent localization, 

its situational awareness to potential obstacles was not considered. 
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1.3 Constraints and Assumptions 

 To clearly state the decided approach for this thesis, constraints and assumptions 

are made regarding the project’s scope. 

For constraints, the UAS SAA system will assume no prior knowledge of the 

environment. The functionality of this SAA must be useful in a general context, and not 

particular to specific types of dynamic obstacles that appear in urban environments. The 

SAA system is further constrained by the exclusive use of independent sensing rather 

than reliance on ground-based systems, external networks, or cooperative UAS. 

It is assumed that the environment which the UAS inhabits is primarily static, 

with potentially a single unknown dynamic obstacle. The nature of this dynamic obstacle 

will be indifferent such that the presence of the UAS will not have an effect on the path 

of the obstacle. Finally, the capability of the UAS to operate in real-time was not 

considered but could be approached in future work. All analysis is applied to post-

processed data and simulation. 
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2.0 Experimental Configuration 

2.1 Sensor Suite 

The sensor suite can be separated into three elements; sensors, processor, and 

power supply. The sensors included in this setup are a 3D LIDAR (Velodyne Puck LITE) 

[10], a 720p optical webcam (Logitech C270) [11], and an IMU/GPS unit (VectorNav 

VN200) [12]. A wiring diagram for the sensor suite is shown in Figure 2.1 below. 

 

Figure 2.1: Sensor Suite Wiring Diagram 

 In the wiring diagram, the battery pack supplies power to the Raspberry Pi 3B+ 

and the LIDAR. Power and serial communication for the visual camera and IMU are 

provided through USB connection to the Raspberry Pi 3B+. Serial communication with 

the LIDAR is provided via an ethernet cable. The physical system is shown in Figure 2.2. 
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Figure 2.2: Mounted Sensor Suite 

Often used in autonomous driving systems, the 3D LIDAR possesses a wide field 

of view (360°H x 30°V) and an effective measurement range of 1 to 100 meters (accurate 

to (+/-) 3 centimeters). The vertical field of view is spanned by sixteen (16) emitter and 

receiver pairs placed every 2° between +15° and -15° from horizontal. With rasterization, 

the result is a series of measurement bands. The horizontal resolution of this LIDAR is 

dependent on the speed at which the sensor rasterizes. The tradeoff between horizontal 

resolution and frequency of data return is dependent on this speed. For this project, a 

default speed of 600 RPM is used, resulting in a horizontal resolution of 0.01° with an 

accuracy of (+/-) 0.005° at a framerate of 10 Hz. The RPM range for the LIDAR is 

between 300 and 1200 RPM, which linearly scales the resolution between 0.005° and 

0.02° and the framerate between 20 Hz and 5 Hz, respectively. 

IMU 

LIDAR 

Processor 

Visual 
Camera 

GPS Antenna 

Power 
Bank 
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The IMU/GPS unit serves two purposes; first by emulating an independent system 

and second by having a relative truth model for localization. In an independent system, 

the IMU would be used exclusively in conjunction with other independent sensors for 

localization purposes. For testing purposes, a fused IMU/GPS localization method can be 

used as a truth model to compare against independent localization. 

The sensor suite processor is a Raspberry Pi 3B+ running ROS (Robot Operating 

System) [13] on an Ubuntu Linux distribution. ROS is generally used in embedded 

software as a base architecture for various robotics applications. In this case, ROS is used 

for synchronized collection of LIDAR and camera data. Existing user-made packages for 

the LIDAR and visual camera are used for interfacing to ROS. The INS/GPS unit data is 

recorded via a separate Linux Bash script1. 

2.3 Flight Platform 

The system for capture of mid-flight data consists of a manually controlled carrier 

drone and an isolated sensor suite. The carrier drone is a Freefly ALTA 6, a hexrotor with 

a span of over 1 meter capable of lifting a payload of 6 kilograms [14]. The Figure 2.3 

presents the flight capture system in its entirety. 

 
1 VN200 Bash script provided by David Stockhouse, ERAU ICARUS Research Group. 
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Figure 2.3: Experimental Flight Data Capture System 

This system was selected in part due to simplicity in adapting sensor suite 

components to an existing drone platform, and in part due to isolation of the sensor suite 

dynamic behavior from the carrier drone dynamic behavior.  
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3.0 Algorithm Overview 

3.1 Obstacle Detection 

 Obstacle detection is dependent on ranged data and is therefore primarily driven 

by measurements provided by LIDAR. This method of recursive voxelized point cloud 

segmentation is adapted from work by Vo et al [15]. Initially, points are separated into 

bins called voxels based on their Cartesian location. A best-fit plane is defined for each 

voxel based on a least-squares approach as defined using the following equations.  

    

{
 

 𝑥𝑐 = [𝑝1,𝑥, 𝑝2,𝑥 , … , 𝑝𝑛,𝑥]
𝑇
− �̅�𝑥

𝑦𝑐 = [𝑝1,𝑦, 𝑝2,𝑦 , … , 𝑝𝑛,𝑦]
𝑇
− �̅�𝑦

𝑧𝑐 = [𝑝1,𝑧, 𝑝2,𝑧, … , 𝑝𝑛,𝑧]
𝑇
− �̅�𝑧 }

 

 

  Equation 3.1 

𝑠𝑝(𝑥𝑐, 𝑦𝑐) = ∑ 𝑥𝑐,𝑖 ∗ 𝑦𝑐,𝑖
𝑛
𝑖=1  Equation 3.2 

𝑛 = [

𝑠𝑝(𝑦𝑐, 𝑧𝑐) ∗ 𝑠𝑝(𝑥𝑐, 𝑦𝑐) − 𝑠𝑝(𝑥𝑐, 𝑧𝑐) ∗ 𝑠𝑝(𝑦𝑐, 𝑦𝑐)

𝑠𝑝(𝑥𝑐, 𝑦𝑐) ∗ 𝑠𝑝(𝑥𝑐, 𝑧𝑐) − 𝑠𝑝(𝑥𝑐, 𝑥𝑐) ∗ 𝑠𝑝(𝑦𝑐, 𝑧𝑐)

𝑠𝑝(𝑥𝑐, 𝑥𝑐) ∗ 𝑠𝑝(𝑦𝑐, 𝑦𝑐) − 𝑠𝑝(𝑥𝑐, 𝑦𝑐) ∗ 𝑠𝑝(𝑥𝑐, 𝑦𝑐)

] Equation 3.3 

�̂� =
𝑛

‖𝑛‖2
 Equation 3.4 

where 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐 are the coordinates of the voxel points 𝑝1through 𝑝𝑛 from their 

centroids, �̅�𝑥, �̅�𝑦, and �̅�𝑧, respectively. The function 𝑠𝑝(∙,∙) is used as shorthand for the 

element-wise sum of products. The resultant vector �̂� is normal to the best-fit plane 

passing through the centroid of the voxel. From the normal vector, the residual noise can 

be characterized through Equations 3.5 and 3.6. 

𝑑𝑖 = 𝑝𝑖
𝑇 − [�̅�𝑥 �̅�𝑦 �̅�𝑧] ∗ �̂� Equation 3.5 

𝑟 = √
1

𝑘
∑ 𝑑𝑖

2𝑘
𝑖=1  Equation 3.6 
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where 𝑑𝑖 is the distance of each point in the voxel to the best-fit plane, and 𝑟 is the 

residual error of all points in the voxel. 

 Moving from the voxel preparation stage to the voxel reduction stage, the residual 

error is checked against a threshold. If this threshold is exceeded, the voxel undergoes 

reduction, by which it splits into 8 octant voxels. These new voxels will be processed the 

same way as the initial voxel, until a threshold for residual or minimum voxel size is met. 

 Once the set of voxels is sufficiently reduced, region growth begins. Starting with 

the voxel with the least residual error, neighboring voxels will be considered for region 

growth. If that voxel’s residual is sufficiently low and its normal vector is sufficiently 

aligned with the seed normal, then the voxels are joined as a region. Region growth 

continues until there is no valid seed voxel to consider. 

 Applying this method to obstacle detection, regions from separate LIDAR point 

clouds can be compared and motion can be extrapolated from regions that otherwise 

inexplicably moved between point clouds. 

3.2 Obstacle Avoidance 

The path which the UAS takes is defined by a series of points, globally 

prescribing the position which the UAS must reach and the velocity it must maintain 

when reaching the position. The inclusion of velocity allows for preemptive course 

correction to aim the UAS toward subsequent waypoints with manageable overshoot. 

When a dynamic obstacle is detected, its location is compared to the current 

position of the UAS. If the two are within a distance threshold of each other, a fictitious 

force is applied to the control law of the UAS, proportional to the inverse square of the 

distance between the bodies. 
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This method is functional, but not optimal for smooth avoidance paths. As the 

UAS is pushed by this fictitious force, the error from the path following command is 

accumulated. After avoidance, when the fictitious force is no longer in effect, the 

compiled error from path following results in an abrupt return to the path. 

3.3 Point Cloud Image Fusion 

 The LIDAR and camera fusion method explored in this project is primarily reliant 

on coordinate transformations. Initially, point clouds are captured in the LIDAR 

coordinate frame and designated by a vector in that frame. The location of each point can 

be defined as pi,L for each i point in the complete point cloud. The location and 

orientation of the camera frame is assumed to be known relative to the LIDAR frame. 

The transformation of point pi,L in the LIDAR frame to pi,C in the camera frame is given 

in Equation 3.1. 

𝑝𝑖,𝐶 = (𝑅𝐶
𝐿)−1 ∗ (𝑝𝑖,𝐿 − 𝑜𝐿

𝐶)  Equation 3.1 

where 𝑅𝐶
𝐿 is the rotation matrix to orient the LIDAR frame with the camera frame, and 𝑜𝐿

𝐶  

is the location of the camera in the LIDAR frame. With each point transformed to the 

camera frame, the field of view of the camera can be modeled as a region in a spherical 

coordinate system. By converting each camera frame point into spherical coordinates, the 

points which lie within the field of view of the camera can be isolated. Once these visible 

points are isolated, their relative position within the field of view can be used to associate 

those points with pixels in a camera image. Assuming a similar coordinate frame to that 

of the LIDAR, the bounds of the field of view of the camera can be defined by the 

following equations. 

𝜑𝑚𝑖𝑛 = −
𝐻𝐹𝑂𝑉

2
, 𝜑𝑚𝑎𝑥 =

𝐻𝐹𝑂𝑉

2
 Equation 3.2 



Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 16 

𝜃𝑚𝑖𝑛 = 90° −
𝑉𝐹𝑂𝑉

2
, 𝜃𝑚𝑎𝑥 = 90° +

𝑉𝐹𝑂𝑉

2
 Equation 3.3 

where 𝜑 is defined as a right-hand rotation about z, starting at x, and 𝜃 is defined as a 

downward rotation from z toward the xy plane. HFOV and VFOV represent the camera’s 

horizontal and vertical field of view (in degrees). The associated pixel for a point within 

the field of view is given by Equation 3.4 and 3.5. 

𝑟𝑜𝑤𝑖 = 𝑐𝑒𝑖𝑙 (ℎ ∗
𝜃𝑖,𝐶−𝜃𝑚𝑖𝑛

𝑉𝐹𝑂𝑉
) Equation 3.4 

𝑐𝑜𝑙𝑢𝑚𝑛𝑖 = 𝑐𝑒𝑖𝑙 (𝑤 ∗
𝜑𝑚𝑎𝑥−𝜑𝑖,𝐶

𝐻𝐹𝑂𝑉
) Equation 3.5 

where h and w represent the height and width of the reference image in pixels, and 𝜑𝑖,𝐶 

and 𝜃𝑖,𝐶 are the angular spherical coordinates of point 𝑝𝑖,𝐶. Use of the ceiling function 

should only be done if indexing at 1; floor can be used for languages indexing at 0. Since 

the index i has not changed for each point, the color of the pixel located in the image at 

(𝑐𝑜𝑙𝑢𝑚𝑛𝑖, 𝑟𝑜𝑤𝑖) is associated to the point in the LIDAR point cloud. Figure 3.1 shows an 

example of this fusion. 

 

Figure 3.1: Example Point Cloud Image Fusion 

 The accuracy of this fused data set is dependent on several factors including 

accuracy of known coordinate transformations, camera distortion properties, camera 

resolution, and redundant overlap between LIDAR and image field of view.  
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4.0 Simulated Environment 

4.1 Multirotor Simulation 

 Simulation is an essential tool when developing autonomous systems, especially 

for aerial platforms. However, a simulation is only as useful as its model is accurate. For 

that reason, an existing hexrotor dynamic simulation was created in Simulink and 

provided by Dr. Ken Bordignon and Dr. Iacopo Gentilini from their work in optimal UAS 

path planning [16] specifically for adaptation into this thesis. Their dynamic model and 

closed-loop control system provided the basis for the following simulation, which was 

significantly modified. The following section describes original experimentation in path 

definition and visual presentation. 

 The path prescribed to the hexrotor is defined by a series of waypoints, each 

prescribing position, velocity and acceleration in 3 dimensions. The path through these 

points is generated via cubic spline, following the boundary conditions. The trajectory 

planning system considers two consecutive points at a time [17]. Between these points, 

we specify a trajectory with continuous, differentiable position and velocity using the 

following cubic equation. 

𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 Equation 4.1 

 This cubic equation is specified for x but can be expanded to each dimension 

independently. Using this equation between just two points will not allow for boundary 

conditions aside from position to be met. Instead, two additional intermediate waypoints 

must be specified. These waypoints do not have boundary conditions, instead they 

maintain continuity between multiple spline segments. Since there are effectively three 

consecutive pairs of waypoints, there are not three separate cubic spline equations that 
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contribute to a continuous piecewise trajectory. Consolidating these equations across all 

dimensions into a single diagonalized matrix system of equations results in the following 

equation. 

𝐴𝑥 = 𝑏 Equation 4.2 

where A is a 12x12 matrix built from the components of t, x is a 12x1 vector containing 

each coefficient a0 through a3, and b is a 12x1 vector of boundary conditions. The number 

of columns of A is determined by the number of splines needed to span each pair of 

waypoints, in this case, four points require three lines. For each of these lines, four 

constants (a0 through a3) are required to constrain them. The number of rows of A is 

determined by the number of boundary conditions needed to define spline intersections 

and endpoints. The multiplication of Ax provides the system of equations for each of the 

splines; equal to each respective boundary condition. Since A is square and upper 

triangular, it has an inverse, provided t is increasing between each spline segment. 

Inverting A and pre-multiplying each side isolates the vector x, containing the constants 

for each spline segment. 

 To command the defined set of splines, at any time t between two waypoints, the 

desired position, velocity, and acceleration can be gathered from the derivatives of 

Equation 4.1, substituting the appropriate coefficients. Typically, the time at which each 

waypoint or intermediate waypoint is to be crossed is determined ahead of time. 

However, the time to completion can be estimated based on an average desired velocity 

and a distance between waypoints. The times for intermediate waypoints can be any 

distinct times between and not including the start and end times. The desired position, 
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velocity, and acceleration is used to create an error signal when subtracted from the 

current state which drives the input to the dynamic model. 

 The second modification of this simulation is a visual reference for the hexrotor’s 

trajectory and attitude. This model utilizes basic surface geometry in MATLAB to create 

a wireframe representation of a hexrotor, as shown in Figure 4.1. 

 

Figure 4.1: Hexrotor Trajectory and Orientation Visualization 

 On the left of Figure 4.1, the trajectory of the UAS is plotted in blue squares. The 

vertices of the underlying black line are the desired set of waypoints which have a red 

vector showing the direction of the desired velocity at that waypoint. Looking the path 

that this simulated hexrotor took around sharp corners, the smoothness of the cubic spline 

command can be seen. It is worth noting that the corners visible in the trajectory plot are 

cropped from their original position and are intentionally overshot. On the right, the 

orientation of the hexrotor is illustrated. The coordinate frame of the hexrotor is presented 

in red, green, and blue representing forward, left, and up, respectively. The trajectory and 

orientation are separated to avoid overloading the information within a single plot. 
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4.2 Obstacle Simulation 

 In addition to modifying the path definition and visual representation of the 

provided hexrotor simulation, a dynamic obstacle model has also been introduced. The 

trajectory truth model for simulating a dynamic obstacle is based on the recorded 

trajectory of the same multirotor model, but previously simulated. Dynamic obstacle 

detection is implemented via zero-mean Gaussian noise added to truth model. This 

emulates the noise in the point cloud segmentation detection caused by reducing an 

inconsistent region of points to their centroid. 

 Since the measurement received from the point cloud is a position, a state 

estimator is needed to estimate the future motion of the obstacle. To estimate this motion 

and reduce the noise on the position reading, a discretized Kalan Filter is used. 

“Discretized” in this case refers to the discretized state transition based on numerical 

integration. 

 The discretized Kalman filter begins with an initial state estimate x0, defined by 

the first position reading of the obstacle, followed by zeros for the initial velocity, 

acceleration, and jerk. This model is adapted from a constant acceleration model, but 

since constant acceleration cannot be assumed for the dynamic obstacle, the state vector 

is expanded to include jerk. While constant jerk is then assumed, its process noise 

covariance is nonzero, meaning it is expected to abruptly change. The following 

Equations 4.1 through 4.6 define the constants and initial states that are used in this 

Kalman filter. While all three Cartesian directions are considered in the simulation, only 

the x direction is shown in this example. 
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�̂�0 = [

𝑥0
0
0
0

] Equation 4.1 

𝐹 =

[
 
 
 
 1 𝑇

1

2
𝑇2

1

6
𝑇3

0 1  𝑇    
1

2
𝑇2

0 0  1     𝑇    
0 0  0     1    ]

 
 
 
 

  Equation 4.2 

𝑃0 = [

0.3
0
0
0

0
0.1
0
0

0
0
0.2
0

0
0
0
0.1

]   Equation 4.3 

𝑄 = [

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0

0.00001

]  Equation 4.4 

𝑅 = 0.04  Equation 4.5 

𝐻 = [1 0 0 0] Equation 4.6 

 Here, �̂�𝑘 is the state estimate at time k, F is the discrete state transition matrix, P0 

is the initial state-estimate error covariance matrix, Q is the process noise covariance 

matrix, R is the measurement noise covariance matrix, and H is the measurement matrix. 

The measurement noise covariance is determined by estimating the noise present in 

obstacle detection based on the centroid location of a point cloud region. The state 

estimate update, as presented by Simon [18], is calculated as follows. 

𝑃𝑘+1
− = 𝐹𝑃𝑘^ + 𝐹

𝑇 + 𝑄 Equation 4.7 

𝐾𝑘 = 𝑃𝑘+1
− 𝐻𝑇(𝐻𝑃𝑘+1

− 𝐻𝑇 + 𝑅)−1 Equation 4.8 

𝑃𝑘+1
+ = 𝑃𝑘+1

− − 𝐾𝑘𝐻𝑃𝑘+1
−  Equation 4.9 

�̂�𝑘+1 = 𝐹�̂�𝑘 + 𝐾(𝑦 − 𝐻𝐹�̂�𝑘) Equation 4.10 
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 Where 𝑃𝑘+1
−  is the a priori estimate error covariance matrix, 𝐾𝑘 is the Kalman 

gain matrix, 𝑃𝑘+1
+  is the a posteriori estimate error covariance matrix, and y is the 

measurement of x plus some gaussian zero-mean noise. Continuing this cycle calculates 

each subsequent state estimate. A plot of this for all three cartesian dimensions is shown 

in Figure 4.2. 

 

Figure 4.2: Example Kalman Filter Output 

 In the upper half of the Figure 4.2, the true position of the dynamic obstacle is 

given as a solid black line. The measurements recorded from that model added with some 

Gaussian noise are represented as x’s. The red solid line is the state estimate at the 

current timestamp. By propagating the state forward (removing the second right-hand 

term in Equation 4.10), the predicted path can be plotted against the actual path. The 

bottom half of the figure shows the error with respect to the original signal. Overall, the 

error increases the further the prediction is placed in the future, which makes sense 

intuitively, and is shown by the growth of P in Equation 4.7.  
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5.0 Test Procedures 

Sensor suite test scenarios progressed from static bench testing to mobile aerial 

testing to test various functional aspects. The preparation, goals, and outcomes of each of 

the scenarios is presented in this section. 

5.1 Static Tests 

 Static tests were performed by mounting the LIDAR on a tripod with an external 

power supply. At this time, the LIDAR was the only sensor considered for testing due to 

prioritization of implementing the segmentation method. Static tests were performed both 

indoors on the bench as well as in the field. Static testing served two purposes; first to 

verify data acquisition was functional, and second to observe the point cloud 

representations of various obstacles.  

Bench Tests 

The first of the static tests was performed indoors, as shown in Figure 5.1. 

 

Figure 5.1: Example LIDAR Scan of Room 
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The color of points in Figure 5.1 indicates object reflectivity. From this test, it 

was observed that static objects between 1 and 10 meters of the LIDAR have a distinct 

appearance thanks to the relatively high point density (excluding objects outside of the 

field of view). This data set was also used to test the point cloud segmentation method, 

the results of which are shown in Figure 5.2. 

 

Figure 5.2: Example Segmented Point Cloud 

It was discovered here that the segmentation method is not ideal for point clouds 

without predominantly flat surfaces. This makes sense as this method was originally 

designed for use on dense point clouds of buildings. 

Field Tests 

 Static field tests were performed with the intent of determining how consistently 

various UAVs appeared in LIDAR point clouds. All testing was performed under either 

FAA Part 101 or Part 107. The drones tested using this method are consolidated in the 

Table 5.1.  
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Table 5.1: Flyby Test UAVs 

UAV 
Diagonal 

Span (cm) 

Height 

(cm) 

Maximum Consistent 

Capture Distance (m) 

RYZE Tech Tello [19] 13.4 4.1 -- 

DJI Mavic [20] 40.2 8.4 4.2 

DJI Phantom 4 [21] 35.0 8.9 6.5 

 

 The Tello, the smallest of the UAVs, presented an issue in that it was small 

enough to be undetectable at sub 3-meter range from the sensor. Even with the medium-

scale Mavic and Phantom, the distance for consistent capture is still close to the sensor 

compared to its maximum readable distance. Based on the geometry of the LIDAR’s 

scan, the body height is the primary factor for consistent detectability.  

5.2 Ground Mobile Tests 

 The first of the mobile tests were performed on the ground, using a car LIDAR 

mount. For safety reasons, this test scenario was used to emulate dual drone flight. From 

these tests, it was discovered that there was not a considerable difference between 

stationary and mobile LIDAR in terms of visibility of UAVs. Figure 5.3 shows a Mavic 2 

being detected during this test.  

 

Figure 5.3: Mobile Testing Point Cloud 
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 In Figure 5.3, the same point cloud is shown at two different angles. As indicated 

by the red circles, the Mavic 2 was able to be captured by the LIDAR in motion. 

5.3 Aerial Mobile Tests 

 The final tests for this project were performed with the complete sensor suite 

mounted on the ALTA 6 flying over an urban setting. These tests were performed 

primarily to observe the quality of data gathered at low altitudes (<80 meters AGL). 

Figure 3.1 is an example of this data set. From these tests, it was noticed that the visual 

camera was less limited in returns based on distance than the LIDAR. As a result, visual 

imaging could likely be used for further-ranged detection if needed by this system. 

5.4 Visual Camera Linearity Tests 

 All lensed visual cameras naturally possess some level of image distortion. This 

negatively effects the accuracy with which images and point clouds are registered. To 

mitigate this, the distortion can be characterized and then compensated. There are many 

existing camera calibration tools, in this case MATLAB’s cameraCalibrator tool was 

used [22]. 

 The cameraCalibrator tool accepts images of checkerboard patterns which 

provide references of straight lines. Because of distortion, these lines will not appear 

perfectly straight. The two basic image distortion forms are pincushion and barrel 

distortion, which cause pixels in the image to appear compressed toward the center of the 

image or expanded out from the center, respectively. Figure 5.4 shows examples of pre-

corrected and post-corrected checkerboard detection images from the visual camera. 
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a) b) 

  
c) d) 

Figure 5.4: Image Distortion Correction 

a) Original Image at 1 meter  b) Original Image at 8 meters 

c) Corrected Image at 1 meter  d) Corrected Image at 8 meters 

 

 In the Figure 5.4, the corrected images draw pixels away from the edges and 

toward the center, implying the image originally had pincushion distortion. These images 

are from a set of 95 with increasing distance from 1 to 8 meters. The reprojection error in 

a checkerboard image is the average movement required to align perceived and expected 

checkerboard corners. Figure 5.5 shows the comprehensive reprojection error in the 

complete set of images. 
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Figure 5.5: Average Reprojection Error by Image 

 

 The general trend shown in the above figure is that reprojection error decreases as 

distance increases. In actuality, it is more accurate to say that distortion in the center of 

the image is less severe than at the image edges, which was expected. While this test is 

useful in determining image distortion, it is also useful to know if the size of an observed 

object in the camera is inversely proportional to its distance from the camera. This is 

known as the linear region of the camera and it can be found by measuring the length of a 

checkerboard square in images taken at known distances. Figure 5.6 shows the 

relationship between distance from camera and the inverse of checkerboard pixel length. 
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Figure 5.6: Camera Linear Region  

 As shown in Figure 5.6, between 3 and 15 meters, the relationship between 

distance from camera is inversely proportional to checkerboard square length. While the 

exact distance of the shift between the nonlinear and linear regions is not known 

precisely, it can be assumed to be under 3 meters. This verifies that fusion of point cloud 

points farther than 3 meters away is not influenced by nonlinear camera effects. 
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6.0 Analysis 

 The consideration of this specific sensor suite for use in detection and avoidance 

of dynamic obstacle in unknown urban environments shows some promise but requires 

significant development before implementation.  

 The utilization of voxel-based point cloud segmentation methods is not applicable 

to scnareios evhibiting sparse point clouds with minimal flat surfaces. Theoretically, 

fused LIDAR and visual imaging data sets could provide a different route for 

segmentation that could yield stronger results. By considering similar color between 

voxels as candidacy for region growth, the computational demand of normal and residual 

calculation can be circumvented. This may provide faster and more accurate region 

definition in sparse or non-primarily planar point clouds. 

Dynamic obstacle prediction via a discretized Kalman filter allows for preemptive 

determination of potential collisions but is entirely reliant on a consistent tracking 

method. The lack of consistent range data of smaller UAVs at safe distances is 

concerning for the proposed detection system. 

  

 

 

  



Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 31 

7.0 Conclusion and Recommendations 

 In this thesis, UAS SAA topics of obstacle detection, path planning, and dynamic 

obstacle avoidance are explored through simulation and post-processing of real-world 

data. Point cloud segmentation is found to be a method for obstacle avoidance that would 

benefit from fused point cloud and visual camera image data. A preliminary method for 

this fusion is described, involving pixel fusion via coordinate transformations and 

alignment of fields of view. Avoidance strategies for detected dynamic obstacles are 

explored via trajectory planning and potential field methods, but more optimal 

alternatives such as trajectory modification are discussed. While the scope of this thesis is 

relatively broad, the assessment of various urban UAS SAA aspects is largely 

compartmentalized. For further development of such systems, the compliance between 

each of the components—sensing, detection, command, and control—must be considered 

in greater depth. Specific concepts such as independent localization, static obstacle 

avoidance, and multiple dynamic obstacle avoidance are topics that were not explored in 

this work but would be necessary for thorough development of independent urban UAS 

SAA. 
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8.0 Future Work 

8.1 Fusion of LIDAR and EO/IR and Obstacle Detection 

 The approached method for LIDAR and EO/IR fusion could be replaced with 

feature-level registration and consolidate the obstacle detection process. Instead of basing 

detection on fused point cloud segmentation, features could be extracted from the image 

and given depth via registered point cloud measurements. 

8.2 Path Planning 

To improve upon the avoidance algorithm explored in this thesis, a dynamic 

trajectory could provide a smoother response to dynamic obstacles. One way to do this 

would be to adjust the set of waypoints mid-flight as avoidance scenarios are 

encountered. This modification could be limited to incorporating new waypoints so that 

the path of the UAS does not intersect with observed obstacles but will also maintain its 

originally prescribed waypoint set as best as possible. 

8.3 Experimental Data and Processing 

 The capture method utilized in testing scenarios could benefit from a more 

automated approach. For instance, having the capture begin immediately on Raspberry Pi 

3B+ startup would have simplified data capture and avoided the need for field displays 

and keyboards. Further, the methods by which data was processed can be improved 

significantly if the capture and processing were performed in the same environment. 

Adapting the system entirely within ROS would allow for a centralized system that 

would have greater potential of utility in real-time. 
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APPENDIX 

MATLAB Source Code 

Voxelized Point Cloud Segmentation 

% VoxelSegmentation 

% Jonathan Buchholz 

% Summer 2019 

% ERAU ICARUS 

  

%==========PARAMETERS===========% 

% Test Parameter Set 

% Point cloud file 

scan_file = 'testscan3.csv'; 

% Voxel grid creation 

radius = 70; % range for point consideration from origin (m) 

res = 1; % initial voxel grid resolution (m) 

max_divisions = 4; % number of allowable voxel octant divisions 

min_residual = 0.0005; % amount of allowable voxel "noise" without 

division 

% Region growth 

allow_normal_drift = false; % compare either recent neighbor normal 

(true) or initial seed normal (false) 

r_th = 0.0005; % residual threshold for considering voxels for seeding 

t_th = 0.97; % normal alignment for considering voxels 

pl_th = 0.2; % planarity threshold of centroids perpendicular to normal 

minimumPoints = 50; % minimum number of points for a valid region 

%===============================% 

  

Scan = importdata(scan_file); 

numPoints = length(Scan.data(:,1)); 

min_resolution = res/(2^max_divisions); % minimum reduced resolution 

(m) 

sSquare = round(radius*2/res); % number of elements along each side of 

occupancy grid 

voxelGrid = cell(sSquare,sSquare,sSquare); 

  

% Organize points into voxel bins 

maxRet = 1; 

% j = 1; 

% k = 1; 

min_xidx = 2*radius; 

max_xidx = 1; 

min_yidx = 2*radius; 

max_yidx = 1; 

min_zidx = 2*radius; 

max_zidx = 1; 

for i = 1:numPoints 

     

    % Limit returns to within box boundry 

    xidx = ceil((radius + Scan.data(i,1))/res); 

    yidx = ceil((radius + Scan.data(i,2))/res); 
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    zidx = ceil((radius + Scan.data(i,3))/res); 

    if xidx > sSquare || yidx > sSquare || zidx > sSquare || xidx < 1 

|| yidx < 1 || zidx < 1 

        continue; 

    end 

     

        % max and min index bounds (for cropping empty cells) 

        % x 

        if xidx < min_xidx 

            min_xidx = xidx; 

        end 

        if xidx > max_xidx 

            max_xidx = xidx; 

        end 

        % y 

        if yidx < min_yidx 

            min_yidx = yidx; 

        end 

        if yidx > max_yidx 

            max_yidx = yidx; 

        end 

        % z 

        if zidx < min_zidx 

            min_zidx = zidx; 

        end 

        if zidx > max_zidx 

            max_zidx = zidx; 

        end 

     

    if isempty(voxelGrid{xidx,yidx,zidx}) 

        voxelGrid{xidx,yidx,zidx}.returns = 1; 

        voxelGrid{xidx,yidx,zidx}.points = Scan.data(i,:); 

    else 

        voxelGrid{xidx,yidx,zidx}.returns = 

voxelGrid{xidx,yidx,zidx}.returns + 1; 

        voxelGrid{xidx,yidx,zidx}.points = 

[voxelGrid{xidx,yidx,zidx}.points; Scan.data(i,:)]; 

        if voxelGrid{xidx,yidx,zidx}.returns > maxRet 

            maxRet = voxelGrid{xidx,yidx,zidx}.returns; 

        end 

    end 

    if ~isfield(voxelGrid{xidx,yidx,zidx},'location') 

        voxelGrid{xidx,yidx,zidx}.location = [... 

            xidx*res - radius - res/2;... 

            yidx*res - radius - res/2;... 

            zidx*res - radius - res/2]; 

    end 

    if ~isfield(voxelGrid{xidx,yidx,zidx},'resolution') 

        voxelGrid{xidx,yidx,zidx}.resolution = res; 

    end 

     

end 

  

% Crop voxel grid to remove majority of empty voxels 

voxelGrid([1:(min_xidx - 1), (max_xidx + 1):end],:,:) = []; 

voxelGrid(:,[1:(min_yidx - 1), (max_yidx + 1):end],:) = []; 

voxelGrid(:,:,[1:(min_zidx - 1), (max_zidx + 1):end]) = []; 



Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 38 

  

[x_crop, y_crop, z_crop] = size(voxelGrid); 

  

% Find voxel centroid, normal, errors 

for xx = 1:x_crop 

    for yy = 1:y_crop 

        for zz = 1:z_crop 

             

            % Find occupied voxels 

            if ~isempty(voxelGrid{xx,yy,zz}) 

                % Find voxels containing 3 or more points 

                if min(size(voxelGrid{xx,yy,zz}.points)) >= 4 

                    % Get voxel centroid, normal, and errors 

                    voxelGrid{xx,yy,zz} = 

getVoxelCNE(voxelGrid{xx,yy,zz}); 

                    % Reduce voxel size for large point errors 

                    voxelGrid{xx,yy,zz} = 

reduceVoxel(voxelGrid{xx,yy,zz},min_residual,min_resolution); 

  

                else 

                    voxelGrid{xx,yy,zz} = zeros(0,0); 

                end 

            end 

             

        end 

    end 

end 

  

% Sort by residual and find neighbors 

ResList = sortResiduals(voxelGrid); 

ResList = voxelNbyRL(ResList); 

  

  

%% Region growing 

A = ResList; % expendable voxel list 

% r_th = min_residual; % residual threshold for seed list creation 

  

Regions = cell(0); 

i = 1; % Element of A to being next seed list; 

  

j = 1; 

while ~isempty(A) 

    currentPoints = 0; 

    currentRegion = cell(0); 

    currentSeeds = cell(0); 

    % Get smallest residual voxel remaining 

    while isempty(A{i}) 

        i = i + 1; 

        if i > length(A) 

            break; 

        end 

    end 

    if i > length(A) 

            break; 

    end 

    v_min = A{i}; 

    A{i} = zeros(0); 
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    % If the smallest residual remaining is too great, stop region 

growing 

    if v_min.residual > r_th  

        break; 

    end 

     

    % Assign voxel to seed list and start of region 

    currentSeeds{1} = v_min; 

    currentRegion{1} = v_min; 

  

     

    % Look through each seed voxel's neighbors for matches 

    success_ms = zeros(0); 

    k = 0; 

    while k ~= length(currentSeeds) 

        k = k + 1; 

        for m = currentSeeds{k}.neighbors 

            % If that neighbor is not already part of a region, add to 

            % current region 

            if ~isempty(A{m}) 

                % Check angular alignment of neighboring normals 

against 

                % threshold 

                if allow_normal_drift 

                    % Recent neighbor seed normal comparison 

                    t_allign = 

abs(dot(currentSeeds{k}.normal,A{m}.normal)); 

                    nonplanarity = abs(dot(... 

                        (currentSeeds{k}.centroid - A{m}.centroid)/... 

                        norm(currentSeeds{k}.centroid - 

A{m}.centroid),... 

                        currentSeeds{k}.normal)); 

                else 

                    % First seed normal comparison 

                    t_allign = 

abs(dot(currentSeeds{1}.normal,A{m}.normal)); 

                    nonplanarity = abs(dot(... 

                        (currentSeeds{1}.centroid - A{m}.centroid)/... 

                        norm(currentSeeds{1}.centroid - 

A{m}.centroid),... 

                        currentSeeds{1}.normal)); 

                end 

                 

                 

                if t_allign >= t_th && nonplanarity < pl_th 

                    % Add neighbor voxel to current region 

                    currentRegion = [currentRegion; A(m)]; 

                    currentPoints = currentPoints + 

length(A{m}.points(:,1)); 

                    % Add neighbor voxel to seed list if residual fits 

                    % threshold 

                    if A{m}.residual < r_th 

                        currentSeeds = [currentSeeds {A{m}}]; 

                    end 

                    % Erase neighbor from available set 

                    A{m} = zeros(0); 

                    success_ms = [success_ms, m]; 
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                end 

            end 

        end 

    end 

  

    % Save region if it is sufficiently occupied 

    if currentPoints >= minimumPoints 

        Regions{j} = currentRegion; 

        j = j + 1; 

        % Do not consider this region's voxels in future region growth 

        for p = success_ms 

            ResList{p}.allocated = true; 

        end 

    end 

end 

  

%% Refinement 

for rs = 1:length(Regions) 

    SeedR = cell(0); 

    for ss = 1:length(Regions{rs}) 

        % Search for boundary voxels 

        if length(Regions{rs}{ss}.neighbors) < minNeighbors 

            SeedR = [SeedR, {Regions{rs}{ss}}]; 

        end 

    end 

    added_points = zeros(0,13); 

    ks = 0; 

    while ks ~= length(SeedR) 

        ks = ks + 1; 

        for ms = SeedR{ks}.neighbors 

            if ResList{ks}.allocated == false 

                for ps = 1:length(ResList{ms}.points(:,1)) 

                    ds = (ResList{ms}.points(ps,1:3)'-

SeedR{ks}.centroid)'*SeedR{ks}.normal; 

                    if abs(ds) < d_th 

                        added_points = [added_points; 

ResList{ms}.points(ps,:)]; 

                    end 

                end 

            end 

        end 

    end 

    if ~isempty(added_points) 

        Regions{rs} = [Regions{rs}; {added_points}]; 

    end 

end 

  

%% Plotting 

% Residual list  

ResListStats(ResList); 

% Original scan and regions 

figure(1); 

clf; 

hold on; 

plotVeloScan(scan_file); 

voxelRegionPlot(Regions); 

xlim([-3,3]); 
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ylim([-4,3]); 

zlim([-1,2]); 

xlabel('X (m)'); 

ylabel('Y (m)'); 

zlabel('Z (m)'); 

% Original scan and occupied voxels 

figure(2); 

hold on; 

plotVeloScan(scan_file); 

xlim([-3,3]); 

ylim([-4,3]); 

zlim([-1,2]); 

axis vis3d; 

voxelGridPlot(voxelGrid, 'normal', maxRet, true); 

 

Funciton to calculate centroids, normals, and residuals of individual voxels 

function voxelStruct = getVoxelCNE(voxelStruct) 

% Finds centroid, normal, errors, and residual of a voxel's points. 

% Stores outputs in fields '.centroid', '.normal','.errors', and 

% '.residual', respectively. 

  

% Centroid 

voxelStruct.centroid = mean(voxelStruct.points(:,1:3),1)'; 

  

% Normal 

x_c = voxelStruct.points(:,1) - voxelStruct.centroid(1); 

y_c = voxelStruct.points(:,2) - voxelStruct.centroid(2); 

z_c = voxelStruct.points(:,3) - voxelStruct.centroid(3); 

voxelStruct.normal = [... 

    (sum(y_c.*z_c)*sum(x_c.*y_c)) - (sum(x_c.*z_c)*sum(y_c.*y_c));... 

    (sum(x_c.*y_c)*sum(x_c.*z_c)) - (sum(x_c.*x_c)*sum(y_c.*z_c));... 

    (sum(x_c.*x_c)*sum(y_c.*y_c)) - (sum(x_c.*y_c)*sum(x_c.*y_c))]; 

voxelStruct.normal = voxelStruct.normal/norm(voxelStruct.normal); 

  

% Errors 

voxelStruct.errors = zeros(0,0); 

for i = 1:length(voxelStruct.points(:,1)) 

    voxelStruct.errors(i) = (voxelStruct.points(i,1:3)'-

voxelStruct.centroid)'*voxelStruct.normal;     

end 

voxelStruct.errors = voxelStruct.errors'; 

  

% Residuals 

voxelStruct.residual = 

sqrt(sum(voxelStruct.errors.^2)/length(voxelStruct.errors)); 

  

% Placeholder for region growth refinement 

voxelStruct.allocated = false; 

  

end 
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Discretized Kalman Filter Testing 

% Descretized Kalman Filter Test in 3D 

  

%% Settings 

  

% File to read 

simout_file = 'samplesimout6.mat'; 

  

% Estimator error covariance matrix 

p0eec = 0.3; % initial position estimator error covariance 

v0eec = 0.1; % "" velocity 

a0eec = 0.2; % "" acceleration 

j0eec = 0.1; % "" jerk 

  

% R Matrix 

sigmax = 0.2; 

sigmay = 0.2; 

sigmaz = 0.2; 

  

% Q matrix (constant) 

pQ = 0; 

vQ = 0; 

aQ = 0; 

jQ = 0.00001; 

  

% Measurements 

measureValidRate = 1; % percentage of measurements that are not lost 

(>0) 

  

% Predictions 

predictions = 2; 

timeStBwPred = 3; 

jetPred = jet(predictions); 

  

  

%% Preparation 

% Read path data 

load(simout_file); 

t_s = simout(:,7)'; 

x_s = simout(:,1)'; 

y_s = simout(:,2)'; 

z_s = simout(:,3)'; 

T = t_s(2) - t_s(1); % assumes constant sampling period 

maxPoints = length(t_s); 

  

csi_s = zeros(12,maxPoints); 

y_ms = zeros(3,maxPoints); 

  

% Estimator error covariance matrix 

P_prep = [p0eec, 0, 0, 0; 

    0, v0eec, 0, 0; 

    0, 0, a0eec, 0; 

    0, 0, 0, j0eec]; 

  

P = [P_prep,     zeros(4,8); 
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    zeros(4,4), P_prep, zeros(4,4); 

    zeros(4,8),            P_prep]; 

  

% State vector 

csi = [x_s(1) + normrnd(0,sigmax); 0; 0; 0;     y_s(1) + 

normrnd(0,sigmay); 0; 0; 0;     z_s(1) + normrnd(0,sigmaz); 0; 0; 0]; 

% x, dx/dt, d2x/dt2, d3x/dt3, "y", "z" 

  

% R Matrix 

R = diag([sigmax^2, sigmay^2, sigmaz^2]); % covariance matrix (scalar 

in 1D) 

  

% Discretized state transition matrix (diagonalized) 

F_setup = [1, T, 0.5*T^2, (1/6)*T^3; 

    0, 1,       T,   0.5*T^2; 

    0, 0,       1,         T; 

    0, 0,       0,         1]; 

F = [F_setup,     zeros(4,8); 

    zeros(4,4), F_setup,     zeros(4,4); 

    zeros(4,8),             F_setup]; 

  

% Discretized state transition matrix for state prediction 

F_p_setup = [1, (timeStBwPred*T), 0.5*(timeStBwPred*T)^2, 

(1/6)*(timeStBwPred*T)^3; 

    0, 1,       (timeStBwPred*T),   0.5*(timeStBwPred*T)^2; 

    0, 0,       1,         (timeStBwPred*T); 

    0, 0,       0,         1]; 

F_p = [F_p_setup,     zeros(4,8); 

    zeros(4,4), F_p_setup,     zeros(4,4); 

    zeros(4,8),             F_p_setup]; 

  

% Q matrix 

Q = diag([pQ, vQ, aQ, jQ, pQ, vQ, aQ, jQ, pQ, vQ, aQ, jQ]); 

  

% Measurement matrix 

H = [1, 0, 0, 0,     0, 0, 0, 0,     0, 0, 0, 0; 

    0, 0, 0, 0,     1, 0, 0, 0,     0, 0, 0, 0; 

    0, 0, 0, 0,     0, 0, 0, 0,     1, 0, 0, 0]; % Measurement matrix 

  

xPred = zeros(predictions,maxPoints + predictions - 1); 

yPred = zeros(predictions,maxPoints + predictions - 1); 

zPred = zeros(predictions,maxPoints + predictions - 1); 

tPred = zeros(predictions,maxPoints + predictions - 1); 

  

%% Kalman Filter 

for i = 1:maxPoints 

     

    % A priori estimator error covariance (time i-1) 

    Pm = F*P*F' + Q; 

     

    % Kalman gain matrix 

    K = Pm*H'/(H*Pm*H' + R); 

     

    % A posteriori estimator error covariance 

    P = Pm - K*H*Pm; 

     

    % Gather measurement 
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    if rand() <= measureValidRate 

        v = [normrnd(0,sigmax); 

            normrnd(0,sigmay); 

            normrnd(0,sigmaz)]; 

        y = [x_s(i); y_s(i); z_s(i)] + v; 

         

        y_ms(:,i) = y; 

         

        % A posteriori state estimate 

        csi = F*csi + K*(y - H*F*csi); 

    else 

        % Propagate without measurement 

        csi = F*csi; 

    end 

     

    csi_s(:,i) = csi; 

     

    % State predictions 

    csi_p = csi; 

    t_p = t_s(i); 

     

    PredLegend = {}; 

     

    % Predictions based on state transition propagation 

    for j = 1:predictions 

        PredLegend{end + 1} = sprintf('Ahead %2.2fs',j*timeStBwPred*T); 

%         F_p_setup = [1, (j*timeStBwPred*T), 0.5*(j*timeStBwPred*T)^2, 

(1/6)*(j*timeStBwPred*T)^3; 

%             0, 1,       (j*timeStBwPred*T),   

0.5*(j*timeStBwPred*T)^2; 

%             0, 0,       1,         (j*timeStBwPred*T); 

%             0, 0,       0,         1]; 

%         F_p = [F_p_setup,     zeros(4,8); 

%             zeros(4,4), F_p_setup,     zeros(4,4); 

%             zeros(4,8),             F_p_setup]; 

%         F_pmod = F_p*diag(repmat([1, 0.8, 0.75, 0],[1,3])); 

% %         F_pmod = F_p; 

        csi_p = F^(timeStBwPred)*csi_p; 

        t_p = t_p + timeStBwPred*T; 

        if i>=(j*(timeStBwPred-1)) 

            xPred(j,i+((j)*(timeStBwPred-1))) = csi_p(1); 

            yPred(j,i+((j)*(timeStBwPred-1))) = csi_p(5); 

            zPred(j,i+((j)*(timeStBwPred-1))) = csi_p(9); 

            tPred(j,i+((j)*(timeStBwPred-1))) = t_s(i); 

        end 

         

    end 

     

end 

  

%% Plotting 

figure(1); 

clf; 

  

TotLegend = {'Truth', 'Measurement', 'Estimate'}; 

  

% x 



Buchholz Multirotor UAS Sense and Avoid with Sensor Fusion 45 

subplot(2,3,1); 

hold on; 

plot(t_s,x_s,'k-','linewidth',1.5); % Truth 

plot(t_s,y_ms(1,:),'kx','markersize',8); % Measurement 

plot(t_s,csi_s(1,:),'r-','linewidth',1.5); % State Estimate 

axis tight; 

ylim([-5,5]); 

grid on; 

title('x Position Estimate'); 

xlabel('time (s)'); 

ylabel('x (m)'); 

legend(TotLegend,'location','SW'); 

subplot(2,3,4); 

hold on; 

plot(t_s,x_s - csi_s(1,:),'r-','linewidth',1.5); 

axis tight; 

ylim([-2,2]); 

grid on; 

title('x Position Estimate Error'); 

xlabel('time (s)'); 

ylabel('x - x_{hat} (m)'); 

  

% y 

subplot(2,3,2); 

hold on; 

plot(t_s,y_s,'k-','linewidth',1.5); % Truth 

plot(t_s,y_ms(2,:),'kx','markersize',8); % Measurement 

plot(t_s,csi_s(5,:),'r-','linewidth',1.5); % State Estimate 

axis tight; 

ylim([-5,5]); 

grid on; 

title('y Position Estimate'); 

xlabel('time (s)'); 

ylabel('y (m)'); 

% legend(TotLegend); 

  

subplot(2,3,5); 

hold on; 

plot(t_s,y_s - csi_s(5,:),'r-','linewidth',1.5); 

axis tight; 

ylim([-2,2]); 

grid on; 

title('y Position Estimate Error'); 

xlabel('time (s)'); 

ylabel('y - y_{hat} (m)'); 

  

% z 

subplot(2,3,3); 

hold on; 

plot(t_s,z_s,'k-','linewidth',1.5); % Truth 

plot(t_s,y_ms(3,:),'kx','markersize',8); % Measurement 

plot(t_s,csi_s(9,:),'r-','linewidth',1.5); % State Estimate 

axis tight; 

ylim([-5,5]); 

grid on; 

title('z Position Estimate'); 

xlabel('time (s)'); 
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ylabel('z (m)'); 

% legend(TotLegend); 

  

subplot(2,3,6); 

hold on; 

plot(t_s,z_s - csi_s(9,:),'r-','linewidth',1.5); 

axis tight; 

ylim([-2,2]); 

grid on; 

title('z Position Estimate Error'); 

xlabel('time (s)'); 

ylabel('z - z_{hat} (m)'); 

  

ThreeDLegend = {'Truth','Estimate'}; 

  

if predictions > 0 

    EstLegend = {'Estimate'}; 

    TotLegend = [TotLegend,PredLegend]; 

    EstLegend = [EstLegend,PredLegend]; 

    ThreeDLegend= [ThreeDLegend,PredLegend]; 

     

     

    %x 

    subplot(2,3,1); 

    hold on; 

    plot(t_s,xPred(:,1:maxPoints)); % State Predictions 

    legend(TotLegend,'location','SW'); 

    subplot(2,3,4); 

    hold on; 

    plot(t_s,x_s - xPred(:,1:maxPoints),'-'); 

    legend(EstLegend); 

     

    %y 

    subplot(2,3,2); 

    hold on; 

    plot(t_s,yPred(:,1:maxPoints)); % State Predictions 

%     legend(TotLegend); 

    subplot(2,3,5); 

    hold on; 

    plot(t_s,y_s - yPred(:,1:maxPoints),'-'); 

%     legend(EstLegend); 

     

    %z 

    subplot(2,3,3); 

    hold on; 

    plot(t_s,zPred(:,1:maxPoints)); % State Predictions 

%     legend(TotLegend); 

    subplot(2,3,6); 

    hold on; 

    plot(t_s,z_s - zPred(:,1:maxPoints),'-'); 

%     legend(EstLegend); 

  

end 

  

% subplot(2,3,4); 

% hold on; 

% plot(t_s,sigmax*ones(1,numel(t_s)),'k--'); 
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% plot(t_s,-sigmax*ones(1,numel(t_s)),'k--'); 

%  

% subplot(2,3,5); 

% hold on; 

% plot(t_s,sigmay*ones(1,numel(t_s)),'k--'); 

% plot(t_s,-sigmay*ones(1,numel(t_s)),'k--'); 

%  

% subplot(2,3,6); 

% hold on; 

% plot(t_s,sigmaz*ones(1,numel(t_s)),'k--'); 

% plot(t_s,-sigmaz*ones(1,numel(t_s)),'k--'); 

  

figure(2); 

clf; 

hold on; 

plot3(x_s,y_s,z_s,'k-','linewidth',1.5); 

plot3(csi_s(1,:),csi_s(5,:),csi_s(9,:),'r-','linewidth',1.5); 

legend('Truth','Estimate'); 

xlabel('x (m)'); 

ylabel('y (m)'); 

zlabel('z (m)'); 

axis equal; 

view([-1,-1,1]); 

grid on; 

  

if predictions > 0 

    plot3(xPred',yPred',zPred'); 

     

end 

 

 

Point Cloud Image Fusion 

function [UASxyz, PCcolors, ref_image] = 

allignIMG2PC(PCdata,Rb_PC,ob_PC,IMGdata,Rb_IMG,ob_IMG,IMGFOV) 

% Color a point cloud with correlated image given FOV parameters and 

% transformations for image to point cloud frame 

  

IMGsize = size(IMGdata); 

  

PCx = PCdata.data(:,1)'; 

PCy = PCdata.data(:,2)'; 

PCz = PCdata.data(:,3)'; 

  

num_points = numel(PCx); 

  

PCxyz = [PCx; PCy; PCz]; 

  

UASxyz = zeros(3,num_points); 

PCcolors = 0.5*ones(3,num_points); 

  

ref_image = IMGdata; 

  

% Transform points to camera frame 

for current_point = 1:num_points 
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    UASxyz(:,current_point) = Rb_PC\PCxyz(:,current_point) + ob_PC; 

    IMGxyz = Rb_IMG*(UASxyz(:,current_point) - ob_IMG); 

    IMGx = IMGxyz(1); 

    % Skip points behind the camera 

    if IMGx < 0 

        continue; 

    end 

    IMGy = IMGxyz(2); 

    IMGz = IMGxyz(3); 

    IMGazimuth = wrapTo180(atan2d(IMGy,IMGx)); 

    IMGelevation = wrapTo180(atan2d(IMGz,sqrt(IMGx^2 + IMGy^2))); 

%     disp([IMGazimuth, IMGelevation]); 

    % Find points that land within camera field of view 

    if IMGazimuth >= -IMGFOV(1)/2 && IMGazimuth <= IMGFOV(1)/2 &&... 

            IMGelevation >= -IMGFOV(2)/2 && IMGelevation <= IMGFOV(2)/2 

        PixelX = IMGsize(2) - (floor((IMGazimuth + 

IMGFOV(1)/2)/IMGFOV(1)*IMGsize(2))); 

        PixelY = IMGsize(1) - (floor((IMGelevation + 

IMGFOV(2)/2)/IMGFOV(2)*IMGsize(1))); 

        if sum(abs(double(IMGdata(PixelY,PixelX,:)) - cat(3,112, 112, 

112)) > 35) == 3 

            ref_image(PixelY,PixelX,1) = 255 - 

IMGdata(PixelY,PixelX,1); 

            ref_image(PixelY,PixelX,2) = 255 - 

IMGdata(PixelY,PixelX,2); 

            ref_image(PixelY,PixelX,3) = 255 - 

IMGdata(PixelY,PixelX,3); 

        else 

            ref_image(PixelY,PixelX,1) = 0; 

            ref_image(PixelY,PixelX,2) = 0; 

            ref_image(PixelY,PixelX,3) = 0; 

        end 

        PCcolors(:,current_point) = 

double(IMGdata(PixelY,PixelX,:))/255; 

    end 

end 
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