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ABSTRACT
There is direct evidence of the transmission of fatal infectious pathogens in large human
gatherings. Air transportation is no exception. The mixing of susceptible and infectious
individuals in this high-density man-made environment involves pedestrian movement
which is generally not taken into account in modeling studies of disease dynamics. This
thesis addresses this problem through a multiscale model that combines pedestrian
dynamics with stochastic infection spread models. This generic model is applicable to
several directly transmitted diseases. Through this multiscale framework, the
effectiveness of certain layouts and strategies in suppressing the disease spread in highly
crowded locations such as airplanes, airports and waiting queues is quantified. Inherent
variability in human behavior leads to a large parameter space. This large parameter
space is addressed by using novel parallel algorithms for parameter sweep based on low

discrepancy parameter sweep, compared to a default lattice-based sweep.

This dissertation shows that certain pedestrian movement strategies may be adopted
during an outbreak to reduce pedestrian-to-pedestrian contacts. For instance, two-section
boarding leads to lower infections whereas all deplaning strategies have a similar effect.
Winding queues configurations at security checkpoints or theme parks have a major
effect on pedestrians’ interaction. A queue of two-zones with two inlets and outlets and
vertically portioned short aisles is superior over the other assessed configurations in terms
of reduced infection. In terms of parameter sweep of the large domain, a low discrepancy
Halton sequence is used for uncertainty quantification. This method has proven to be
efficient and less time consuming when applied to at least one model of the entire

multidisciplinary model compared to the default lattice-based model.



1. Introduction

This introductory chapter discusses the motivation for investigating the spread of
infectious disease in air travel, and the analytical approaches used herein. Within the
general framework, the subject is analyzed by means of a multidisciplinary approach,
dealt with in detail in the following chapters. Particle dynamics approach which is the
basis for the computational model is introduced. The objectives of this research and the
content of the dissertation are also described.
1.1  Motivation

Air transportation medium and facilities are evolving exponentially to meet the
necessity of connection, exchange, and travel in an increasingly interconnected world.
Air travel brings together people from different geographic regions with different levels
of vulnerability and receptivity due to variations in immunity, ethnic background, and
intervention usage across geographic areas (Wilson, 1995). There is direct evidence for
spread of infection during commercial air-travel for many infectious diseases including
influenza (Moser et al., 1979), SARS (Olsen et al., 2003), tuberculosis (Kenyon et al.,
1996), measles (Nelson et al., 2013) and norovirus (Widdowson et al., 2005).

During the Ebola epidemic in 2014, models estimate that without travel restrictions,
7.17 infectious passengers per month would depart from the highly affected countries
Liberia, Sierra-Leone and Guinea, to various destinations around the globe (Bogoch et
al., 2015). Transmission of Severe Acute Respiratory Syndrome (SARS) virus via air
travel has been recorded, in 2003, on three flights; Among 681 passengers, 23 tested
positive for illness (Olsen et al., 2003). In 1994, an infective with multidrug-resistant

tuberculosis was on-board flights from Honolulu to Baltimore, passing by Chicago,



transmitted the illness to passengers seated in the vicinity (Kenyon et al., 1996). Three
factors are known to influence the contagion spread: the infectivity of the index
infectious individual, the number of contacts within the critical radius of infection, and
the duration of exposure to contagion (Kenyon et al., 1996). The number of contacts is
critically dependent on the pedestrian movement path within airplanes and at airport
lounges.

Given the preponderance of infection spread through air travel, it is essential to
identify air-travel related policies that can mitigate infection spread. Airport terminal
security screening remains a controversial issue awaiting a definite solution. Bender
(2016) reported that travelers are delayed for more than an hour at screening checkpoints
costing airlines about $39.74 per passenger per hour. The screening procedure at
checkpoints only involves the passengers and their carry-on baggage. However, no
equipment is available for use to detect viral contagions during an outbreak.
Consequently, security checkpoints congregated winding queues are a potential, prime
location for pathogen and major pandemics spread by active pedestrians coming into
proximity of infective agents on site.

1.2 Particle Dynamics Modeling

Particle dynamics modeling is a mathematical technique used to simulate the behavior
of groups of interacting particles and study their dynamic, mechanical and rheological
properties by means of computer simulations (Satoh, 2010). This model provides an
overview of the interaction between particles (e.g. atoms, molecules, powders, etc.), and
enables to monitor the change of a system’s bulk properties under varying

thermodynamic conditions of pressure, density and/or temperature. The evolution of



position distribution of particles can be recorded in the time domain and material
properties at equilibrium conditions can be evaluated through this method. The most
attractive feature of this model is its ability to simulate complex interactions by simple
models (Espanol, 2004).

Particle simulations are often used to validate the theory and predict the findings of
experiments in predefined conditions (Ceperley, 1999). These simulations are also useful
when the experiments or the analysis are difficult to perform due to limitations associated
with atomic-scale measurement (Sokolowski, 2011; Chevalier et al., 2017; Hou et al.,
2010; Wang et al., 2015; Hollingsworth & Dror, 2018). On the other hand, when
experimental data can be obtained, averaged properties from molecular simulations are
used for comparison and correlation (Rahman, 1964; Feig et al., 2018, June; Dingreville
et al., 2016; Sawyer & Tichy, 2001). Extensions of these methods in other application
areas include particle dynamics models for traffic (Chopard et al., 2002; Nagel, 1996;
Treiber et al., 1999) and for pedestrians (Bellomo & Dogbe, 2008; Helbing & Molnar,
1995; Helbing et al., 2000; Henderson, 1971).

The main families of particle dynamics techniques on different scales (micro, meso
and macro scales) in materials science include Molecular Dynamics (Rapaport &
Rapaport, 2004), Brownian Dynamics (Schuss, 2015), Lattice Boltzmann (Succi, 2001)
and Dissipative Particle Dynamics (Baydin, 2008), Monte Carlo (MC) (Fishman, 2013),
and Discrete element method (Cook & Jensen, 2002). The common feature of all these
methods is to find the external forces given the motion of the particles and vice versa
(Yang, 2005). The appropriate model is chosen based on the determined physical scale of

the study and the corresponding outputs.



In this study, an approach similar to the Molecular dynamics simulation technique is
used for simulating the movement of pedestrian particles. Molecular dynamics (MD) is
an N-body method in which the evolution of the system’s configuration, on the
microscale level, is computationally simulated by numerically solving the Newton’s
equations of motion to obtain positions and velocities at each time step (Rapaport &
Rapaport, 2004). MD has been utilized in many fields including materials science,
physics, chemistry, pharmacology and nanotechnology to elucidate the happenings at
atomic and molecular scales.

Here, the molecular dynamics method is borrowed from the field of computational
materials science and applied to the movement of pedestrians using a social force model.
The proposed algorithm utilizes the same numerical framework as MD for evolving the
trajectories of moving pedestrians. However, the social force fields are used for human
guidance and trajectory tracking, unlike MD which uses thermostat properties to evolve
the particles. A numerical approach that is very similar to the molecular dynamics
method is used to evolve pedestrians in time and spatial frames. The forces representing
atomic attraction and repulsion in the conventional MD algorithm are replaced by social
forces attracting pedestrians toward their goal while avoiding collision with stationary
pedestrians and obstacles impeding their motion respectively. These balancing forces,
summated under Newton’s second law of motion, prevent vibration of the pedestrians
represented by point mass particles in the simulations, unlike atoms that vibrate ina

continuum medium.



1.3  Multidisciplinary Model

The MD-like pedestrian dynamics method is one of the components of the
multidisciplinary model. The trajectories of the pedestrians are obtained using this
approach, which enables mapping of the contact evolution between the individuals. The
contact data is then combined with an individual-based stochastic epidemiological model
to monitor the propagation of infection in the designated population.

Epidemiological models used to predict the emergence and evolution of diseases
among a host population often do not account for social behavior. Disease systems are
treated in isolation from social systems ignoring the connection and influence on each
other. Understanding the dynamics of an emerging disease among a crowd inhibits its
evolution and reduces its fatality. Comprehending the influence of social behavior on
infectious diseases by utilizing available resources helps to raise preparedness (Pharaon
& Bauch, 2018).

This thesis addresses the transmission and dispersion of potentially fatal infectious
pathogens in locations, where large groups of people gather at high densities, through a
multidisciplinary model that couples pedestrian dynamics with stochastic infection spread
models. The pedestrian dynamics model uses a Molecular Dynamics (MD) based
numerical approach called the social force method. The MD algorithm captures the step-
by-step evolution of the system of particles tracing their trajectories and can be used to
estimate the contact frequency between passengers during air travel. In addition, an
infection transmission framework is proposed to assess the influence of pedestrian

movement policies on the spread of infectious diseases. This information is incorporated



into a discrete-time stochastic Susceptible-Infected (SI) model with infection probability
and contact radius as primary inputs.

This generic model is applicable to different scenarios of pedestrian movement and
diseases. Pedestrians’ behavior varies depending on the nature of their activities and their
background. The parameters of the same social force model can be altered to account for
instance for a line or group formation, emergency escape and bottleneck formation at
exits, etc. Also, several directly transmitted diseases can be accounted for in the
epidemiological model by varying the input parameters related to infectivity (probability
of infection) and transmission mechanisms (radius of infection). Through this
multidisciplinary framework, the effectiveness of certain pedestrian movement strategies
in suppressing the disease spread during air travel and crowd formation is validated by
quantifying the uncertainties of the multiscale model parameters through a parameter
sweep.

1.4  Objectives

The overall objective of this research is to evaluate the effect of pedestrian movement
during air-travel on the spread of infectious diseases. Another aim is to formulate
pedestrian movement models that can be used to study pedestrian movement in crowded
environments. This goal is accomplished by developing a pedestrian dynamics model
similar to MD models and integrating it with stochastic infection dynamics models. The
specific tasks in this thesis with a brief statement of the research innovation are listed
below:

» Formulate a mathematical method to characterize the infection spread in airplanes

and airport lounges. The pedestrian movement and stochastic infection dynamics



models are combined; the pedestrian trajectory information obtained from the
pedestrian dynamics model is integrated with a discrete-time stochastic
Susceptible-Infected (SI) model to achieve this target. Multiple directly
transmitted diseases are incorporated in the model such as Ebola, SARS and
HINI.

» Generalize the proposed model to account for group formation between the
moving agents. The model is extended to the movement of pedestrians within
winding queues commonly observed in airports and theme parks. The effect of
crowd density is also implemented in the individual’s desired speed of motion.

> Analyze the uncertainty in the multidisciplinary model using novel algorithms on
massively parallel computers. The inherent uncertainty in pedestrian dynamics
and infection spread models necessitates a large parameter space. The use of
novel algorithms based on low discrepancy sequences and parallel computers is
established to traverse this large parameter space in a multi-model setting.

1.5  Content of the Dissertation

In this dissertation, the pedestrian movement is related to epidemic outbreak
propagation among a population. Pedestrian movement strategies that can mitigate viral
infection spread are investigated. A Molecular dynamics-based multiscale approach,
formulated by integrating a pedestrian dynamics model with epidemiology, is used to
analyze the effectiveness of alternative public policy choices in limiting the spread of
infections. The multidisciplinary model is applied to air travel during various enplaning
and deplaning scenarios for various air carriers’ capacities to study the infection

transmission within airplanes and airport lounges. The transmission of the Ebola, HINI1



and SARS viruses through casual contacts are studied. The model is then generalized to
understand pedestrian behavior in crowded environments and winding queues. The effect
of the waiting area geometry, aisles distributions and pedestrian arrangement during line
forming is assessed. Several walking policy options that impact the disease spread are
presented. Such a framework is usually neither feasible nor robust to predict the impact
of walking strategies due to inherent behavioral uncertainties.

Due to the inherent stochasticity of the pedestrian and epidemic models, the sources of
uncertainty are parametrized for further exploration and uncertainty quantification.
Sequential computations are time consuming and limited. Parallelization of the algorithm
to come up with results during a decision meeting is required. The computational effort
increases exponentially with dimensionality and model refinement to account for more
factors. Accordingly, a novel parameter sweep using low discrepancy sequence (LDS),
that covers the entire large parameter space as efficiently as possible, is incorporated and

carried out to identify the parameters’ robustness under a variety of possible settings.



2. Scientific Background

In this chapter, related work corresponding to the different aspects of the thesis is
described. Advances in pedestrian dynamics models, based on the molecular dynamics
are described in section 2.1. The numerical aspects and similarities of this approach with
MD are first discussed. The force fields implemented in the proposed MD-like algorithm
are the social forces representing pedestrian dynamics, and are discussed in section 2.2.
The contact data extracted from pedestrian trajectories is combined with an infection
model to estimate the reproduction rate of infection. A review of susceptible-infected
epidemiological models and contact analysis approaches is compiled in sections 2.3 and
2.4. Both the social force and the epidemiological models comprise uncertain parameters
requiring a parameter sweep to quantify their uncertainties. The parameter sweep
methods are reviewed in section 2.5.
2.1  Molecular Dynamics-like Numerical Approach

The Molecular Dynamics method is a mature classical simulation methodology that
has been extensively used to understand the materials’ dynamics on a microscopic level
(Tadmor & Miller, 2011; Allen, 2004). While advanced techniques facilitate experiments
at atomic scale to study motion of atoms in materials (Tadmor & Miller, 2011), such
work is extremely challenging. From this perspective, Molecular Dynamics (MD)
simulations can be extremely effective in explaining the atomic scale material behavior.
This technique considers atoms as continuous Newtonian particles in motion; The MD
algorithm analyses the evolution of the atoms’ instantaneous positions and speeds
resultant of interatomic actions and reactions. The interatomic forces are expressed by the

gradient of potential energy 9 for a specific three-dimensional arrangement of the
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particles. Such potential breaks down into potentials due to internal (intramolecular) and
external interactions (non-bonded); within the system, atoms interact between each other
whereas interaction still exists between the particles and their external surroundings
(Allen, 2004).

Molecular Dynamics simulations predict the trajectories of a collection of “N”
particles constituting a system of second-order differential equations:

a2 Tisifis o .
St Il=3 1 <i<N M

dt? mj
The forces ?j ;i acting by the neighboring particles on the particle “i” alter at each

position update T; or when other adjoining particles switch their positions leading to a

continuous change in potential (Tadmor & Miller, 2011):

- —> . 61) i) a al]r .
fii = —Vvi(ty) = — Vagf’)l— i a(y“); 2)

where: fi;; = fi;; (Newton’s third law of action and reaction).
The atomistic simulation of materials relies on the interatomic bonding formulation

represented in terms of potential energy gradients Vvl (rij). These potential energies break
down into attractive and repulsive terms:
vI(ry) = Vateractive (1) + Vrepulsive (ry) 3)

Among the potentials cited in literature are pair potentials like Lennard-Jones pair
potentials (Lennard-Jones, 1924) and multibody potentials like Abell-Tersoff bond order
potentials for carbon-based materials (Abell, 1985; Tersoff, 1986; Tersoff, 1988a;
Tersoff, 1988b; Tersoff, 1989, Brenner, 1990), short-range repulsive potentials (Ziegler
& Biersack, 1985; Nordlund et al., 1997), the Stillinger-Weber potential (Stillinger &

Weber, 1985) and embedded-atom method potential for metals (Daw & Baskes, 1984).
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Calculating the gradient of these interatomic potential energies gives the net forces
between neighboring atoms.

The Lennard-Jones potential is an important pair potential and is computationally
expedient. It consists of steep repulsive and smooth attractive potential terms. The
gradient of the attractive potential represents the London dispersion forces which are the
weakest intermolecular temporary attractive forces (Lennard-Jones, 1924). The Lennard-

Jones Potential is given by the equation:

v(ry) = 4e [(r%)lz - (%)6] )

where € is referred to as the well depth which is a measure of the attraction strength
between two particles. o, known as the van der Waals radius, is the minimum distance
between two non-bonding particles measured between their centers.

In continuous potential models, the initial boundary value problem of Equation (1)
cannot be solved by means of a simple integral. The integration is discretized and
numerical techniques are used to derive the trajectories. The total integration time is
sectioned into appropriate time steps At. The acceleration in equation (1) is directly

obtained from calculating the interatomic forces fj; acting on particle “i”. Then, the

instantaneous speed (v;) and position (r;) are computed using step-by-step numerical
methods. MD second order differential equations are mainly integrated by finite
difference or predictor-corrector methods that are developed based on the Taylor series
expansion of position (r), speed (v), acceleration (a) and higher-order derivative terms (b)
and (c) (Andrew, 2001). For instance, the Verlet-Velocity (VV) algorithm (Verlet, 1967)

and the predictor-corrector (Beeman, 1976) method are mostly used. Comparing both
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methods, the predictor-corrector strategy is of higher accuracy in narrow time steps when
the VV method leads for wider temporal intervals (Andrew, 2001).

An approach (Figure 2.1-b) that is very similar to the Molecular Dynamics method
(Figure 2.1-a) is used here to model pedestrian motion. This approach has been pioneered
by Helbing and co-workers and is termed as social force model (Helbing, 1995). The
forces of equation (2) representing atomic attraction and repulsion are replaced by social
forces attracting pedestrians toward their goal while avoiding collision with stationary
pedestrians and obstacles impeding their motion, respectively. The repulsive force chosen

for the pedestrian model is a potential gradient of the repulsive term of the Lennard-Jones

12
potential 4€ (;G—) . However, the values of € and o are substituted by valid values for
ij

pedestrians' behavior. The attraction term motivating the pedestrian toward his/her

o AP . .
destination is represented by the rate of change of momentum (—T-) between his desired

free (vo;) and actual walking speeds (v;). The actual walking speed is a reduction of the
free speed with respect to a minimum cut-off distance (8) and depends on the distance
with the most forward pedestrian in the queue. Namilae et al. (2017a) have performed
massive parameter sweep on parallel computers and compared with experiments to obtain
the model parameter values used here. The details of the pedestrian dynamics modeling
approach are explained in chapter 3.

Pedestrian motion modeling is an important problem for transportation engineering
and safety design. As shown in this work, it can have a far-reaching impact on
applications like epidemic spread modeling. The focus is on pedestrian movement

modeling in air transportation infrastructure using social force-based approaches.
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2.2  Pedestrian Dynamics Model

Pedestrian Dynamics has been addressed using several approaches such as particle
dynamics or social force models (Helbing, 1995 & 2000), models based on cellular
automata (Burstedde, 2001), fluid flow models (Henderson, 1971), and queuing based
models (Van Landeghem, 2002). Social force models of pedestrian movement are
essentially based on molecular dynamics. Social force models extend the concepts of
molecular dynamics to pedestrian movement. Here, the forces are a measure of the
internal motivation of individual pedestrians to move towards their destination in the
presence of obstructions like other pedestrians and objects (e.g. walls and chairs). Social
force models have been applied to crowd simulations in panic situations (Helbing et al.,
2000), traffic dynamics (Treiber, 1999), evacuation (Wei-Guo, 2006) and animal herding
(Li & Jiang, 2014). Algorithmic developments have included generation of force fields
using visual analysis of crowd flows (Mehran et al., 2009), explicit collision prediction
(Zanlungo, 2011), and collision avoidance (Lémmel & Plaue, 2014). Namilae et al.
(2017a & 2017b) have used pedestrian dynamics described by social force model in a
multiscale model to study the spread of epidemics during air travel.

Unlike other models, the social force model has specific advantages for studying
passenger movement and contacts in airplanes as each traveler is modelled individually
and moves continuously. This enables tracking the individuals’ trajectories and
estimation of the contacts between pedestrians. The social force model is discussed in
more details, below because it is an important part of the future work plan.

Helbing and Molnar (1995) developed a microscopic particle-based social force

approach to mimic the behavior of foot-travelers in their milieu of locomotion. Their
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principle reflects the influence of the surrounding on the internal motivation of a
pedestrian to reach his designated terminus. Founded on Newton’s second law, repulsive
and attractive forces are summated and equated to the acceleration to reach the desired
velocity. The tendency to avoid collision with other individuals in high-density crowds
and immobile obstacles in the walking path is represented by the repulsive term although
there are no physically subjected forces on the pedestrian itself. Repulsive forces inhibit
the walker’s motion in close proximity with an obstruction. On the other hand, guided by
his intention, a pedestrian self-propels to his targeted destination or one of the exits either
individually or collectively by joining a formed group of walkers. Further, Helbing et al.
(2002) establish a comparison between pedestrian behaviors in normal and evacuation
situations. The social force model alters between these analyzed cases since the
nervousness factor is implemented. In normal situation, the self-organization of
pedestrians is emphasized through line formation along hallways and oscillations at
bottlenecks. In panic circumstances, the situation is more chaotic. The tendency of
herding, lane breakdown and clogging are observed, which in return reduces the chance
of survival.

Lakoba et al. (2005) improve on the basic ideas of Helbing et al. (2000). Despite the
accuracy of their theoretical model presented for a panic situation, the parameters within
the repulsive terms are not realistic. They are not valid for a small crowd or an isolated
pedestrian. In addition, the repulsive term used to model pedestrian-pedestrian and
pedestrian-wall repulsion doesn’t guarantee overlapping prevention. For this purpose, an
optimized algorithm is set up to seek for the adequate parameters’ values. The density

effect is also taken into consideration and implemented in the force expression derivation
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as it inversely affects the free speed of a pedestrian. Chraibi et al. (2010) suggest a
theoretical improvement to the repulsive term in the social force model to prevent
collision between individuals. In contrast to the standard circular representation of the
pedestrian, a more realistic elliptical concept is introduced. The study restricts itself to
crowd enclosed in corridors and a unique set of parameters for this investigation are
chosen.

Mehran et al. (2009) utilize the principle of the social force model to localize
abnormalities in a crowd. For this aim, a data set of crowd videos is interpreted. A grid of
mobile points is placed over the screen and the floating particles are allowed to move
with the stream of people. The estimation of the interactive forces between the pedestrian
and his surroundings is indicative of distortions. Their method proved its capability to
evaluate the crowd as a whole without need for identifying every single individual and
identify the irregularities.

From a computer graphics perspective, Pelechano et al. (2007) suggest an
improvement to the mathematical models previously proposed by implementing a high-
density autonomous crowd model relying on psychological, physiological and
geometrical rules for a more realistic simulation. This technique also eliminates the
fluttering of the particles during the time step evolution occurring at high-density crowds.

Analyzing pedestrian motion in different circumstances is necessary for facilities with
high people density to plan evacuation strategies in the case of emergencies. For instance,
Von Sivers et al. (2016) modeled the emergency evacuation of the London train station
when bombed in 2005 using a new approach combining a locomotion model combined

with social identification and self-categorization theories. Mekkah is a city in Saudi
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Arabia that receives millions of Muslims across the world for pilgrimage during the last
month of the Muslim calendar. Deaths due to pushing in high-density crowds are
recorded every year. Dridi (2015) simulated the pilgrimage situation using Pedflow. The
software solves the differential equation of motion using a microscopic social force
approach. The study also aimed to shed the light on the important role of the social and
physical force model to plan and set up evacuation strategies in emergency conditions in
highly congested zones.

Li and Jiang (2014) performed a computer simulation using the Anylogic software to
mimic the evacuation situation in case of an emergency in the Xizhimen Metro station in
Beijing since it’s difficult to perform actual experiments. Alonso-Marroquin et al. (2014)
investigate the occurrence of the tragic incidence that took place in the Madrid Arena
Pavilion in 2012 in Spain, where five girls were the victim of a crowd stampede. In
contrast to conventional representation of pedestrians as single or three-circles for a
comfortable or moderately crowded environment, the authors suggest a spheropolygons
representation of pedestrians to simulate heavy crowd conditions. A counter-flow of
pedestrians in a corridor is selected to reproduce the real incidence. Dong et al. (2014)
simulated a crowd evacuation in Beijing south subway station to emphasize the role of
crowd leaders, guiding the crowd to the nearest exits, in suppressing evacuation time and
reduce injuries and lives loss.

Movement of pedestrians in airports and during emergencies studied in this thesis is a
special case of a more general problem of pedestrian movement. Several researchers have
studied the pedestrian movement at airports especially from the viewpoint of airport

operations and reduction of the turnaround time of airplanes at terminals. For instance,
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Schultz et al. (2006) model the intuitive behavior of airport travelers under an emergency
situation by a cellular automaton model. In this model, the floor area is subdivided into
small partitions where pedestrians may switch positions with neighboring spots based on
a probabilistic distribution. Several other investigators used agent-based models to model
pedestrian motion and passenger flow in airport terminals (Ma, 2013; Cheng, 2014).
Other studies such as that by Lin and Chen (2013) study the flow of pedestrians to their
destinations by optimizing the guiding signs.

Pedestrian movement in airports is peculiar because it involves a series of
nondiscretionary as well as discretionary activities. For example, prior to their scheduled
flights, travelers fulfill the trip requirements starting from check-in, security and
boarding. Once these processing steps are completed, they are often involved in
individual or collective discretionary activities such as dining and shopping at the
departure terminal (Kraal et al., 2009; Popovic et al., 2010). The airport environment and
building layout have a great influence on the passengers’ movements, choice and
perception of activities preference over a set of alternatives (Lin & Chen, 2013; Kalakou,
2015). This uncertainty creates additional challenges in modeling the pedestrian motion
at airports.

Despite all the work done to simulate pedestrian motion in airports, no work focuses
on the effect of pedestrian movement on airborne disease propagation among travelers. In
this study, the social force model is used to generate the contact data among travelers
coming into proximate contact in various travel stages such as enplaning, deplaning and

progressing in winding queues for booking or security checking. The contact data is then
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combined with an epidemiological model to assess the propagation of infection among
the susceptible crowd of travelers coming to proximate contact.
2.3  Mathematical Epidemiological Models

There is evidence for the spread of many diseases through air travel. Airports and
airplanes are fertile ground for disease propagation and transmission to large
geographical areas throughout the world. After the Ebola outbreak of 2014, there were
concerns that air transportation could play a major role in the transmission and dispersion
of fatal infectious diseases. Potential pathogens spread speedily during air travel since
passengers congregate in common spaces for extended hours and are in close proximity
to each other in affordable air-carriers. Predicting the disease transmission rate is
essential to set up preventive strategies to mitigate transmission during outbreaks.
Mathematical modeling of diseases also referred as epidemiological models are effective
tools to study the factors related to diseases dispersion and suggest possible control
strategies based on the knowledge of the dynamics of an epidemic. In the following, the
basics of epidemic modeling are discussed as applied to the current study.

An infectious disease is defined as an infectious agent transmitted through direct or
indirect route from an infected person, vector, reservoir or environment to a susceptible
host and causing illness (Last, 1988). Infectious diseases are classified by their
transmission agent (virus, bacteria, protozoa and helminths) and mode (person-person,
person-environment, reservoir-vector, vector-person and reservoir-person). Vectors are
bloodsucking insects that transmit infectious diseases between humans or from animals to
humans. Domestic and wild animals serve as reservoir for infestation. An infection

occurs when an infectious agent enters a human or an animal’s organism directly or



20

indirectly via various transmission routes. Upon contract of infection, it may or may not
develop into a disease (Barreto et al., 2006). The transition from infection to disease,
during the latent period, is unapparent and not always identifiable; its detection relies on
the diagnostic techniques able to spot the early signs of infection activity in the organism
causing disease (Thagard, 1998a &b). The disease keeps developing during the
incubation period defined as the period pre-onset of the symptoms. However, it can be
infectious and transmittable to a susceptible individual even when the virus is still

shading (Figure 2.2).
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Figure 2.2. Schematic of the segments of viral evolution from contracting the infection to
disease transmission.

Infectious diseases occurrence in human populations can take the form of an epidemic,
outbreak, endemic or pandemic. These nomenclatures define the nature of the
propagation of disease. An endemic is a continuous disease occurrence in a controlled
time and geographical frame where transmission occurs at an expected frequency within
a population. When the transmission exceeds the normal expectation, it is defined as an
epidemic. If limited in a certain localized geographical region, the term outbreak can be
used. However, when international boundaries are crossed and a larger population is

affected, a pandemic is happening (Last, 1988). Infectious diseases are complex due to
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ethical issues, difficult and expensive to search in human populations. Instead, three main
models are used to replicate infectious disease propagation in humans; those are the
animal, mechanical (bead) and mathematical models.

Mathematical models, consisting of parameters linked by algebraic formulas are more
favorable in terms of analysis and logical proofs compared to the other approaches
(Vynnycky & White, 2010). The analysis of outbreak events, approached by
mathematical and statistical techniques, allows a better understanding of the stochastic
nature of their dynamics. These models are capable of producing accurate
epidemiological information about disease propagation in order to develop disease-
management policies. Mathematical and statistical models apply for large outbreaks
among a population and predict the probable threat of disease outbreak at its early stage.
The mathematical models are classified as deterministic (compartmental) and stochastic
(Vynnycky & White, 2010).

Deterministic models offer an average insight of infection propagation in a population
(Vynnycky & White, 2010). Deterministic models classify the population into categories
or compartments. These compartments range between susceptible “S”, pre-infectious
(exposed) “E”, infectious (or infected) “I”, and recovered (removed or immune, not
spreading the disease) “R” in an N size population. In a deterministic model, it is
assumed that the population is homogeneous (all individuals have the same susceptibility
to infection) and that there is a uniform mixture among the individuals (all individuals are
exposed). The population is also fixed assuming no births or deaths. There is no latent
period meaning that the infectious period is the same duration needed for contract of

disease and recovered individuals are immune.
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Such deterministic compartmental models are based on difference or differential
equations in time domain. Difference equations use discrete-time steps to express the
evolution of the number of individuals in a certain category in terms of the number at
earlier time step. The selection of the time step is very critical to the accuracy of the
results and it is difficult to predict. According to Vynnycky and White (2010), in
difference equations, the time step should be chosen such that it is less than the lowest
average duration spent by an individual in a certain compartment. To avoid the
complexity related to the determination of the time step in difference equations models,
differential equations in the continuous time domain are proposed.

Differential equations describe the rates of change in the number of individuals
entering and leaving the categories. In person-to-person infectious disease spread, there
are three basic types of initial value problem differential deterministic models, (1) The
SIS Model, (2) The SIR model without vital dynamics, and (3) The SIR model with Vital
Dynamics (Hethcote, 1989). In the SIS model, the susceptible population exposed to
infection becomes infected and recovered individuals are susceptible again to infection.
The SIR model assumes that after recovery, the individuals confer immunity; therefore,
their immunity defends the infection if exposed again. In an epidemic with short outbreak
duration (less than 1 year), the births and deaths within the population are not taken into
consideration. Therefore, the SIR model doesn’t account for vital dynamics. During an
endemic lasting for a long period of time (more than 10 or 20 years), the vital dynamics
are implemented in the model. The SIR system is expressed by the differential equations:

S+HI+R =N

ds IS ®)
dt - N
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dl  BIS

dt~ N
dR
w= "

Where y is the transition (recovery) rate and f8 is the product of contact per person by the

transmission probability.

Deterministic differential equations extensively contributed to the mathematical theory
of epidemics (Anderson et al., 1992; Diekmann & Heesterbeek, 2000; Kermack &
McKendrick, 1927; Mollison, 1977). Conventional deterministic methods offer an insight
into the regeneration number of infected individuals, resultant from disease propagation
without specifically determining the infected individuals’ indices. Developments in
deterministic methods focused on the network of dynamic contact (Sharkey et al., 2006;
Van Baalen, 2000; Rand, 1999; Keeling, 1999; Satd et al., 1994; Matsuda et al., 1992).
However, the application of deterministic models is mostly limited to idealized,
homogeneous systems (Sharkey, 2008). Instead, stochastic epidemiological methods are
applied in complicated situations to assess the effectiveness of methods for disease
control and prevention (Sharkey, 2008; Allen, 2008). Stochastic models are more flexible
than deterministic models (Ferguson et al., 2006; Keeling, 2005; Sharkey et al., 2007).
More realistic models in a small population (Vynnycky & White, 2010) or large
population (Britton, 2010) are also of a stochastic nature.

A stochastic model includes the effect of probability on the outcome (Anderson &
Britton, 2012). The development of stochastic models arises for many reasons. Even if an

infective individual is introduced in a susceptible population, infection spread may not

occur. Stochastic models allow standard errors during parameter estimates from disease
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data. Also, stochastic models better explain disease extinction (Britton, 2010). There are
several kinds of stochastic models; those are (1) individual-based models, (2) discrete-
time compartmental models and (3) continuous-time compartmental models (Vynnycky
& White, 2010).

In order to track each individual in the population represented by travelers, the
individual (agent) based approach is used. This method allows determining whether each
individual is only exposed or becomes infected based on the risk of infection. This
approach accurately quantifies disease transmissibility through proximate human-to-
human interaction (Bobashev et al., 2007, December; Burke et al., 2006; Rakowski et al.,
2010; Smieszek et al., 2011; Ajelli et al., 2010; Rocha & Masuda, 2016). Various
variables are involved in the dynamics of disease spread and urge for the development of
improved methods based on contact tracing for better data extraction and parameter
estimation (Matthews & Woolhouse, 2005). Advances in the analysis of outbreak lead
to the development of computational molecular-based techniques to trace contact in
the time frame. The same approach is applied in the following chapter to trace contact
using a molecular dynamics-based approach.

2.4  Integrated Contact Analysis in Individual-Based Infection Spread Model

In the mathematical epidemiological models, the contact between individuals leads to
infection although the contact is assumed to be random with an equal chance of contact
of the susceptible host population seen collectively. When investigating control strategies
to suppress disease propagation among a group or population, the contact pattern between
the interacting individuals should be considered and mapped. Computational contact-

based epidemiological models provide a better insight into the interaction between
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individual and trace their motional behavior. Unlike general deterministic and stochastic
models that evaluate the disease spread dynamics in demographic and environmental
conditions, contact-based models significantly relate disease transmission to the contact
network of the contagion host. The tailored network pattern of contact of the contagion
host with the surrounding individuals consist the medium for disease dynamics (Bansal et
al., 2010).

The integration of contact tracing in epidemiology also captures the heterogeneity in
the transmission dynamics and the variability in the reproduction ratio of new
infections. Smieszek (2009) proposed a “mechanistic” contact-based model assuming
variation in the intensity and duration of potential contagious contact. Ignoring the
heterogeneity and assuming a constant transmission-through-contact probability might
grant inaccurate results in simulations (Smieszek, 2009). De Cao et al. (2014) proposed a
survey data based epidemiological approach to measuring close contact leading to
contagion, taking into consideration the frequency of contact and the long exposure
duration sufficient for viral transmission. De Cao et al. (2014) correlated their theoretical
findings to experimental data using Bayesian melding technique for two different viral
strains.

Contact analysis is difficult to define especially among a large dynamic population
(Mollison, 1977; Hyman et al., 2003; Perez & Dragicevic, 2009). The contributed to
contact analysis is refelected by the use of the social force based pedestrian dynamics
formulation to estimate the number of contacts as in Namilae et al. (2017a) and evaluate
the disease spread in an airplane and at the airport waiting queues. The pedestrian

dynamics model is integrated with a contact-based stochastic Susceptible-Infected
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infection transmission approach. A homogeneous model is first applied assuming specific
probability of infection and transmission mechanism, based on the evolution of the viral
strain in time frame. Then, through a parameter sweep, the heterogeneity in the
transmission dynamics is accounted for.

2.5  Parameter Sweep

The proposed multiscale model combining a social force based Molecular Dynamics
approach with an epidemiological SI model comprises many parameters that lead to large
parameter space. Pedestrian motion is stochastic and unpredictable by nature; pedestrians
of different cultural backgrounds and ethnicity have different behavioral comportment
(Chattaraj et al., 2009). The behavioral difference is reflected by the alteration of certain
parameters in the model. Also, infection propagation depends on various environmental
factors that facilitate its survival and transmissibility among a susceptible population, on
the transmission mechanism and severity of infection of the index infective. Within the
same population, the probability of disease contraction differs between individuals based
on their immunization and exposure duration. Any change in these factors contributes to
different infection scenarios.

Due to the inherent uncertainties in the proposed framework on the levels of the social
force and epidemiological models, a large parameter space is created and each
combination of these parameters in this space may lead to an estimation of infection
regeneration rate. This large parameter space can be traversed by means of a parameter
sweep using massive parallel simulations. Running these combinations in serial is highly

time-consuming. Even on massively parallel computers, it is challenging to address the
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entire parameter space using brute force methods. Accordingly, an efficient method for
parameter sweep is necessary to reduce the time cost and computational efforts.
Parameter sweep is an important computational tool that employs massive computing
resources to execute multiple computations having altered combinations of values of the
same parameters. These parameters are defined over a range of values inputted in a form
of sets or input files. Due to the multi-dimensionality of the parameters space, it is often
necessary to test all the possible variations to find the accurate combination by means of
a parameter sweep, also known as space meshing. Multiple computations are run
independently for different combinations that cover the entire space of concern. Each task
has the same executable with different input arguments and typically generates an
appropriate output file dependent on the inputted data. The whole combined outcome set
of tasks results in the parameter sweep experiment over the entire designated domain.
Parameter sweep can be used to tune, estimate or evaluate the robustness of control
parameters during uncertainty quantification. It is also used to localize a particular point
in the multi-dimensional bounded mesh that verifies certain predetermined criteria.
Large-scale Parameter sweep runs have found extensive applications in the scientific
and engineering fields (Youn & Kaiser, 2010). Electromagnetic cascade showers are
simulated by means of parameter sweep Monte Carlo method (Ford & Nelson, 1978;
Nelson et al., 1985). Abramson et al. (1994) modeled photochemical pollution using
parallel and distributed computing platforms for parameters sweep. Stiles et al. (1998)
used the parameter sweep Monte Carlo program (MCell) to simulate Neuro-Transmitter
Release. Basney et al. (2000) developed two effective co-allocation mechanisms, the

checkpoint domains and file system domains, for computational grids for high energy
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physics (HEP) applications. Casanova et al. (2000a) use the Application-Level
Scheduling (AppLeS) Template developed by Berman et al. (1996) for parameter sweep
applications on Distributed Heterogeneous Networks. Naito et al. (2003) use parameter
sweep to investigate the effects of the equatorial QBO on stratospheric sudden warming
events. Kiss et al. (2010) model carbohydrate recognition using parameter sweep
workflows. Mustapha et al. (2015) investigated a DC-DC boost converter circuit for low
and high voltage range using parameter sweep.

Del Solar et al. (2015) optimize the energy management within an energetic island by
means of several parameter search stages. In all these applications, the process of
parameter sweep over a refined space may be time and computational effort consuming.
Due to the extensive demand for parameter sweep, predictive algorithms for scheduling
parameter sweep calculations in a cloud environment were developed by Bosmans et al.
(2016). Recently, parameter sweep resources are available through cloud computing, an
internet-based service using reliable virtual machines (Monge et al., 2018).

Instead of running each permutation of these variables in serial, a parameter sweep can
be performed through parallel computing. One or more parameters can be swept by
altering their values between simulation runs distributed on multiple processors. The
independent output data of the runs are then compared and further analyzed. Multi-
processor computational nodes are promising executive platforms for parameters sweep
over a large range. However, the availability of the targeted resources is challenging due
to the load, size and memory allocation requirements of the submitted jobs. Several
scheduling algorithms such as “Max-min”, “Min-min” and “Sufferage” were proposed to

schedule and systemize the performance of clusters related to parameter sweep
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independent tasks (Maheshwaran et al., 1999). Casanova et al. (2000a) suggest “an
adaptive scheduling algorithm” related to parameter sweep on multi-processors (p.4).
Casanova et al. (2000b) relate scheduling to inappropriate performance prediction.
Casanova et al. (2000b) adjust the standard heuristics of assigning tasks to the host grid
and extended the “Sufferage” environment into the so-called “XSufferage”. The
XSufferage algorithm has proven superiority and better efficiency over the conventional
heuristics by means of simulations scheduling. Despite all the proposed scheduling
algorithms to allow smooth access and execution on the cluster, choosing an accurate
parameter sweep algorithm is an important preceding step in such computations.

A suitable parameter sweep algorithm reduces the required run time and gives the job
priority over longer time-consuming tasks on a finely scheduled cluster. The aim of the
parameter sweep algorithm is to efficiently cover the parameter space and account for
every probable accurate combination of the parameters over their defined ranges. In an
N-dimensional space (N parameters) of certain mesh size, if M designates the number of
nodes that are possible solutions to the designated problem, then the margins bounded by
these points are not accounted for. Refining the coarse mesh to a smaller mesh of K
nodes (K>M) is a solution. However, the increase of nodes leads to an increase in
processing time which is undesirable especially at higher dimension problems.
Accordingly, a parameter sweep algorithm with optimum mesh size and execution time is
highly recommended. Parameter sweep algorithms are classified under two main
categories; those are the uniformly and the non-uniformly partitioned space methods. The

lattice-based method is the conventional uniformly partitioned space method whereas
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pseudo-random and quasi-random sequences fall under the category of non-uniformly
partitioned method.

In a lattice-based method, assuming a two-dimensional (rectangular) space, the
distribution of points in the horizontal and vertical directions is equally spaced (Figure
2.3). This scheme is inefficient in terms of domain coverage with a specific number of
grid points and for the check of convergence (Chunduri et al. 2018). For simplicity, a d-
dimensional space domain is meshed uniformly in every direction with R nodes.
Therefore, the total number of nodes is obtained by N = RY. In order to check for
convergence, the space domain is refined by increasing the nodes (decreasing the
increment between the nodes by half). Assume R’ = 2R the new number of nodes in each
dimension doubled compared to its predecessor. Denote by N the total number of nodes
in the whole domain of d-dimension, N’ = R’¢ = (2R)¢ = 2¢ R?=2¢ N . The large ratio
AN=2¢ between the two consecutive lattice sizes is very large and does not allow to
precisely determine at which total number of nodes, convergence has occurred between N
and N’. Also, running a mesh of N’ nodes, in this case, is computationally exhaustive and
time-consuming. Instead, alternate non-uniform techniques are presented for better
convergence and faster outcomes.

Non-uniform domain partition methods such as the pseudo-random and quasi-random
(deterministic) sequences are promising algorithms for nodes sequence generation
enabling faster convergence at a lower number of nodes compared to the lattice method.
These methods are commonly used in Monte Carlo and quasi-Monte Carlo algorithms to
solve numerical integration problems and particle simulations of transport processes

(Goneu, 2009). In a Monte Carlo simulation, the accuracy of the results depends on the
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generation of the pseudorandom sequence over a [0,1] interval. Using random sequence
may prevent convergence especially that the parameter space is not efficiently covered by
the random sequence. For instance, sparse and clustered regions are observed in the space
domain. The Linear Congruential Generators (LCG) are common methods to generate
pseudo-random sequences. Despite the simplicity of this method, LCGs do not qualify for

some statistical and randomness tests (Goncu, 2009).

e Lattice
e DS

Figure 2.3. Two-dimensional space partition comparing Lattice and LDS parameter
sweep algorithms.

Quasi-random sequences are deterministic alternatives to pseudo-random sequences.
They are an infinite sequence of points, used in Quasi-Monte Carlo (QMC) simulations
(Morokoff & Caflisch, 1994; Goncu, 2009). These sequences are referred as Low
Discrepancy Sequences (LDS) since the points are more evenly distributed [0, 174
Discrepancy measures the uniformity of the sequence. In other words, discrepancy is “the
error in representation of the volume of subsets of the unit cube by the fraction of points
in the subsets” (Morokoff & Caflisch, 1994). LDS permits efficiently to check for

convergence. For Monte Carlo method, the convergence is of order O(N 12y compared to
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O(log® (N)/N) for QMC because of the Koksma-Hlawka inequality (Goncu, 2009).
Quasi-random sequences have different variants such as Halton, Scrambled (randomized)
Halton and Hammersley sequences. The Halton sequence construction, defined via the
radical inverse function, uses coprime numbers as their bases (Halton, 1964). Lack of
correlations between the radical inverse functions of different bases, the two-dimensional
projections are inadequately distributed in different space dimensions. The scrambled
Halton sequence corrects the defect by redistributing more accurately the projections
(Figure 2.3). Halton and Scrambled Halton sequences have advantages over other
sequences in terms of extension of the domain’s dimensionality. For instance, extending a
d-dimensional domain to a d+1 — dimensional domain only requires adding an additional
one-dimensional sequence. The first d coordinates in the d+1-dimensional domain remain
the same as of the d-dimensional domain.

In the context of this thesis, it is proposed to use the Scrambled Halton LDS for a
parameter sweep as in Chunduri et al. (2018) interchangeably for the pedestrian and
infection models. The results are then compared to lattice to prove the efficiency of LDS
in terms of faster convergence and execution time. Also, if additional variables are added
later to the multi-scale model, the scrambled Halton sequence enables re-using previous

output files.
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3. Multiscale Model for Pedestrian and Infection Dynamics during

Air Travel

In this chapter, a novel multiscale model combining social force-based pedestrian
movement with a population level stochastic infection transmission dynamics framework
is edeveloped. The model is applied to study the infection transmission within airplanes
and airport gate, and the transmission of Ebola, HIN1 and SARS viruses through casual
contacts. The computational model is used to evaluate the effects of passenger movement
within airplanes and airport gate, and the air-travel policies on the geospatial spread of
infectious diseases. The schematic in Figure 3.1 depicts the overall approach of this
modeling study. Aggregated results indicate that passenger movement strategies and
airplane size predicted through these network models can have a significant impact on an
event like the 2014 Ebola epidemic. The methodology developed here is generic and can
be readily modified to incorporate impact from outbreak of other directly transmitted

infectious diseases.
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Figure 3.1. Schematic of the infection analysis during boarding from a gate.
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3.1  Model Formulation of the Pedestrian Movement

In the problem setting, the model the motion of pedestrians is mdeled using a
molecular dynamics approach based on the social force model proposed by Helbing and
Molnar (1995) that captures the actual interaction of pedestrians with their environment
in real-life situations. While heading towards his designated destination, the behavior of
an individual is influenced by his inclination to navigate effectively towards his targeted
terminus. However, delays are always expected due to impediments manifested with
stationary crowds or physical barriers obstructing the course of motion.

Considering the self-propelled pedestrian P; as a point mass mi in a two-dimensional

space, and applying Newton’s second law of motion, the net resulting force F; is

expressed by:
=X = 70 = midy 3
Where ?ii“t is the intention force motivating the pedestrian to pursue his track despite the

fact that a resulting opposing force ?iped is exerted by the surroundings to delay his

731
1.

locomotion. Note that 3; is the acceleration vector of particle

The force ?ii“t in the motion direction &, is the rate of change of momentum within a

time interval (step) T and is defined by:

o . P Foos (0) - T - .
fimt - fimt &, =my( _g_ y=m (Vm(t)nC Vi) )=m (Vm(t)T i () )&, 4)
Here, ¥;(t) designates the actual instantaneous velocity of the pedestrian P; and is
characterized by its magnitude and its anticipated orientation.

The desired speed v;(t) is modified in the intention force expression, Equation (4),

and introduced a term that adjusts the pedestrian speed depending on the proximity of its
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local surroundings. During enplaning or deplaning, pedestrians form a line and the
desired velocity of the self-propelling pedestrian is dependent on its distance with respect
to the nearest forward pedestrian in the same direction of motion. In the designed model,
the pedestrian can move in the direction of motion assigned to the hallway where he is
located at. Let & and &, denote the unit vectors of directions attributed to the hallway
and the pedestrian respectively. Since the pedestrian P;is not impeded by any obstruction,
&, is the same as €. Therefore, in line forming, the desired speed at time t, Voi(), is

obtained from the relation:

Toi(® = Voi(®-& = voi(D.61 = G+ Vv (L~ ) - )

sl

The vector positions of pedestrian P; and traveler P; in his way are denoted by f; and ¥
respectively, and are issued from the origin of the coordinate system of the plane of
motion. The pedestrian free speed is a cumulative frequency distribution that varies
between individuals, the purpose of travel and the facility (Chandra & Bharti, 2013). In
this model, this is accounted for in the ultimate desired speed term (v + Y;Vg) ranging
between v, and (v + vg). Here, y; is a positive random variable less than unity
attributed to pedestrian “i” considering the factors that can affect his mobility such as
age, sex, body type, health condition, etc. (Knoblauch et al., 1996; Zebala et al., 2012).
However, this free speed is adjusted for the upcoming obstructions within a distance 6.

In particular, when traveler P;is distant from traveler P; in such a way that the latter’s
motion is not affected (”Fi -1 “ > §) then, equation (5) reduces to:

Voi() = voi(D). & = vgi(1).61 = (va + vive). € (6)
In the course of embarkation and deplaning, the impenetrability with other pedestrians

.ped. I

and obstacles should be ensured. This is achieved by the repulsive force ?1 n
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literature, power functions and monotonically varying exponential expressions are used
to evaluate the repulsion term (Helbing & Molnar, 1995; Helbing et al., 2000; Wei-Guo
et al., 2006; Li & Jiang, 2014; Zanlungo et al., 2011). In other studies, the repulsive force
is estimated from visual analyses as in Mehran et al. (2009). In this study, for the

repulsive term, the same Lennard-Jones potential used by Namilae et al. (2017a) is again

used. Thus, ?iped is obtained from the gradient of the higher-order term in Lennard-Jones’
potential as follows:
. . . o\ 12
P =Y Vot = ) Fle () ] ™
il il il
Where € and o are repulsive force field parameters (¢ = 16, 6 = 0.86m) and ryis the
distance between the i and the I pedestrian.

There are several parameters in the pedestrian dynamics model, such as maximum
walking speed va + vs, random variation y;, distance parameter 8, two parameters for the
Lennard-Jones repulsive-force terms (e and ), and aisle delay for luggage. There is
experimental data available for some of the parameters such as the range of walking
speed (Knoblauch et al., 1996; Zgbala et al., 2012). Also, the observed exit times and
passenger flow rate for some commercial airplanes are available in the literature (Marelli
et al., 1998; Wald et al., 2014).

In an earlier study, Namilae et al. (2017a) used a parameter sweep on 60,000
processors to determine the parameters that match the available observed data of
deplaning (Marelli et al., 1998; Wald et al., 2014). Namilae et al. (2017a) have been able
to match the pedestrian dynamics model with experimental data on flow rates and exit
times for five different airplane seating configurations for which test data are available. In

addition, Namilae et al. (2017a) have also been able to capture qualitative features such
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as front to back unloading and hallway congestion. The pedestrian dynamics parameters

obtained through their work are used in the current model and are tabulated in Table 3.1.
In this thesis, a similar parallel computing approach is used to quantify the uncertainty in
model parameters related to infection spread over a large design space.

Table 3.1

Parameters ranges and values used in the suggested model.

Parameters Definition Estimate or

range

Voi free waking speed (no obstructions) 1.07-1.55
m/s
i random number 0-1
) distance parameter (distance between people in a
. . 0.405m
stationary line)
€ repulsive-force field parameter 16
o repulsive-force field parameter 0.86m
P, Infectivity of individual as a function of age of infection 0.01-0.098
(c days )
D Maximum number of days for virus incubation 1-21 days
i0 Number of infectives with an age of infection of ¢ days 1

The theoretical approach, stated above, for modeling pedestrians in motion is
integrated by means of a Molecular Dynamics approach to generate the instantaneous
motion characteristics of pedestrians. At this level, the pedestrian motion is modeled
within aircraft and at an airport gate. The time evolution of pedestrian trajectories has
been displayed for both egress from an Airbus A320 carrier (Figure 3.2) and ingress from
a gate (Figure 3.3) for comparison of outputs. During the enplaning, the trajectories of
passengers, initially seated or standing in the departure lounge, heading to the passenger
boarding bridge and finding their assigned onboard seats, are modeled. In both scenarios,
the instantaneous position and speed of each walking individual are obtained from

solving equation (3) using a predictor-corrector numerical integration. Many qualitative
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features of pedestrian movement are captured by the model. For instance, lane formation
is observed in the hallways, in addition to the reduced speed at bottlenecks where
passengers from different seating zones merge and head to the airplane (Figure 3.3).

Similar features are observed in egress when passengers walk out of their seats toward

the aisle (Figure 3.2).

Figure 3.2. Simulation snapshot of Airbus A320 deplaning at different time steps.
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Figure 3.3. Simulation snapshot of embarkation of an Airbus A320 from a departure
lounge at different time steps.

Once the pedestrian trajectory information from the above model is obtained, the data

is integrated with a discrete-time stochastic Susceptible-Infected (SI) model for infection
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transmission discussed in the following section. Then, the overall multiscale model
combining the pedestrian model with the infection stochastic model estimate the number
of newly infected susceptible who came into proximate contact with the infective traveler

within the gate or aboard the airplane.

3.2  Stochastic Infection Spread Model
The study of epidemics informs how disease propagates and what are the suitable
policies to suppress or inhibit its spread. Therefore, the Susceptible-Infected (SI) dynamic
model (Keeling & Rohani, 2008) of an epidemic is employed for the purpose. A
population of size N consisting of I(t) infected and S(t) susceptibles at time t is assumed.
A susceptible becomes infected when coming into direct contact with an infected.
However, the newly infected cannot be infective during the start of the incubation period
of the illness (there is no second reproduction of the illness). At time t, N, I(t) and S(t) are
related by:
N =1(t) + S(t) (®)
The infection spread initiates due to the insertion of i infectives initially (t,= 0) at
their “c” days of infection. Thus,
N =2, i+ S(0) ©)
where d is the extent of the illness post-onset of the symptoms at day one.
Let “m” be the total number of contacts per individual per time step and N the total
population size. Assume the presence of a single infectious individual at c days of
infection. The probability that this infective meets other individuals is m/N. Denote by P
the probability that contact between a susceptible and an infective, whose age of infection

is T days, results in infection of the susceptible. The number of contacts s is estimated
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using the pedestrian trajectories from the pedestrian dynamics model described in the
previous section.

The axiom of the conditional probability (Bayes’ theorem) is given by:
P (contact and infection) = P (infection/contact) . P (contact) =P . —:—1 (10)
Therefore, the number of susceptibles infected by this infective is binomially
distributed with parameters n= S(t-1), the number of susceptibles exposed to the
contagion at time t, and p =P, . % . In this situation, n is large and p is very small (below
0.1). Accordingly, the Poisson distribution can be used to approximate the binomial

distribution with mean A= n.p = S(t-1). P . -E— and is written as:

I(t) ~ Poisson | ms(:l) 4. pcl (11)

Since an infective placed in a totally susceptible population would infect m. p. people
on the ¢ day of infectivity, the total number of infections that an infective would
produce at time t, that is the reproduction number Ry, is given by:

Ro= m ¥&; P (12)
The reproduction number R, defines the average number of people infected by a typical
individual over his/her infectivity period (in the model this represents the duration of
enplaning and deplaning) in a totally susceptible population.

Let P, be the ratio of the probability of infection at day “c” over the summation of the

infectivity along the days of illness, thus:

— DPc
S 13

Replacing Equation (12) and (13) in (11) yields:

I(t) ~ Poisson (Re X9_; P,) (14)
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where R, is the effective reproduction number and is given by:

S(t-1)
N

Re= [=5~1Ro (15)

For multiple infectious individuals at time to=0, the number of newly infected by an ith

infective at time t, a discrete variable is a Poisson probability distribution, with mean mi;

(t-1). pe.[Si (t-1)/N]. Therefore, the number of people infected at time t by all the

infectives with an age of infection “c” is Poisson distributed with a mean Zil [ m;(t —
t-1 . o
1).pc- (SI _I\T)] Summing over all values of ¢, I(t) is given by:

19~Poisson (Zies (2, [ mie = D-pe- (5] ) (16)
where m; is the number of contact of susceptibles with the i" infectious traveler and p,
the infection transmission probability.

Again, plugging Equations (12) and (13) in (16) gives the equation of the Poisson
distribution in terms of the effective reproduction number and the probability ratio:
I(t)~Poisson {E4; [m.pc i, i (6= 1)/N] }
= Poisson {39_, [RO. P, Zi?__l S, t—=1)/N] } a7

Once the travelers’ trajectories have been generated, the pedestrian moment model,
combined with the stochastic infection dynamics formulation, determine the extent of
disease propagation among the travelers onboard. The probability of infection (p.)has a
major influence on the findings as it determines the total of newly infected passengers
who were exposed to the contamination within a suitable environment for propagation.

The probability profile p. of the disease under investigation has to be obtained and

implemented in Equation (17) to obtain the Poisson distribution of infected travelers.
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The probability-distribution of infection transmission varies depending on the
incubation periods and transmission rates for specific diseases. In the context of air-travel
of a few hours, a newly infected passenger does not become infective but reduces the
total susceptible population. When these infectives come into contact with susceptibles as
determined by the pedestrian movement model, the newly infected at time t and the
probability of their infection can be estimated as the Poisson approximation of binomial
distribution. The use of Poisson distribution here accounts for demographic stochasticity
and variations in susceptibility of the population. Inherent uncertainties in human
behavior and stochasticity in infection spread make precise predictions of number of
infections difficult. Instead, the pedestrian movement strategies are identified during air

travel that generally lead to reducing the spread of infectious diseases.

3.3  Probability of Infection

During an epidemic outbreak, the prevalence of the disease in a large population relies
on the ability of a pathogen to establish unrestrained reproductive infections.
Consequently, disease control, suppression or prevention starts by determining the core
of its initiation as well as the incidence, medium, range and probability of propagation.
During the progression of the illness, the variation of antigens in the blood serum can be
captured, and it determines the severity of the patient’s situation. The probability-
distribution of infection transmission varies depending on the incubation periods and
transmission rates for specific diseases. For example, for the Ebola virus, the mean
incubation period is 12.7 days (Eichner et al., 2011), with logarithmic increase in virus
levels in blood and transmission probability during acute illness phase (Centers for

Disease Control and Prevention, 2014).
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Figure 3.6. Infectivity profile along the days post-infection with HINT1 virus.

In this study, observations of the evolution of the antibodies are referred to within the
incubation period of the virus to generate what is referred to as the infectivity profile. The
simulations are carried out for Ebola, SARS and HIN1 Influenza viruses since these
contagions were previously encountered in air travel (Baker et al., 2010). For Ebola, the
infectivity profile is acquired by the amount of RNA (ribonucleic acid) virus copies
above the detection threshold in the blood serum since the illness contraction (Towner et
al., 2004). The daily logarithmic amounts of RNA for fatal and non-fatal contagion are
averaged along the 21 days of illness period, then divided by the total to obtain the
probability of infection at a designated day (Figure 3.4). For SARS pathogen, the viral
gene expression of the nucleocapsid (N) protein (Figure 3.5), detected at different rates
along the evolution of the virus from post-onset of the symptoms till convalescence is

indicative of the possibility of transmission (Zhao, 2007).
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For Influenza HIN1, sometimes the viral shedding and RNA are not detectable
(especially until 5-6 days of onset of symptoms) in positively tested patients (Yu et al.,
2010). The contraction of the influenza vitus is also replicated in mammals. For instance,
experimental investigations are conducted on pigs (Wiersma et al., 2015; Brookes et al.,
2010), mice (Kim et al., 2015) and ferrets (Paquette et al., 2015) for better observation
and understanding of the virus. The HIN1 nasal, oral or ocular shedding has been
detected by determining the relative equivalent unit (REU) from viral RNA level
(Brookes et al., 2010). In this model, it is assumed that the transmission of Influenza
disease occurs through aerosols expelled during coughing, sneezing or talking thus via
nasal route. Therefore, the infectivity profile for HIN1 virus is obtained from measuring
the evolution rate of Reticular-Erythematous-Ulcerative (REU) in saliva from the first
day of disease contraction. The infectivity profile is shown in Figure 3.6. The infectivity
data for the three viruses under investigation is then combined with the number of
contacts between pedestrians generated using the pedestrian movement model to assess

the extent of disease propagation among the travelers onboard.

3.4  Results and Discussion
3.4.1 Enplaning and Deplaning Aboard an Airplane

The situation with one infected individual with Ebola traveling on a commercial
airplane is considered. The infective passenger onboard is not identifiable; therefore, the
seating position of the infected individual is varied through all the seats in the airplane.
Due to the stochastic nature of the problem, it is assumed that the number of newly
infected travelers by a single infectious chosen randomly among the airplane passengers

is Poisson distributed with mean A; at every simulation. After performing all the
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simulations in parallel, the effective probability of means is calculated. Then, using the
Bayes’ theorem the probabilities are combined to generate the probability distributions.
This approach is used to evaluate air travel policies such as boarding and deplaning
strategies, and airplane seating capacity that impact infectious disease spread.

The boarding and exiting strategies have been investigated with respect to minimizing
the turn-around time of airplanes at boarding gates (Marelli et al., 1998; Wald, Harmon &
Klabjan, 2014). Several passenger ingress strategies such as random, outside-in, back to
front, column-wise, zone/section style enplanement have been studied. A few of the
boarding strategies are compared with respect to spread of infections. In Figure 3.7, it is
shown that the three-sections boarding method has the highest mean, thus represents the
worst strategy for reducing spread of infection. Many current airlines use such a strategy
with multiple zones or sections. In this method, passengers sitting in the front of the
aircraft (e.g. first class) board first followed by a middle zone and then the back section
of the airplane. Because of this pattern, the passage-way is filled with passengers waiting
to get to their seats resulting in clustering and increased exposure with infected
passengers, resulting in a higher number of newly infected passengers.

The column-wise method, used here, is the same as the outside-inside strategy in a
front-to-back manner. This scheme also results in more infected members. A two-section
strategy involves dividing the plane into two sections and the passengers are randomly
boarded within these sections. For the random and two-sections boarding, passengers
close together in a queue may be seated in seats that are wide apart. This leads to
arbitrary movement of passengers along the cabin preventing clustering of a group of

travelers around the infected passenger which in-turn reduces infection transmission. The
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two-section and random boarding have the same mean value of two newly infected,

although the infection transmission for two-section strategy results in a lower probability

of infection at the mean. This model suggests that this approach may be a good choice to

minimize infection transmissions during boarding. A similar pattern of results is found

for 144-seat Airbus A320 seating configuration as well as 182-seat Boeing 757-200

seating configuration (see Figure 3.7 a & b). In all these simulations the airplanes contain

a single Ebola-infected passenger with infectivity corresponding to one day of infection

in an unidentified seating location with a contact radius of 1.2 m.
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Figure 3.7. Infection distribution profile at different boarding strategies for (a) Boeing
757-200 capable of 182 passengers, (b) Airbus A320 capable of 144 passengers. The
pictures on the bottom show the corresponding aircraft seating configurations with seats

(b) Airbus A320 capable of 144 passengers. The pictures on the bottom show the
corresponding aircraft seating configurations with seats (blue dots) and pedestrians

(green dots).

A similar approach is followed for deplaning strategies. It is found that deplaning had
a smaller impact on infection dynamics because of the lower number of new contacts and
lower time of exposure during the comparatively faster process. Figure 3.8 shows a
comparison of deplaning strategies for the Boeing 757 182-seating configuration. The

different deplaning strategies such as alternating columns, alternating rows, zone wise
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and baseline (closest to exit-out first) result in similar number of mean infectives. When
comparing the probabilities, alternate rows and baseline strategies are marginally better.
In Figure 3.9, the mean infectives is computed by combining the egress, ingress, and in-
plane movement. It is apparent that other pedestrian movement strategies can be better
than boarding using multiple zones. It is shown that the worst-case situation where an
infected individual with peak infectivity is seated at a location that results in the highest

number of contacts.
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Figure 3.8. Infection distribution profile for different deplaning strategies for 182 seat
Boeing 757.
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Figure 3.9. Infection distribution profile for different deplaning strategies for 182-seat
Boeing 757.

There is inherent uncertainty in the human movement behavior as well as the
stochasticity in the infection model. Many parameters affect the simulations including
airplane size and seating arrangement, the number of infective passengers, the infectivity
characterized by days post-onset of symptoms, the radius of infection which in turn
depends on transmission mechanics (e.g. coughing, talking, etc.), and the susceptibility of
population. It is necessary to assign values for some of these parameters for deterministic
analysis. However, the uncertainty in these parameters needs to be quantified to assess
effective air travel policies under a broad set of conditions. The variations in some of
those parameters is studied.

According to CDC data, a nonfatal Ebola infection lasts for 21 days post-onset of

symptoms, with highest virus shedding rates and correspondingly highest infectivity in
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days 3-5 of disease development (Centers for Disease Control and Prevention, 2014). The
three-zone boarding simulations are repeated by varying the number of days of infection
for an infective person as shown in Figure 3.10. The number of mean newly infected

passengers clearly varies with the infectivity of the index passenger.
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Figure 3.10. Infection distribution profile varying the days of infection for the index case.
Three-zone boarding strategy for 182 passenger seating configuration is used for these
simulations.

During a known outbreak, reported infected passengers will most likely be grounded
for further monitoring, but there have been cases of newly infected passengers traveling
through commercial airplanes (Regan et al., 2015; Sky Talk, 2014; Shuaib, 2014). One
such example is the case of the medical professional, who was on Frontier Airlines flight

from Cleveland to Dallas on October 13, 2014 (Regan et al., 2015). Contact tracing

indicated that the case did not lead to further infections. According to the simulations, the
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probability of zero new infected cases is around 7% with a fully loaded flight. However,
the flight capacity is 168 passengers and the CDC reported that 132 passengers shared the
flight (Sky Talk, 2014). The vacant seats in the flight may have further helped in
mitigating further spread.

Another critical model parameter is the contact radius which is the minimum distance
at which a susceptible passenger in the proximity of the infective can be potentially
infected. The distance to which particles travel depends on the particle size and
associated fluid mechanics in expiratory events like coughing and talking (Bourouiba et
al., 2014). Experimental investigations measure particle size in these expiratory events to
be in the range of 0.1 to 10 um (Morawska et al., 2009; Papineni & Rosenthal, 1997) and
have been estimated to travel over 2 m (Bourouiba et al., 2014; Gupta et al., 2009). The
transmission distance also depends on specific disease, for example, SARS has been
transmitted by short-range droplet-based as well as longer-range airborne mechanisms
(Clark & de Calcina-Goff, 2009). The primary mode of transmission for Ebola is through
contact droplets, but studies on monkeys indicate possible transfer through aerosols (Jaax
et al., 1995). Mangili and Gendreau (2005) indicate that large droplets and airborne

mechanisms are possibly highest risk transmission mechanisms during air travel.
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Figure 3.11. Infection distribution profile varying the contact radius for infection
transmission. Three-zone boarding strategy for 182 passenger seating configuration is
used for these simulations.

The effect of environmental variation and transmission methods on the contact radius
is account for by varying it from 0.6 m (24 inches) to 2.1 m (84 inches) as shown in
Figure 3.11. The typical seat width on airplanes is 18 inches (0.45 m). A distance
between passenger particles of 24 inches (0.61m) is considered as a touching distance.
The lower end of the range in Figure 3.11 signifies a contact-based and large droplet
mechanism while a larger contact radius may be more relevant for aerosol-based
mechanisms. As expected, the number of newly infected passengers is lower when the
contact radius is lower.

In the model, the effect of the size and seating capacity of the airplane on infection

propagation is considered. For instance, consider the case of transporting 1000
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passengers aboard different capacity air-carriers. Different numbers of flights are
required based on the selected cabin configuration. Small air-carriers require a greater
number of flights compared to larger cabin configurations. It is also assumed that a single
infective is onboard every flight so that the passengers on each flight are exposed to the
infection by means of an infective passenger. Figure 3.12 shows the effect of airplane
size with a random boarding strategy. It is shown that smaller airplanes such as CRJ-200
are better in reducing the spread of infection compared to larger capacity airplanes;
however, the advantage with smaller seating capacity of airplanes quickly vanishes as the
number of seats increases beyond 150. The smaller size of the susceptible population, the
lower number of susceptibles within a given contact radius and the reduced time of in-

plane movement are some of the factors that benefit smaller airplanes.
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Figure 3.12. Infection distribution profile for random boarding strategy.
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3.4.2 Comparison between Multiple Diseases

The plots (Figures 3.13 and 3.14) represent the probabilistic distribution of infected
passengers who were closely exposed to Ebola, Influenza HIN1 and SARS viruses.
These viral organisms are transmitted through direct contact or dispersion of particles
exhaled from an infectious member by talking, coughing or sneezing, and remain
sustained in the environment for a certain time before depositing and contaminating
contiguous surfaces (Jones & Brosseau, 2014; Wang, 2005).

Mangili and Gendreau (2005) indicate large droplets and airborne mechanisms are
possibly highest risk transmission mechanisms during air travel. The transmission
distance also depends on the specific disease. For example, SARS has been transmitted
by short-range droplet-based as well as longer-range airborne mechanisms (Clark &
Calcina-Goff, 2009; Li et al., 2004). The primary mode of transmission for Ebola is
through contact droplets (Centers for Disease Control and Prevention, 2014), but studies
with monkeys indicate possible transfer through aerosols (Jones & Brosseau, 2014; Jaax
et al., 1995). Likewise, the influenza virus may be transmitted through coarse droplets or
microscale bioaerosols being respired into the respiratory tract of a susceptible member
(Wong & Yuen, 2005). There’s a debate on the nature of transmission of Influenza virus.
Wong and Yuen (2005) suggest that transmission occurs when the virus particles are
suspended in air and inhaled by a susceptible individual or when that individual touches a
contaminated surface with deposited droplets and then touches their eyes, nose or mouth.

The size of these particles as well as the environmental condition play an important
role in contagion dispersion. Small particles dispersed in aerosols transmit over large

distances, for example, experiments indicate micrometer-sized aerosol clouds generated
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during cough traveling over 2 m (Bourouiba et al., 2014; Gupta et al., 2009). Smaller
aerosols can be driven farther by ventilation or a freestream flowing from a high static
pressure location to a lower pressure zone (Tang et al., 2006). Based on primary modes of
transmission, coarse droplets for Ebola and aerosol for SARS and HINI, radii of
infection of 1.2m (48 in) and 2.1m (84 in) are assumed respectively. Note that the
infectivity profiles for both Ebola and SARS are quite close in values and less than 0.1,
so the selection of radii of infection makes a noticeable difference in the number of
contacts and transmission. For Influenza virus, the infectivity is at a higher rate compared
to Ebola and SARS. This can be reflected by the reproduction number Ro. For instance,
an infectious agent with SARS can reproduce 2-3 newly infected individuals, but this
range increases considerably to an upper limit of 20 for HIN1 (Tang et al., 2006).

In Figure 3.13, an infectious passenger is considered on his first day is onboard among
the susceptible population. Ebola and HIN1 record a peak of 2 newly infected passengers
exposed to the virus, whereas this number increases to 5 for SARS due to the wider range
of infectivity. Shifting the infectivity to its highest (day 3 for Ebola, day 5 for HIN1 and
day 4 or 5 for SARS), the means of the Poisson distribution increases by one unit for
Ebola and SARS but expands tremendously for HINT since the infectivity reaches its
peak of 30% at the fifth day of HINI infection.

From the results for deplaning under similar conditions, shown in Figure 3.14, it can
be noticed that the distribution of newly infected individuals behaves in the same way as
that of Figure 3.13. However, the mean number of infected reduces to 1 for HIN1 and
Ebola and to 2 to SARS on day 1. The egress phase is of a shorter period of time

compared to boarding, therefore, there are fewer contacts and lower number of infected.
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Figure 3.13. Infection profile at (a) the first and (b) peak days respectively post-onset of
symptoms during a random ingress to an Airbus A320 (144pax) for Ebola, Influenza
HINI and SARS contagions.
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Figure 3.14. Infection profile at (a) the first and (b) peak days post-onset of symptoms
during deplaning from an Airbus A320 for Ebola, Influenza HINI and SARS contagions.

3.5 Summary and Conclusions
A multiscale model combining social force based pedestrian dynamics and
metapopulation stochastic infection dynamics model has been formulated. The model is

used to study the dynamics of Ebola virus infection on airplanes specifically during
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pedestrian movement related to boarding and disembarkation. Specific air travel-related
policies that potentially mitigate diseases spread are identified.

Using the model, the transmission probability is estimated based on passengers’
trajectories. The three pathological contagions Ebola, HIN1 and SARS are evaluated.
Droplet- and aerosol-based simulations were performed to recognize the influence of
these viral particles suspended in the air on the transmission of the contagion. The study
highlights the potential gains that can be achieved through strategically integrated
infection control with social force pedestrian movement model. For instance, two-section
boarding leads to lower infections whereas all deplaning strategies have similar effects.
The modeling approach developed here is generic and can be readily modified to other

directly transmitted infectious diseases and dense pedestrian spaces.
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4. Multiscale Model for Optimal Design of Pedestrian Queues to

Mitigate Infectious Disease Spread

There is direct evidence for the spread of infectious diseases such as influenza, SARS,
measles, and norovirus in locations where large groups of people gather at high densities
e.g. theme parks, airports, etc. The mixing of susceptible and infectious individuals in
these high people density man-made environments involves pedestrian movement which
is generally not taken into account in modeling studies of disease dynamics. This problem
is addressed through a multiscale model that combines pedestrian dynamics with
stochastic infection spread models. The pedestrian dynamics model is utilized to generate
the trajectories of motion and contacts between infected and susceptible individuals.

This information is incorporated into a stochastic infection dynamics model with
infection probability and contact radius as primary inputs. This generic model is
applicable for several directly transmitted diseases by varying the input parameters
related to infectivity and transmission mechanisms. Through this multiscale framework,
The aggregate numbers and probabilities of newly infected people are estimated for
different winding queue configurations. It is found that the queue configuration has a
significant impact on disease spread for a range of infection radii and transmission
probabilities. The effectiveness of wall separators in suppressing the disease spread
compared to rope separators is quantified. Further, it is found that configurations with
short aisles lower the infection spread when rope separators are used.

4.1  Background
Pedestrian crowds are commonly observed in all public locations offering

entertainment, transportation, social or religious activities. The mass gathering of people
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congregated in limited space often elevates the risk of infectious disease spread due to the
increased contacts between susceptible and infectious individuals. Further, individuals
with different levels of vulnerability and receptivity due to variations in genetic
background and intervention usage often congregate in touristic sites (Wilson, 1995).
There is direct evidence for the occurrence of multiple epidemic outbreaks in high
pedestrian density locations such as transportation hubs, entertainment venues, (e.g.
theme parks, stadiums) and mass gatherings (Gautret & Steffen, 2016; Centers for
Disease Control, 1983; Olsen et al., 2003; Mangili & Gendreau, 2005; Gundlapalli et al.,
2006; McCarthy, 2015; Pfaff et al., 2010; Verhoef et al., 2008; Zielifski, 2009; Foo et al.,
2009; Botelho-Nevers et al., 2010; Evans et al., 2002).

Gautret and Steffen (2016) report that sixty-eight cited instances of outbreaks among
crowds occurred between 1980 and 2016. Numerous reports deal with the spread of
diseases like influenza, SARS, and measles during air travel (Centers for Disease
Control, 1983; Mangili & Gendreau, 2005). Examples of epidemics in entertainment
venues include the influenza outbreak in 2002 during the winter Olympiad (Gundlapalli
et al., 2006) and the measles outbreak in Disney World in 2016 resulting in 125 cases
(McCarthy, 2015). Several outbreaks of directly transmitted gastrointestinal and
respiratory diseases have been reported in religious and social outdoor mass gatherings
(Pfaff et al., 2010; Verhoef et al., 2008; Zielinski, 2009), international meetings (Foo et
al., 2009; Botelho-Nevers et al., 2010) and concert halls (Evans et al., 2002).

Disease spread in high pedestrian density locations is inherently a multidisciplinary
and multiscale problem involving epidemiology and crowd dynamics. Deterministic

(Brauer & Castillo-Chavez, 1995) and stochastic (Andersson & Britton, 2012)
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epidemiological models including Susceptible-Infected-Recovered (SIR) models are
effective tools for understanding epidemic spread. However, such models do not account
for discrete human interactions in pedestrian crowds. Computationally intensive agent-
based models e.g. EpiSimdemics (Barrett et al., 2008), and stochastic models (Germann
et al., 2006) include human interactions through behavioral rules but are targeted at
modeling simple interactions over large populations and geographical areas (Barrett et
al., 2008; Germann et al., 2006), rather than evaluating the impact of fine-scale
interactions. Instances mentioned above involve a high density of pedestrians over
relatively small areas. Modeling non-uniform mixing in such instances and designing
strategies for mitigation can only be achieved through multiscale modeling involving the
combination of epidemic modeling with pedestrian crowd dynamics.

Understanding pedestrian dynamics and efficient crowd management practices are
essential to enable effective flow of pedestrians, and for meeting safety standards in high
pedestrian density environments noted above. Pedestrian crowd management often
involves the combination of crowd psychology (Sime, 1995) and engineering methods for
assessing the capacities of corridors, ramps, stairs, and other bottlenecks (Fruin, 1993).
While several approaches including cellular automata (Burstedde et al., 2001), fluid flow
models (Henderson, 1971) have been used for modeling pedestrian dynamics, social
force models (Helbing & Molnar, 1995; Helbing et al., 2000) have the advantage of
evaluating the complete individual trajectories necessary for contact estimation in
epidemic studies. Since its conception, there have been several advances in social force
models involving force field estimations (Mehran et al., 2009), algorithmic developments

(Zanlungo et al., 2011; Limmel & Plaue, 2012) and applications in situations like panic
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(Treiber et al., 1999), traffic dynamics (Wei-Guo et al., 2006) and evacuation (Li&
Jiang, 2014). Namilae et al. (2017a; 2017 b) have used pedestrian dynamics described by
the social force model in a multiscale model to study the spread of epidemics during air
travel.

Despite separate developments in pedestrian dynamics and epidemiology, there isa
paucity of epidemiological models that utilize detailed information from pedestrian
dynamics for contact estimation. There is a strong correlation between contact and
infection rates in several disease epidemics such as SARS (Lipsitch et al., 2003) and
Ebola (Rivers et al., 2014). Given the preponderance of epidemic outbreaks in high
pedestrian density locations, a model that accounts for pedestrian dynamics in contact
estimation can be a design tool for developing mitigation strategies. In this thesis, such a
multiscale model is developed and utilized it to study disease spread in pedestrian queues.

Winding queue formation is a ubiquitous crowd control procedure. Consequently,
individuals in crowded gatherings often spend a significant amount of time in waiting
queue lines. In the multiscale model, pedestrian dynamics is used to generate trajectories
of pedestrian motion and estimate the rate of contact between infected and susceptible
individuals. This information is incorporated into a stochastic infection dynamics model
with infection transmission probability and contact radius as primary inputs. This generic
model is applicable for several directly transmitted diseases like Ebola, SARS, and HINI
influenza by varying the input parameters related to infection probabilities and
transmission mechanisms. This multiscale model is utilized to analyze disease spread in
various pedestrian queue configurations, suggest preferred layouts, and design strategies

that would reduce contacts and consequently mitigate the overall disease spread.
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4.2  Modeling Methodology
4.2.1 Pedestrian Dynamics

To first estimate the number of contacts between susceptible and infectious
individuals, each mobile pedestrian is modeled as a particle and immobile objects like
walls or barriers as groups of stationary particles. The evolution of pedestrian particles

and their interaction with other pedestrians and stationary particles are described by
molecular dynamics like the social force model (Helbing et al., 2000). The net force f,

acting on an i pedestrian (or particle) can be defined as:

_— . 1 3 —— d i
=2 () - 710 + Tyt fiy(® = m St (18)
With the pedestrian position at a given time obtained by integration as Fi(t) =

[ 74(t)dt. Here V!(¢) refers to the desired velocity of the pedestrian, and V'(f) is the
actual velocity, % is the particle’s mass andr is the time constant. The momentum
generated by a pedestrian’s intention, denoted by % (176 -7 i(t)), results in a self-

propulsion force that is balanced by a repulsion force Zj(l‘ ) to obstacles in the direction of

motion. In this study, the Lennard —Jones type repulsion term used earlier by Namilae et
al. (2017a; 2017b) is used again.

While equation (18) describes the general motion of pedestrians, modifications needs
to be introduced to this equation to account for slow-moving pedestrian queues.
Pedestrians in a queue move at the speed of the nearest person ahead in the line. To
model this scenario, location dependence is introduced to the desired velocity in the self-

propulsion term as:
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Where €, is the desired direction of motion. Vv and ¥;V; are the deterministic and
stochastic components of the desired velocity, respectively. The values of walking speed
terms (v, and ¥,Vy) can be varied to obtain a given distribution of age groups and gender

of travelers (Zebala et al., 2012). & is the cut-off distance constant between the i and j™

pedestrians at which the desired velocity of the i pedestrian reduces to zero velocity

(stationary condition).

To mimic real-life scenarios, the formation of groups of pedestrians ia also accounted
for. The groups’ formation is controlled by adjusting the distance (0 ) in equation (19).

The empirical observations on a theme park queue and comparisons with the literature
(Moussaid et al., 2010) indicate that & separation values are different between
pedestrians belonging to a group (e.g. family or friends in the queue) and other
pedestrians. Based on this, an average distance of §; =0.46 m is chosen for pedestrian
particles within the same group, while this distance between independent pedestrians is

given a value of 8, =0.64 m.

4.2.2 Contact Estimation and Infection Model

Consider a population of size N consisting of I(t) infected and S(t) susceptibles at time
t. The pedestrian’s position (r;(t)) evolves through the pedestrian dynamics model. A
susceptible can become infected when coming into direct contact with an infected

individual in the course of motion. Given the trajectory of pedestrians over time, the
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number of contacts m; can be evaluated by counting the instances when the distance
between the i and ;" pedestrians (7;) is less than a virus-specific contact radius (x). This

transmission distance (x) used to define the contact is dependent on the type of pathogen
and mechanisms for its spread. For diseases like Ebola, studies indicate that the primary
mode of transmission is through contact droplets (Osterholm et al., 2015; Judson et al.,
2015). Consequently, a distance that enables direct touch needs to be used for estimating
contact for such diseases. Other infectious diseases like SARS and influenza are known
to be transmitted by both shorter and longer range airborne mechanisms (Clark & de
Calcina-Goff, 2009; Yuen & Wong, 2005). Studies show that micrometer-sized aerosol
clouds generated during cough can travel over 2 m (Bourouiba et al., 2014; Gupta et al.,
2009). The contact radius is varied between these distances to account for the various
infection spread mechanisms.

Next, consider the probability (P;,,s) that contact between a susceptible and an
infective results in successful infection transmission. This input parameter can be dividex
into two components: a viral shedding probability distribution (P) which is a function of
time since acquiring infection for the specific virus in question, and a pathogen spread
mechanism component (Py,). This includes contributions of several independent
mechanisms comprising (a) aerosol exposure and inhalation probability (P,) common in
infections such as SARS and influenza (Clark & de Calcina-Goff, 2009; Yuen & Wong,
2005), (b) Coarse pathogen droplet inoculation (P4) common in infectious diseases like
Ebola (Osterholm et al., 2015). Other mechanisms including fomite mechanism, which

involves contaminated surface-to-hand transfer, would contribute to the infection spread,
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but such mechanisms do not involve human-to-human contacts in this context and are not

considered here. The infection probability would then be defined as:

P

v =D.B, = PP, +F) @0
First, consider the viral shedding probability distribution (P.). Studies indicate that the
amount of viral shedding is typically dependent on the length of the incubation period
and the number of days since the appearance of symptoms. In a previous study for
Namilae et al. (2017b), the CDC data is used on the amount of RNA (ribonucleic acid)
virus copies in the blood serum since the illness contraction to generate this probability
distribution for Ebola (Towner et al., 2004). A similar approach can be used for other
diseases, for example, for SARS pathogen, the viral gene expression of the nucleocapsid
(N) protein, detected at different rates along with the evolution of the virus from post-
onset of the symptoms until convalescence is indicative of viral shedding (Zhao, 2007).
For influenza, nasal, oral or ocular shedding of the HIN1 virus has been detected by
determining the relative equivalent unit from viral RNA level (Paquette et al., 2015).
Such data can be used to generate the P, distribution. Figure 4.1 shows the viral shedding

distributions generated based on Zhao (2007) and Paquette et al. (2015) for SARS and

HINI influenza respectively.
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Figure 4.1. Viral shedding probability distributions (Pc) for (a) HIN1 influenza and (b)
SARS.

There are many formulations in the literature to compute the mechanism-specific
probability of transmission. Table 4.1 lists the details of the popular mechanisms for

aerosol and coarse droplet mechanisms. The functional form of the aerosol inhalation

69
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probability is described in the data-driven modeling framework in Teunis et al. (2008),
which in turn is based on Riley’s Dose-response model (Riley & O'Grady, 1961). The
probability of coarse droplet inoculation mechanism considers the droplet cone emitted
during expiratory events like coughing (Teunis et al., 2010).
Table 4.1
Formulations for generating mechanism-specific probability distributions.
Mechanis Equations Notes References
m

Aerosols
mechanism

3 ~oar Data-driven model Teunis et al.
Pa—(l —e ) framework based on dose- | (2008)
response model Riley &

C, - maximum initial O'Grady
concentration of contagion (1961)

in aerosol suspension

T - exposure time

Q - respiration rate of
susceptibles

V, - volume of infection
envelope

Coarse _Sa Ve Model based on expiratory | Teunis et al.
droplet Pa = [TA droplet cone (2010)
inoculation V¢ - volume of cone in
which droplet can fall

V, - room or exposure
volume

Sa - exposed mucosa
surfaces

Sc - circular area base of the
cone

The probability that an infectious individual “i” in the crowd comes into contact with
other individuals is mi/N, where m; is the number of contacts. Using Bayes’ theorem of

conditional probability, P(contact and infection) = P (infection |contact) . P (contact) =

P, . = To account for the demographic stochasticity of the susceptible individuals, the
fN

number of newly infected by this infective “i” is estimated by a binomial distribution i
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(t)~B(n;,pi) with parameters ni= S; (t-1), the number of susceptibles exposed to the
contagion at time t, and p; = Pinf.%i. Equation (20) is used for estimating Py, .

For each infective individual, all the possible permutations are considered, i.e. the
infective is considered to be in all possible positions in the queue. Binomial distributions
are obtained to estimate a range of newly infected pedestrians with variations in the
position and infectivity of the infective pedestrian. Denote by the variable A the possible
number of newly infected pedestrians ranging from zero to the maximum obtained
number Ning (A= 0,...,;,...,Nin). The mean binomial distribution of the number of people
infected at time t by all the possible permutations is computed using Equation (21) below.
Here Comb denotes the number of combinations of infective positions and wy; is the
frequency of obtaining 4; newly infected in the computations. The day post-onset of

symptoms that defines the infectivity (see Figure 4.1) is denoted by ¢. The probability
distributions are combined and averaged as given by:
1) ~ ¥4, 22 (Binomial [$,(t — 1), Pp. P 2 13% wy 1) / Comb (1)

Note that the contacts between the infective and susceptibles are defined when the
susceptible pedestrians are within a specific transmission distance (dependent on the
transmission mechanism) from the infective and exposure duration. The exposure
duration is chosen as the time sufficient to complete one inhalation and bring the virus to
the respiratory tract. Acknowledging the alteration between pedestrians’ breathing
process, an average time of 4 seconds is assumed as the exposure duration. Once a
susceptible individual is within the contact radius from the infective members for an
interval greater or equal the exposure duration required contracting the disease, then

contact occurs. During the contact the susceptible member contracts the infection.
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However, inoculation (immunization) and the amount of the inhaled virus decide whether
infection will turn to a disease or not. This is represented by the transmittance probability
factor.

Instead of using fixed parameters for defining contact, the contact distance and
transmission probability are treated as parameters in assessing epidemic spread. These
parameters are varied over a broad range to model the different scenarios (diseases and
transmission mechanisms) for several pedestrian queue configurations. Expelled fine
aerosols travel farther and remain suspended for a longer time than coarse droplets
(Bourouiba et al., 2014; Gupta et al., 2009). Coarse droplets and aerosols transmission
mechanisms are accounted for by varying the contact radius parameter between 0.9 and

2.1 meters (36-84 inches). The transmittance probability (P;,r) is varied between 0.025
and 0.2 to account for the variation in the infectivity of different diseases.

4.2.3 Model Application to a Pedestrian Queue

Pedestrian winding queues are an essential component of crowd management. These
queues are often unidirectional and have different widths and configurations to fit the
available area. The queues are often separated by rope stanchions for their ease of use.
However, temporary walls could also be used for this purpose. Examples of such queues
usage include airport security, waiting areas at theme parks and other crowded places.
Within the same line and among adjacent lines, many susceptibles are often within the
contact radius and viral infection may propagate if an infectious pedestrian is present.

The role of motion pattern and contact creation between neighboring pedestrians are
evaluated, for different queue configurations. The aisles’ geometry, orientation and the

number of inlets and exits are altered between the different configurations. To model
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queue configurations that are used in practice, a real-life queue is evaluated at a theme
park attraction as shown in Figure 4.2, and used those dimensions as a basis for the
different configurations modeled in the study. In addition to dimensions, empirical data
on contacts and groups was collected to guide the simulations. While progressing through
the queue, two of the team members recorded the number of nearby individuals within a
1m radius, at 25 seconds time interval. The data was collected by two observers
independently at two different times of the day. The approximate distance between
pedestrians, while differentiating between individuals of the same group and different
groups was also recorded. Table 4.2 compares the empirical data and the corresponding
simulation data regarding the average number of contacts in the corners, inner and outer
aisles.

This queue layout is utilized as the basis for evaluating the effect of the layout and
shape of the queue configurations. The aisles’ length and orientation are altered between
the configurations of the same area and aisle width. The relationship between the layout
shape and the contact evolution is also investigated, by modeling four square floor plans

of the same area.
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Figure 4.2. Replication of real-life pedestrian motion in queues using simulations.
(a) Schematic representation of an actual pedestrian queue in an entertainment venue.

(b) Simulation snapshot of a corresponding model.



75

Table 4.2

Evaluation of the number of contact within Im radius from empirical and simulation data
of a side-by-side (double) pedestrian queue in an entertainment venue waiting line.

Empirical data Data from simulation
Contact range Mean range mean
at corners 10

in outer aisles 7
in inner aisles 11

4.3 Results and Discussion

The role of motion pattern in contact creation between neighboring pedestrians is
evaluated, within a fixed control area, for four different queues configurations. The
aisles’ geometry and orientation are altered between the configurations. The walking
aisles are distributed either in a vertical or horizontal manner. In some configurations, the
control area is also taken as one entity with a single inlet and exit. In others, it is
disseminated into left and right zones with independent inlet and exit to each zone. The
aisle width are always constant. The aisle width are matched with the observations in an
airport waiting lines and theme parks, and assume an aisle width of Im which is greater
than the minimum required dimension of 0.9 meters, stated by the regulations (Security
Checkpoint Layout Design and Reconfiguration Guide, 2006).

The relationship between the layout shape and the contact evolution is also
investigated, by modeling four square floor plans of the same area as above
configurations. In all the simulations, a total of 600 pedestrians are distributed within the
waiting area and in front of the inlet either in a single file or abreast queue. With time
evolution, the pedestrians move forward in the sequence to reach the exit. It is expected
that the aisle’s length, direction and structure within the control area, and the distribution

of turn corners, as well as the queue shape, have an effect on the contact between
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pedestrians. Table 4.3 below provides a summary of the geometrical aspect of the
investigated configurations.

In all the mentioned scenarios, the number of contact between pedestrians is calculated
where rope separators or temporary walls are placed between the aisles. In the
simulations, it is assumed that contact occurs if the infective and susceptible pedestrians
are in continuous proximity for 3.75s or more time. For rope separators, contact extends
to pedestrians in the neighboring aisles, whereas for temporary walls, transmission due to
contact is limited only between the pedestrians within the same aisle. The possibility of
pedestrian groups arranging side-by-side or the formation of a single file is also taken
into account. The movement of pedestrians is simulated and examined for contact
estimation. The data of pedestrian contact is then combined with the infection model
mentioned in section 4.2 to prioritize certain appropriate preventive walking strategies,
for every scenario, that help suppress infection spread by reducing contact rate.

Table 4.3

Geometric aspects of the different evaluated configurations.

Rectangular layout Square layout
Cl C2 C3 C4 . , C3 C4

Number of zone(s)
Number of inlet(s)
Number of exit(s)
Number of corners
per zone

Number of aisles
per zone

Aisle width (ar) [m]
Aisle length
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The situation of a single infective in the queue is considered. The infectious individual
is unidentifiable; his rank in the queue is not known a priori. Therefore, all permutations
of the infectious individual’s position are simulated to determine the average number of
contacts for a given queue configuration. Also, the infectivity of pathogens is
characterized by the transmittance mechanism and probability. Airborne viral nuclei vary
in size. Expelled fine aerosols travel farther and remain suspended for a longer period of
time than coarse droplets. Coarse droplets and aerosols transmission mechanisms are
accounted for by varying the contact radius parameter between 0.9 and 2.1 meters (36-84
inches). The transmittance probability is varied between 0.025 and 0.2 to account for the
vulnerability and receptivity of the exposed infective to the infection.

4.3.1 Two Abreast (Side-By-Side) Pedestrian Queue

Based on the observations of common queues, the situations when two pedestrians
belonging to the same group can move abreast or side-by-side are considered in the four
configurations. As initial conditions, the pedestrians are distributed side-by-side inside
the aisle and in front of the inlet. The spacing between the pedestrian particles is varied to
differentiate between individuals of the same groups and others from different groups as
mentioned earlier. As time evolves, the abreast queues turn into a single file in the exit
aisles where the pedestrian speed increases (See Figure 4.3). The waiting time at the exit
is not considered to decrease the computational effort.
4.3.1.1 Rectangular Floor Plan

Four different rectangular configurations are investigated with the same shape and
area as shown in Figure 4.3. The four configurations are split vertically (configurations in

Figures 4.3(b) and 4.3(c)) or horizontally (Figures 4.3(a) and 4.3(d)). Configurations in
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Figures 4.3(a) and 4.3(b) have one inlet and one exit whereas configurations in Figures
4.3(c) and 4.3(d) have two inlets and two exits due to the existence of separated zones.
The width of the pedestrian lanes remains 1 m, which allows some pedestrians belonging
to the same group to form a double line. The four configurations are termed

Configurations 1, 2, 3 and 4 respectively.

(b)
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(d)

Figure 4.3. Evolution of pedestrians (t=125s) from simulation of abreast (double) queue
rectangular layouts: (a) Configuration 1, (b) Configuration 2, (¢) Configuration 3, (d)
Configuration 4.

For a given configuration and a set of infection parameters, the mean number of newly
infected pedestrians is binomially distributed to account for the demographic stochasticity

in the immunity and receptivity of the susceptible population. For instance, Figure 4.4

represents the distribution of newly infected individuals for the four configurations at an
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infection probability of 0.025 and a proximate contact radius of 1.2 meters for aisles
separated by ropes. While such distributions are computed for the entire parameter space,
for ease of representation in subsequent analysis, only the mean of the distributions is

plotted as a function of pedestrian and infection parameters.
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Figure 4.4. Infection distribution profile for the different configurations at Pinf =0.025
and R=1.2m with rope separation.

With the commonly used rope separators and an infection radius less than 1.2m, which
corresponds to coarse droplet mechanisms, the infective has an influence on the directly
adjacent aisles on both sides. The bar chart in Figure 4.5(a) estimates the total number of
contacts between the infective and the susceptible population. However, a given contact
will lead to infection based on the transmission probability. Combining the contact data
of the bar chart with the infection model leads to the mean distribution of infection over
the probability range like in Figure 4.4.

In Figure 4.5, the corresponding mean of the binomial distribution is plotted for the
different configurations and transmission probabilities. Configuration 3 is the best layout
for all transmission probabilities, followed by configuration 2 (Figure 4.5(a)). In
configuration 2, the vertical aisles are short with fewer pedestrians. Configuration 3 has

the same aisle geometry as configuration 2; however, the pedestrian will exit the queue



earlier (halfway) compared to that of configuration 2 which results in lower exposure
time and consequently fewer contacts. Configurations 1 and 4 result in a higher mean
number of infections. These configurations have long open aisles compared to
configurations 2 and 3 with the lower aisle length, therefore more pedestrians are
involved, and interaction occurs more frequently with pedestrians from neighboring
aisles in these two configurations. Configuration 1 is the least favorable layout because
diverse pedestrians from both sides come into proximity more frequently than in
configuration 4 with comparatively shorter aisles. Configuration 4 is worse than
configuration 2 because, at the common corners between the left and right zones, the

infective comes into contact with additional pedestrians from the neighboring zones.
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Figure 4.5. Infection distribution profile for different double queue configurations at a
contact radius of 1.2m. (a) The rope is used for separation between the rows, (b) The
temporary shading walls are used for separation between the rows.
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The use of temporary (or permanent) walls in the place of ropes limits the mixing of
pedestrians within the same aisle and reduces the impact of common corners between
aisles. In this case, it is assumed that the contagion cannot cross over to the adjacent
aisles due to the solid wall barrier; therefore it results in a lower number of contacts.
Figure 4.5(b) shows the mean number of infections when walls are used for crowd
control. Overall, the mean number of new infections is significantly lower than when
using rope separators. It can be inferred from Figure 4.5(b) that configuration 3 still
results in the lowest number of infections at all transmission probabilities, and
configuration 1 with long lines results in the highest number of infections in this case too.
The primary difference between using rope separators and walls is for configurations 2
and 4. Configuration 2 resulted in a lower number of infections compared to 4 when
using rope separators while this is reversed with walls. In configurations 3 and 4, the exit
time is again shorter than that of configurations 1 and 2 resulting in lower overall
contacts. Also, at 1.2m radius of infection, the configurations with long aisles and high
pedestrian density corners result in higher contacts when using wall separators. This is
explained by the fact that the same group of pedestrians remains in contact for a

prolonged time.
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Figure 4.6. Infection distribution profile for different double queue configurations at a
contact radius of 2.1 m. (a) The rope is used for separation between the rows, (b) The
temporary shading walls are used for separation between the rows.

Figure 4.6 shows the results of repeating the transmission probability variation over
the same range, but assuming the aerosol transmission mechanism with a longer contact
radius of 2.1 m. Configuration 3 still results in the lowest number of contacts for both
rope and wall separators. For rope separator, the same pattern of results is observed as
with the lower contact radius, but with increased infection spread (Figure 4.6(a)). The
differences between the configurations reduce at low transmission probabilities,
therefore, the results for configurations 2 and 3, and for configurations 1 and 4 overlap.
At 2.1 m contact radius, the dispersion of the fine contagion laden particles crosses the
aisle boundaries to two adjacent aisles on each side. Here, the findings of configurations
2 and 3 are nearly identical since the aisles are distributed in the same manner except that
configuration 3 has two separated zones.

When the transmission radius expands to many neighboring aisles, pedestrians of one
zone in configuration 3 come into contact not only with other pedestrians within the same

zone, but with those in the adjacent zone. Accordingly, configurations 2 and 3 have the

same behavior. Here, the separation of these two groups has no effective role in reducing
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contact. The same principle applies to configurations 1 and 4; the offset between the data
of configurations 1 and 4 is reduced compared to that of the coarse droplet transmission
mechanism for the same reason. Configuration 1 remains the worst layout, especially at
higher probabilities, due to the elongated, abundant contact between pedestrians from
adjacent aisles.

Previously, when the coarse droplet transmission with wall separator was evaluated
(Figure 4.5(b)), the maximum number of contacts for configurations 1 and 2 was highest,
followed by configuration 4. With aerosol transmission mechanism (R=2.1 m) as in
Figure 4.6(b), configuration 2 remains the greatest in terms of contacts generated,
followed by configuration 4, and the resultant number of contacts of configuration 1
drops. At a low contact radius (R=1.2m), pedestrian density within the circle of infection
is greater in aisles than at corners. Therefore, long aisles allow greater contact time.
However, an infection circle with a 2.1m radius of contact will include more pedestrians
at the corners rather than the aisles. Configuration 2 has the shortest aisles, with the
greatest number of corners (21 corners), which leads to a higher number of contacts.

The contacts generated between pedestrians in the four configurations are explored
assuming different infection mechanisms represented by the radius variation.
Configurations 2 and 3 result in a lower number of infections for rope separators, across
the range of infection radii from 0.9 to 2.1 m as shown in Figure 4.7(a). As explained
earlier, for aisles separated with ropes, shorter aisles lead to lower exposure of an
infective resulting in this behavior. For walls, the combination of the radius of infection,
as well as the interaction time within the aisles and at the corners alter the results as

shown in Figure 4.7(b). Each combination of infection radius and queue layout generates
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a different number of mean newly infected individuals. At low infection radii, short-aisle
and low exit time configurations are favorable. At higher radii, configurations with less

turning corners are better.
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Figure 4.7. Contact distribution for different double queue configurations. The contact

radius is varied. (a) The rope is used for separation between the rows, (b) The temporary
shading walls are used for separation between the rows.

43.1.2 Square Floor Plan
Square layouts are now considered with the same area as the rectangular layouts
discussed previously. Since the aspect ratio of the square configuration changes from that

of a rectangle, the number of aisles and their dimensions vary as shown in Figure 4.8.



Note that configurations 1 and 2, in Figures 4.8(a) and 4.8(b), are the same except for

rotation, therefore, they are not discuss separately.

(b)

86



87

(d)

Figure 4.8. Evolution of pedestrians (t=125s) from a simulation of abreast queue square
layouts: (a) Configuration 1, (b) Configuration 2, (¢) Configuration 3, (d) Configuration
4,
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The results shown in Figures 4.9-11 for these configurations are aggregate of those
observed for configurations 1 and 2. Here, the best configuration is again investigated by
monitoring the variation of the number of newly infected individuals in terms of infection
probability and radius sweep. Looking at the four configurations, by varying the infection
probability range, configuration 3 is again the most favorable, whereas the other three
configurations result in a similar number of infections when using rope separators (Figure
4.9(a)). Configuration 3 only differs from configurations 1 and 2 by the two left and right
zones, enabling faster flow at the inlets and exits. In contrast to configurations 1 and 2
where pedestrians remain in the queue for a longer duration, pedestrians in configuration
3 are exiting halfway with less elapsed time in the waiting line, thus, resulting in less
interaction during the shorter wait. Although configuration 4 also possesses two inlets
and exits (short exit time), the number of common corners where pedestrians from both
zones are at proximate contact is more than that of a rectangular layout.

Also, the square configuration 4 here retains the shortest aisle length among all the
configurations of the same square layout and even the rectangular ones. Although short
aisles with rope separators allow less interaction as mentioned previously, shorter aisles
lead to congestions at the corners where pedestrians reduce their walking speed while
changing the direction of motion. Therefore, even with a shorter waiting time than the
other configurations, configuration 4 allowed more frequent interactions between
pedestrians of both zones resulting in a similar number of newly infected members as
configurations 1 and 2, for lower contact radius (Figure 4.9(a)). Thus, the long elapsed
time in the queue (aisle and corner) and the abundancy of turning corners have the same

effect in increasing infection for rope separators in a rectangular floor layout. For the
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same configuration geometries, if the floor layout is increased, i.e. wider and longer
aisles, configuration 4 will have a better performance as the interaction at the corners and
in the aisles as well as the time elapsed in the queue are lower than those of
configurations 1 and 2.

With temporary walls used as aisle separators, the order of the configurations alters as
shown in Figure 4.9(b). In this case, only the waiting time within the same line and
congestion at the corners play an important role. Referring to Figure 4.8, it can be noticed
that the pedestrians’ density along the aisles is almost the same between all the
configurations. However, at the corners of configuration 4, pedestrians are congregated at
higher density than the other layouts leading to an increase in the number of infections
for Configuration 4 (Figure 4.9(b)). This is explained by the shorter aisles and the
necessity to keep changing velocity direction, thus the reduction in the magnitude of the
velocity components. This phenomenon also applies to the rope separator scenario.
However, with ropes, the maximum interaction with pedestrians in neighboring aisles and
corners is of greater importance and frequency than that within the same line.
Configuration 3 remains the most favorable as it comprises a combination of moderate

aisle length and less waiting time at corners.
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Figure 4.9. Infection distribution profile for different double queue configurations at a
contact radius of 1.2 m. (a) Rope stanchions are used for separation between the rows. (b)
Wall separators are used for separation between the rows.
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(b)
Figure 4.10. Infection distribution profile for different double queue configurations at a
contact radius of 2.1 m. (a) Rope stanchions are used for separation between the rows. (b)
Wall separators are used for separation between the rows.
Expanding the contact radius to 2.1 m assuming aerosol transmission mechanism, all

configurations behave in the same manner for rope separators as shown in Figure 4.10(a).

Here, the infective’s influence crosses multiple surrounding aisles and separation zones,



therefore, the number of corners and aisles do not have any effect. For walls, the

pedestrians’ distribution at the corners alters the results with minor differences (Figure
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4.10(b)). Configuration 4 has the most congested corners and highest number of contacts.

Figure 4.11 summarizes these results. At a low infection radius, for a rope separator,

configuration 3 results in fewer contacts, whereas, with higher contact radii, the

differences between the different configurations are reduced. For walls, pedestrians’

density at the corners leads to higher contacts for configuration 4. The short waiting time

of configuration 3 makes it competitive in all conditions.
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4.3.2 Single-File Pedestrian Queue

The single-file pedestrian queues, which are found in many locations, such as ticketing
at entertainment locations, airport booking and security checks, etc is now considered.
Pedestrian movement is simulated for the four rectangular configurations discussed
earlier as shown in Figure 4.12. Here, the pedestrians are initially distributed in a single-
file manner. Since no waiting time is assumed at the exit, the single lanes are preserved as
time evolves. However, the spacing distance between these pedestrians increases within
the last aisle prior to exit as no obstructions delay their motion. Also, pedestrian
distributions in aisles and at corners vary between the configurations, which cause some
differences in the infection results. This variation results from the difference in aisle

length, and corners, zones, inlets and exits distributions.
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(d)

Figure 4.12. Evolution of pedestrians (t=125s) in single queue layouts of horizontal and
vertical patterns for single and double accesses with the same geometric area: (a)
Configuration 1, (b) Configuration 2, (c) Configuration 3, (d) Configuration 4.

Evaluating the probability range sweep, it is observed that the results of coarse
droplets and aerosols transmission mechanisms are almost identical for rope separators as
in Figure 4.13(a) and Figure 4.14(a). The vertical configurations (2 and 3) occupy the
lowest mean whereas the horizontal configurations (1 and 4) are of higher values with
maximum reached at configuration 1. This independence of the results from the
transmission mechanism, with rope separator, is explained by the lower pedestrian
density distribution. Despite the short exit time of configuration 3 over configuration 2,

the susceptible population in the next-adjacent aisles does not come into critical contact
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with the infective causing disease transmission. Only the forward and backward
pedestrians in the line, within the same or straight adjacent aisle, are mostly exposed.
Also, in all the configurations the pedestrian-to-pedestrian distance is larger in a single
queue since they are free to move at a higher degree of freedom as of an abreast queue.
With the solid walls placed, the density of pedestrians at the corners makes the difference
between the configurations for high transmission range, whereas aisles have greater effect
in low infection range. Configuration 1 proves to be the most efficient in reducing contact

for a single file formation (Figure 4.13(b) and Figure 4.14(b)).
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Figure 4.13. Infection distribution profile for different single queue configurations at a
contact radius of 1.2m. (a) The rope is used for separation between the rows, (b) The
temporary shading walls are used for separation between the rows.
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Figure 4.14. Infection distribution profile for different single queue configurations at a
contact radius of 2.1 m. (a) The rope is used for separation between the rows, (b) The

temporary shading walls are used for separation between the rows.
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Figure 4.15. Contact distribution profile for different single queue configurations. The
contact radius is varied. (a) The rope is used for separation between the rows, (b) The
temporary shading walls are used for separation between the rows.

On the other hand, the variation of the transmission mechanism represented by the
radius sweep also impacts the results. With a contact radius smaller than the aisle width,
all configurations behave in the same manner (Figure 4.15(a)). Here, the contact occurs
only within the same aisle, whether walls or ropes are used for separation. When the
contact radius crosses to the neighboring aisles, the single-zone and double-zone vertical,
short aisles allow short mixing (low-time exposure), therefore, are favorable to
suppression of disease propagation (Figure 4.15(a)). The inverse phenomenon is observed
when wall separators that isolate each aisle from its surrounding aisles are used. Here, the
configurations with higher congestion at the turning corners like configuration 2, result in
a higher mean number of infections (Figure 4.15(b)).

4.4  Discussion

The modeling approach developed in this study provides a unique approach to
combine pedestrian movement models and infectious disease spread models. By tracing
the trajectory of each pedestrian in the time frame, the data of contacts between

susceptible and infective pedestrians is obtained. Then, applying a stochastic susceptible-

infected model to the contact data determines the number of newly infected individuals
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who are in critical contact with the infectives. This model has applications in the design
of high pedestrian density locations which are often associated with infectious disease
spread (Gautret & Steffen, 2016; Centers for Disease Control, 1983; Olsen et al., 2003;
Mangili & Gendreau, 2005; Gundlapalli et al., 2006; McCarthy, 2015; Pfaff et al., 2010;
Verhoef et al., 2008; Zielinski, 2009; Foo et al., 2009; Botelho-Nevers et al., 2010; Evans
et al., 2002). The approach for layout design is demonstrated by applying the model to
various configurations of pedestrian queues and assessing the contact and infection
spread dynamics as a function of various parameters.

Another aspect of the model deals with addressing the inherent uncertainty in this
problem. Human movement is often guided by discretionary behaviors with respect to
route and destination choices, intrinsic variability in pedestrian speed and inter-pedestrian
interactions, which results in a high level of uncertainty. This aleatory uncertainty is
further compounded by the combination with the infectious disease spread model, which
introduces variables like transmission probability and contact radius. The sources of
uncertainty are parametrized, thereby assessing the conditions under which certain
configurations or strategies are effective in mitigating disease spread. To account for the
various transmission likelihoods and transmission mechanisms, the transmission
probability and contact radius is varied in the parameter sweep. This approach can
identify the effectiveness and vulnerability of a given mitigation strategy. For example,
Figures 4.5 to 4.11 indicate that configuration 3 is the more effective configuration in
reducing the number of contacts across different parameter combinations. Further
analysis suggests that the difference between queue configurations is highest at low

contact radii (e.g. 1.2 m) compared to high contact radius (2.1 m), and also for higher
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transmission probabilities. Such information can be useful for designing queue layouts
with the objective of minimizing contact for a specific outbreak.

Three main methods are identified to reduce the number of contacts when pedestrians
are waiting in queues. The shape and configuration of the layout affect the number of
contacts. A longer rectangular queue with pedestrian movement aligned along the short
side like in configurations 2 and 3 reduces the number of contacts. Another simple way of
reducing the number of contacts in waiting queues is if temporary walls are used in place
of rope separators. Such walls would potentially limit the contacts within the row, which
would reduce the number of contacts from up to 55% to 75% compared to rope
separators (see Figure 4.16(a)). Another approach is to reduce the aisle width to create a
single file queue. Figure 16(b) compares the number of contacts between the default case
and when a single file is enforced. The overall number of contacts reduces by 8 - 25% in

the considered queue configurations when a single file queue is considered.
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Figure 4.16. Comparison of the number of contacts between different configurations and
queue arrangements. (a) Rope separators and walls for rectangular and square layout for
configuration 3 with a contact radius of 1.2 m. (b) A similar comparison for the
rectangular layout between the default and a single file queue setup.
4.5  Summary and Conclusions

There is a strong correlation between contact rates and infection rates in disease
epidemics. The movement and interaction of people in high pedestrian density
environments affect the number of contacts and thereby impact infectious disease spread.
The mixing of susceptible and infectious individuals in these high people density
environments involves pedestrian movement which is often not taken into account in the
modeling studies of disease dynamics. In this thesis, a multiscale model is developed for
incorporating input from pedestrian dynamics models into a stochastic infection spread
model. The model is applied to a ubiquitous problem of contact evolution and infectious
disease spread in pedestrian waiting queues.

The effect of queue configurations on generating contacts between neighboring

pedestrians is evaluated. Four distinct queues are evaluated with vertical and horizontal
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aisle patterns, one or two waiting zones, rectangular and square floor plans, and single-
file or abreast pedestrian distributions within the control area. In these various
geometrical scenarios, a comparison is made between the rope and wall separators and
their effect on pedestrian interactions. With rope separators, pedestrians are allowed to
interact with other pedestrians from neighboring aisles in addition to the forward and
backward members in the queue within the same aisle. However, for wall separators, the
interaction between pedestrians is restricted to those only within the same aisle.

The wall separators are found to be very effective in reducing the number of contacts
and disease spread. In some cases, replacing ropes by wall separators results in a
reduction in number of contacts by more than 75%. Among the different queue
configurations considered in the study, configurations with motion along short aisles lead
to lower number of contacts and disease spread when rope separators are used. Also, for
the same area of the queue layout, it is found that rectangular configurations lead to lower
number of contacts than square configurations. While the model is applied to the specific
case of pedestrian queues in this paper, the general principles can be used for analysis of

infectious disease spread in any high pedestrian density location.
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5. Parameter Space Exploration and Uncertainty Quantification

of Viral Outbreak

In chapters 3 and 4 multiscale models are developed to include the effect of pedestrian
movement and behavior in the evolution of the contact network and the spread of
infectious diseases. Pedestrians’ movements were modeled during enplaning, deplaning
and progressing in waiting queues. Due to the inherent stochasticity in pedestrian
behavior and in disease propagation, especially at the early stage of epidemics, several
uncertainties arise in the multiscale framework. The sources of uncertainty are
parametrized and a parameter sweep is carried out to identify the accurate ranges of these
parameters and assess the effect of the parameter variation on the eventual outcome.

A conventional lattice-based parameter sweep that repartitions equally the one-
dimensional domain of each parameter is first used for the purpose. However, this
method has imposed two main challenges on the level of the simulations elapsed time and
detection of convergence. During decision making for preventive strategies that can
mitigate the disease spread among a population, the conventional parameter sweep
method is impractical especially as the number of parameters increases. Instead, a novel
approach using a low discrepancy sequence (LDS) is proposed here.

In this chapter, the importance of parameter sweep is first emphasized and its
necessity in the multiscale model comprising a high degree of stochasticity. Then, LDS is
applied separately for the pedestrian algorithm as well as the infection contact-based
model. Tt is shown that LDS algorithm converges at coarser mesh compared to a lattice
parameter sweep when applied to the queue configuration 3 of the previous chapter.

Here, the pedestrian dynamics and infection model parameters are swept over large
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parameter space. A total of five parameters are considered between the two models
resulting in a 5D parameter space. Four different mesh types are evaluated; those are 5D
lattice, 3D pedestrian lattice combined with 2D infection LDS, 3D pedestrian LDS
combined with 2D lattice and 5D LDS. The convergence is evaluated in terms of the
mean, standard deviation, kurtosis and skewness. LDS is more effective with
dimensionality increase of the domain of definition of the parameters used. Also, with the
increase of dimensionality, the parameter space should be meshed finer for both the
Lattice and LDS methods (more simulations are required) to attain convergence.
Comparing 5D lattice to 5D LDS, the number of required simulations has drastically
decreased down to less than 1% of the initial effort required during conventional
parameter sweep.
5.1  Necessity for Massive Parameter Sweep

Airborne diseases are caused by pathogens suspended in the air including bacteria,
fungi or viruses. These organic particles, secreted by the nasal tracts and throat of an
infected individual are dispersed to the environment through breathing, talking, sneezing
or coughing. Contraction of airborne diseases may occur by directly inhaling pathogenic
organisms by nose or touching a contaminated surface then transmitting the virus by
contact with the mouth or eyes. As these viral particles are able to remain suspended in
the air and navigate for long distances, there is a high risk of disease outbreak in a local
area among a population. Two main factors determine whether transmission will take
place between the infective and the susceptible population; those are the survival lifetime
of the agent in the environmental conditions and the number of contacts between the

infected and susceptible population.
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Various mathematical models describing infection transmission by respiratory tracts
and proximate contact have been used to correlate human interventional behavior to
disease transmission (Heesterbeek et al., 2015). Knowing that reducing contact between
people during an outbreak can restrain the disease, analyzing the mixing pattern allows a
better understanding of the disease dynamics (Barrat et al., 2010).

In the context of analyzing the effectiveness of alternate pedestrian mixing pattern
policies to reduce infection spread in crowded environments through the proposed
multiscale model, numerical simulations are performed to mimic the actual behavior of
pedestrians in real life using a molecular dynamics self-propelled entity-based approach.
The difficulty in modeling pedestrian movement lies in predicting pedestrian behavior at
a given location (e.g. airport), given the various discretionary activities people participate
in. No two individuals behave exactly in an alike manner because of their fundamental
stochastic response to environmental effects. However, it is essential to develop some
framework to mimic, up to a certain extent, the movement of pedestrians in an
environment. This helps to develop, for instance, evacuation strategies in emergency
encounters by computationally and mathematically approaching the scenario. Also,
modeling pedestrian movement is essential during viral outbreaks. The interaction
between proximate individuals stimulates disease propagation among the crowd.

Pedestrian motion is mathematically modeled by means of force fields, but defining
the used parameters’ values is a strain. The proposed self-propelling momentum is based
on the social force model. The intentional (attractive) term depends on a local position-
based input. In other words, the navigation speed is a function of the free, desired speed

(vo) and the distance (&) between the pedestrian and the very front person in the queue.
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Also, the pedestrian model used in this study comprises a repulsive term, preventing
collision with obstacles, which is inspired by the Lennard-Jones atomic repulsive term.
The switch of use of this force field from molecular to pedestrian application requires
calibrating its parameters to reflect the real behavior. Some experimental data is available
in literature to estimate the range of certain parameters. For other parameters, parallel
computing is required to vary the unknown model parameters over a large design space
and validate the appropriate combination that communicates the observed behavior.

Also, at the early stage of an epidemic outbreak, there is no specific model that
estimates the precise propagation rate and its direct impact on the population due to
intrinsic uncertainties. The propagation rate (Pinf) and mechanism (coarse droplet or fine
aerosol particle transmission) represented by the contact radius (R) vary accordingly for
each disease and the infective individual’s clinical condition creating a large two-
dimensional space. Table 5.1 discussed later, shows the large parameter space generated
by this problem.

In order to quantify the uncertainties related to the self-propelled entity dynamics
model as well as the stochastic epidemic individual-based model, the sources of
uncertainty are parametrized and a parameter sweep is carried out over the parameters’
ensembles to evaluate the robustness of these parameters. The parameter sweep
methodology is successfully used in three scenarios: deplaning and enplaning during air
travel, matching density in pedestrian bottlenecks and pedestrian queues to mitigate
infectious disease spread. From the evolution of pedestrian trajectories in the time and

spatial frames, the contact data is obtained. The contact data is then combined with a
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stochastic epidemic individual-based model to estimate the distribution of the newly
infected individuals.

The uncertainties of the proposed multiscale model may be addressed using several
parameters sweep approaches; those are the uniform and non-uniform sweeping methods.
The lattice-based method is the commonly used uniform method whereas pseudo-random
and quasi-random are non-uniform methods. Non-uniform domain partition methods are
promising algorithms enabling faster convergence at lower number of simulations
compared to the lattice method. Quasi-random sequences are deterministic alternatives to
pseudo-random sequences, referred as Low Discrepancy Sequences (LDS). In the context
of this chapter, it is proposed to use the Scrambled Halton LDS as a parameter sweep
method.

Exploring the vast parameter space in the context of pedestrian dynamics and infection
spread will help identify vulnerabilities in a given strategy with a specific objective. For
example, in the previous chapter, using temporary walls is proven to be effective in
suppressing disease spread; if a parameter sweep is conducted for this problem, it can be
analyzed, under what conditions is this policy effective? Are there conditions when this
policy is less effective than the alternative? In addition, the parameter sweep can help
determine the modeling parameters that most effectively model a given problem. Two
such instances of parameter sweep are presented and used to determine modeling
parameters, before proceeding to discuss effective parameter sweep methods in the

second half of the chapter.
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5.1.1 Determining Model Parameters for Pedestrian Dynamics in an Airplane
This approach has been previously used by Namilae et al. (2017a) to determine
adequate movement strategies that mitigate intervention between travelers and can
potentially suppress infection propagation. Namilae et al. (2017a) determined the exact
values of the parameters of the social force model such as the pedestrian desired speed,
the cut-off distance and the repulsive potential constants based on the deplaning time
aboard airplanes (Figure 5.1). Namilae et al. (2017a) performed a three-dimensional
lattice-based parameter sweep over a space of 41% = 68921 combinations assuming 41
equally spaced possibilities for each of the three parameters. To accelerate the
computational effort, the algorithm was parallelized and run on the Blue Waters system at
the National Center for Supercomputing Applications (NCSA). The same computational
effort would have consumed several thousand hours if the computations were sequential.
In continuation of this work, diseases spread during air travel are assessed for various
diseases assuming a range of transmission probabilities dependent on the evolution of the
virus in the blood serum and contact radii ranges. The multiscale framework combining
the social force approach and the epidemic model is applied to airplane boarding and
deplaning for different carrier capacities and configurations ranging between 50 and 240

seats (Namilae et al., 2017b; Derjany et al., 2017; Derjany et al., 2018).
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Figure 5.1. Parallel coordinate plot of model parameters sweep leading to different exit
times (Namilae et al., 2017a).

5.1.2 Matching Density in Pedestrian Bottlenecks

Here, an application of a lattice-based parameter sweep to determine the correlation
between pedestrian speed and density is presented. There is significant experimental
evidence for reduction of pedestrian speed with increase in pedestrian density with
studies dating back from 1935 (Greenshields et al., 1935). Crowd density is one of the
primary factors affecting the movement of pedestrians. This is expected to be more
important during emergency and high-crowd density situations. A crowd density is

defined as the ratio of neighboring pedestrians over the area within a cut-off distance
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from the targeted pedestrian navigating towards his destination. In this field, there is
significant experimental evidence for reduction of pedestrian speed with increase in
density. The reduction in the speed of the overall pedestrian group as a function of
density has been curve-fitted to experimental data and is expressed either in linear,
exponential or polynomial forms (Greenshields et al., 1935; Older, 1968; Navin &
Wheeler, 1969; Fruin, 1970; Pushkarev, 1975; Tregenza, 1976; Polus et al.,, 1983;
Tanaboriboon et al., 1986; Tanaboriboon & Guyano, 1989; Weidmann, 1993; Lam et al.,
1995: Tewarson, 2002; Al-Azzawi & Raeside, 2007; Bruno & Venuti, 2008; Jia et al.,
2009; Laxman, Rastogi & Chandra, 2010; Chen, Ye & Jian, 2010; Rahman et al., 2013;
Rastogi & Chandra, 2013; Das et al., 2015; Kretz et al., 2016; Nikoli¢ et al., 2016;
Kawsar et al., 2017) by various researchers. This behavior is often termed as fundamental
diagram of pedestrian motion. The table in Appendix A tabulates the previous research
on density-speed relation found in literature.

A theoretical model is proposed to reflect the comportment of pedestrians in a crowd
by implementing the effect of density on the individual’s behavior and decision making
within the framework of the social force pedestrian dynamics model. The speed-density
diagram is confined by two essential boundary conditions that control the motion of
pedestrians. Those are achieved at a minimum surrounding crowd density (pmin) Where
the pedestrian is not impeded by adjacent pedestrian and he is free to move at his desired

speed (Vped,na,)» and a highly packed crowd (Pmax) Where the herd accumulates and
forms a cluster exiting at a sedate footpath (Verowa,,;,) towards a narrow congested

single-directional exit.
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The model is implemented in an evacuation simulation of pedestrians from a room
with a single exit (Figure 5.2) to replicate the controlled experiment (Figure 5.3)
performed by Daamen and Hoogendoorn (2003). In their experiment, volunteers were
required to walk through a bottleneck of 1m opening. The scene was recorded and the
density-speed data were collected from visual interpretation by Nikoli¢ et al. (2016)
within a rectangular area labeled in blue in Figure 5.3. Nikoli¢ et al. (2016) then plotted
the speed-density relationship using a probabilistic method for 119,156 observations. The
mean values of their findings were compared to speed-density models suggested by
Tragenza (1976), Weidmann (1993) and Rastogi et al. (2013). In this study, the
experiment is replicated by means of three models (1) without implementing the density
term to the speed equation, by implementing (2) a linear density-dependent relation
(Polus, 1983; Tanaboriboon, 1986; Tanaboriboon, 1989) and (3) a non-linear density-
dependent expression (Das et al., 2015 & Kawsar et al., 2017). The evolution of the
particles, representing pedestrians, in the MD model is shown in Figure 5.2.

The speed expression comprises some unknown parameters such as the minimum
pedestrian speed Va, the pedestrian speed constant Vg, the maximum crowd density
P gy @Nd the minimum crowd speed V rowamin- Setting the parameters (Table 5.1) the
exact values were estimated using parameter sweep on 27,000 processors on National
Center for Supercomputing Applications (NCSA) Bluewaters supercomputer. The best-
fitting mean speed-density curve is obtained with their attributed parameters’ values, then
compared to the work of Nikoli¢ et al. (2016). A qualitative match is found between

speed-density plots from simulations (Figure 5.4) and the experimental observations
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(Figure 5.5). This example shows another use of parameter sweeps in engineering

problems related to pedestrian dynamics.

Figure 5.2. Simulation of an evacuation scenario from a room with a single exit.

Figure 5.3. A controlled experiment of a crowd passing through a bottleneck (Daamen &
Hoogendoorn, 2003).
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Table 5.1

Parameters range of the pedestrian speed-density formulation.

Description Parameter Range | Increment Array
length
Minimum pedestrian speed Va [3,5] 0.5 3
[ft/s]
Pedestrian speed constant [ft/s] Vs [16,20] 1 )
Maximum crowd density Dt [3.7] 1 5
[ped/m?]
Minimum crowd speed [ft/s] Verowd,min [3.8] 1 6
Pedestrian distribution pattern 12
Desired speed formulation 3
Total number of combinations 27,000

Only line forming
; Line forming + exponential density eqgn
2t H Line forming + linear density equation

15 |

Speed (m/s)

Density (people/m?)
Figure 5.4. Speed-density plot for various speed formulations.
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Figure 5.5. Speed-density plot from the controlled experiment (Nikoli¢ et al., 2016).
5.2  Methodology

The multiscale model characterizing infection spread through the pedestrian
movement model has included many new features compared to its predecessors. The
potentially introduced features comprise parameters that create a significant challenge for
tuning especially that the human behavior is stochastic by nature and some factors of
infection propagation are not identifiable. Using one-at-a-time tuning of parameters may
degrade the other parameters. A better adjustment of these variables over their large
domain of definition requires permuting simultaneously all the variables.

The lattice-based algorithm applied in Namilae et al. (2017a) to the pedestrian model
is re-applied here for the set of parameters under investigation. In Namilae et al. (2017a),
the pedestrian model parameters are swept over their ranges of definition. Here, the

framework consists of applying the parameter sweep for the pedestrian parameters first,
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generate a set of trajectories output files to which the infection parameter sweep
algorithm is then applied as the workflow in Srinivasan et al. (2016). The time
consumption and the necessity to detect convergence more precisely do not make the
lattice algorithm a good parameter sweep method and urge to apply a novel Scrambled
Halton Low Discrepancy Sequence (LDS) method for the parameter sweep as in
Chunduri et al. (2018). Another significant advantage of LDS is that if additional
variables are added later to the multi-scale model, the scrambled Halton sequence enables
re-using previous output files. This facilitates ‘restart’ of parameter sweep problems. In
Chunduri et al. (2018), LDS is only applied to the pedestrian model. Here, LDS is applied
interchangeably for the pedestrian and infection models with their parameter ranges
shown in Table 5.2. The results are then compared to the lattice method to prove the
efficiency of LDS in terms of faster convergence and execution time.

Table 5.2

Parameters range of the pedestrian-infection model formulation.

Parameter | Vo 61 5, R Pinf
Range 3.2-54 ft/s | 15-25in | 25-40in | 36-84in | 0.025-0.225

For Lattice and LDS sweeping algorithms, a coarse mesh is initiated then refined until
convergence is attained. At each mesh size, a histogram with the targeted variable (the
mean number of newly infected pedestrians) versus the frequency of occurrence is
plotted. For each histogram, four descriptive moments of the probability distribution are
determined. As the statistical moments are of different scales, a relative difference is used
to check for convergence. Once the relative differences converge within an approximated

tolerance allowed from zero value, no more refinement of the parameter space is
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required. The four descriptive moments used are the mean, standard deviation, skewness
and kurtosis. The mean is given by the relation:

7= TN DX (22)
Z?_’—_l i

Where x; is the variable evaluated in the histogram (on the x-axis, and p; is the frequency
or probability of repetition.

The standard deviation from the mean expressed in equation (22), for the number of
newly infected pedestrians considered as a discrete variable and obtained from various

mesh elements is the square root of the variance:

_ R (23)
5= N

Skewness is the degree of distortion, asymmetry or shift from the mean in a symmetrical bell

curve or a normal distribution. Skewness is expressed by:

3.(¥~median) (24)

Skewness = 5

Where the median is the value of the (y{i)th term in the cumulative data distribution.

Kurtosis, also used to describe the distribution, defines the sharpness, or tailedness of
the peak of a frequency distribution curve. Kurtosis defines the difference heaviness

between the normal and the evaluated distribution. Kurtosis is obtained from:

Kurtosis = Z(x—-f)‘* (25)
N.s

The convergence criterion between two successive runs (run “i” and run “i+1”) of

different mesh sizes is validated by the percentage difference relation:

V""V'+ 2
[Vli+Vil+11] s € (26)
2
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Where V is a statistical variable and ¢ is a tolerance value (0< € < 1). The selection of
the tolerance order depends on the statistical moment. For instance, for the relative
mean, ¢ is of the order of 103 compared to 107! for the root of standard deviation,
skewness and kurtosis. The abrupt drop of the relative kurtosis from a value greater than
unity to a value of order 10”! indicates that the histogram distribution is invariant between
the runs. When all these conditions are met, then, convergence is attained.

In the previous chapter, different queue configurations are evaluated in terms of
contact generation and infection propagation among neighboring pedestrians. These
queues vary in shape and aisle arrangement but the floor area is kept constant. Four
different aspects of the queue are varied; those are (1) the aisles layered in a vertical or
horizontal pattern, (2) the waiting area portioned into two zones or kept as one zone, 3)
pedestrians distributed in a single file or abreast side-by-side pattern and (4) the floor
plan shaped in a rectangular or square manner. The different combinations of pedestrian
queues aspects generate a large qualitative and quantitative parameter space. In addition,
with every queue scenario, an infective walker is introduced to the population assuming
various probabilities of transmission and contact radii. The queue and infection parameter
sweep generating different numbers of newly infected individuals is shown in Figure 5.6.
Among the different evaluated combinations, configuration 3 with a two-zone floor plan
is suitable to mitigate disease spread due to the distribution of its aisles and corners
within the zones.

In this chapter, the study focuses on the abreast rectangular queue configuration 3 with
a rope separator and the various pedestrian and infection parameters are evaluated by

means of a novel low discrepancy parameter sweep that is expected to lead to
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convergence faster and more effectively than the conventional lattice-based method used

previously to match parameters in airplanes.

wall

A\
\\,{g,)"\. I// N\
TNA=x

configuration probability of contact radius of pedestrian queue separator
infection [in] newly infected alignment geometry type

rectangular rope

Figure 5.6. Parallel coordinate plot of a 6D parameters combinations and their
corresponding infection generation.

5.3  Results

Lattice and Low Discrepancy Sequence (LDS) parameter sweeps are performed at
various mesh sizes. The objective of these simulations is to determine the
computationally most efficient sweeping method. Four different algorithms are applied in
the search of infection transmission rates among a crowd in the queue. First, 5D lattice
(3D pedestrian and 2D infection models) simulations are executed. Then, a combined
LDS and lattice are then applied for the 3D pedestrian and 2D infection parameters space
interchangeably. Finally, a 5D LDS is used for the entire multiscale model.
5.3.1 5D Lattice (3D Lattice pedestrian parameters x 2D Lattice infection)

Parameters Sweep

Exploring the parameter space of the multiscale model, a lattice-based parameter

sweep is applied first on the parameters of both models separately. The trajectories are

obtained from the social force based pedestrian model at different pedestrian speeds and
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allowable proximate pedestrian-pedestrian distance. The contact data is then generated
from the instantaneous position data of every pedestrian at various distance and
transmission probability. Looking for the sensitive parameters mostly contributing to
infection transmission, a parameter sweep is achieved at various mesh sizes, starting from
a coarse mesh and refining the space repartition successively until convergence is
reached. The ranges of the parameters as well as the different space repartitions are
shown in Table 5.3.

Table 5.3

5D Parameter space exploration using the lattice-based algorithm.

Parameter  Range Mesh sizes
Mesh Mesh Mesh Mesh Mesh

1 2 3 4 5

' . Lattice 12 12 23 23 23 23
0.2) 0.2) (0.1) (0.1) 0.1 0.1)
15-25 | Lattice 3 3 3 11 11 11
in (5) (5) ) 1) ) 1)
25-40 | Lattice 4 4 4 16 16 16
in (5) 3) &) ] 6] ¢))
36-84 | Lattice 5 9 25 25 49 97
in (12) (6) @) 2 ¢)) 0.5)
Lattice 9 9 21 21 21 21
(0.025) | (0.025) (0.01) (0.01) (0.01) (0.01)
Number of grid points 6,480 11,664 144,900 | 2,125,000 | 4,165,392 | 8,245,776

Note: For the different mesh dimensions, the numbers between parentheses represent the
increment size of each parameter.

After running all the simulations with a different number of grid points, the
histograms, in Figure 5.7 (a-f), plot the mean number of newly infected pedestrians
versus their frequency of occurrence at each parameter combination. Note that
convergence can be visually ascertained when the shape of the histogram remains
proportionally the same while increasing the number of simulations. With running more

simulations, the histograms gradually start to alter in shape until convergence is reached
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and the overall shape remains unchanged (for instance, starting from mesh 4 in Figure

5.7d here). The convergence is then validated theoretically by statistical variables.
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Figure 5.7. Infection distribution histograms for (a) 6480, (b) 11,664, (c) 144,900, (d)
2,125,000, (e) 4,165,392 and (f) 8,245,776 grid points using 5D Lattice method.

Having obtained the histograms from the lattice parameter sweep algorithm, the data is
compared to the LDS algorithm implemented for the two-dimensional infection
parameters sweep as in section 5.4.2, then the same process is repeated but for the three-

dimensional pedestrian parameters sweep, shown in section 5.4.3. It is expected that the
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convergence takes place earlier (with a coarser mesh size compared to that of lattice)
when implementing LDS. Also, comparing the LDS algorithms applied for the 3D
pedestrian and 2D infection models, LDS is expected to converge more efficiently at the
higher 3D order of dimensionality compared to that of 2D.
5.3.2 3D Lattice Pedestrian Parameters x 2D LDS Infection Parameters

Different parameter space partitions are simulated using a lattice of uniformly
distributed sequences to evaluate the parameters related to the social force model, while
LDS is used for the infection parameters. Following the same parameter sweep
methodology as before for the speed and cut-off distances variables, an LDS algorithm is
adopted to sweep the infection transmission variables over their ranges. Predicting a
better performance when implementing the LDS algorithm, lower numbers of simulations
are used here, compared to the 5D lattice method, previously shown. Also, seeking for
the influence of the parameters’ increments on the outcomes, each parameter’s ensemble
is evaluated to determine whether the pedestrian trajectory or the transmission
mechanism has a greater effect on the outcomes. Accordingly, in Table 5.4, the first three
meshes (Mesh 1, 2 and 3) are coarsely partitioned for the social force model related
parameters and finely distributed using large low discrepancy sequences for infection
related terms. For the remaining three meshes (Mesh 4, 5 and 6), an inverse process is
applied using fine 2D LDS and coarse 3D Lattice algorithms. The outcomes of this

algorithm are plotted in histograms in Figure 5.8 (a-f).
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5D Parameter space exploration using the 3D lattice and 2D LDS based algorithms for
the social force and infection models respectively.

Parameter Range Mesh Mesh sizes

Libe Mesh Mesh Mesh Mesh Mesh
| 2 3 4 5

Mesh
()

Lattice
Lattice
in ) ) () )] €)) )
25-40 Lattice 4 4 4 16 16 16
in ) (%) ) 1 )] M
36-84 LDS
DS 750 1000 2000 200 250 300
Numbet of grid points 108,000 | 144,000 288,000 809,600 | 1,012,000 | 1,214,400

Note: For the different mesh dimensions, the numbers between parentheses represent the

increment size of each parameter.
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Figure 5.8. Infection distribution histograms for (a) 108,000, (b) 144,000, (c) 288,000, (d)

809,600, () 1,012,000 and (f) 1,214,400 grid points using 3D pedestrian Lattice
combined with 2D LDS method.
5.3.3 3D LDS Pedestrian Parameters x 2D Lattice Infection Parameters

In this section, LDS is applied for the pedestrian parameters space having higher
dimensionality and greater ranges compared to those of the infection parameters. Aiming
to obtain faster convergence than with the 3D lattice-2D LDS method, the mesh sizes are
again reduced for the 3D LDS-2D lattice method. After estimating the required mesh
increment of the infection parameters from the 5D lattice sweep for convergence, the
pedestrian model variables’ increments are the main focus. In Table 5.5, a coarser starting
mesh is selected for the 3D space compared to Table 5.4 since convergence is expected to
be attained at lower simulations number compared to that of the previous section. In
addition, finer mesh sizes are selected for the 3D space (pedestrian parameter space) to
confirm the convergence whereas the mesh size of the infection parameters is kept the

same from mesh 2 to mesh 6. Re-running the simulations for both the pedestrian and

infection algorithms successively, the results are recorded in Figure 5.9 (a-f) for the
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various mesh sizes. With a low sequence of 50 combinations for the speed and distance
parameters and at a coarse mesh for the infection parameters (Mesh 1 and 2), the
histograms of Figure 5.9 (a & b) cannot capture the distribution of the newly infected at
high numbers. Therefore, a better refinement is performed and the number of simulations
is increased to achieve higher precision.

Table 5.5

5D Parameter space exploration using the 3D LDS and 2D lattice-based algorithms for
the social force and infection models respectively.

Parameter Range Mesh Mesh sizes

type Mesh Mesh Mesh Mesh Mesh Mesh
] 2 3 4 5 6

Vo
LDS

525 | Lps 50 50 100 300 1000 1500
n

25440 | | pg
n

3684 | o | 9 25 25 25 25 25
in (6) 2) 2 (2) (2) 2

Lattice 9 9 21 21 21 21
(0.025) | (0.025) | (0.01) (0.01) (0.01) 0.0
Number of grid points 4,050 11,250 | 52,500 { 157,500 525,000 | 787,500

Note: For the different mesh dimensions, the numbers between parentheses represent the
increment size of each parameter.
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Figure 5.9. Infection distribution histograms for (a) 4,050, (b) 11,250, (¢) 52,500, (d)
157,500, () 525,000 and (f) 787,500 grid points using 3D pedestrian LDS combined with
2D Lattice method.
5.3.4 3D LDS Pedestrian Parameters x 2D LDS Infection Parameters

Having proven the efficiency of implementing the LDS method in the models
especially at higher dimensionality order, 5D LDS simulations are performed to deduce

the overall reduction ratio of the required computational effort between 5D lattice and 5D

LDS. Recall that the low discrepancy method generates sequences of different parameter
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variations aiming to approach faster to the outcomes. Accordingly, with a pure LDS
sequence a very coarse mesh will lead to convergence faster than a very fine 5D lattice
mesh. Here, the parameter space is meshed in only four different patterns to deduce
convergence as shown in Table 5.6. Here the 5D sequences are first generated. The first
three terms of each sequence are applied to the pedestrian model and the two remaining
terms are used for the infection parameters. In a 5D dimensional space, the possible
combinations of parameters leading to convergence are located more precisely in the
space of study, thus, with reduced grid points, the rate to achieve convergence is faster.
The increase of dimensionality places more constraints on the space of study and
localizes more accurately each coordinate with respect to its domain of definition. This
statement is validated by Figure 5.10 (a-d), where no major alteration of the overall
histogram distribution can be noticed with the increase of the simulations’ number.
Table 5.6

5D LDS Parameter space exploration algorithm for the multiscale model.

Paramete Range Mesh Mesh sizes

type Mesh 1 Mesh2 Mesh3  Mesh4

3.2-5.4 fi/s
15-25 in LDS 50 100 150 200
25-40 in LDS
36-84 in LDS
0.025-0.225 50 100 100 150

Number of grid points 2,500 10,000 | 15,000 30,000
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Figure 5.10. Infection distribution histograms for (a) 2,500, (b) 10,000, (c) 15,000, and
(d) 30,000 grid points using 5D LDS method.
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5.4  Analysis of Convergence Measures

In the previous section, the mesh resizing of each algorithm is visually dependent on
the overall shape of the biased histogram where the distribution of the frequencies
remains proportional with the mesh refinement. However, validating the convergence by

means of the relative differences of statistical variables (mean, standard deviation,
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skewness and kurtosis) is required. Statistical analysis is attributed to each of the
algorithms to confirm its effectiveness to reach convergence at a different space
repartition. The statistical analysis also tells when no more refinement is required. Recall
that with mesh refinement of the 5D domain, used here, the simulation time and
computational efforts increase. Below the convergence bases are discussed for the
different parameter sweep algorithms.
5.4.1 5D Lattice

In the 5D lattice method, the parameter sweep is performed using six different meshes
starting by a mesh size in the order of thousands and increased to become in the order of
millions. With a 5D lattice sweep method, a lower number of simulations cannot cover
effectively the parameter space with the large increment between the points, thus,
convergence could not be captured precisely. Convergence is attained at mesh 4 with
2,125,000 simulations. A 0.1 ft/s, lin, lin, 2in and 0.01 increments are used for Vo, o1,
82, R and Pis respectively as shown previously in Table 5.1. As the contact radius R
increment is reduced 1lin then to 0.5 in, the relative difference of the mean, standard
deviation, skewness and kurtosis values have not changed as shown in Figure 5.11.

Looking at the evolution of same statistical variables in Table 5.7, the values of the
mean and standard deviation are slightly varying in the order of hundredth whereas the
skewness and kurtosis kept increasing which indicated the biasing of the histograms
toward a high-frequency value of three newly infected pedestrians. The distribution of the
histogram in bell shape around the peak accounts for the stochasticity of the model.
However, in decision making, the preventive plan should account for the worst-case

scenario. The histogram’s peak is attained at three newly infected members (highest



probability) and extends to twenty-four possible infection cases with a mean of

approximately 7 new

Table 5.7

infections.

Statistical data distribution for various mesh sizes using a 5D Lattice sweeping

algorithm.

Mesh 1

Statistical

variables

Mesh 2 Mesh 3

{convergence)

Mesh 4

Mesh 5
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Mean 6.88 6.98 7.02 7.03
ls)ta“.da."d 0.57 0.422 0.13 3.46B-02 247E-02 | 1.75E-02
eviation
Skewness 8.389 12.51 42.25 172.07 245.38 348.44
Kurtosis 446.73 806.10 | 10026.76 147123 288386.7 570908.6
MR 5430 | 11,640 | 144,900 2,125,000 4,165,392 | 8,245,776
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Figure 5.11. Statistical moments distribution with mesh refinement using a 5D Lattice

sweeping algorithm.

5.4.2 3D Lattice, 2D LDS

Incorporating LDS to the parameter sweep process, the same mean of 6.98 with a

close standard deviation is obtained at mesh 4 with only 809,600 simulations (see Table

5.8) compared to 2,125,000 required for 5D Lattice. The convergence is reached with the

same increments used previously for the pedestrian model parameters and only 200 low

discrepancy sequences to cover the 2-Dimensional infection parameters space. The

computational efforts are dropped to less than 50% compared to that required for a 5D
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lattice. The plot of Figure 5.12 representing the relative difference of the four statistical

moments behaves in a similar manner as that of Figure 5.11 after convergence is reached

showing almost constant values.

Table 5.8
Statistical data distribution for various mesh sizes implementing a 2D LDS sweeping
algorithm.
o o
6.95 6.95 6.96 6.98 7.02 7.00
5 0.13 0.12 8.86E-02 4.25E-02 4.14E-02 | 3.78E-02
€ 43.90 50.71 66.42 139.52 146.30 159.02
0 8796.40 | 11728.52 | 22477.07 75371.34 90290.05 | 108353.80
108,000 | 144,000 288,000 809,600 1,012,000 | 1,214,400
2 Convergence —s—Mean
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Figure 5.12. Statistical moments distribution with mesh refinement implementing a 2D
LDS sweeping algorithm.

5.4.3 3D LDS, 2D Lattice

Higher-order low discrepancy sequences are applied here for the pedestrian model
parameter instead of the infection parameters as of section 5.4.2. With the application of
LDS at a higher order of dimensionality, convergence is attained faster at 157,500

simulations with a mean of 7.04 compared to 6.98 previously (Table 5.9). This slight shift
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of the mean is resultant of the greater precision of the 3D LDS method applied to the
pedestrian parameters compared to the 2D LDS method in the previous section. Again, at
mesh 4, the relative differences of the statistical moments converge toward a zero value
as shown in Figure 5.13.

Table 5.9

Statistical data distribution for various mesh sizes implementing a 3D LDS sweeping
algorithm.

Mesh 6

Statistical Mesh 1 Mesh2  Mesh 3 Mesh 4 Mesh 5

variables (convergence)

Mean 4.45 4.51 7.11 7.04 7.02 7.02
Standard 0.39 0.23 0.16 9.29E-02 5.09E-02 | 5.87E-02
Deviation
Skewness 11.49 20.17 39.58 65.91 118.83 103.29
Kurtosis 24740 | 684.19 | 4503.48 13533.93 4513596 | 57254.43
NN 4050 | 11,250 | 52,500 157,500 525,000 | 787,500
numbel
3 .
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Figure 5.13. Statistical moments distribution with mesh refinement implementing a 3D
LDS sweeping algorithm.

5.4.4 3DLDS,2DLDS
As LDS has proven greater efficiency at higher orders, a 5D LDS is applied to the
whole parameter space. In the previous three algorithms, with the increase of the number

of simulations, the precision of the mean variable increases accordingly. Here, with 5D
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LDS, a fluctuation of the mean is noticed in Table 5.10. This is explained by the fact that
the LDS simulations are performed successively starting with a 3D LDS for the
pedestrian model, then combined with a 2D LDS for the infection model. For instance,
mesh 2 and mesh 4 have the same mean. This happens when the appropriate combination
of the whole 5D sequence is obtained. In other words, convergence occurred when the 5
elements of the permuted sequence are matching in the simulations. The standard
deviation between mesh 2 and 3 varies slightly in the order of a hundredth indicating
convergence labeled in Figure 5.14 at 15,000 simulations.

Table 5.10

Statistical data distribution _for various mesh sizes implementing a 3D LDS sweeping
algorithm.

Statistical variables Mesh 1 Mesh 2 Mesh 3 Mesh 4

(convergence)

Standard Deviation 0.488 0.271 0.246 0.173
Skewness 6.322 11.712 12.692 35.608

Kurtosis 295.782 1143.650 1655.944 3309.564
Simulations number 2,500 10,000 15,000 30,000
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Figure 5.14. Statistical moments distribution with mesh refinement implementing a 5D
LDS sweeping algorithm.
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5.5  Discussion

Sequences have found various applications such as mathematics (Caflisch &
Moskowitz, 1995), physics (Binder et al., 2012) and finance (Joy et al., 1996). For
instance, multi-dimensional integrals are evaluated by means of a (quasi) stochastic
Monte Carlo method. A major issue with these pseudo-random finite sequences is that
they are not equidistributed over the domain of integration which grants poor results. The
usage of increased equidistributed sequences with more random number improves
accuracy, but requires longer simulation time (Zaremba, 1968). The lattice-based space
repartition is a uniform distribution method that partitions the domain uniformly. This
method requires even higher computational simulations that are time-costly compared to
the pseudo-random sequences. Low discrepancy sequences using quasi-random numbers
are introduced to solve the high computation time problem on parallel clusters.
Sequences generated using Low-discrepancy (quasi-random) in a unit domain are better
“equidistributed” than pseudo-random numbers. The Halton sequence, a multi-
dimensional digital arithmetic version of the Van der Corput sequence converts the
integer numbers into numbers of base “b” (Halton, 1960). These digital sequences
constructed on binary bases enable better implementation in computer programs
(L’Ecuyer & Lemieux, 2005).

In a multidisciplinary model, low discrepancy sequences can be used to sweep the
parameters over their large domain of definition. For instance, consider the case of
analysis of a pedestrian winding queue in a security checkpoint of an airport. Knowing
that proximate interactions between pedestrians enable disease transmission, the contact

pattern between the travelers should be obtained. Pedestrian trajectories are traced by
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means of a molecular dynamics-like approach using a social force model. From the
trajectories data, the contact pattern is mapped. This contact pattern is then combined
with a stochastic individualistic mathematical epidemiological model to assess the
transmission rate among the crowd. Here, the framework is of a multi-disciplinary nature.
Both models are inter-connected and the contact data outputted from the social force
model is inputted to the infection model.

In both, the pedestrian and epidemiological models, certain parameters cannot be
exactly defined due to the inherent stochasticity in human behavior and the uncertainty of
disease propagation manner. The low discrepancy sequence method can be used in at
least one disciplinary branch to reduce the simulations effort (Figure 5.15). Applying
LDS to the whole model becomes more efficient provided that the whole sequence is
simultaneously applied to both models. In other words, in the model, the social force
model comprised three uncertain terms compared to two terms for the infection model.
Assuming a sequence of five elements using LDS, the first three terms should be
attributed to the first model, whereas the remaining two are used for the infection model.
2,500,000 -
2,000,000 -

1,500,000 -

1,000,000 -

sogon (8 }\

0 S == “ T ’ N ’ T T — 1

5D Lattice 3D Lattice 2D 3D LDS 2D 5D LDS
LDS Lattice

Number of simulations to convergence

Parameter sweep algorithm

Figure 5.15. Number of simulations required for each parameter sweep algorithm.
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5.6  Summary and Conclusions

In this chapter, the aim is to evaluate the disease propagation among a crowd in an
optimum abreast rectangular winding queue with 2 zones configuration (Rectangular
configuration 3 of chapter 4). The same multiscale model combining a pedestrian model,
evolving in a molecular dynamics-like approach and generating movement trajectories,
with an individualistic, stochastic epidemiological model that defines contact and
infection contraction based on a certain transmission probability is used. Due to the
stochastic nature and inherent uncertainty of the model’s parameters, a parameter sweep
is performed over the domain of definition of these parameters. In the pedestrian model,
the focus is on the pedestrian’s free speed, the cut-off distances between pedestrians of
the same group (family members, friends) and that of different groups. The mathematical
epidemiological model also relies on the contact radius and transmissibility probability.
Consequently, a domain of definition of five dimensions is generated and every element
of this domain corresponds to a certain scenario. Running each scenario separately
generates a certain number of infections assuming a single infective member in the
queue.

At first, a Lattice-based sweeping method is applied to the large parameter space to
generate the parameter combinations to be evaluated. In each dimension, the increment is
taken to be constant, generating a uniformly distributed vector of values within the range
of definitions of each parameter. The uniform partition of the parameters vectors may
leave some combinations uncovered, which in turn can lead to deficiencies in the results.
Also, simulating all the different combinations of parameters may be computationally

exhaustive and time-consuming, even on massively parallel computers. This occurrence
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is undesirable especially during decision making to come up with preventive strategies to
inhibit the propagation of a certain disease during its outbreak. Instead, an innovative
Low Discrepancy Sequence method is proposed and the application to the multiscale
model is demonstrated. This LDS method requires fewer simulations and has the ability
to cover the parameter space more efficiently.

A conventional five dimensions lattice-based parameter sweep is applied at various
mesh sizes leading to convergence at 2,125,000 simulations ran on a multi-processor
cluster. The results are plotted in a histogram and statistical moments are used to indicate
convergence where no refinement of the mesh is required. Aiming to reduce the
computational enormous efforts, the LDS method is applied to the two-dimensional
infection parameters domain. At a lower number of 809,600 simulations the same mean
of 6.98 newly infected individuals is obtained. The number of infections may extend up
to 24 cases with a higher probability to obtain only 3 cases.

Increasing the dimensionality of the low discrepancy sequence and applying it to the
pedestrian model parameters three- dimensional domain, LDS has again proven to be
very efficient to deliver the same results with only 157,500 runs. Note that with the
application of LDS to a 3D domain, more sequences are required compared to a 2D
domain to localize more precisely the candidate parameter combinations leading to
convergence. Further, a fourth LDS algorithm is used to sweep the entire 5D domain
granting convergence at only 15,000 simulations. Therefore, LDS sweeping method was
able to reduce the simulations from an order of millions to the order of ten thousand. In a
multidisciplinary model requiring parameter sweep, LDS can be applied at least in one

discipline in order to reduce drastically the computational efforts.
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6. Summary and Conclusions

There is a direct evidence of disease contraction in publicly crowded environments.
Air travel forums (airports and airplanes) have been identified as a location for several
infectious diseases spread such as influenza, severe acute respiratory syndrome,
tuberculosis, measles, etc. Inhibiting air travel during an outbreak can be economically
harmful and carry considerable human costs. Instead, producing science-based public
policies is an option that mitigates the disease spread without disturbing travelers in
airports. In addition, there is no appropriate fast scanning equipment that may determine
the infection of a traveler with an infectious disease especially at the early stage before
appearance of clinical symptoms. This dissertation presents a formulation of certain
pedestrian walking strategies that reduce the proximate interaction between the travelers,
thus, reducing the occurrence of infection propagation among the travelers.

A multiscale approach combining a social force model that generates the walking
trajectories of each pedestrian during enplaning from an airport lounge and deplaning
from aircraft of different sizes and seating configurations is used. Contact data between
travelers is obtained and combined with a stochastic individualistic Susceptible-Infected
(SI) model to map the propagation pattern via a Poisson distribution. Different enplaning
and deplaning strategies are evaluated. It is noticed that a two-section boarding disperses

the travelers aboard the airplane and reduces contact. Boarding by sections is commonly
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used by airlines to facilitate the flow of travelers to the airplane and reduce the turn time
in airports. However, airlines do not account for the possibility of disease propagation
when the travelers congregate in narrow areas during boarding due to economic
considerations. On the other hand, deplaning has no major effect and no strategy is
prioritized over the others. This is explained by the jamming of the aisles during luggage
unloading from their compartments along the aisle expanding from the entrance door to
the most rear economy section. Deplaning usually occurs from front to back where
travelers exit their seats and align in the aisle using common sense as the flow is ongoing.

Knowing that in crowded public places pedestrians stay in proximate contact for an
extended time, the winding queues that have various applications to organize the
pedestrians’ flow in waiting zones are studied. Winding queues found usefulness in air
travel at security and boarding gates. They are also observed in theme parks and
entertainment centers. Winding queues come in different geometries and configurations.
Some winding queues allow for a single file or abreast (side-by-side) flow of pedestrians.
Aisles of winding queues can be arranged in vertical or horizontal pattern, in one or
multiple zones, over a rectangular or square floor plan. Four different winding queues
with single and abreast pedestrians flow are evaluated. Ropes are compared to temporary
shading walls separators used to reduce interactions between pedestrians of adjacent

aisles.
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The multiscale approach used previously is extended for this problem and studied the
effect of contact radii and infection probabilities on disease spread. The variation of the
contact radius represents the possibility of transmission mechanism via fine acrosols or
coarse droplets. Fine aerosols remain suspended for a longer duration and travel a longer
distance than coarse droplets before depositing and contaminating a surface. The different
infection probabilities represent the degree of infectiousness of the disease and its chance
of survival and transmission in an appropriate environment. It can be concluded that in a
rectangular layout with abreast pedestrian queue, short aisles are favorable in coarse
droplets propagation mechanism with rope separator.

Using rope separator, interaction occurs between pedestrians of neighboring aisles and
between the two zones. With aerosols able to travel farther, aisles configuration has no
major role. The two-zone configurations reduce contact as the pedestrian exits faster
compared to one-zone configuration. Placing temporary walls between the aisles reduces
drastically the interaction between pedestrians, as pedestrians interact with others only
within the same aisle. In this case, configurations with short aisles are suitable assuming
coarse droplets transmission mechanism. At the corners, with long aerosol travel range,
more pedestrians are involved within the circle of contact.

In a square layout with very short aisles, congestion occurs at the corners. With rope

separators and droplet mechanism, frequent turning corners cause the same contact
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pattern as long aisles for abreast queues. With aerosols dispersing farther, no square
configuration has priority over the others. Again, for aerosols higher contact rate is
detected at corners. Single-file motion is also addressed in a rectangular floor plan.
Pedestrians are more dispersed within the queue compared to side-by-side walking
arrangement. Using ropes, the transmission rate is independent of the exiting time,
depending on the number of zones, and remains invariable with the disease propagation
mechanism. For wall separators, all four configurations behave in the same manner with
higher contact at the corners.

Evaluating the four different configurations comprised many parameters in the social
force model and the infection model that have a direct influence on the outcomes of the
simulations. In order to quantify the uncertainty of these parameters, a parameter sweep
is performed and the optimal (configuration 3) rectangular with abreast pedestrian
alignment and rope separator is chosen for analysis. The aim of applying the proposed
multiscale model is to expect the distribution of the number of newly infected individuals
when infective members are among a crowd. The focus concentrated on the free
pedestrian speed and cut-off distances in the social force model, and on the contact radius
and infection probability in the epidemiological model, leading in total to a five-
dimensional space.

Due to the large space of definition of parameters, the probabilistic distribution of the
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newly infected individuals varied based on the values of the chosen parameters. The
entire parameter space is covered using a conventional lattice-based algorithm. This
method sections each parameter domain uniformly using the same increment between the
terms. This lattice method is applied separately for each model and the mean number of
infections is obtained under various infection scenarios in a 5D domain. Running all the
possible permutations of variables values is computationally expensive especially when
more variables are added to the model. In addition, not knowing the appropriate
increment requires refining the mesh sequentially until convergence is attained. The
results are plotted in a histogram and convergence is monitored by statistical moments.
With the increase of simulations, the run time increased exponentially. Therefore, there is
a necessity for an innovative shortcut method that can reduce the simulations time and
grant similar results of high accuracy during decision meetings.

A parallel low discrepancy parameter sweep implementing Halton sequences, used
previously by the VIPRA team (Chunduri et al., 2018, May), is used separately in a multi
model setting. The LDS method is first introduced for the infection model in the 2D
domain with a 3D lattice sweep for the social force model. The convergence is attained at
a much lower number of simulations compared to the 5D lattice. LDS is then used at
higher 3D order for the social force model combined with a 2D lattice for the infection

model. A higher number of sequences was required for the 3D LDS algorithm, to cover
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accurately the entire domain, with overall lower number of simulations compared to the
2D LDS model. Finally, a 5D LDS algorithm is applied to the parameters of the entire
multiscale model reducing drastically the required simulations in the entire space and
granting similar results. Accordingly, LDS has proven to be highly efficient when used in
the proposed multidisciplinary model either in one discipline or in all disciplines. These
computational aspects could be easily extended to parameter sweep problems in multi-

model setting in other research areas.
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7. Recommendations for Future Research

In this study, a detailed insight into how to predict disease outbreak in a crowded
environment is provided by mimicking pedestrian behavior using a multiscale model. In
the pedestrian social force model, some empirical data was used to calibrate the force
fields. In addition, pedestrians were projected to their destination using an agent-based
model defining the motion direction. Concerning the infection epidemiological model,
the formulation could be applied to any directly transmitted disease. Computational
aspects of large scale parameter sweeps in a multiscale formulation are also investigated.
Several future research directions could be built on this framework.

The extension of this research may take four different routes. In the social force
model, more precise empirical data can be obtained from more updated sources and
newly available virtual and social-media data sources. Pedestrians can also be guided
towards their destination by means of domain adaptation, a subfield of machine learning.
The speed-density model can be enhanced by the use of the Voronoi diagram. In the
epidemiological model, an immunized category can be added to the susceptible and
infected categories.

7.1  Novel Empirical Data Sources

In this study, some parameters in the social force model were obtained from empirical
data found in the literature. This data is obtained from set-up experiments where
pedestrians are informed in advance about their assigned tasks (Zhang & Seyfried, 2013;
Seyfried et al., 2009; Liu et al., 2014; Schadschneider & Seyfried, 2011; Timmermans,
2009; Seyfried et al., 2010; Zhang et al., 2011). Other data was obtained from analyzing

videos recorded at certain locations (Han et al., 2019; Davidich & Koster, 2013; Zhu et
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al., 2019; Guo, 2018; Ellis et al., 2009; Mansouri et al., 2018; Dridi, 2014). The social
force model is also calibrated in the queue application by extracting actual data from
theme parks. However, this data is narrow and insufficient as several factors affect
pedestrians’ motion. For instance, at theme parks, the flow depends on the time (regular
or rush time). Accordingly, updated data in time frame is required. Recently, developed
approaches, such as Location-Based Services (LBS) data enables tracking pedestrian
motion in certain public locations (i.e. airports, theme parks, entertainment centers, etc.)
as a function of time. Such data will be more appropriate for use in calibrating the model.

LBS are smartphone applications offering services based on the device’s geographical
location (Quercia et al., 2010, December; Steiniger et al., 2006; GSM Association, 2003;
Wang et al., 2008, May). LBS track the geographical location of the user if allowed,
through a global positioning system (GPS) to provide information under a variety of
contexts (Guo et al., 2008; Guo et al,, 2012; Deuker, 2008). These services allow users to
check-in at places and events. Collecting and analyzing trajectories data from the service
provider offer better insight into the natural pedestrian behavior without directly
interfering with these pedestrians via planned experiments for data collection.
7.2 Voronoi Diagram-Based Pedestrian Density Model

The use of image processing to measure pedestrian density from experimental data
(video tracking) or counting the particles representing the pedestrians within a control
area (circle, rectangle, square, etc.) in simulations leads to data scatter. This data scatter
arises from the application of the classical density definition applied in materials science
and fluid mechanics to the limit of infinite particles on the macroscale to locally finite

particles (pedestrians) on the microscale. The classical definition of density is given by
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the relation D = N/A, where N represents the number of particles within a control area A.
Averaging the densities over space and time domains of study reduces the possibility to
accurately estimate the density. This calculates the average density of pedestrians over a
floor plan instead of the density distribution over the specific area of the floor plan of
interest. Also, the selection of the finite control area in which density is calculated is
critical. The shape of the floor plan (size and boundaries) is of great influence. Another
error arises from the calculation of density at each time step whereas the average speed is
obtained from a time interval (Hankin & Wright, 1958; Navin & Wheeler, 1969).

A concept to measure the microscopic characteristics of pedestrian movement based
on individuals’ trajectories is introduced by Steffen and Seyfried (2009). In their
contribution, Steffen and Seyfried (2009) introduced the concept of the Voronoi diagram
(Voronoi, 1908) that reduces the density scatter. This method computes the density
distribution by means of the Voronoi diagram at an exact position in a cell area A;
attributed to each person, integrates the distribution in the direction of motion, and
divides it by the total area A. Likewise, the principle of the Voronoi diagram can also be
applied to calculate the average motion speed and direction from position transformations
evolving in the time frame in a quasi-static flow through a bottleneck (Steffen &
Seyfried, 2009). The difference between this method and the conventional density
method is the computation of the density distribution instead of counting the number of
particles in a control area.

7.3  Domain Adaptation and Reinforced Learning
Various mathematical models have been developed to understand crowd behavior. The

social force model is a popular model developed by Helbing and his coworkers and has
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been extensively used in the simulation of crowds (Helbing & Molnar, 1995; Helbing et
al., 2000; Helbing et al., 2002). Despite the accuracy of the results to replicate pedestrian
motion, various factors such as the surrounding context (normal or emergency situation,
newly explored or common place) affect the pedestrian behavior. Accordingly, crowd
behavior models should account for the diversity of the context and the difference in
pedestrians’ behavior with the variation of this context (Curtis & Manocha, 2014). In
pedestrian models, the motion of each individual is guided as it is previously almost
predicted with slight deviations allowed. In other words, the surrounding context on
which the pedestrian response is based is already implemented. This limitation in the
model could be disentangled using deep learning (Pan & Yang, 2010).

Deep learning is a subfield of machine learning, a subset of artificial intelligence.
Artificial intelligence is the implementation of human-like intelligence to machines using
algorithms. Accordingly, these machines will have the capability to learn, analyze and
plan by means of programmed reasoning. Machine learning is the science of developing
algorithms that rely on statistical data to perform independently a certain task without any
explicit intervention. The algorithm will analyze and classify the task based on a
previously introduced training data set. Domain adaptation uses knowledge from a source
domain to model a different target domain (Pan & Yang, 2010; Bruzzone & Marconcini,
2010; Venkateswara et al., 2017). In pedestrian motion, domain adaptation relies on data
from the source domains to predict human behavior in another domain. The data sources
can be pedestrian dynamics, empirical data, observations from cameras, data from media

applications, etc. These could be used to predict pedestrian behavior and movement in
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unknown domains e.g. emergency evacuation. Combining pedestrian dynamics with
domain adaptation has great potential for improving pedestrian models.
7.4  Accounting for Inmunized Individuals in the Model

In the context of this dissertation, it is referred to infection probability charts for
Ebola, SARS and HIN1 during the incubation period post-onset of the symptoms. The
incubation period extends from the latent to the infectious period. It is assumed that
infection transmission is based on the contact time threshold and occurs once this time
duration is met. However, during the latent period a susceptible individual exposed to an
infective may not become infected. A modification to the used SI model can be done by
implementing the exposed category. In this category, it is assumed that an infected
individual is not yet infectious. Another issue to address is the resistance of certain
individuals to the infection due to their immunity. The vaccination should be
implemented in the model by introducing a vaccinated category of subjects with a certain

probability since vaccination cannot eradicate the disease contraction or propagation.
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APPENDICES

Literature survey of pedestrian density vs speed data and equation descriptions

References

Speed-density relation

Greenshields =-a.D’+Db Data collected by photographic
(1935) where: method on a roadway section to
D’: density monitor the traffic capacity.
a, b: constants for the
fitting line
Older (1968) vik)y=ve— 0.k
Navin (1969) v(k) =vr— 0.k
where:
vi: free flow speed
k: density
0: parameter
Fruin (1970) g =2M-b Uses level Of service (LOS)
wherel\:d concept.
M=1/p,
p : density
a, b: constants for the
fitting curve
Pushkarev (1975) | v=-a.k + P The author incorporates previous
work for the various pedestrian
types.
Tregenza (1976) | v, = v;. exp (_(19‘.) v)
Polus (1983) v=—a.k+ Video Data collected in the
central business district of Haifa,
Israel.
Tanaboriboon vk) =vi— 0k Bidirectional pedestrian data
(1986) from sidewalks in Singapore
using a photographic technique.
Tanaboriboon v=—a.k+f Videographic data on pedestrian
(1989) traffic in four walkways in
Central Bangkok.
The linear model represented the
best fit.
. 1 1
oy v= v (1" )
Where:
Vi free pedestrian speed
y : fitting free parameter
Uy : maximum
admissible density




Lam (1995) v(k)=vi— 0k

where:

ve: free flow speed
k: density

0: parameter

Tewarson (2002) | v(k) =vi— 0.k

Al-Azzawi InS=alnV-BInD+ | Pedestrian movement on

(2007) € sidewalks in the United

Where: Kingdom. to develop speed,
S: speed flow, and density relationships.
V: volume or flow
D: density
¢ : random noise
(constant)
a, f: constants
Bruno (2008) Kladek non-linear The study estimates the vp,,y
formula Weidman and uy in Kladek formula taking
(1993): into account various factors that
_ -y (% - ;1—1—) have influence on the density-
v=vnm[1-e M7l velocity relation such as age,
culture, gender, travel purpose,
type of infrastructure, walking
direction represented in
parameters « and 3

Hongfei (2009) v=—0o.k+f Data collected in Chinese
passenger transport terminal-
Xizhimen underground station
using video recording.

Laxman (2010) v=—a.k+ 3 Data collected at four locations
in a medium-sized city of India
and a metropolitan city in India.

Chen (2010) Level passageway: Confined level passageways,

1, D 2
v=75.267.D.¢ 253
Ascending stairway:
v=-0.917D% —1.234D
+36.166D
Descending stairway:
v=—0.12D% —7.74D*
+46.754D
Two-way stairway:
v=—0.161D% =9.113D"
+46.698D

ascending stairways, descending
stairways, and two-way
stairways in Shanghai, China,
Metro stations with massive
passenger volumes were
observed.
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Rahman (2013) v=a-Bk+e Data collected from three
Linear formula with different locations in Dhaka.
addition of e, a random Pedestrian speed-flow-density
error term due to relationships are predicted using
stochastic variations. a weighted regression method.
Rastogi (2013) v(k) = vs.exp (_E) Data collected from five cities in
o India.
Das (2015) U=U;— E_f) k From speed-density relation, the
~13(j Greenshield (1935) and
U = Us ekm Underwood (1961) models were
where: fitted to determine the
Ug: free flow speed parameters Uy, k; and k.
k;: jam density The study describes bidirectional
K,,: optimum density flow characteristics on sidewalks
and carriageways around
transport terminals in India.
Kretz (2016) v(ip)=vo—(1-2) 1TA Derived from the Social Force
eBr—1 | Model for Steady-States in
where: Single-File Movement.
vo: the desired speed of
pedestrian (the same for
all pedestrians)
A>0, B>0, 0<A<1, ©>0
are appropriately chosen
values
Nikoli¢ (2016) Vo= v e-(%) Derived from the microscopic
where:' social force model proposed by

Ve : equilibrium speed
ve: desired velocity
0,y: pedestrian specific
parameters

k: density

Helbing and Molnar (1995).
Tragenza model (1976)
Two datasets: Pedestrian
underpass at Lausanne train
station and a controlled
experiment at the Technical
University of Delft.
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