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There have been significant developments in the field of robotics. Significant 

development consists of new configurations, control mechanisms, and actuators based 

upon its applications. Despite significant improvements in modern robotics, the 

biologically inspired robots has taken the center stage. Inspired by nature, biologically 

inspired robots are called ‘soft robots’. Within these robots lies a secret ingredient: the 

actuator. Soft robotic development has been driven by the idea of developing actuators 

that are like human muscle and are known as ‘artificial muscle’. Among different 

materials suitable for the development of artificial muscle, the dielectric elastomer 

actuator (DEA) is capable of large deformation by applying an electric field. Theoretical 

formulation for DEA was performed based upon the constitutive hyperelastic models and 

was validated by using finite element method (FEM) using ABAQUS. For FEM, multi-

step analysis was performed to apply pre-stretch to the membrane before applying 

actuation voltage. Based on the validation of DEA, different configurations of DEA were 

investigated. Helical dielectric elastomer actuator and origami dielectric elastomer 

actuator were investigated using theoretical modeling. Comparisons were made with 

FEM to validate the model.  This study focus on the theoretical and FEM analysis of 

strain within the different configuration of DEA and how the actuation strain of the 

dielectric elastomer can be translated into contraction and/or bending of the actuator.  
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Chapter 1. Introduction 
 

1.1 Inspiration behind Research and Overview 
 

Robotics has grown exponentially over the past couple of decades. Despite the 

advance in robotics, the majority of the theories and techniques for control and 

fabrication are based on the conventional definition of robots: kinematic chain of rigid 

underlying structures that can perform specialized tasks [1, 2, 3, 7]. These robots often 

encounter limitations to interacting with the environment and operate under unstructured 

and refined environments. Evolution of biological life has done a great job at making 

things perfectly equipped and interactive with our world. And now, robotics is starting to 

follow suit in the emerging field called soft robotics. 

People have been referring back to 

nature for inspirations as well as for 

solutions to problems. Biological 

evolution has occurred over millions of 

years. When you look at animals, which 

are debatably the best examples we have 

for adapting to new environments, they are 

pretty much all soft. Humans ourselves are 

mainly fluid. This concept is called 

biomimetic or biomimicry. Muscular hydrostats are a biological structure found in 

animals such as octopus tentacles or the trunk of elephant. This particular muscle group 

consists mainly of muscles with no skeletal support. A muscular hydrostat is composed 

mainly of muscle tissue, which itself is mainly made of water that makes it 

Figure 1.1 Movement of earthworm 
represents how soft actuators work. [62] 
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incompressible like the hydrostatic skeletons. Hydrostatic skeleton is also a biological 

structure that is common among primitive invertebrate organisms such as the earthworm 

and hydra. Unlike muscular hydrostats, which are covered by muscle groups, hydrostatic 

skeleton is a flexible skeleton supported by the pressure from fluid-filled cavity.  

However, both share the same muscular anatomy of antagonist muscle where one 

group relaxes and elongates, while the other group generates force by contracting. Force 

transmission in muscular hydrostat is generated by exploiting the near incompressibility 

of muscle at physiological pressure and arranging the muscle structure [4,5]. Force 

transmission in hydro skeleton is provided by the pressure in the enclosed fluid. The 

principle behind motion of hydro skeleton can be shown in Figure 1.1. The muscle fibers 

are oriented in three different directions: parallel to the long axis, perpendicular to the 

long axis and wrapped around the long axis. Muscle fibers that are parallel to the long 

axis are arranged in longitudinal bundles where the muscle fibers that are perpendicular 

to the long axis are arranged in the radial or transverse pattern. Muscle fibers that are 

wrapped along the long axis are usually helical or oblique and wrap around the center 

core. 

The most important biomechanical principle that allows the muscle groups to 

elongate, bend and twist is based on incompressibility [1, 2, 4, 5]. Having a constant 

volume, decrement in one dimension will cause a compensatory increment in the other 

dimension which allows constancy in volume to enable shape changes due to the absence 

of skeletal structures. Based on incompressibility, a cylindrical muscular hydrostat can 

experience 80% elongation while the diameter of the cylinder decreases by 20%. 
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Elongation in muscular hydrostats and hydro skeletons occurs by the contraction 

of transverse or helical muscular arrangements. Bending occurs under unilateral 

contraction and contraction of transverse or radial muscles based on the antagonistic 

behavior. Twisting, also known as torsion, can occur under helical muscular structures 

creating moments based on the muscle fiber angle. When the following movements are 

performed, the stiffness of the muscular structure rises, which allows the muscle to bear 

loads. 

The wall structure of invertebrates with hydro skeletons is reinforced with 

connective tissue fibers in continuous parallel sheets of fiber that wrap the animal in 

helical arrays with opposite chirality. Such cross-fiber helical connective tissue arrays are 

capable of providing reinforcement to the wall and allow contraction, bending and 

twisting motions. 

Based on muscular hydrostats and its principles, researchers are inspired by nature 

to develop soft actuators to implement on soft robotics. Recent advances in smart and soft 

materials have permitted large interests in soft robotics. Soft robots have become more 

popular worldwide due to redundant degrees of freedom, operation under refined spaces 

and capability to perform delicate tasks. This represents new solutions, applications and 

paradigms that can overcome the definition of conventional robots and open new 

perspectives to modern robotics. Different types of actuators based on soft materials are 

being implements on the state of the art in soft robotics. Materials with favorable 

properties are studied to mimic the muscle of living organism in order to build actuators 

that are capable of performing muscle movements. In this study, soft actuators are 
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investigated in the literature review and a specific group of soft actuator was selected to 

mimic the characteristics of the muscle [3, 4, 5]. 

 

1.2 Problem Statement and Objective 
 

Biologically-inspired design has taken the center stage in the development of 

innovative solutions in various fields of engineering and science. For instance, in robotic 

engineering, the limited degrees of freedom and bulkiness of traditional “hard robots” 

impose obstacles in advancing the technology while bio-inspired “soft robots” can 

provide numerous advantages, such as high flexibility and theoretically infinite degrees 

of freedom. Soft robots are capable of performing sophisticated tasks that traditional 

robots with hard rigid bodies find troublesome. Soft robots are capable of handling 

delicate objects, able to reach objects that rigid robots cannot, and mimic the behavior of 

human muscles and behave as ideal actuator [1, 4, 5, 6]. 

Different types of soft 

actuators are studied based 

upon its advantages and 

disadvantages. Among different 

groups of soft actuators, 

Electro-Active Polymers 

(EAPs) display favorable 

characteristics including low weight, high fracture tolerance, pliability, reversibility and 

large strain for a soft actuator. The EAPs can be classified into electronic EAPs and ionic 

EAPs. The ionic EAPs require constant hydration and produce low stress which makes it 

Figure 1.2. MER bot from MIT. Electro-Active 
Polymers was used as a method for actuation. [6] 
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less favorable compared to electronic EAPs, which provide large strains, rapid response, 

and relatively high efficiency with a downfall of high voltage requirement for actuation. 

Literature studies concluded that the characteristics of dielectric elastomer actuators are 

the closest to animal muscles based on criteria of stain, actuation pressure, density, 

efficiency and response time. This will be further discussed in the literature studies. 

There have been many application using dielectric elastomer actuator (DEA) 

technology to develop soft actuators and soft robots such as the MER-bots and 

earthworms for locomotion [2, 3, 4, 6]. 

Despite the fact ionic actuators are not as favorable as electronic actuators, some 

actuators were developed using conducting polymers. Ionic conducting polymer film was 

put to use for developing underwater turtle/frog robots and fish robots [2, 3, 6]. By using 

low voltage and being surrounded by fluid to its advantage, the micro-muscle actuation 

device was developed based on conjugated polymers to actuate underwater robots. 

Ionic polymers are another group of popular materials used in soft robotic 

actuators. The most widely used actuators are ionic polymer metal composites (IPMC) 

actuators as they are susceptible to dehydration and degrading. However, controlling 

IPMC remains a challenge due to the lack of understanding of materials [2]. 

Several limitations that the EAPs inhibit make their extensive use in robotic 

actuators difficult. While most ionic EAPs can work only in aqueous media, conjugated 

polymers and ionic polymer metal composites have short life cycles.  

Electronic EAPs’ capability to mimic human muscle has led to the emerging 

interest in the development of artificial muscle. Electronic EAPs are polymers that 

change shape and size when stimulated by electric field. Among electronic EAPs, 
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dielectric elastomer actuator (DEA) is one of the most advantageous EAPs and has been 

widely used for application areas including grippers, robotics, pumps, and artificial 

muscles. Due to the capability of large strain, fast response time, and high elastic energy 

density, DEA was investigated throughout this research. As mentioned above, for robotic 

applications, there are various types of actuators being created for different types of 

applications [1, 5, 7]. All actuators have their unique advantages of large strain, fast 

response, high energy density, and force output but there is no perfect actuator without its 

own limitations. As a result, they compromise certain functions to maximize other 

advantages. Therefore, there is a need for smart material actuators which can perform all 

the functions of generic actuator and aid in many other capabilities by combining 

advantages of different actuators. 

As a result, the objective of this research is to develop a soft actuator that is 

pliable, lightweight, and capable of large strain that functions like an artificial muscle. 

The actuator needs to perform in the same manner as a generic actuator while it is 

capable of large strain and increase in strength to withstand weight. In order to determine 

the material properties, as well as geometrical properties where large strain and strength 

can coexist, optimization of the geometrical parameters of smart materials was conducted 

to mitigate the disadvantages while increasing its performance of the actuator. In 

addition, unique geometry and novel structures were investigated to maximize the strain 

while increasing its strength to bear loads. 

  



 17 

Chapter 2. Literature Review 
 

2.1 Different Types of Muscle and Artificial Muscle 
 

2.1.1 Mammalian Muscle 
 

Mammalian muscle is 

a group of heterogeneous 

tissue composed with 

different groups and sizes of 

fibers. These groups of fibers 

provide versatility and 

function as antagonistic 

muscle group. Antagonistic muscle group are made from flexors and extensors where the 

muscle contracts in one end and extends in the other to create a bending movement of a 

human arm [59].  

The muscle groups are formed around the skeletal structure aiding its shape and 

providing support and strength to withstand loads or exert a large amount of force. The 

skeletal structure supports the muscle structures while the muscle fibers work together 

providing synergy to a certain movement performed. Mammalian muscle fibers are made 

in a long cylindrical shape which are bundled together. The mammalian muscle have a 

large advantage of providing strength and bearing loads, but have limited degrees of 

freedom. Numerous actuators have been derived from mimicking the characteristics of 

mammalian muscle due to its capability of being implemented to skeletal structures. 

  

Figure 2.1 Skeletal mammalian muscle and muscle fiber. 
[61] 
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2.1.2 Muscular Hydrostats and Hydrostatic Skeletal System 
 

The fundamental principle of this actuator comes from biomimicry of muscular 

hydrostat and hydrostatic skeleton. Muscular hydrostats are a biological structure that is 

found in animals. This particular muscle group consists of muscles with no skeletal 

support. The hydrostatic skeleton is also a biological structure that is common among 

primitive invertebrate organisms. The difference between muscular hydrostats and 

hydrostatic skeletons is that hydrostatic skeletons are flexible skeletons surrounded by 

chambers of fluid whereas muscular hydrostats are composed of muscle tissues that are 

filled with water which makes it incompressible.  

However, both share the 

same muscle anatomy of antagonist 

muscle where one group of muscle 

relaxes while the other group of 

muscle contracts. The hydrostatic 

skeleton transmits force by the 

pressure that is enclosed within the 

fluid whereas, muscular hydrostat transmits the force generated by the near 

incompressibility of muscle tissue at physiological pressure and thus arranging muscle 

structure. The important biomechanical principle behind this mechanism is 

incompressibility. Having constant volume, a decrease in one dimension will cause a 

compensatory increase in the other dimension which allows constancy in volume, to 

enabling shape changes due to the absence of skeletal structures [43, 50, 59]. 

Figure 2.2 Hydrostatic muscle of an earthworm. 
[62] 

 



 19 

The idea of this actuator can be well represented by cephalopod, also known as a 

squid or octopus. Support and movement in cephalopod depends on a form of hydrostatic 

skeletal support, referred to as a muscular hydrostat, in which the musculature serves 

both for force generation and as the support for movements. Because the muscle and 

other tissues of the arms and tentacles resist volume change, any decrease in one 

dimension must result in an increase to another. Since muscle fibers are oriented in three 

different dimensions, active control of all dimensions can be achieved. This allows for a 

great diversity and complexity of movements, including elongation, shortening, bending 

and stiffening based on torsion. However, due to lack of skeletal support, the hydrostatic 

muscle cannot exert and withstand large loads compared to mammalian muscle. 

2.1.3 Artificial Muscle 
 

Artificial muscle development started with the idea of combining the benefits of 

the mammalian muscle and hydrostatic muscle. Artificial muscles are actuators that 

Figure 2.3 Different types of artificial muscles are being developed using different 
methods and materials. [10, 63, 64, 65] 
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mimic natural muscles and can perform three basic actuations; contract, expand, and 

rotate with the capacity to reverse when an external stimulus is applied.  

While developing artificial muscles, there are certain key criteria that need to be 

met based on the applications of the artificial muscle. The criteria includes stress, strain, 

life cycle, elastic modulus, response speed, energy density, force, and efficiency [1, 3, 7, 

47, 59].  

There are various means of actuation based on the criteria mentioned above. 

There are electric field, pneumatic, thermal, hydraulic and light responsive actuators that 

are suitable based on different applications. As a result, different materials are utilized 

based upon its application as well. 

Shape memory alloys and polymers and meta-materials are widely used materials 

that are being investigated as a candidates for artificial muscle. These materials are used 

to make soft actuators based on different actuation methods. 

Soft actuators fall under the category of artificial muscle and in their own ways, 

have their advantages and disadvantages. While pneumatic actuators are inherently 

compliant, have a high force to bear loads, decent strain, they require fluid or air to 

perform actuation by distributing the fluid in different chambers. This requires a chamber 

for fluids and, as it requires more than one component to perform actuation, it makes the 

fluid/pneumatic actuators not qualify for the category of artificial muscle. 

Shape memory alloys and polymers react based upon heating and cooling thus the 

response speed is slow. It is only compliant in certain phases and has low force and low 

strain which is not a desirable actuator for artificial muscles that require high force and 

large strain. 
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There is also a group of actuators that falls under the family of Electro-Active 

Polymers (EAPs). The EAPs have ionic and electronic EAPs. Among the group of 

electronic EAPs, dielectric elastomer shows favorable characteristics. It is compliant, can 

be stiffened, lightweight, and has large strain with a very fast response. Different types of 

soft actuators and developments are discussed below [1, 2, 18, 59, 60]. 

 

2.2 Types of Soft Actuators 
 

2.2.1 Pneumatic Actuators (Fluidic Elastomer Actuator) 
 

Pneumatic actuators consist a thin, flexible tubular membrane that is braided and 

netted by fiber reinforcements. Pneumatic systems are designed like those of a 

hydrostatic skeleton which is filled with air or pressurized gas. The primary source of 

pneumatic actuator is air, 

therefore it is cost 

effective and easy to 

replenish the source. It is 

also relatively safe, easy 

to operate, and maintain.  

The maximum 

contraction strain of 

pneumatic actuators is 

approximately 57% while 

average pneumatic actuators have elongation strain. Upon operation, pneumatic actuators 

can display a significant amount of block force due to the braided fibers that are present 

 Figure 2.4 Fluidic actuator utilizes different chambers for 
actuation. [22] 
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for reinforcements. However, the pneumatic actuators have several limitations for the 

robotics and the actuator industry. They are prone to buckling under compressional axial 

loading. Controlling the system and speed to the desired result remains a challenge while 

bulky air compressors are required for continuous operations restricting the mobility and 

making miniaturization more difficult. The advantage over EAPs is that pneumatic 

actuators are chemically more stable and easier to work with. In order to overcome its 

disadvantages, the scaling down of pneumatics actuator is currently under progress while 

other methods such as origami and different fiber reinforcements are being developed to 

enhance the performance of the pneumatic actuators. There have been numerous 

applications based on pneumatic actuators mimicking the movements of the animals that 

have hydrostatic skeletons such as elephant trunks, Oct-Arm, tentacle-structured robots, 

and pneumatic air muscles.  

 

2.2.2 Hydraulic Actuators 
 
Similar to pneumatic actuators, 

hydraulic actuators are used for high 

force applications. They can produce 

forces greater than pneumatic actuators of 

equal size and can operate in a higher 

pressure range. However, similar to that 

of pneumatic actuators requiring a 

constant source of pressurized gas, 

hydraulic actuators require a constant source of fluid. This requires additional parts such 

Figure 2.5 Conventional hydraulic actuator. 
[67] 
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as a fluid reservoir, pumps, release valves, and noise reduction equipment which is bulky 

and requires structural space. Hydraulic and pneumatic actuators are used in similar 

applications where hydraulics are preferred when high force is needed. 

 

2.2.3 NiTinol Artificial Muscle Actuator 
 

Nickel Titanium shape 

memory alloy is one of soft 

actuators that has a unique 

martensite transformation that 

makes it inherently flexible 

with high energy density.  

By constructing the 

NiTi wire in a coil spring 

structure, large strokes are available despite the small lattice structure. NiTi coil springs 

are created from straight wire wounded into a coil shape and annealed at a high 

temperature to reset the memorized shape. The actuation speed of the NiTi wires depends 

on the electric current to heat the memorized coil and change its shape. The NiTi coil 

exhibits similar disadvantages as other soft actuators. Since NiTi springs are unipolar 

actuators for repeatable motion, in order to perform as an antagonist actuator, it requires a 

second coil. In addition, unlike other soft actuators where energy is stored elastically in 

the off-state, NiTi requires work to be done to return to the martensite state. 

  

Figure 2.6 NiTinol wire used for actuation of a model 
hand. [66] 
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2.2.4 Electro-Active Polymers (EAPs) 
 

Electro-Active Polymers (EAPs) are often compared with electro-active ceramics, 

shape memory alloys, and other soft actuators. Comparisons are drawn since EAPs 

potentially have similar applications. 

EAPs display favorable characteristics including low weight, high facture 

tolerance, pliability, reversibility and large strain for a soft actuator. The EAPs can be 

classified into electronic EAPs and ionic EAPs. The ionic EAPs require constant 

hydration and produce low stress. This makes ionic EAPs less favorable compared to 

electronic EAPs which provide large strains, rapid response, and relatively high 

efficiency with a downfall of a higher voltage requirement for actuation [1, 2, 5, 7, 47, 

59]. 

In most cases, ionic 

actuators aren’t as favorable as 

electronic actuators. However, 

some actuators were developed 

using conducting polymers. By 

using ionic conducting polymer 

film, underwater turtle/frog robots 

and fish robots have been 

developed. The using of low 

voltage and the surrounding fluid to its advantage, micro-muscle actuation devices were 

developed. Ionic gels, polymers, metal composites, conductive rubbers and carbon 

nanotubes are examples of ionic EAPs. 

Figure 2.7 Hexapod made from Electro-Active 
Polymers (EAPs). [6] 
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As mentioned above, EAPs can outperform existing technologies such as shape 

memory alloy (SMA), pneumatic actuators, and electro-active ceramics. The most 

attractive characteristic of EAPs is their ability to emulate the operation of biological 

muscle in high fracture toughness and in large actuation strain.  

The electronic EAPs, unlike the ionic EAPs, requires large actuation voltage. 

Among the family of EAPs, dielectric elastomer actuator (DEA) shows promising 

properties as well as identical properties of human muscle. 

 

2.2.5 Actuator Comparison and Selection 
 

Despite the listed actuators above, there are other types of actuators used for 

developing artificial muscle. They all have unique material properties and provide 

different benefits. Discussed in the objectives, one of the properties that is considered for 

actuator development is large strains. The below table shows a comparison of the strain 

of different actuators. 

 
Table 2.1 Strain of different actuator types [59, 60] 

 
Actuator Type Max Strain (%) 

Shape Memory Alloy 8 

Dielectric Elastomer (acrylic) 500 

Dielectric Elastomer (silicone) 63 

Ferroelectric Polymer 7 

Piezoelectric (PZT) 0.2 

Brushless Motor 0~1000 
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Pneumatic 50 

 
As seen, acrylic dielectric elastomer shows an exceedingly high number as a soft 

actuator where a traditional brushless motor can vary its strain depending on the 

structure. This makes acrylic DEA a favorable material for artificial muscle development. 

Therefore, a direct comparison of acrylic dielectric elastomer to human muscle was 

made. 

 
Table 2.2 Comparison of mammalian muscle to dielectric elastomers [5, 59] 

 
Property Mammalian Muscle Dielectric Elastomers 

Strain (%) 20-40 10-100 

Stress (MPa) 0.1-0.35 0.1-2 

Work Density (kJ/𝑚𝑚3) 8-40 10-150 

Density (kg/𝑚𝑚3) 1037 <1000 

Continuous Power (W/kg) 50-280 <500 

Voltage (V) <1 >1000 

Modulus (MPa) 10-60 0.1-3 

 
The table demonstrates that dielectric elastomer inhibits better material properties 

in the majority of areas when compared to a mammalian muscle. This shows a clear 

indication that dielectric elastomer has the potential to be a suitable material for artificial 

muscle development.  
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2.2.6 Dielectric Electro-Active Polymer (DEAP) 
 

Dielectric Electro-Active Polymer 

(DEAP) is one of the most advantageous 

electronic EAPs and has been widely 

used for the development of smart 

actuators. Application areas include 

grippers, robotics, pumps, vehicles (land, 

aerial and marine), as well as artificial 

muscles. DEAP can work and operate in 

different types of systems and have the 

ability to actively or passively deform due 

to large strain capabilities. Depending on the material and the manufacturing techniques 

used, DEAP can be implemented for various applications to obtain the desired strains. 

DEAP consists of an elastomer sandwiched between two thin layers of electrodes, 

which are connected to positive and negative terminals from a high voltage source, 

typically by the means of wires. When an electric field is applied to DEAP, electrical 

charges form dipoles and align the electrical charges in the direction of electric field. This 

creates internal stress in the structure called Maxwell stress, which results in the 

reduction of thickness along the direction of the applied electric field and elongation in 

the perpendicular direction [1, 2, 3, 5, 7, 9]. 

  

Figure 2.8 (a) Method Dielectric Elastomer 
Actuator (DEA) operates. (b) Area increases 
as thickness reduces. [25] 

(b) 

(a) 
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2.3 Different Types of Geometrical Structure 
 

2.3.1 Helical Dielectric Elastomer Actuator 
 

Helical DEA (HDEA) is one type of 

electronic EAPs first proposed by Carpi et al. 

[10, 12, 14] in 2005. An HDEA with its unique 

configuration does not only provide the 

contractile and extendable capabilities, but can 

aid in attaining results for bending and torsion. 

HDEA can also produce larger strains and improve 

efficiency for the actuator performance. There is a 

need of new efficient technologies, which can 

improve performance by making HDEA less 

complicated and more reliable.  

Hence, while applying the voltage 

across this structure, HDEA would not only contract axially or expand radially, but also 

can be partly squeezed enabling bending within the structure, as it is less rigid 

comparatively. The actuation voltage and the thickness of the electrode and elastomeric 

layers determine the strain that the specimen is going to produce. The attributes of the 

material used to build the structure play a vital role in the behavior [10, 13, 25, 50].  

The continuity of the geometry was taken into consideration when HDEA came 

across a new geometry called spiral pleat. Spiral pleat is a method used in origami to fold 

helical structures. As a result, more studies on geometrical structures were conducted to 

enhance the criteria listed for the artificial muscle system [5, 7]. 

Figure 2.9 (a) Stacked DEA and (b) 
Configuration of Helical Dielectric 
Elastomer (HDEA). [25] 
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2.3.2 Spiral Box Pleat Origami Dielectric Elastomer Actuator (DEA)  
 

Folding sheet materials 

into cylindrical structures using an 

origami-based approach allows the 

sheet materials to be densely 

packed within a confined space 

and to be deployed when needed. 

Kresling pattern, which is a 

cylindrical origami pattern 

consisting of identical triangular 

panels with cyclic symmetry, 

functions as spontaneous buckling of a thin cylindrical shell under torsional loading. The 

incorporation of smart materials, such as electro-active polymers, in origami structures 

allows them to actively fold using electrical stimuli [50, 52].  

The Kresling pattern, named after Biruta Kresling, describes a specific buckled 

pattern under torsional load. Biruta Kresling proposed that the essence of buckling is not 

a failure of material but a model from nature that can be understood and designed for 

engineering applications. A pleat is one of the most common, versatile and easy to use 

folding techniques. There are multiple types of pleats; accordion, knife, incremental, box 

and spiral pleat. Combining the spiral pleat with the Kresling pattern can result in box 

spirals. The pattern can be drawn in one continuous zigzag line, where the strips of 

trapeziums are divided by equally spaced mountain folds then sloping parallel valley 

folds placed diagonally between the mountain folds to connect them. The Kresling 

Figure 2.10 Spiral Box Pleat made using Kresling 
pattern. [52] 
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pattern is used to form a box spiral. The box spiral creates overlaps of plane, which 

visually resembles an hourglass. The angle of the sloping valley fold is crucial in 

determining the shape of the box spiral. By making the angle large, the box will be tall; if 

the angle is small, the box will be flat. Despite the operation angle being small, it allows 

the structure to fully collapse and expand obtaining over 700% strain [50, 52, 56]. 
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Chapter 3. Validation of dielectric elastomers (DE) with ABAQUS  

3.1 Formulation of Maxwell stress 

Among the different groups of soft active polymers, dielectric elastomers are 

favorable for applications that require large strain.  The operation principle of dielectric 

elastomers are identical to a transducer. When a transducer is subjected to applied 

voltage, electric charges transmits through the electrode. The opposite charges on the two 

electrodes cause the elastomer membrane to deform. A membrane of dielectric elastomer 

is sandwiched between the two compliant electrodes. To experience large deformation, 

the electrodes need to be compliant and have lower mechanical stiffness than that of the 

elastomer membrane. Commonly used materials for the electrodes are carbon powder and 

carbon grease. This behavior allows dielectric elastomers to strain over 100% like 

rubbers. Large voltage-induced strains, lightweight, silent operation, and fast response 

speed are desirable traits of dielectric elastomer actuators. 

The dielectric elastomer operates like a parallel plate capacitor where the plate 

capacitor is separated by a thin layer of vacuum as to a thin layer of elastomer for the 

dielectric elastomer.  The separation between the two electrodes may vary but the area of 

either electrode remains fixed. The charge within the two electrodes are linear with 

applied voltage. The constitutive equation of state of parallel plate capacitors is shown 

below. 

𝑉𝑉 =  
𝑡𝑡𝑡𝑡
𝜀𝜀𝑜𝑜𝐴𝐴

 (1) 

where t is the distance between the two electrodes, Q is charge, A represents the area of 

the plate capacitor, and 𝜀𝜀𝑜𝑜 represents permittivity of vacuum.  
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𝐹𝐹(𝑡𝑡,𝑡𝑡) =  
𝑡𝑡𝑡𝑡2

2𝜀𝜀𝑜𝑜𝐴𝐴
 (2) 

𝐹𝐹 =
𝑡𝑡2

2𝜀𝜀𝑜𝑜𝐴𝐴
 (3) 

The applied voltage transmit charges to electrodes with different charges. 

Equation 1 relates the applied voltage to the charge. Based on Coulomb’s law, the 

opposite charges attract each other. To maintain equilibrium, a force need to be applied to 

each electrode. Equation 3 shows the applied force to the charge. 

The electric field id defined as E = V/t and the stress as σ= F/A. This can be written as 

the following. 

𝜎𝜎 =  
1
2
𝜀𝜀𝑜𝑜𝐸𝐸2 (4) 

Equation 4 gives the stress to counteract the electrostatic attraction which is also known 

as Maxwell stress. 

3.2 Analytical formulation based on assumptions 

Assumptions were made that a body is a sum of many small pieces and the field 

in each small piece is homogeneous. This assumption allows us to define equalities per 

unit element. We also assume that the material is incompressible, and ideal dielectric 

elastomer selected from different types of constitutive hyperelastic models based upon 

the theory of rubber elasticity. 

The equation of state can be determined based upon the nominal density of 

Helmholtz free energy W. Helmholtz energy W = F/(𝐿𝐿1𝐿𝐿2𝐿𝐿3). The three principal 

stretches can be defined as 𝜆𝜆𝑖𝑖 = 𝑙𝑙𝑖𝑖
𝐿𝐿𝑖𝑖
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2,3 and nominal stresses by 𝑆𝑆1 =
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 𝑃𝑃1/(𝐿𝐿2𝐿𝐿3), 𝑆𝑆1 =  𝑃𝑃2/(𝐿𝐿1𝐿𝐿3), and 𝑆𝑆3 =  𝑃𝑃3/(𝐿𝐿1𝐿𝐿2). The nominal electric field is defined 

as E = V/𝐿𝐿3, and nominal displacement as D = Q/𝐿𝐿1𝐿𝐿2. 

The nominal density of Helmholtz free energy can be defined by four independent 

variables; the three principal stretches 𝜆𝜆𝑖𝑖 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2,3 and the nominal displacement 

D. we can find the equation of state that provides the values of the forces and voltage 

needed to equilibrate with the dielectric in the state for a material model. 

𝑆𝑆𝑖𝑖 =  
𝜕𝜕𝜕𝜕(𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3,𝐷𝐷)

𝜕𝜕𝜆𝜆𝑖𝑖
 𝑓𝑓𝑓𝑓𝑒𝑒 𝑖𝑖 = 1,2,3 

(5) 

𝐸𝐸 =  
𝜕𝜕𝜕𝜕(𝜆𝜆1,𝜆𝜆2, 𝜆𝜆3,𝐷𝐷)

𝜕𝜕𝐷𝐷
 𝑓𝑓𝑓𝑓𝑒𝑒 𝑖𝑖 = 1,2,3 

These sets of equations define stresses as applied forces divided by the area. In absence 

of the applied force, the stresses become zero even when the voltages cause the dielectric 

to deform. The applied voltage to the electrodes causes thinning of the elastomer 

membrane which results in deformation only. 

Mentioned above, we replace a parallel capacitor with a thin layer of vacuum with an 

elastic dielectric elastomer with vanishing stiffness. Recall that electric field and electric 

displacement can be described as E = D/𝜀𝜀𝑜𝑜. We can obtain the same equation that leads 

to the Maxwell stress equation. 

The change in shape caused by the electrodes to the elastomer is typically much larger 

than change in volume. However, the elastomer is regarded as incompressible, meaning 

that the volume of the material remains unchanged during the deformation so 

that 𝜆𝜆1𝜆𝜆2𝜆𝜆3 = 1. This assumption places constraints on the three principal stretches 

making 𝜆𝜆1 and 𝜆𝜆2 as independent variables whereas 𝜆𝜆3 = 1/𝜆𝜆1𝜆𝜆2 expressing 𝜆𝜆3 in terms 
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of 𝜆𝜆1and 𝜆𝜆2. Thus we can rewrite the state of equilibrium based upon incompressibility 

using three independent variables𝜆𝜆1, 𝜆𝜆2, and nominal displacement, D. 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1

−
𝜎𝜎1 − 𝜎𝜎3 + 𝐷𝐷𝐸𝐸

𝜆𝜆1
� 𝛿𝛿𝜆𝜆1 + �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆2

−
𝜎𝜎2 − 𝜎𝜎3 + 𝐷𝐷𝐸𝐸

𝜆𝜆2
� 𝛿𝛿𝜆𝜆2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝐷𝐷

− 𝐸𝐸�𝛿𝛿𝐷𝐷 = 0 

(6) 

From the equation 6 above, we can constitute the equation of state as following. 

𝜎𝜎1 − 𝜎𝜎3 =  𝜆𝜆1
𝜕𝜕𝜕𝜕(𝜆𝜆1, 𝜆𝜆2,𝐷𝐷)

𝜕𝜕𝜆𝜆1
− 𝐸𝐸𝐷𝐷 (7) 

𝜎𝜎2 − 𝜎𝜎3 =  𝜆𝜆2
𝜕𝜕𝜕𝜕(𝜆𝜆1,𝜆𝜆2,𝐷𝐷)

𝜕𝜕𝜆𝜆2
− 𝐸𝐸𝐷𝐷 (8) 

𝐸𝐸 =  
𝜕𝜕𝜕𝜕(𝜆𝜆1, 𝜆𝜆2,𝐷𝐷)

𝜕𝜕𝐷𝐷
 (9) 

 

For ideal dielectric elastomer, we assume that the true electric field relates to true electric 

displacement E = D/ 𝜀𝜀. By integrating the equation with respect to D while holding the 

stretches fixed, we can obtain the following equation. 

𝜕𝜕(𝜆𝜆1,𝜆𝜆2,𝐷𝐷) =  𝜕𝜕𝑠𝑠(𝜆𝜆1, 𝜆𝜆2) +
𝐷𝐷2

2𝜀𝜀
 (10) 

Where 𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2) is Helmholtz free energy based upon the stretch and 𝐷𝐷
2

2𝜀𝜀
 is based upon 

polarization which contributes to the free energy independently from the principal 

stretches. Therefore, the electromechanical coupling of an ideal dielectric elastomer is 

based on geometric effect. For an ideal dielectric elastomer that is incompressible, and 

homogenous that is treated as a parallel capacitor can be described as below provided the 

material dielectric constant, and the free energy function for 𝜕𝜕𝑠𝑠 due to the stretching of 

the elastomer. 
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𝜎𝜎1 − 𝜎𝜎3 =  𝜆𝜆1
𝜕𝜕𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2)

𝜕𝜕𝜆𝜆1
− 𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐸𝐸2 (11) 

𝜎𝜎2 − 𝜎𝜎3 =  𝜆𝜆2
𝜕𝜕𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2)

𝜕𝜕𝜆𝜆2
− 𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐸𝐸2 (12) 

There are multiple free energy function due to stretching of the elastomers and can be 

defined by the theory of rubber elasticity. The constitutional hyperelastic models are neo-

Hookean, Ogden, Yeoh, Gent, Mooney-Rivlin and Arruda and Boyce models and many 

more. 

For validation between analytical and numerical solutions, the neo-Hookean model was 

selected to make a comparison between analytical modeling to numerical modeling. Neo-

Hookean model can be used to demonstrate strain value up to 50%. The neo-Hookean 

model uses the free energy function shown below. 

𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2) =  
𝜇𝜇
2
�𝜆𝜆1

2 + 𝜆𝜆2
2 + 𝜆𝜆3

2 − 3� (13) 

The derivative of the equation was taken to find 𝜕𝜕𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2) in different stretch direction. 

𝜕𝜕𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2) 
𝜕𝜕𝜆𝜆1

=  𝜇𝜇(𝜆𝜆1
2 + 𝜆𝜆1

−2𝜆𝜆2
−2) 

(14) 

 

𝜕𝜕𝜕𝜕𝑠𝑠(𝜆𝜆1,𝜆𝜆2) 
𝜕𝜕𝜆𝜆2

=  𝜇𝜇(𝜆𝜆2
2 + 𝜆𝜆1

−2𝜆𝜆2
−2) 

(15) 

 

3.3 Analytical validation based on the neo-Hookean model 

For the equi-biaxial condition where the stretch are equal, the equation reduced to the 

following. 

𝜕𝜕𝜕𝜕𝑠𝑠(𝜆𝜆1 = 𝜆𝜆2) 
𝜕𝜕𝜆𝜆

=  𝜇𝜇(𝜆𝜆2 − 𝜆𝜆−4) 
(16) 
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For testing the analytical and numerical solution, the equi-biaxial case will be solved for 

a stretch of 2. For testing 3 different states will be discussed; the initial state, the pre-

stretched state, and the actuated state. A figure with description for each state is added 

below. 

 
Figure 3.1 (a) Initial state, (b) pre-stretch state, and (c) actuated state of elastomer 
membrane with dimension notations. The picture is an exaggerated form to aid description.  

In the initial state, a square membrane with dimension LxLxt, where the L is the length of 

both sides and t is the thickness when subjected to no force and no voltage. 

When subject to force, F for equi-biaxial stretch, the membrane goes through a change in 

dimensions where the initial length L changes to length Lpre which can be described 

as 𝜆𝜆𝐿𝐿. The force, F will be measured through ABAQUS using reaction force along the 

stretch directions.  

L L 

t 

Lpre = 𝜆𝜆𝜆𝜆𝑒𝑒𝑒𝑒 ∗
 

Lpre 
Maxwell Pressure 

F 

F F 

F 

Lfinal = 𝜆𝜆𝑓𝑓𝑖𝑖𝜆𝜆𝜆𝜆𝜆𝜆 ∗
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For actuated state, the elastomer membrane is subjected to force and Maxwell stress also 

known as voltage. The membranes have final stretch which is represented as 𝜆𝜆final and 

the stress for stretches as 𝜎𝜎 =   𝜆𝜆 �𝐹𝐹
𝐴𝐴
� =  𝜆𝜆𝑃𝑃. 

The equation of state reduced to a single equation. 

𝜆𝜆𝑃𝑃 + (𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜) �𝜆𝜆2
𝑉𝑉
𝑡𝑡
�
2

= 𝜇𝜇(𝜆𝜆2 − 𝜆𝜆−4) (17) 

This equation solves for the stretch of the membrane subjected to force F from pre-stretch 

and voltage from Maxwell stress. For a fixed F from pre=stretch, as voltage varies, the 

membrane deforms in a succession of state of equilibrium, thus, allowing stretch vs. 

voltage diagram. By knowing the stretch ratio, the force from reaction force, and shear 

modulus for a given final stretch, actuation voltage can be found and converted to 

pressure using Maxwell stress. For the numerical solution, pressure obtained from 

numerical solution was applied to find the same amount of final stretch. 

The analytical solution of dielectric elastomer was done based upon an element cube. The 

most common material for dielectric elastomer is 3M VHB 4905/4910 tapes. The VHB 

4905 has a thickness of 0.5mm and VHB4910 has a thickness of 1mm. The initial 

element cube for analytical testing will have a dimension of 0.1x 0.1 x 0.1 in mm. The 

shear modulus of the VHB4910 is 50 kPa with a dielectric constant of 2.86. The cube will 

be stretched equally for a stretch ratio of 2. After the stretch is applied to the membranes, 

pressure was applied to the membranes to determine the final stretch, also known as 

deformation along the planar direction.  The free energy function of the neo-Hookean 

model will be used for bi-axial analysis. The reaction force was measured from 

ABAQUS to determine how much force is required to stretch the membrane for a given 

area. The pressure for the pre-stretching was determined and the final deformation also 
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known as final stretch is pre-determined to be 2.5. This allows us to calculate the voltage 

also known as the Maxwell stress. 

𝜆𝜆𝑃𝑃 + (𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜) �𝜆𝜆2
𝑉𝑉
𝑡𝑡
�
2

= 𝜇𝜇(𝜆𝜆2 − 𝜆𝜆−4) 

 

𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀(
𝑁𝑁
𝑚𝑚2) + (𝟐𝟐.𝟖𝟖𝟖𝟖 ∗ 𝟖𝟖.𝟖𝟖𝝀𝝀𝒆𝒆−𝝀𝝀𝟐𝟐)(

𝐹𝐹
𝑚𝑚

) �𝝀𝝀𝟐𝟐
𝑉𝑉

𝝀𝝀.𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀
�
2

= 𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀𝝀(
𝑁𝑁
𝑚𝑚2)((𝜆𝜆2 − 𝜆𝜆−4) 

 

∴ 𝑉𝑉 = 1763 𝑉𝑉 ≅   𝑃𝑃 =   7867 �
𝑁𝑁
𝑚𝑚2� = 7867 𝑃𝑃𝜆𝜆 

(18) 

Now that we found pressure applied perpendicular, by applying the same pressure to the 

equation, we can solve for the final stretch. This pressure can be altered to any voltage to 

find the final stretch of the actuated state. By altering the voltage, stretch vs. voltage plots 

can be found. For this study, we used the same Maxwell stress value that was identified 

for comparison. Upon solving for final stretch, we can find multiple solutions. -2.544, -

1.019, 1.04294 and 2.499. The value of 2.499 was chosen since the values represent 

negative stretch which is not adequate since the planar expansion occurs along the 

element cube thus the value cannot be negative. Besides, 1.04294 is not valid since, 

before actuation, a pre-stretch of 2 was applied to the membrane. Therefore value 2.499 

was chosen as the value for the final stretch. 
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3.4 Numerical validation with ABAQUS using neo-Hookean model by applying 

pre-stretch using multi-step analysis 

For numerical validation, we validate the unit element cube of the constitutive 

hyperelastic model based upon neo-Hookean rubber theory. Since the Maxwell stress is 

determined from analytical testing, the pressure will be applied directly on the membrane. 

Before solving the analytical model, pre-stretch was applied through ABAQUS using a 

multi-step function. Through multi-step analysis, reaction force was found and later 

converted to pressure for analysis. 

For modeling, the element cube, 3D deformable isotropic, homogeneous, solid, 

incompressible, 8 node brick, and the hybrid formulation were used (C3D8H). First step 

was created for pre-stretching of the elastomer membrane from a stretch ratio of 1 to 

stretch ratio of 2. During this step, the reaction force was measured to perform the pre-

stretch. The second step was created to create a secondary displacement stretch of 2.5 to 

find the equivalent pressure by using reaction force.  

The boundary condition is shown below. Due to multi-step analysis, the initial state 

restrained the element cube to be idle. For the first step, the displacement of stretch ratio 

of 2, which is 0.2 mm is applied. During this step, analysis to obtain the reaction force 

was performed. Once the reaction force was obtained, the analytical solution is solvable. 

For the second step, displacement of 2.5 was applied as a final stretch and reaction force 

was measured. This value was compared with an analytical solution later. By solving this 

using an analytical solution, Maxwell stress was obtained.  
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To cross-validate, the second step was modified by applying pressure that was solved 

based upon the analytical solution. The results showed excellent agreement between the 

two solutions. 

The boundary conditions for the two multi-step analysis is shown below. 

  

Figure 3.2 (a) Boundary conditions for numerical analysis for pre-stretch with multi-step 
and (b) boundary condition for numerical analysis involving Maxwell stress with multi-
step. 

The state of the pre-stretch and actuated state is shown below. 
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Figure 3.3 Pre-stretch state of numerical analysis 

The pre-stretch state is shown in comparison to the initial state. The cube was stretched in 

the equi-biaxial stretch of 2. As pre-stretched was applied, the element cube experienced 

thinning in the thickness direction while expansion in the planar direction to stretch of 0.2 

mm. The reaction forces were measured for each node to determine the force required to 

stretch the unit element to stretch of 2. The reaction forces measured for each node were 

summed up and the average was taken to determine the required force for pre-stretch.  
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Figure 3.4 Actuated state of numerical analysis 

Two cases were studied for actuated state. Based upon the analytical solution, the 

required Maxwell stress, also known as voltage, was found. After the pre-stretch, the first 

case study includes applying pressure perpendicular to the elastomer membrane. The 

second study was conducted by applying a stretch displacement of 2.5. The reaction force 

required for stretching to the cube element in the planar direction of 2.5 was measured, 

converted reaction force to pressure and was compared with the analytical model as well 

as the first case study of the actuated state. The voltage vs. stretch relationship was found 

using the analytical solution by applying a different voltage and finding the planar stretch 

of the membrane. This was conducted using ABAQUS to validate the analytical solution 

provided by equation 17. The analytical and numerical solution shows excellent 

agreement which is shown below. 
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Figure 3.5 Voltage vs. strain relationship for neo-Hookean element unit based upon 
analytical solution. The values were validated using numerical analysis using ABAQUS.  

3.5 Mesh Refinement  

Mesh refinement is a very important factor for determining an accurate solution in 

numerical analysis. Mesh refinement essentially divides the existing elements in half. As 

a result, mesh refinement operations approximately quadruple the number of area 

elements and increase the number of volume element by a factor of eight. Therefore mesh 

refinement was conducted until convergence to determine whether the solution is 

accurate. 

Different size meshes were used to determine whether the size of the mesh was properly 

implemented for the analysis. Mesh size of 0.1 and 0.05 was used to determine the mesh 

on the cubic element was sufficient. Comparisons were made for different mesh size 0.1 

and 0.05. 
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Figure 3.6 Mesh refinement comparison between mesh size (a) 0.05 and (b) 0.1 for stress 

The comparison of stress on the unit element shows identical values between the two 

mesh sizes. The solutions between the two mesh refinements are identical, thus shows the 

two different mesh converges and the solution is accurate. Therefore, the previous 

(a) 
Mesh size = 0.05 

(b) 
Mesh size = 0.1 
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numerical solution based on the mesh size of 0.1 is accurate in comparison to the 

analytical solution as well as a finer mesh size of 0.05. 

3.6 Conclusion 

Elastomers are capable of going through large deformations. To develop different 

applications using elastomer materials with electromechanical coupling, a better 

understanding of the behavior of the material is required. In this portion of the study, the 

numerical modeling method have been developed to make a direct comparison with 

analytical models involving the idea of pre-stretch and Maxwell stress using constitutive 

hyperelastic material behavior. Based on the comparison between the results obtained 

from analytical calculations and the numerical analysis performed in ABAQUS, excellent 

agreement of results indicate successful implementation of numerical analysis through 

ABAQUS. 
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Chapter 4. Helical Dielectric Elastomer Actuator 
 

4.1 Introduction - Hyperelastic Material  
 

Before going into constitutive hyperelastic material models, strain and stress 

tensor were recalled. Then non-linear incompressible hyperelasticity will be derived. For 

an elastomer, it can be considered rubber-alike. We consider the deformation of an 

elastomer and denote F as the local gradient of the deformation. The right and left 

Cauchy-Green deformation tensors can be defined by the following equation. 

𝐶𝐶 = 𝐹𝐹𝑡𝑡𝐹𝐹 (𝑒𝑒𝑖𝑖𝑟𝑟ℎ𝑡𝑡)       𝜆𝜆𝜆𝜆𝑎𝑎       𝐵𝐵 = 𝐹𝐹 𝐹𝐹𝑡𝑡 (𝜆𝜆𝑒𝑒𝑓𝑓𝑡𝑡)       (19) 

The right and left Cauchy-Green deformation tensor can be noted by the three 

principal invariants denoted by 𝐼𝐼1, 𝐼𝐼2 and 𝐼𝐼3. The three principal invariants are defined as 

following while C can be replaced by B, 

𝐼𝐼1 = 𝑡𝑡𝑒𝑒(𝐶𝐶)        (20) 

𝐼𝐼2 =
1
2

[𝑡𝑡𝑒𝑒(𝐶𝐶2) − 𝑡𝑡𝑒𝑒(𝐶𝐶2) ]        (21) 

𝐼𝐼3 = 𝑎𝑎𝑒𝑒𝑡𝑡(𝐶𝐶)        (22) 

where ‘tr’ is the trace operator and ‘det’ is the determinant operator. For incompressible 

materials 𝐼𝐼3 = 1. The stretch ratios are defined as the square roots of the eigenvalues of C 

and are denoted as 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3. Using the stretch ratios, the three principal invariants 

can be reduced as the following. 

𝐼𝐼1 = 𝜆𝜆1
2 + 𝜆𝜆2

2 + 𝜆𝜆3
2        (23) 

𝐼𝐼2 = 𝜆𝜆1𝜆𝜆2
2 + 𝜆𝜆2𝜆𝜆3

2 + 𝜆𝜆1𝜆𝜆3
2        (24) 

𝐼𝐼3 = 𝜆𝜆1
2𝜆𝜆2

2𝜆𝜆3
2        (25) 
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Stress is the internal cohesion of forces within a matter. For large strain problems, 

two major stress tensors are considered known as true stress tensor 𝜎𝜎, also known as 

Cauchy and the nominal stress tensor P, also known as Piola-Kirchhoff stress tensor. The 

two stress tensors can be described by the following relation, 

𝑃𝑃 = 𝑎𝑎𝑒𝑒𝑡𝑡(𝐹𝐹𝜎𝜎𝐹𝐹−𝑡𝑡)         (26) 

in which the exponent denotes the transpose of the inverse. 

Based on theory of hyperelasticity, it is assumed that stress tensors derive from 

strain energy function depends on the left strain tensor B and is denoted by W. As 

mentioned, for incompressible materials,  𝐼𝐼3 = 1. The stress tensors depend on both strain 

and an arbitrary scalar parameter p, which can be determined with the following 

equation. 

𝜎𝜎 = 2𝐵𝐵
𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵

− 𝜆𝜆I  (27) 

𝑃𝑃 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹

− 𝜆𝜆𝐹𝐹−𝑡𝑡  (28) 

where I is the identity tensor. Now making the assumption that the material is isotropic, 

the strain energy function only depends on the two first strain invariants and stress 

tensors can be rewritten as the following. 

𝜎𝜎 = 2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼1

+ 𝐼𝐼1
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼2

�𝐵𝐵 − 2
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼2

𝐵𝐵2 − 𝜆𝜆I       (29) 

𝑃𝑃 = 2𝐹𝐹 ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼1

+ 𝐼𝐼1
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼2

� I −
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼2

𝐶𝐶� −  𝜆𝜆𝐹𝐹−𝑡𝑡      (30) 

These equations are further reduced in terms of principal stretch ratios, 

𝜎𝜎 = 2�𝜆𝜆𝑖𝑖
2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼1

−
1
𝜆𝜆𝑖𝑖
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼2

� − 𝜆𝜆       (31) 
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𝑃𝑃 = 2�𝜆𝜆𝑖𝑖
2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼1

−
1
𝜆𝜆𝑖𝑖
3
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼2

� − 𝜆𝜆
1
𝜆𝜆𝑖𝑖
2      (32) 

where I = 1,2 and 3 based on the principal stretch directions. 

There have been different types of constitutive models for hyperelastic models 

and are classified by different formulation depending on the approach of strain energy 

function. Some have been using mathematical developments of free energy function W 

and identified material parameters. The other groups have been determining hyperelastic 

models through experimental data. There have been over 15 hyperelastic model theories 

developed since 1940. However, several models that have demonstrated phenomenal 

modeling. In this research, neo-Hookean, Ogden, Gent, and Mooney-Rivlin were used 

and will be further discussed in depth in later section [54, 56]. 

 

4.2 Helical Dielectric Elastomer Actuator (HDEA) 
 

Helical DEA (HDEA) is one type of electronic EAP that was first proposed by 

Carpi [10, 12, 14] in 2005. A HDEA with its unique helical configuration does not only 

provide a contractile and extendable capabilities, but also can aid in attaining results for 

bending and torsion. The helical dielectric elastomer analyzed in Carpi’s paper has one 

degree of freedom (DOF), but it has been investigated that multiple DOFs can be 

achieved by changing the patterns in the electrodes around the helix. Compared to a 

stacked DEA, the benefits of continuous DEA were not investigated before. The 

continuous DEA shows benefits where it will require less wiring and the structure itself 

can provide torsion and increase in stiffness. As a result, the structure of the HDEA was 

investigated [10, 12, 13, 50]. 
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4.3 Numerical Analysis of HDEA 
 

4.3.1 Research Objective 
 

A helical dielectric elastomer actuator (HDEA) with its unique configuration does 

not only provide the contractile and extendable capabilities, but also enables bending and 

torsional motions. This study focuses on the numerical analysis of HDEA with helical 

compliant electrodes. Numerical analysis of the designed HDEA is to be conducted to 

confirm the accuracy of the model to known results. Applying the material characteristics 

into the simulation, the functionality of HDEA for various activations can be achieved. 

Before applying these characteristics for HDEA to obtain results, validation of modeling 

was conducted for comparison purpose [10, 12, 13, 50]. 

 

4.3.2 Validation Process – Disk Validation and Single Layer 
 

Disk-shape dielectric elastomer (DDEA) was one of the validation methods that 

was used to compare with HDEA. A disconnected model of DDEA is shown below. 

When voltage is applied, the multi-layered stack disk compresses. The supply line is 

where the voltage is applied. The DDEA has a diameter of 14 mm and a length of 70 mm. 

In Kovac’s paper [4, 9], non-loaded contraction of the displayed actuator is about 30%. In 

addition, for a single layer DEAP, 40% contraction and 160 N/m2 of actuation pressure 

can be achieved with a successful manufacturing procedure. The desired actuation 

pressure is applied to the DDEA model in ABAQUS to determine the deformation. For 

numerical analysis validation, instead of voltage, a force is applied on the electrode 

region to simulate the deformation of the DDEA. This force is converted to Maxwell’s 

pressure to obtain results for validation.  
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𝑃𝑃𝑒𝑒𝑙𝑙 =     |𝐹𝐹| 𝐴𝐴⁄  =    |∇𝑈𝑈| 𝐴𝐴⁄  =   |∇ �
1
2
� 𝐶𝐶𝑉𝑉2| 𝐴𝐴�  =    𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸2      (33) 

Furthermore, using Maxwell’s pressure, knowing the material permittivity 𝜀𝜀𝑟𝑟 and 

vacuum permittivity 𝜀𝜀0, the value for electric field strength (E) is obtained. 

 
 

 
In Kovac’s paper, 30% strain, which is 21 mm of contraction deformation, was 

achieved through desired actuation pressure. Converting the actuation pressure into 

voltage, 10 kV was needed to achieve such deformation. In order to achieve 30% 

contraction deformation, a voltage of 57 kV needs to be applied as shown in the 

validation [9].  

In Kovac’s paper, it is emphasized that the dielectric film is pre-strained in planar 

directions, which alters the activation voltage level, as well as overall performances. 

However, in the simulation conducted for validation, pre-strain was not applied to the 

material. Therefore, it affected the desired actuation pressure as well as the actuation 

voltage. Although there is a difference between the voltages, the trend for contractive 

strains, as well as the variation in thickness of the DDEA match to that of Kovacs’s 

paper. If pre-stretch were applied to the numerical analysis, the voltage could be 

significantly lower and would generate similar results shown from the paper [9]. 

Figure 4.1 (a) Configuration of Disk Dielectric Elastomer based upon Kovac et al. (b) 
Numerical validation was performed to validate FEA modeling method. [4, 9] 

 

(b) (a) 
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Figure 4.2 (a) Voltage vs. contraction strain (%) and (b) voltage vs. deformation data 

acquired from Kovacs’s paper. 

 

Figure 4.3 (a) Voltage vs. contraction strain (%) and (b) voltage vs. deformation 

validation data from ABAQUS DDEA Model. 

(a) 

(b) 

(b) 

(a) 
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4.3.3 Results 
 

Single layer elastomer actuator (SLDEA) was also used as validation procedure 

for the HDEA model. As mentioned above, for a single layer elastomer actuator, 40% 

contraction from 160 N/m2 could be achieved theoretically. Therefore, single layer 

elastomer actuator squeezed between two electrodes was also used to validate for HDEA 

[10, 12, 13, 50].  

In this simulation, 700 N/m2 actuation pressure was needed to achieve a 40% 

contraction, while 160 N/m2 was the desired value. This means that the actuation voltage 

of approximately 3 kV is needed for that pressure. This yielded a value of 12% 

contraction strain when 160 N/m2 pressure is applied to the specimen. As the result, there 

were limitations in the validation process, since pre-stretch (strain) was not applied to the 

simulation. In manufacturing of DEA or experimentations, pre-stretch is generally 

applied to the elastomer before the electrodes are added or before applying voltage. 

Similarly, considering that there was no pre-stretch in the simulations for DDEA and 

SLDEA, a high voltage requirement was seen from the validation of results. After 

validation has been conducted, the results obtained from simulations of HDEA are 

discussed below. 

A single layer HDEA results were analyzed and compared to the analytical 

solution. Figure 3.4 shows the axial simulations obtained from ABAQUS for a single 

layer with 5 mm radius and 0.5 mm elastomer thickness. Different vertical displacement 

values were extracted by varying pressure from 4 kPa to 40 kPa and compared with the 

analytical model.  
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It can be seen that the finite element method (FEM) results are comparable to the 

analytical model. The small difference in between the values is due to the different 

dimensions of the model being used. Once the numerical method was verified, analysis 

for the multilayer HDEA model was conducted. Further analysis was done to 

demonstrate the deflection of a multi-layer HDEA. The relationship between Maxwell’s 

pressure and electric field allows to convert mechanical properties, e.g., pressure to 

voltage. Since the HDEA model was not pre-strained, there are some limitations to this 

simulation. 

In the simulation, elastomer with a thickness of 0.5 mm and electrode with a 

thickness of 0.05 mm were used based on the hyperelastic material properties of 3M 

VHB 4910 tape. The elastomer of the HDEA had an outer radius of 7 mm and an inner 

radius of 2 mm. The electrode of the HDEA was 0.3 mm shorter from each side of the 

elastomers edge to avoid short circuits. Neo-Hookean model was used for modeling the 

analysis for the HDEA with hyperelastic behavior. Two revolutions of the HDEA were 

designed with a pitch of 1.1 mm. Equally distributed forces were applied along the 

 

 
Figure 4.4 Axial deformation for single 
layer HDEA. 

 

Figure 4.5 Comparison of analytical13 and 
numerical solution.  
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electrode of the HDEA. From the applied forces, actuation pressure is determined to 

derive actuation voltage and hence its deformation.  

 

 

Figure 4.6 (a) Configuration of 2 layers of HDEA and (b) 10 layers of HDEA and the 
geometrical dimensions. 
 

Figure 3.6, 2 layers HDEA shows the configuration of the HDEA before and after 

the load was applied. It can be noticed that there is compression between the electrodes 

when forces are applied. It shows that the elastomers are being compressed due to the 

actuation pressure of the electrodes. Studies for DEAP were done to compare the model 

as well as to validate the method used in this HDEA simulations. For 2 layers HDEA, the 

total height of the electrode was 3.3 mm and had 0.397 mm deformation which was about 

12% total deformation. More layers were added after conducting numerical analysis for 2 

(a) 

(b) 
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layers and to show the compression in larger a specimen with a height of 16.5 mm and 

the remaining dimensions stay the same. 

Figure 3.6, 10 layers HDEA shows the deformation gradient based on the 

actuation pressure. It can be seen that there is compression within the layers of elastomer 

and hence compressing the entire specimen of 10 layers. The total thickness of the HDEA 

was 16.5 mm. Forces ranging from 1000 N to 3000 N with 250 N intervals were used to 

determine the voltage in order to find the deformation that corresponds to the applied 

forces. Voltage ranging from 5.4 kV to 56.6 kV was used to identify the change in height 

and percent deformation as shown in Figure 3.7 below. 

 

Figure 4.7 (a) Voltage vs. height and (b) voltage vs. contraction strain (%) deformation of 
10 layers HDEA.  
 

(b) 

(a) 
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The following deformation shown in Figure 3.7 was achieved when distributed 

force along the electrodes was increased with an interval of 250 N. The max deformation 

was achieved at 56.6 kV with a 2.2 mm deformation. This is about 13.3% deformation in 

length of the HDEA. From the following results, it is clear that the deformation on the 

HDEA occurs when actuation pressure is applied to the electrodes on the HDEA. 

However, again the major limitation in the simulation is that there was no pre-stretch 

applied. Taking no pre-stretch into account, the activation voltage of actual HDEA still 

seems to be promising. 

Different electrode placements were discussed above as a method to achieve 

bending actuation. The electrode was placed across while one side of the electrode was 

actuated, the other remained. The results of the simulation and geometrical configuration 

are shown below. 

 

 

Figure 4.8 Electrode placement and geometrical parameters of HDEA. The bending of 
HDEA was measured. 
 

(b) (a) 
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Figure 4.9 Voltage vs. contraction and voltage vs. bending angle for 2 layers of HDEA.  
 

The above results show the fact that HDEA can be designed not only for axial 

deformation but also bending deformation, by activating certain electrode patterns. Also, 

with an increase in voltage, HDEA can be seen to generate a larger bending angle. At 117 

kV, there is a total of 4.2-degree angle of bending for this 2 layers HDEA with 1 mm 

deformation. The bending angle was expected to be near the pitch angle which was 3 

degrees. One of the major reasons for the large voltage requirement for activations is 

again due to the pre-stretch not being applied in the model.  

 

4.4 Optimization of Geometrical Parameters of HDEA 
 

In the previous numerical simulation, optimizing the thickness and geometrical 

parameters can improve the performance of the HDEA. Therefore, geometric modeling 

was performed based on a helicoid. Geometric modeling of the HDEA can be studied by 

(b) 

(a) 
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analyzing the geometry of a helicoid. The complex nature of the helicoid comes from the 

pitch angle that makes the geometry continuous thus makes the calculation of the surface 

area more complex. The surface area is required in Maxwell’s stress equation to 

formulate the electromechanical relationship of the actuator which is shown above as 

equation 33 [10, 12, 13, 50]. 

A pitch angle is very similar to what is called lead angle when it comes to 

machinery tools. The lead angle (β) is a measure of the inclination of a screw thread from 

a plane that is perpendicular to the screw thread axis. This idea of lead angle can be used 

to find the pitch angle of the helicoid. 

 

Figure 4.10 (a) Explanation of lead angle to explain the pitch angle used in helical 
structures and (b) other parameters that are involved in helicoid geometric calculation using 
parametric equations.  
 

Based upon the definition of lead angle, the pitch angle of a helix can be 

described as an angle between the slanted surface and a plane perpendicular to the 

direction of the inclination. The pitch angle can be represented by the following 

expressions: 

𝑃𝑃𝑖𝑖𝑡𝑡𝑃𝑃ℎ 𝜆𝜆𝜆𝜆𝑟𝑟𝜆𝜆𝑒𝑒 =  tan(𝛽𝛽) =
𝑃𝑃𝑖𝑖𝑡𝑡𝑃𝑃ℎ
2𝜋𝜋𝑒𝑒𝑜𝑜

         (34) 

where the pitch of the helicoid is 𝑃𝑃𝑖𝑖𝑡𝑡𝑃𝑃ℎ = 2𝑧𝑧𝑜𝑜 where 𝑧𝑧𝑜𝑜 represents the thickness of the 

elastomer.  

(a) (b) 
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In order to calculate the contact surface area, with reference to the z-axis of the 

Cartesian coordinate system being the axis of the HDEA, the cylindrical coordinate 

system can be used to describe the helicoid. Vertical displacement z of the helicoid can be 

described by a slant c, and an azimuth angle θ in the cylindrical coordinate system. This 

equation can be written as: 

𝑦𝑦
𝑥𝑥

= tan �
𝑧𝑧
𝑃𝑃
�      (35) 

The following parametric equations can be derived from equation 35. 

∅(𝑒𝑒, 𝜃𝜃) = �
    𝑥𝑥 = 𝑒𝑒 cos 𝜃𝜃
    𝑦𝑦 = 𝑒𝑒 sin𝜃𝜃 

𝑧𝑧 = 𝑃𝑃𝜃𝜃
       (36) 

The ∅ represents the position vector and the r is the radial position of any particle 

within the boundaries of the helicoid. The main properties that are of interest are the inner 

and outer length of the helix 𝐿𝐿𝑜𝑜and 𝐿𝐿𝑖𝑖. The infinitesimal line integral over the length of 

the inner and the outer radius of the helicoid is calculated. 

𝜕𝜕∅
𝜕𝜕𝜃𝜃

(𝑒𝑒,𝜃𝜃) = �
 𝜕𝜕𝑥𝑥 =  −𝑒𝑒 sin𝜃𝜃𝜕𝜕𝜃𝜃
 𝜕𝜕𝑦𝑦 =     𝑒𝑒 cos 𝜃𝜃𝜕𝜕𝜃𝜃
 𝜕𝜕𝑧𝑧 =                𝑃𝑃𝜕𝜕𝜃𝜃

       (37) 

The infinitesimal length can be then calculated: 

𝜕𝜕𝐿𝐿 =  �𝜕𝜕𝑥𝑥2 + 𝜕𝜕𝑦𝑦2 + 𝜕𝜕𝑧𝑧2  = �𝑒𝑒2(𝑠𝑠𝑖𝑖𝜆𝜆2𝜃𝜃 + 𝑃𝑃𝑓𝑓𝑠𝑠2𝜃𝜃) + 𝑃𝑃2  𝜕𝜕𝜃𝜃

= �𝑒𝑒2 + 𝐶𝐶2 𝜕𝜕𝜃𝜃 
      (38) 

The inner and outer length of the helicoid can be determined: 

𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑜𝑜 = �  𝜕𝜕𝐿𝐿 = �  �𝑒𝑒2 + 𝐶𝐶2 𝜕𝜕𝜃𝜃
2𝜋𝜋

0
=  2𝜋𝜋𝑒𝑒𝑖𝑖,𝑜𝑜 sec𝛽𝛽       (39) 

By substituting C = 𝑃𝑃
2𝜋𝜋

 and the pitch P to equation 39, we can find an expression 

for the inner and outer length of the helicoid curve. When a single period of the helicoid 
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is rectified, the area resembles a disk shape area enclosed by the inner and outer length of 

the helicoid [10, 12, 13, 50].  

The rectified surface of the helicoid actuator looks identical to a disk and the area 

can be found by subtracting the smaller radius with the larger radius. Since the length L 

represented the circumference of the inclined radius Ri,o referred as the actual radius of 

the helicoid, the area of the helicoid for a single revolution can be found. 

𝐴𝐴𝑒𝑒𝑒𝑒𝜆𝜆 =  𝜋𝜋𝐴𝐴𝑃𝑃𝑡𝑡𝐴𝐴𝜆𝜆𝜆𝜆 𝑅𝑅𝑜𝑜
2 −  𝜋𝜋𝐴𝐴𝑃𝑃𝑡𝑡𝐴𝐴𝜆𝜆𝜆𝜆 𝑅𝑅𝑖𝑖

2 =  𝜋𝜋𝑒𝑒𝑜𝑜 sec𝛽𝛽2 −  𝜋𝜋𝑒𝑒𝑖𝑖 sec𝛽𝛽2      (40) 

  

4.4.1 Electromechanical Modeling 
 

The electric field E between the two layers of the electrode can be determined by 

applying Gauss theorem to an enclosed area of a single revolution of the helical dielectric 

elastomer actuator, 

�𝐸𝐸 ∙����⃗ 𝜆𝜆�⃗
𝑆𝑆

𝜕𝜕𝑆𝑆 =  
𝑡𝑡
𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜

      (41) 

where 𝜆𝜆�⃗  is the unit vector pointing toward the normal surface. The electrode layers are 

parallel to each other thus being identical to each other, which leads to the following 

equation.  

�𝐸𝐸�⃗ � =
𝑡𝑡

𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐴𝐴
=

𝑡𝑡
(𝜋𝜋𝑒𝑒𝑜𝑜 sec𝛽𝛽2 −  𝜋𝜋𝑒𝑒𝑖𝑖 sec𝛽𝛽2) ∙ (𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜)

       (42) 

The distance of the two parallel electrodes can be represented as the thickness of 

the elastomer 𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟. This leads to another expression that involves the relationship of 

voltage and electric field. 

𝑉𝑉 =  � 𝐸𝐸�⃗ ∙
𝑡𝑡

0
𝜕𝜕𝑡𝑡   = �𝐸𝐸�⃗ �𝑡𝑡           (𝑡𝑡 =  𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟)      (43) 
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The expression of capacitance for the two parallel electrodes can be found as the 

following. 

𝐶𝐶 =
𝑡𝑡
𝑉𝑉

=  
𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐴𝐴
𝑡𝑡

=
𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜 ∙ (𝜋𝜋𝑒𝑒𝑜𝑜 sec𝛽𝛽2 −  𝜋𝜋𝑒𝑒𝑖𝑖 sec𝛽𝛽2)

𝑡𝑡
      (44) 

Dielectric elastomer actuators experience changes in surface area and thickness 

when voltage is applied and the electrode layers are charged. The surface area increases 

while the thickness of the elastomers decreased due to compression. In addition, we 

assume that the elastomer is incompressible. In order to express this behavior, a gradient 

equation can be written in the expression of the differential 𝑈𝑈. Due to the assumption of 

the elastomer layer being incompressible, the volume is preserved. Since there is no 

change in volume, 𝜕𝜕(𝐴𝐴ℎ) = 0 where 𝐴𝐴𝜕𝜕𝑡𝑡 + ℎ𝜕𝜕𝐴𝐴 = 0.  

𝜕𝜕𝑈𝑈 =  𝜕𝜕 �
1
2
∙
𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐴𝐴𝑉𝑉2

𝑡𝑡
� =  

𝜕𝜕𝑈𝑈
𝜕𝜕𝑡𝑡

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝐴𝐴

𝜕𝜕𝐴𝐴

=  
1
2
∙ 𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝑉𝑉2 ∙ �−

𝐴𝐴
𝑡𝑡2
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝐴𝐴
𝑡𝑡
� = − 𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝑉𝑉2 ∙ �

𝐴𝐴
𝑡𝑡2
𝜕𝜕𝑡𝑡� 

                (45) 

By substituting 𝜕𝜕𝑈𝑈 in to the equation 45, the following equation describes the 

electrostatic pressure generated by the electrodes which is similar to the equation that 

involves capacitance. 

𝜆𝜆𝑒𝑒𝑙𝑙 =  
1
𝐴𝐴
∙ �
𝜕𝜕𝑈𝑈
𝜕𝜕𝑡𝑡
� =  𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐸𝐸2 = 𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜

𝑉𝑉
𝑡𝑡2

2

      (46) 

  

4.4.2 Hyperelastic Material 
 

The mechanical behavior of hyperelastic materials can be characterized by the 

strain energy functions, such as Neo-Hookean, Yeoh, Mooney-Rivlin and Ogden forms. 



 62 

In Yeoh form, the strain energy function depends on 𝐼𝐼1, the first invariant of left Cauchy-

Green deformation tensor, 

𝜕𝜕 = 𝐶𝐶10(𝐼𝐼1 − 3) + 𝐶𝐶20(𝐼𝐼1 − 3)2 + 𝐶𝐶30(𝐼𝐼1 − 3)3      (47) 

where 𝐶𝐶10,𝐶𝐶20 and 𝐶𝐶30 are material parameters and 𝐼𝐼1 can be determined from the 

eigenvalues of deformation tensor also known as stretch ratios 𝜆𝜆𝑖𝑖 (where i = 1, 2 and 3 

direction). 

𝐼𝐼1 = 𝜆𝜆1
2 + 𝜆𝜆2

2 + 𝜆𝜆3
2      (48) 

While solving for the strain functions, assumptions are made that the materials (i) 

incompressible and (ii) isotropic in the pre-deformed configuration.  

 

Figure 4.11 (a) Orientation of x, y, z direction shown as 1, 2, 3 and the (b) corresponding 
Cauchy stress. 
 

The direction of Cauchy stress is shown above. The Cauchy stress (𝑡𝑡𝑖𝑖) can be 

determined where p is the hydrostatic pressure that depends on kinetic boundary 

conditions.  

𝑡𝑡𝑖𝑖 = 𝜆𝜆𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑖𝑖

− 𝜆𝜆  (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1, 2, 3)      (49) 

Based upon the second assumption, in order to determine the kinetic boundary 

conditions, biaxial tension was used to find the Cauchy stresses. Equal stretches in 

direction 1 and 2, as well as out-of-plane contraction occurs during biaxial tension. As a 

(b) (a) 
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result, the stress in direction 3 is zero. Based on isochoric deformation (𝜆𝜆1𝜆𝜆2𝜆𝜆3 = 1), the 

principal stretch ratios can be determined. 

𝜆𝜆3 =
1
𝜆𝜆1

2 =
1
𝜆𝜆2

2      (50) 

The Cauchy stress equation can be determined by equation 51 and the kinetic 

boundary conditions. Cauchy stress t1 = t2 can be calculated for the Yeoh Strain energy 

form, 

𝑡𝑡1 = 𝑡𝑡2 = 𝜆𝜆1
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1

− 𝜆𝜆3
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆3

       (51) 

where 

𝐻𝐻𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎

       (52) 

therefore, Yeoh strain energy form can be calculated as: 

𝐻𝐻𝑘𝑘 = 𝜆𝜆𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑘𝑘

= 2𝜆𝜆𝑘𝑘[𝐶𝐶10 + 2 ∙ 𝐶𝐶20(𝐼𝐼1 − 3) + 3 ∙ 𝐶𝐶30(𝐼𝐼1 − 3)2]      (53) 

Combining equations 52 and 53 allows Cauchy stress to be calculated for t1=t2. 

Since the focus of this paper is based upon additive manufacturing parameters, 

pre-straining is not included as a part of the procedure. Therefore, there are only two 

configurations that will be used for analytical modeling: non-activated and activated. The 

activation of the dielectric elastomer actuator (DEA) results in a reduction in the 

thickness of the elastomer membrane. Change in the thickness due to the electrostatic 

force will be represented by a parameter k. Since the compressive force will be applied, 

parameter k can be represented by the following relation. 

0 < 𝑘𝑘 <
1
𝜆𝜆1

2
𝑛𝑛𝑜𝑜𝑛𝑛−𝑒𝑒𝑎𝑎𝑡𝑡

      (54) 
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The first assumption that the material is incompressible leads to the fact that the 

activated stretch ratio can be written in the function of non-activated stretch ratio 

𝜆𝜆1 and 𝑘𝑘. 

𝜆𝜆1𝑒𝑒𝑎𝑎𝑡𝑡 =
1

�𝜆𝜆3𝑒𝑒𝑎𝑎𝑡𝑡
  where  𝜆𝜆3𝑒𝑒𝑎𝑎𝑡𝑡 =   

1
𝜆𝜆1

2
𝑛𝑛𝑜𝑜𝑛𝑛−𝑒𝑒𝑎𝑎𝑡𝑡

− 𝑘𝑘      (55) 

From equation 55, activated Cauchy stress can be determined for direction 1 and 

2. 

𝑡𝑡1𝑒𝑒𝑎𝑎𝑡𝑡 = 𝐻𝐻1 𝑒𝑒𝑎𝑎𝑡𝑡 − 𝜆𝜆𝑒𝑒𝑎𝑎𝑡𝑡      (56) 

Activated hydrostatic pressure can be determined. 

𝑃𝑃𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎 = 𝐻𝐻1𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡1𝑛𝑛𝑜𝑜𝑛𝑛−𝑒𝑒𝑎𝑎𝑡𝑡 

= 𝜆𝜆1𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1𝑎𝑎𝑎𝑎𝑎𝑎

− 𝜆𝜆1𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕

𝜕𝜕𝜆𝜆1𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝜆𝜆3𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆3𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎

 
 (57) 

 

Cauchy stress in direction 3 can be obtained. 

𝑡𝑡3𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐻𝐻3𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜆𝜆𝑒𝑒𝑎𝑎𝑡𝑡 = 𝜆𝜆3𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆3𝑎𝑎𝑎𝑎𝑎𝑎

− 𝜆𝜆1𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1𝑎𝑎𝑎𝑎𝑎𝑎

+ 𝑡𝑡1𝑛𝑛𝑜𝑜𝑛𝑛−𝑒𝑒𝑎𝑎𝑡𝑡      (58) 

Cauchy stress in direction 3 corresponds to the contracting electrostatic pressure 

acting across the electrodes. Combining the Cauchy stress with the Maxwell pressure 

equation, the following equation can be derived. 

𝜆𝜆𝑒𝑒𝑙𝑙 =  
1
𝐴𝐴
∙ �
𝜕𝜕𝑈𝑈
𝜕𝜕𝑡𝑡
� =  𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜𝐸𝐸2 = 𝜀𝜀𝑟𝑟𝜀𝜀𝑜𝑜

𝑉𝑉
𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟− 𝑒𝑒𝑎𝑎𝑡𝑡

2

2

=  −𝑡𝑡3𝑎𝑎𝑎𝑎𝑎𝑎       (59) 

The thickness of the elastomer film in the activated configuration can be 

described and is related to the original thickness. 
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𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜆𝜆3𝑎𝑎𝑎𝑎𝑎𝑎∙𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎 = �
1
𝜆𝜆1

2 − 𝑘𝑘� ∙ 𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛−𝑎𝑎𝑎𝑎𝑎𝑎   (60) 

Since the relationship of the geometry of the helicoid and the relationship of 

hyperelastic material properties were determined, design parameters and envelopes were 

determined. Since the objective of the research was to make a 3D printable model design 

parameters were set based under the consideration. The geometric structure of a helical 

dielectric elastomer consists two compliant electrode layers that sandwich the elastomer 

layers. In order to prevent short circuiting from occurring, the electrodes will be designed 

with a slightly shorter radius than the elastomers. Therefore, the single external and 

internal radius of the helicoid will be considered as a design parameter [10, 12, 13, 50].  

Another geometric parameter of interest will be the thickness of the elastomer and 

electrode layers. Due to the fact this paper is based off additive manufacturing, the 

thickness of the electrode is fixed at 50 micrometers due to printer constraints of 

nScrypt’s SmartPumpTM. The nScrypt’s SmartPumpTM equipped with nTipTM has shown 

significant advantages over other methods in terms of their precise control, available 

materials, and printed material resolutions. For instance, nTipTM can print lines as small 

as 15 microns, accommodating a wide range of materials from 1 cP (centipoise) to over 1 

million cP. Since the electrode thickness is fixed, the elastomer thickness will be taken 

into account as a design parameter. Another geometric parameter that needs to be 

considered will be the pitch angle of the helicoid. By altering the pitch angle, the distance 

between the layers will be altered, thus affecting the strain of the actuator. The dielectric 

constant of the elastomer is a material property that will identify the behavior of electric 

field of the actuator which will be another design parameter. The hyperelastic material 

constants based on Yeoh’s equation that will identify the strain using Cauchy-Green 



 66 

deformation tensor and range of material properties of silicon and silicon-based 

elastomers [10, 12, 13, 50]. 

 

4.4.3 Design Envelope 
 

The design envelope is a 

condition that needs to be satisfied in 

order to make the design feasible. 

Geometric design parameters will be 

given a boundary that satisfies the 

additive manufacturing dimensions. 

The design envelope was set based on 

the current state of silicon-based DEA 

material parameters that are widely 

used in the industry for experimental purposes. A thorough research was done by Madsen 

on different materials that can be used for DEAs. The boundaries represent the design 

envelopes for the design parameter made to solve this problem. 

 

4.4.4 Optimization Method – Genetic Algorithm 
 

As described, the objective was to optimize the geometric parameters based upon 

the design envelope that is suggested above. For optimization, a genetic algorithm (GA) 

was used. A genetic algorithm (GA) optimization process was used to minimize the 

actuation voltage while maximizing the actuation strain based on the design parameters 

and their envelopes. The GA process starts by randomly setting an initial population 

Design parameter  Range and units 

External radius 2 - 5 (mm) 

Internal radius 1 - 4 (mm) 

Pitch angle 1 - 10 (degree) 

Elastomer thickness 100 - 500 (μm) 

Dielectric constant 2 – 10 

Table 4.1 Design Envelope 
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which represents random sets of possible solutions within a fixed design space. Each 

individual can be represented as a collection of design variables which in genetics can be 

described by strings of genes called chromosomes. An objective function is formulated as 

a measure of the “fitness” of the individuals within the prescribed environment. This 

fitness function depends on the design parameters and is evaluated for each individual 

within the population. Each design parameter is constrained by lower and upper bounds 

allowing the optimal results to be set within a desired range. A set of algorithm 

parameters are defined, determined to affect the performance of the optimization process. 

These parameters include the population size, the probability of cross-over, the 

probability of mutation, and others. The process of GA is an iterative approach where 

each iteration represents a new generation. In order to improve the fitness of the 

individuals in the population in subsequent generations, selection, mating, cross-over, and 

mutation operators are applied over the population to form the offspring that will 

constitute the new generation.  

The selection operator will first choose individuals based on their fitness. The 

mating process takes place between two selected individuals whose genetic material is 

combined through a cross-over of their chromosomes to produce an offspring. During 

this process, mutation operators are implemented to randomly affect the resulting 

offspring chromosome. The individual with the best fitness in a generation survives (or is 

cloned) into the next generation. This process continues until a predefined maximum 

fitness is attained or a maximum number of generations is reached.  

GA can be used for single objective optimization as well as multi-objective 

optimization problems. The difference in the GA application for single objective and 
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multi-objective optimization lies within the evaluation method. For single objective 

functions, the fitness function is simply the inverse of the objective function. Single 

objective optimization leads to an optimal solution within the design space. In multi-

objective optimization, the rationale consists on assigning a rank to each individual based 

on its dominance by the other individuals in the same generation. The non-dominated 

sorting approach can be also applied to ranking fronts of individuals instead of single 

individuals where the rank of each front is determined based on its dominance by other 

fronts.  

𝐹𝐹𝑖𝑖𝑡𝑡𝜆𝜆𝑒𝑒𝑠𝑠𝑠𝑠(𝑖𝑖) =
𝑁𝑁𝐴𝐴𝑚𝑚𝑁𝑁𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 𝑖𝑖𝜆𝜆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝐴𝐴𝜆𝜆𝜆𝜆𝑠𝑠 − 𝑒𝑒𝜆𝜆𝜆𝜆𝑘𝑘(𝑖𝑖) + 1

∑ (𝑁𝑁𝐴𝐴𝑚𝑚𝑁𝑁𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 𝑖𝑖𝜆𝜆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝐴𝐴𝜆𝜆𝜆𝜆𝑠𝑠 − 𝑒𝑒𝜆𝜆𝜆𝜆𝑘𝑘(𝑗𝑗) + 1)𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑁𝑁𝑒𝑒𝑙𝑙𝑠𝑠
𝑗𝑗=1

 (61) 

Equation 61 demonstrates the multi-objective optimization fitness value 

expression for an individual i at a given generation consisting the set number of 

individuals. Eventually, the optimization will lead to a frontier of individuals in the 

optimization space that represents the lowest combination of objective function values. 

This frontier is known as the Pareto front and the values along the Pareto front will have 

a rank of 1. The positive aspect of Pareto front is that it allows to choose among a series 

of optimal solutions based on the feasibility of their optimization parameters and also 

allows compromise between the different objectives. The non-dominated sorting genetic 

algorithm (NSGA) approach for individuals will be used to solve for the bi-objective 

optimization function problem in this paper. With two objective functions involving 5 

different optimization parameters, the goal of this optimization is to maximize the strain 

while minimizing the voltage.  

The key concept behind NSGA is a non-dominated sorting of the population and a 

crowding distance. This algorithm uses the elite preserving operator, which grants an 
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opportunity for the elitist of a population to be directly carried over to the next 

generation. The algorithm for NSGA is shown below [28, 29, 50]. 

 
• A fitness function is chosen to represent the problems, selection operator, a crossover 

operator and a mutation operator. 

• Population size, crossover probability, and mutation probability are selected. 

• Random population of strings is initialized for the first generation (tinitial=0).  

• Evaluate each string in the population. 

• If t>tmax or other termination criteria is satisfied, then terminate. 

• Pre-perform reproduction on the population. 

• Perform crossover on random pairs of strings. 

• Perform mutation on every string. 

• Evaluate strings in the new population. Set t = tinitial+1 and repeat process from step 5. 

 
In the present work, objectives are to minimize the voltage and to maximize the 

strain. Since objective functions are contradictory in nature and genetic algorithm leads 

the minimizing behavior, some modification is needed for the strain objective function. 

The voltage objective function will remain as is while the strain objective function will be 

inverted and minimized simultaneously. The fitness functions for each NSGA are 

determined. These functions are maximized simultaneously using the combined fitness in 

NSGA-II. Pareto front, the most optimal response at different optimal settings were 

determined. The parametric equation 62 is shown as a combination of these objectives 

with a weight w. The first function describes the voltage while the second function 

describes the strain. 
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𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5)

= 𝑤𝑤𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5) + (1 − 𝑤𝑤)𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5) 

   

(62) 

 

4.4.5 Results 
 

The objective of optimization is to minimize the actuation voltage while 

maximizing the actuation strain of the HDEA. Variation of actuation voltage and 

actuation strain is plotted as shown in Figure 3.12. This figure shows the Pareto front for 

the optimal response at different optimal design parameter settings. Since optimal design 

parameter settings for optimization was selected according to the material properties of 

silicon-based DEAs that have been previously investigated, it is crucial to select optimal 

design parameter for available solutions in Pareto front. 

 

Figure 4.12 The Pareto Front for the multi-objective function. Objective 1 is voltage while 
objective 2 is the inverse of strain. 
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Voltage (kV) 
Contracted 

displacement (μm) 

Thickness 

(μm) 
ɛr Ro (mm) Ri (mm) 

8.902528 20.2 139.3 6.954 3.450 2.210 

 
Table 3.2 shows the optimized voltage and displacement values along with the 

corresponding optimal combination of parameters. From optimization, the minimum 

value of 8.9 kV actuation voltage corresponded to 14.5% strain where the thickness of the 

elastomer, dielectric constant, external radius and internal radius were 13.9 μm, 6.9, 345 

μm, and 221 μm. Poulin’s paper on 3D printed DEA with an actuation voltage of 300 V 

provides a good indication of how these parameters falls within the region of 

optimization. Based on Figure 3.13 of Poulin’s paper [18] on circular DEA where 

different membrane thickness circular DEAs were 3D printed, the breakdown voltage and 

the percent strain per actuation voltage depended on the thickness of elastomer. 

As the thickness of the elastomer increased the voltage increased so as the 

dielectric breakdown. From the following information, with elastomer thickness of 139 

μm, actuation voltage of 8.9 kV seems to be reasonable and the dielectric breakdown 

satisfies the operational range. This shows that if the elastomer thickness can be reduced, 

the actuation voltage can be greatly reduced while compromising the amount of strain. 

Based on the optimized parameters as well as Poulin’s paper, a numerical model of 

HDEA was made on Abaqus to test the performance of the HDEA and to see whether the 

deformation parameters were similar to the actution that is stated above. In previous 

work, numerical studies were done based on Neo-Hookean material properties as well as 

Table 4.2 Optimal combination of parameters in HDEA. 
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different geometric boundaries and VHB 4910 as its material. In this numerical analysis, 

a new model was created based on the optimized parameters. 

 

Figure 4.13 Optimized HDEA before (a) and after (b) actuation. The bottom electrode was 
fixed and the pressure was applied on the electrode section based on the positive and 
negative charge direction to implement compression of the elastomer layers. 
 

Based on the simulation, the amount of actuation achieved by the corresponding 

parameters was identical. In ABAQUS simulation, the values were based on mm scale 

rather than meter scale. As a result, 24.9 μm of deformation occurred while in the 

optimized calculation 20.2 μm was achieved. There is an approximately 15% error 

between numerical approximations compared to the analytical solution derived from 

optimized parameters. 

 

4.5 Feasibility to 3D print HDEA and alternative methods  
 

Since the optimization was based upon consideration of 3D printing, studies on 

different types of materials and 3D printing method were investigated. Typical DEAs 

have an elastomer membrane that is 20 ~ 100 µm since the fabrication of elastomer 

membrane that is thinner than the values is challenging to fabricate and the membrane 

quality and uniformity degrades. The actuation voltage of DEAs can typically be reduced 

by optimizing the material parameters of the elastomer membrane or by reducing the 

thickness. The material properties of hyperelasticity and dielectric constant can be 

(b) 

(a) 
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engineered by addition of different types of silicon fillers. Recently some good materials 

with high dielectric constants have been developed which makes this option more 

feasible. 

Due to the complex geometry of the helicoid, the 3D printing process of the 

helical dielectric elastomer was investigated and different approaches to 3D print the 

HDEA was thought. 3D printing DEA itself faces multiple challenges thus 3D printing a 

complex helical shape provides more challenges. While investigating different options to 

3D print helical structures, the concept of spiral pleat was introduced. There has been a 

long study on how to effectively fold a helicoid in origami and it is called spiral pleat 

origami. By adopting the concept of how the spiral pleat works, a helicoid can be divided 

into multiple right angle triangles. The single layer helicoid can be divided into small grid 

elements. The methodology to print the HDEA is to print each element of the grid one at 

a time before advancing to the other. Unlike printing the structure layer by layer 

depending on the elastomer or electrode, HDEA will be printed based on each grid, 

printing the elastomer and the electrode layer at the same time. For HDEA, the 

trapezoidal shape grid along the helicoid axis will be used as a grid element for the 

manufacturing process. 

This brought in a new perspective of designing an actuator that is capable of 

meeting the requirements of artificial muscle. The helical DEA fabrication came down as 

an obstacle so new geometrical configuration was to be investigated. Since the shape of 

the spiral pleat provided an inspiration for active origami structures, helically arranges 

origami structures were studied.  
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Chapter 5. Origami Dielectric Elastomer Actuator 
 

5.1 Origin of Origami 
 

Origami originated from the term of Japanese art of folding paper, “ori-kami”. 

Traditional origami utilizes a single sheet of planar paper with no cuts, no gluing, and no 

tearing that is then manipulated and folded into certain shapes. Over the past couple of 

decades, studies on geometrical aspects of origami and development of practical 

application, as well as new structures and devices inspired by origami, have greatly 

progressed due to the growing interest of mathematicians and engineers. As the majority 

of the sheet materials used in engineering applications has been relatively rigid in 

comparison to paper, most studies have been drawn to rigid active origami where pre-

determined creases allow continuous motion between the folding elements. Also, the 

mechanical model of a flat sheet of paper can be generally related to the sheet material 

membrane, with the characteristics of no bending stiffness and a high stretching stiffness 

where the transformations rely on minimal energy movement for bending. The folding 

linkage is called the ‘crease’ and is considered as a hinge in the model that was studied. 

The rigid region between the creases is restricted from bending or deformation while 

folding. The crease, which is a fold, can either be a convex or a concave shape. In 

origami, we describe the convex fold as a mountain and concave fold as a valley. A 

crease pattern is made by altering different combinations of crease. 

Since helical shapes of origami were being studied, buckled origami pattern that 

was continuous was brought up. Among different crease patterns and tessellations, 

Kresling pattern was a continuous pattern of zigzag trapezoids that was able to form a 

structure capable of large deformation and strain. 
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5.2 Kresling Pattern Origami Spiral Box Pleat Actuator 
 

The Kresling pattern, named after Biruta Kresling, describes a specific buckled 

pattern under torsional load. Kresling proposed that the essence of buckling is not a 

failure of material but a model from nature that can be understood and designed for 

engineering applications. A pleat is one of the most common, versatile and easy to use 

folding techniques [32, 33, 34]. There are multiple types of pleats; accordion, knife, 

incremental, box and spiral pleat. Combining the spiral pleat with the Kresling pattern 

can result in box spirals. The pattern can be drawn in one continuous zigzag line, where 

the strips of trapeziums are divided by equally spaced mountain folds then sloping 

parallel valley folds placed diagonally between the mountain folds to connect them. 

In this paper, the Kresling pattern is used to form a box spiral. The box spiral 

creates overlapping of plane, which visually resembles an hourglass. The angle of the 

sloping valley fold is crucial in determining the shape of the box spiral. By making the 

angle large, the box will be tall; if the angle is small, the box will be flat. The Kresling 

pattern spiral box pleat is designed using Autodesk Fusion 360. The model is made under 

the assumption that it can be 3D printed. In order to allow folds, a living hinge is 

implemented within the design of the Kresling pattern spiral box pleat. A living hinge is a 

flexible hinge made from the same materials as the rigid piece that is connected to. These 

living hinges are cut or thinned to allow the bending of the rigid pieces like a hinge 

system. The idea of the living hinge is inspired by the idea of kerf cutting for wood in 

carpeting. To bend the wood, carpenters use kerf cuts to bend wood to create an arced 

wooden structure. For our application, we will have thick and thin regions along with the 
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inactive layer, which will determine the range of folding. Combining the Kresling pattern 

spiral box pleat with the living hinge allows sheet materials to fold in a similar behavior 

of a paper [32, 33, 34]. 

In order to actively fold the Kresling pattern spiral box pleat, the use of smart 

materials is investigated as a method to fold and unfold the origami structure. Among all 

smart materials, dielectric elastomer (DE) is investigated and used as an actuator to fold 

and unfold the origami structure. DEs are compliant materials that are very promising due 

to high actuation strain and high energy density. The working principle of dielectric 

elastomer actuator (DEA) is a compliant capacitor where soft elastomer film is 

sandwiched between the two compliant electrode layers of opposite charge. By applying 

voltage, the electrode layers of opposite charge contracts due to the electrostatic forces 

and the DE experience reduction in the thickness direction while expanding along the 

planar direction due to incompressibility. The electrostatic pressure across the electrode is 

given by the Maxwell stress. The Maxwell stress acting on the elastomer can be 

calculated when given applied voltage, film thickness, and dielectric constant of the 

material by equation 33. Contraction of DE in the thickness direction is the fundamental 

principle mechanism for in plane motion, which can be used for actuation purpose for 

different actuator configurations. As a numerical study, we focused on using the 

conventional VHB 4910/4905 tape that is widely used as dielectric elastomer substrates. 

There have been different configurations of DEAs that have been developed, such as 

stacked DEA, helical DEA, folded DEA, disk DEA, and other configurations. In the 

origami structure, stacked DEA will be used since it is best suited for this application 

involving sheet alike structures.  
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Prior to numerical analysis, geometrical modeling of spiral box pleat using 

Kresling pattern was investigated. Kresling pattern is a naturally occurring pattern that a 

thin walled sheet is wrapped around two coaxial mandrels while leaving a gap between 

the two. When the mandrels buckle under torsion as well as axial compression, a folding 

pattern appears that is known as the Kresling pattern. Since the folding pattern was 

developed by the use of force under natural circumstances, pure physics is able to unfold 

within the Kresling pattern system with minimum energy [32, 33, 34].  

 

Figure 5.1 (a) Crease pattern of spiral box pleat, (b) fully folded configuration, (c) fully 
deployed configuration. 

 
Kresling pattern is a pattern made from trapeziums that are divided by equally 

spaced crease patterns of mountain folds and sloping parallel valley folds placed 

diagonally between the mountain folds connecting them, see Figure 4.1 (a). Folding 

(a) 

(b) (c) 
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Kresling pattern generates two types of deformations that are known as crease bending 

and facet bending. In this paper, we design a mathematical model of the structure by 

studying the crease lines of the origami pattern in which the crease lines are folded by 

using dielectric elastomer actuators. The alternating mountain folds and valley folds 

provide the Kresling origami cells to behave like springs, transforming its shape from a 

hexagon-alike shape into a square shape as it deforms along the height direction. Based 

on the crease folds, potential energy under external force and torque can be derived [11, 

15, 18, 19]. Then by using the principle of minimum potential energy, we can obtain the 

relationships of external force with displacement along the height. 

 

5.2.1 Establishing Geometrical Relationship of Spiral Pleat Box 
 

In order to express the motion of the Kresling spiral box pleat, axial motion and 

rotational motion are expressed using the height of the spiral box pleat h and the relative 

twist (offset) angle θ. The height h is defined as the distance between the top surface 

ABCD and surface 1234 in Figure 3.14 (b). The relative twist angle is defined as the 

angle θ between the center point of 12 and point C,  

ℎ =  ℎ0 − ∆ℎ   ;  𝜃𝜃 = 𝜃𝜃0 − ∆𝜃𝜃  (63) 

 
where ℎ0 and 𝜃𝜃0 are initial height and initial relative twist angle and ∆ℎ and ∆𝜃𝜃 are axial 

and rotational displacements. From the length of elements of b and c in Figure 3.14 (b), 

we derive the equations to express b and c in terms of displacement ∆ℎ and rotational 

angle ∆𝜃𝜃 in order to calculate the elastic energy with respect to deformation. From Figure 

3.14 (b), we can develop the following equations, 
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where 1𝐷𝐷 and 1𝐵𝐵 are line elements between point 1 and point D, and point 1 and point B. 

Based on the geometry from Figure 3.14 (b), 1𝐷𝐷 and 1𝐵𝐵 can be shown by the following 

equation. R is the radius of the circumscribing circle that fits the spiral box pleat 

structure. From equation 64, we can derive the following. 

𝑁𝑁2 = ℎ2 + �𝑅𝑅 sin �𝜃𝜃 −
𝜋𝜋
4
��
2

 ;   𝑃𝑃2 = ℎ2 + �𝑅𝑅 sin �𝜃𝜃 +
𝜋𝜋
4
��
2
 

    (65) 

 
However, we can identify that the length a and b do not change as deformation 

occurs. Therefore, term c is being used to model the relationship of the spiral box pleat. 

By substituting equation 64 to equation 65, 

𝑃𝑃 = �(ℎ0 − ∆ℎ)2 + �𝑅𝑅 sin�(𝜃𝜃0 − ∆𝜃𝜃) +
𝜋𝜋
4
��

2

 
 (66) 

 
The following equation demonstrates the deformation of the Kresling spiral box 

pleat structure that involves changes in axial and rotational motion. The linear elastic 

strain can be investigated by the following equation. 

𝜀𝜀 =  
𝑃𝑃 −  𝑃𝑃0
𝑃𝑃0

     (67) 

 
Then we can find the dimensionless strain energy of the unit length as, 

𝑤𝑤 =  
𝜕𝜕
𝐸𝐸

=
1
2
𝜀𝜀2 

 (68) 

 
where E is Young’s Modulus of the material of the active layer (silicone: 0.001 GPa). 

In order to examine the entire behavior of the spiral box pleat, minimum potential 

energy is used to determine the axial force, torque, deformation in axial and rotational 

motion. In previous literature studies on water bomb origami configurations that inhibit 
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bi-stable behavior, they have used the material spring constant k to couple the behavior of 

the origami structure. Based on the equation of bi-stable origami structure, the potential 

energy is calculated by the difference between elastic energy along element c and work 

done by the external force and the torque. Elastic energy and work can be defined as the 

following, 

𝑈𝑈 =
1
2
𝑘𝑘(𝑃𝑃 − 𝑃𝑃0)2   ;   𝜕𝜕 = 𝐹𝐹∆ℎ + 𝑇𝑇∆𝜃𝜃 

    (69) 

 
where k is the spring constant of element c where 𝑃𝑃0 is the initial length of c. By 

combining the equation 69, potential energy can be determined,  

𝑃𝑃.𝐸𝐸 =  𝑈𝑈 −𝜕𝜕 =  
1
2
𝑘𝑘(𝑃𝑃 − 𝑃𝑃0)2 −  𝐹𝐹∆ℎ − 𝑇𝑇∆𝜃𝜃 

 (70) 

 
The minimum potential energy can be described by the following equation: 

∆(𝑈𝑈 −𝜕𝜕) =  ∆𝑃𝑃.𝐸𝐸 = 0  (71) 

 
The function of potential energy is a function of ∆ℎ and ∆𝜃𝜃, by substituting 

equations 69, 70, and 71, the equation can be rewritten as the following, 

𝜕𝜕𝑃𝑃.𝐸𝐸
𝜕𝜕∆ℎ

=  −𝑘𝑘(ℎ0 − ∆ℎ) �1 −
𝑃𝑃0
𝑃𝑃
� − 𝐹𝐹 = 0 

 

 (72) 
𝜕𝜕𝑃𝑃.𝐸𝐸
𝜕𝜕∆𝜃𝜃

=  𝑅𝑅2𝑘𝑘 �
𝜋𝜋
4

+ 𝜃𝜃0 + ∆𝜃𝜃� �1 −
𝑃𝑃0
𝑃𝑃
� − 𝑇𝑇 = 0 

 
By solving the two equations above, we can obtain the relationship between the 

axial and torsional motion. FEA was conducted to verify the results of analytical 

solutions. One side of the spiral box pleat inhibits an over and under configuration, which 

allows the spiral box to act as a spring. This allows the origami structure to behave like a 
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spring when force is exerted. Therefore, the last cell that is the 4th cell of a single layer 

spiral box pleat inhibits a complex geometry. For this reason, the last cell is treated the 

same as the other three cells that are used for static analysis. In addition, the assumption 

of spring constant k of silicone rubber (k=17) was used for the static analysis. 

Table 5.1 Parameters for static analysis 

Parameters value Parameters value 

Initial height ℎ0 (inch) 1.65 Cell height (inch) 2.75 

Initial angle 𝜃𝜃0 45 Thickness (inch) 0.02 

Cell width a (inch) 2.125 Spring constant k 17 

 
Based on the parameters shown in Table 4.1 the results in Figure 4.2 were obtained. 

  

 
 

Figure 5.2 (a) Strain displacement graph, (b) angle displacement graph, and (c) force 
displacement graph 

(b) 

(c) 

(a) 
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As shown in Figure 4.2 (a), due to the nature of the origami structure of the 

Kresling spiral pleat, deformation achievable by the structure is approximately 700%. 

The structure undergoes about 30 degrees’ deformation while collapsing to its non-

deployed state. The amount of force that was required to collapse the structure from its 

deployed state to non-deployed state is shown in Figure 4.2 (c). Based on the amount of 

force required to collapse the structure, we can identify the strength that is required by the 

dielectric elastomer actuator (DEA) to fold the origami structure. 

 

5.2.2 Stacked Dielectric Elastomer Actuators for Folding 
 

Dielectric elastomer actuators (DEAs) are elastomeric mechanical transducers 

that are capable of converting electrical energy to mechanical energy. By applying a high 

DC voltage on the compliant electrodes that sandwich the dielectric elastomer 

membranes, the dielectric elastomer collapses in thickness direction while expanding 

along the planar direction. Based on the assumption of constant volume Maxwell tensor 

or electrostatic pressure, we can obtain the following equation, where 𝜀𝜀0 is the 

permittivity of free space, 𝜀𝜀𝑟𝑟 is the permittivity of the dielectric material, V is the voltage 

applied and d is the gap between the electrodes or thickness of the elastomer membrane.  

𝑈𝑈 =  
1
2
𝜀𝜀0𝜀𝜀𝑟𝑟

𝑉𝑉2

𝑎𝑎2
 

 (73) 

 
As mentioned above high voltage requirement is a major challenge that is 

associated with DEA applications. In recent studies, researches were conducted to reduce 

the gap between the compliant electrodes. By reducing the thickness of the elastomer 

membrane, voltage requirements can be significantly decreased. Based on recent studies, 
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researchers fabricated 3μm dielectric film and lowered the actuation voltage to 300 V. By 

stacking thin layers of dielectric films, large deformation along with lower actuation 

voltage can be obtained. For the Kresling spiral box pleat, the shape works best when the 

thickness of the structure is minimal. Dielectric elastomer has been investigated as a 

viable option for active material application due to lightweight, the capability of large 

strains, high specific energy density, and flexibility. Most commonly studied DEs are 

VHB 4910 and VHB 4905 that are produced by 3M, however, recent studies show that 

silicone can be used as well for DE fabrication.  

As mentioned, the objective is to validate the force required to actuate the 

folded/bending region of the Kresling spiral box pleat using dielectric elastomer actuator. 

Therefore, the stacked bending dielectric elastomer actuator is used to achieve the folding 

behavior for the origami structure. The dielectric elastomer actuator that is used for the 

study is identical to that of bending actuators. However, in order to fold, the inactive 

(passive) layers of the DEA serves a different purpose. By having a combination of the 

thick layer (blue arrow) and the thin layer (red dot arrow) passive layer shown in Figure 

4.3 (a), results can allow the bending curvature to increase. Where the passive layer is the 

thinnest, larger bending will occur. Figure 4.3 (a) and 4.3 (b) demonstrates the structure 

of the inactive layer and the active layers at rest and when voltage is applied. 
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Figure 5.3 Structure of the stacked folding DEA along the folding region. (a) PETG thick and 
thin layer are used as inactive layer to maximize the folding motion and (b) voltage is applied 
and folding happens in the thin inactive layer regions. 

 
Finite element analysis (FEA) on the dielectric elastomer actuator is conducted to 

validate the performance of the actuator and the origami structure. The FEA on the DEA 

allows us to determine the actuation voltage to achieve ideal bending. This also allows us 

to determine how much force is required to actuate the origami structure. The finite 

element analysis on the origami structure enables the determination of how much force is 

required to collapse the structure. For this analysis static FEA was conducted with probes 

on ANSYS to measure the actuation force of the spiral box pleat. 

A single cell of Kresling pattern, shown in Figure 4.4 (a), is modeled and 

analyzed first to compare the behavior of single and multi-cell structures as well as to 

investigate the effects of boundary conditions. The same geometry and material 

properties are used for the analytical solution; however, the hinges are modeled as solid 

silicone bodies to reduce mesh size and computational time. This simplification is 

appropriate, as the main goal is to numerically estimate the required actuation force. 

While a vertical displacement of 1.4 inches is applied to four top edges of the single cell 

(a) (b) 
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Kresling pattern and the bottom edges are constrained along the same direction, the 

required actuation force is measured with reaction probe tool. The folded origami 

structure and its actuation force profile are shown in Figure 4.4 (b) and Figure 4.5, 

respectively. In Figure 4.4 (b), the top and bottom faces with boundary conditions applied 

on are marked in red. 

 

 

 

Figure 5.4 Single cell Kresling pattern model in (a) non-deformed and (b) deformed states.  
 

 
As can be seen in Figure 4.5 the numerically obtained actuation force profile 

exhibits linear behavior and is very similar to the analytical result without the spring 

constant k. Firstly, it validates the mathematical model used in the simulation, 

particularly the boundary conditions chosen for the bottom edges of the pattern. 

Secondly, the linear trend of the numerical result is also expected as there are no non-

linearity sources, e.g. material properties or geometry, and it can be verified that the 

mathematical model is solved correctly. 

(a) (b) 
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Figure 5.5 Actuation force profiles of the single cell Kresling pattern.  
 
 
It is worth noting that the deformation of the Kresling pattern happens primarily 

due to the rotation of plates about flexible hinges. When modulus of elasticity of the 

hinge materials is lowered half, from 100 MPa to 50 MPa, the stiffness of the structure 

reduces about 30%. Thus, material mechanical properties for the hinge and its design are 

crucial for the overall origami actuator performance. 

In order to obtain a more realistic simulation of Kresling pattern mechanics, i.e. 

closer to the analytical solution with spring constant k, such features should be 

considered: “Large deflection” option to account for geometry non-linearity, contact 

between plates to prevent penetration, and possibly further improvement of boundary 

conditions. 

5.3 Results  
 

The stacked dielectric elastomer hinge is shown in Figure 4.6. Three layers of 

dielectric elastomer were stacked as the active layers along with the compliant electrode. 
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The thickness of the elastomer membranes that were used for FEA is 50 μm. The 

electrode layers were assumed to be 10 μm. An additional elastomer layer was added as 

the outer most layer (15 μm). An inactive layer of PETG was added as the innermost 

layer. The thickness used for PETG membrane is categorized by the thin region with a 

thickness of 10 μm and thick region with a thickness of 15 μm. The entire thickness of 

the stacked dielectric hinge would be 220 μm. The following parameters were converted 

to inches for FEA analysis. Figure 4.6 shows the composition of stack dielectric 

elastomer hinge for before and after activation with 4 kV source. 

 

Figure 5.6 Stacked dielectric elastomer hinge (a) before deformation (0 kV) and (b) 
after deformation (4 kV); Isometric view of deformation along the length of the stacked 
DEA hinge.  

 

For the FEA analysis, the material properties of 3M VHB 4910 were used where 

the values for the DEA material are shown in Table 4.2. The model was given a load of 

two uniform pressure having their magnitude equivalent to Maxwell stress present in 

equation 33. The pressure was applied to the electrode layers of the stacked DEA 

structure.  

  

(b) (a) 
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Table 5.2 DEA material parameters for VHB 4910 (Neo-Hookean) 

Properties values 

𝜀𝜀𝑟𝑟 4.7 

𝑃𝑃10 2.5 e+5 

𝐷𝐷1 8.0 e-7 

G(MPa) 0.0737 

K (MPa) 7.37 

 
From Figure 4.7, the angle γ demonstrates the angle of the Kresling spiral box 

pleat structure at its initial state. As the origami structure collapse, the height of the 

structure reduces, thus the angle γ reduces in a linear relationship. When the Kresling 

spiral box pleat is upright without any actuation voltage, the angle γ is 54 degrees. When 

4 kV is applied to the structure, the angle γ is reduced to 31 degrees. The initial height of 

the structure is 1.65 inches. Based on the change in gamma, approximately 0.7 inches of 

deformation in height was achieved. This provides that the Kresling spiral box pleat 

structure is capable of providing approximately 400% deformation. 

 

Figure 5.7 Angle gamma γ based on (a) before actuation and (b) after actuation 
voltage has been applied. 

 

(a) (b) 
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Another thing to consider is the block force applied to the PETG membranes. 

Despite the fact DEA is actuated by Maxwell’s stress, the entire structure of the Kresling 

spiral box pleat is made from PETG sheets while the DEA operates the folding 

mechanism. As mentioned before PDMS (silicone) is used to bond them together since 

they create strong bonding. Based on the expansion of the DEA when the voltage is 

applied, block force was measured through FEA analysis. Applying 4 kV to the DEA 

active layer, a block force of 4.175 lbf was obtained. The force required to compress the 

structure falls in the range of 2-2.5 lbf. This result indicates that actuation through DEA 

active layers is capable for the Kresling spiral box pleat. 

Figure 4.8 shows the direction of the expansion of the stacked DEAs. In Figure 

4.8 (a), the stacked DEA is located behind the living hinge structure that is made with 

thin and thick layers as described in Figure 4.4. In Figure 4.8 (b), voltage is applied to the 

stacked DEA layers, this caused the expansion along the planar direction of the DEA. 

The PETG living hinge, which is the inactive layer makes the DEA bend along the 

desired direction. As the DEA expands along the planar direction to bend, it exerts force 

to the PETG inactive layer membrane. Figure 4.8 (c), the block force exerted to the 

PETG layer by the stacked DEA is measured using ANSYS. 
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Figure 5.8 (a) The elastomer hinge and the (b) direction of DEAs expansion along the 
hinge with (c) block force. 

 
Further analysis was done on lower voltages for 1 kV, 2 kV as well as 4 kV. At 

lower voltages, the amount of displacement can be shown in Figure 4.9 (a). Figure 4.9 (b) 

shows the change in angle depending on the applied voltage. Figure 4.9 (c) shows the 

block force that was exerted by the PETG membrane. Figure 4.10 shows the deformation 

of the stacked dielectric elastomer hinge at actuation voltage of 0 kV, 2 kV and 4 kV. 

Table 4.3 shows the amount of deformation in height, angle of the stacked DEA and the 

block force to the corresponding voltage. 

Table 5.3 Deformation, angle and block force to the corresponding voltage 

Voltage (kV) 0 kV          1 kV 2 kV 4 kV 
Deformation  (inches) 0 0.122 0.275 0.7027 

Angle  (degree) 54 50 45 31 
Block force  (lbf) 0 0.35 1.26 4.175 
 
Based on the applied voltage, deformation, change in angle and block force 

changes exponentially as the voltage is applied. The results were produced by 3 layers of 

stacked DEA layers. By increasing the number of the stack of the DEA layers, larger 

deformation and block force can be obtained. Based on Kofod’s paper, a single layer 

(a) (b) (c) 
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DEA had a block force of 6 N. For 3 layers of stacked DEA, converting 4.175 lbf to 

Newtons, approximately 18 N of block force was achieved. Therefore, an optimization of 

the stacked DEA while allowing the origami structure to successfully fold should be 

studied in order to maximize the deformation while increasing the block force. 

 

 

Figure 5.9 (a) Deformation of height, (b) change in angle, and (c) block force of the 
stack dielectric elastomer on the Kresling spiral box pleat. 
 

(b) (a) 

(c) 
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Figure 5.10 Deformation of the dielectric elastomer hinge with actuation voltage of (a) V 
= 0 kV, (b) V = 2 kV, (c) V = 4 kV. 
 

The results obtained from the finite element analysis (FEA) on the stack dielectric 

elastomer hinge shows the importance of having different thicknesses along the inactive 

layer. The stacked DEAs’ primary deformation occurs on the region where the inactive 

layer is the thinnest. Therefore, the majority of the force is concentrated in this thin 

region. FEA shows that the location of the inactive layer effects the region of 

concentrated force and the force affects the behavior of the stacked DEA hinge. The DEA 

hinge shows that it can be actuated to grant the Kresling spiral box pleat and actuation 

strain of 400% considering the collapsed model being its initial thickness. The thickness 

of the collapsed model in our case would be the thickness of the layered structure. This 

demonstrated that with a small amount of actuation within the DEA allowed big 

deformation when accompanied with the origami structure. 

  

(a) (b) (c) 
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5.4 Validation of Dielectric Elastomer for Origami Spiral Box Pleat Actuator 
 

5.4.1 Hyperelastic Modeling 
 

Before going in depth about the modeling for kinematic of origami folds and the 

dielectric origami actuator, several constitutive hyperelastic theories will be addressed. In 

order to validate the feasibility, Mooney-Rivlin, neo-Hookean, Ogden and Gent model 

were studied. The oldest model, the Mooney-Rivlin model was published in 1940 which 

contained two material parameters. In 1943, the neo-Hookean model was published with 

a single material parameter. The Ogden model was published in 1972 with 6 material 

parameters and the Gent model was developed in 1996 with 2 material parameters. These 

material properties were developed over time to improve and accurate portray the 

behavior of hyperelastic materials, more or so rubber.  

The Mooney-Rivlin model was originally observed by Mooney that rubber 

response is linear under simple shear load. He considered W, strain energy function, as 

the following, 

𝜕𝜕 = 𝐶𝐶1(𝐼𝐼1 − 3) + 𝐶𝐶2(𝐼𝐼2 − 3)      (74) 

where 𝐶𝐶1 and 𝐶𝐶2 are material parameters. This model is widely used for rubber parts with 

less than 200% strain. 

The neo-Hookean is the simplest form of constitutive equation for rubbers. It 

matches the Mooney-Rivlin model with only one parameter but was derived from 

molecular polymer chain network with statistics consideration which makes it a more 

physically based model. For the development of the strain energy function, Treloar used a 

Gaussian statistical distribution, 
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𝜕𝜕 =
1
2
𝜆𝜆𝑘𝑘𝑇𝑇(𝐼𝐼1 − 3)  =

𝐸𝐸
6

(𝐼𝐼1 − 3) = 𝐶𝐶1(𝐼𝐼1 − 3) =  
𝜇𝜇
2

(𝐼𝐼1 − 3)      (75) 

where n is the chain density per unit of volume, k is Boltzmann constant and T is the 

absolute temperature. For a carbon black-filled natural rubber, which is similar to the 

case of DEA, Treloar obtained the three constants being 0.2 MPa. Two other forms were 

also developed where E is the Young’s Modulus 𝐶𝐶1 being material constant and 𝜇𝜇 being 

shear modulus. The neo-Hookean model is used for strain 50% or less. 

The Ogden model derives the strain energy function through a series of real 

powers of the stretch ratio in their principal directions. The author proposes a 6 parameter 

model which shows excellent results for simple tension and equi-biaxial stretches. This 

model is used for large strain problems and is one of the most widely used methods 

despite the 6 parameter determination. The equation of the Ogden model is shown below. 

𝜕𝜕 = �
𝜇𝜇𝑛𝑛
𝛼𝛼𝑛𝑛

𝑁𝑁

𝑛𝑛=1

(𝜆𝜆1
𝛼𝛼𝑛𝑛 + 𝜆𝜆2

𝛼𝛼𝑛𝑛 + 𝜆𝜆3
𝛼𝛼𝑛𝑛 − 3)      (76) 

The Gent model was proposed considering the general form of the Rivlin model 

based on empirical strain energy function that involves two material properties. However, 

the Gent model developed a concept of limiting the chain extensibility to consider that 𝐼𝐼1 

should admit a maximum value 𝐼𝐼𝑒𝑒 and proposed the following equation, 

𝜕𝜕 =
𝐸𝐸
6

(𝐼𝐼𝑒𝑒 − 3) ln �1 −
𝐼𝐼1 − 3
𝐼𝐼𝑒𝑒 − 3

�      (77) 

where E and 𝐼𝐼𝑒𝑒 are two material parameters. In addition, the approach of the model is 

compared with a physically based model of the Arruda and Boyce model, also known as 

8 chain model, which shows a close resemblance. 
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These constitutive models have been developed over time and since some of the 

models have been developed more recent compared to the others, expectation of the 

newest model to demonstrate accurate curve fitting was assumed. Therefore, 

investigations on the performance of the different models were investigated through 

literature reviews. The results of the investigations were surprisingly not in the order of 

when the models were discovered. Based on the four constitutive hyperelastic models 

presented above, the Ogden model with 6 material parameters shown the best curve 

fitting performance. The Gent model showed the next best overall performance with 2 

material parameters followed by the Mooney Rivlin model with 2 material parameters, 

and followed by the neo-Hookean model with 1 material parameter. Besides the models 

that were discussed above, the extended tube model with 4 material parameters has 

shown better performance than Ogden with 6 material parameters. In this paper, the four 

hyperelastic modeling methods were used to determine the theoretical and analytical 

results. This was compared to the numerical model, where the material parameters were 

obtained through experimental results that were obtained by other researchers. A 

comparison will be made among the 4 values and will be compared with the Gent model 

which only requires 2 parameters yet shows great performance in curve fitting based 

upon literature studies to determine how other hyperelastic method behaves.  

 

5.4.2 Ideal Dielectric Elastomer  
 

An ideal dielectric elastomer is a three-dimensional network of polymer chains 

that the true electric field relates to the true electric displacement. Material is considered 
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incompressible and the equation is justified by the terms of Maxwell stress [51, 54, 55, 

56, 57].  

The theory of dielectric elastomer by Suo [54] has been studied to develop an 

analytical model for this study. In this study, one side of the geometry would be 

constrained while the other side of geometry would be stretched to the desired length 

based upon the origami geometry. As mentioned in equation 33, DEA deforms according 

to the subjected electrostatic force.  

   

Figure 5.11 (a) Initial state of dielectric elastomer before actuation and (b, c) after actuation 
with deformed dimension. (b) is when W is constrained and (c) is when H is constrained. 
 

In the initial state, where no pressure is applied, we have an initial length of 

elastomer width W and height H with initial thickness T, as shown in Figure 5.11 (a). In 

the deformed state, new elastomer dimension width w and height h are determined based 

on the fixed side W or H along with the thickness t. When H remains the same the W will 

be w and vice versa. Pressure Pw or Ph is applied based upon the direction of the stretch. 

Based upon the geometrical parameters, an equation of ideal dielectric elastomers 

determined by Suo [54] can be written as below, 

𝜎𝜎𝑖𝑖 + 𝜀𝜀𝐸𝐸2 = 𝜆𝜆𝑖𝑖
𝜕𝜕𝜕𝜕𝑠𝑠𝑡𝑡𝑟𝑟𝑒𝑒𝑡𝑡𝑎𝑎ℎ(𝜆𝜆1, 𝜆𝜆2)

𝜕𝜕𝜆𝜆𝑖𝑖
 (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2)  (78) 

(a) (b) (c) 
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where 𝜕𝜕𝜕𝜕𝑠𝑠𝑡𝑡𝑟𝑟𝑒𝑒𝑡𝑡𝑎𝑎ℎ(𝜆𝜆1, 𝜆𝜆2) is Helmholtz free energy being expressed in terms of stretch 

ratio (𝜆𝜆1,2). By combining applied stress 𝜎𝜎1 and 𝜎𝜎2 along with electrostatic stress 𝜀𝜀𝐸𝐸2, 

also known as Maxwell stress, demonstrates the equation of elasticity of the elastomer. 

 

Table 5.4  Hyperelastic model equations for the 4 different models 

 
Different hyperelastic models were used for comparison to determine the ideal 

modeling method for DEAs incorporated with stiffeners that are stretched in one 

direction and fixed on the other. Among developed hyperelastic models, Mooney Rivlin, 

Neo-Hookean, and Ogden model are used for the analytical and numerical purposes in 

this study. However, Suo [54] stated about how effective the Gent model portrays the 

Model Equations 

Mooney-Rivlin 𝐶𝐶10(𝐼𝐼1 − 3) + 𝐶𝐶01(𝐼𝐼2 − 3) =  
𝜇𝜇
2

(𝐼𝐼1 − 3) −
𝜇𝜇
2

(𝐼𝐼1 − 3) 

Neo-Hookean 
𝐸𝐸
6

(𝐼𝐼1 − 3) =    𝐶𝐶1(𝐼𝐼1 − 3) =  
𝜇𝜇
2

(𝐼𝐼1 − 3) 

Ogden 

�
𝜇𝜇𝑝𝑝
𝛼𝛼𝑝𝑝

𝑁𝑁

𝑝𝑝−1

(𝜆𝜆1
𝛼𝛼𝑝𝑝 + 𝜆𝜆2

𝛼𝛼𝑝𝑝 + 𝜆𝜆1
𝛼𝛼𝑝𝑝𝜆𝜆2

𝛼𝛼𝑝𝑝 − 3) →   𝜎𝜎1

=  �𝜇𝜇𝑝𝑝 �𝜆𝜆𝛼𝛼𝑝𝑝 − 𝜆𝜆−
1
2𝛼𝛼𝑝𝑝�

𝑁𝑁

𝑝𝑝=1

 

Gent 

−
𝐸𝐸
6
𝐽𝐽𝑒𝑒 ln �1 −

𝐼𝐼1 − 3
𝐽𝐽𝑒𝑒

�

= −
𝜇𝜇
2
𝐽𝐽𝑒𝑒 log�1 −

𝜆𝜆1
2 + 𝜆𝜆2

2 + 𝜆𝜆1
−2𝜆𝜆2

−2 − 3
𝐽𝐽𝑒𝑒

�     
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results compared to the experimental results. Thus, the analytical result of Gent model is 

also added in comparison with the other models. 

In order to determine the ideal dielectric elastomer equation, the Gent model 

equation is taken into account to solve the analytical process. The same procedure can be 

applied to the other three models. By combining the strain energy function of Gent with 

the ideal dielectric elastomer equation, we can derive the following equation. 

𝜎𝜎𝑖𝑖 + 𝜀𝜀𝐸𝐸2 =
𝜇𝜇�𝜆𝜆𝑖𝑖

2 − 𝜆𝜆1
−2𝜆𝜆2

−2�
1 − �𝜆𝜆1

2 + 𝜆𝜆2
2 + 𝜆𝜆1

−2𝜆𝜆2
−2 − 3�

𝐽𝐽𝑒𝑒

 (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2)  (79) 

Considering a case where one side is constrained and the other is stretched, i.e. 

uniaxial stretch, it leads to a situation similar to DEA being subjected to voltage through 

the thickness T and the stretch 𝜆𝜆1,2 are both present. However, the stress in the fixed 

direction remains zero while the stretch direction stress is present. Based on these factors, 

the equation 78 and 79 can be rewritten as below, 

where V represents the voltage through the thickness direction and 𝑃𝑃𝑥𝑥  and 𝑃𝑃𝑦𝑦 demonstrate 

the pressure applied on the free stretch direction. Depending on whether the 𝜎𝜎2 = 0 or 

𝜎𝜎1 = 0 the equation of either 81 or 82 can be used.  

𝜀𝜀𝐸𝐸2 = 𝜀𝜀 �𝜆𝜆2𝜆𝜆2
𝑉𝑉
𝑇𝑇
�
2

=
𝜇𝜇�𝜆𝜆1

2 − 𝜆𝜆1
−2𝜆𝜆2

−2�
1 − �𝜆𝜆1

2 + 𝜆𝜆2
2 + 𝜆𝜆1

−2𝜆𝜆2
−2 − 3�

𝐽𝐽𝑒𝑒

    (𝐹𝐹𝑖𝑖𝑥𝑥𝑒𝑒𝑎𝑎 𝑆𝑆𝑖𝑖𝑎𝑎𝑒𝑒)  (80) 

𝜎𝜎1 + 𝜀𝜀𝐸𝐸2 = 𝜆𝜆1
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  (81) 

𝜎𝜎2 + 𝜀𝜀𝐸𝐸2 = 𝜆𝜆2
𝑃𝑃𝑦𝑦
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  (82) 
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To successfully fold a spiral box pleat, certain length and ratio of the width W and 

height H should be satisfied by the Kresling pattern. The width and height ratio to 

successfully fold a spiral box pleat using Kresling patterns lies between the 3:4 ratio 

which is equivalent to 2.125 inches and 2.75 inches. The width and length are derived 

from a single cell of a letter size paper where the width and the length are folded 4 times 

along each direction. The initial length of the VHB 4905/4910 is 1 inch. As discussed 

above, either the width W or the height H will be fixed. When the width is fixed, the 

elastomer will be stretched along the height direction and when the height is fixed, the 

elastomer will be stretched along the width.  

Based upon the geometrical parameters of the Kresling pattern shape, material 

parameters for different hyperelastic modeling methods are shown below. 

 

Table 5.5 Material properties and geometrical parameters used for modeling 
[9, 23, 24] 

Hyperelastic Theory Material Constants  

Stretch Ratio  
𝛌𝛌𝟐𝟐.𝝀𝝀𝟐𝟐𝝀𝝀    𝛌𝛌𝟐𝟐.𝟕𝟕𝝀𝝀 𝛌𝛌𝟑𝟑.𝝀𝝀 

Neo-Hookean 𝜇𝜇 = 50kPa 55kPa 62kPa 
Ogden 𝜇𝜇𝑝𝑝 = 28.9kPa 43.56kPa 92.29kPa 

 𝛼𝛼𝑝𝑝 = 1.13 1.445 1.95 

Mooney Rivlin 𝐶𝐶10 = 190kPa 220kPa 290kPa 
 𝐶𝐶01 = 40kPa 46kPa 55kPa 

Gent 𝐽𝐽𝑒𝑒= 120 
 𝜇𝜇 = 50kPa 55kPa 62kPa 

Using the following material constants and stretch ratios, the following theoretical 

curves were obtained.  
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Figure 5.12 Theoretical curves when no pre-stretch was applied.  
 

Figure 5.12 demonstrates the results based on the stretch deformation vs. voltage 

when no pre-stretch was applied.  

 

5.4.3 Geometrical Modeling of Kresling Pattern 
 

Geometrical modeling of the origami DEA is based on the Kresling pattern. Since 

the Kresling pattern is a rectangular shape, the Kresling pattern shows two different 

lengths in width and height. For our model, the width is 2.125 inches and the height is 

2.75 inches. The initial length of the DEA before pre-stretching in width and height is 1 

inch in both directions. By folding the dimension of the pre-stretched rectangular shape, 

the Kresling pattern is achieved. By combining 4 iterations of the Kresling pattern, it 
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allows us to create a unique origami shape also known as spiral box pleat that looks like 

an hourglass. This can be shown in previous work on origami DEA using the Kresling 

pattern. The figure involving thickness for spiral box pleat is shown below. 

 

 

 

Figure 5.13 (a) FEA model of spiral box pleat and (b) folded model of spiral box pleat 
using paper. The FEA model show thickness and smooth folding whereas the paper fold 
neglect to thickness and the smooth fold due to the thickness of paper being negligible. A 
single cell of the spiral box pleat was evaluated for the numerical analysis below for single 
layer as well as three combined layers. [27] 
 

Unlike a sheet of paper, where the thickness is nearly negligible, the dielectric 

elastomer inhibits thickness which makes the folded regions inaccurate. Paper folded 

creases are precisely folded to perfection whereas sheet materials with thickness are 

either bent or folded with excess materials bulging out from the folded region. This 

happens since the bent or folded sheet materials have a higher order of continuity than 

paper and are often referenced as the smooth folds. Where paper can be folded when a 

crease is present, materials with thickness need a smooth surface between the two rigid 

faces. This is governed by the folding width and the folding width increases depending 

on the angle that is required to be folded. The fold ratio of the Kresling pattern can be 

(b) (a) 
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simplified to width and height being 3:4. That being said, we can tell that the length of 

hypotenuse is 5. Using these ratios, we can find the required length of the smooth fold. 

The dimensions of the smooth fold can be determined as a rectangle with four corners. 

By finding the four corners, the dimension required for the smooth fold can be obtained. 

The schematics for determining the four corners are shown in Figure 5.14. 

We 

determine in 

Figure 4.14 the 

width ratio of the 

smooth fold to be 

0.05 mm (distance 

between p1 to p4) 

and the Kresling 

pattern width ratio 

is 3 and the height ratio is 4. The distance between point v1 to the smooth fold width (p1 

and p4) is the offset and that distance is o1 and o2 in both directions. The length of the 

vector of the hypotenuse is m, which is placed between point v1 and v2 where the valley 

fold occurs. We pre-determine that w = 0.05, o1 and o2 to be 0.6, v1 = [0 0 0]T for the 

model. It can be determined that vector m and v2 can be given as m = [3;4;0] and v2 = 

[3;4;0]. Therefore we can find m/�|𝑚𝑚|� = [3/5;4/5;0] and e3 x m/�|𝑚𝑚|� = [-4/5;3/5;0], 

which leads us to finding point p1, p2, p3, and p4. 

This equation allows us to find the four points of the smooth fold, which enables 

us to determine the width of the smooth fold where it falls within the shape of the 
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Figure 5.14 Geometry of smooth fold and the four points that 
determines the boundary of the smooth fold for Kresling pattern. 
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geometry provided. The stiffener will be placed where the four points of the smooth fold 

are located to provide stiffness to the area while making the DEA structure to bend. In a 

previous paper by Shian et al. [60], it was indicated that different fiber placements along 

the DEA were placed to aid bending of the DEA structure. This allows the stiffener to be 

bulkier to withstand more weight as well as the structure to bend at the desired locations. 

By combining the geometrical model along with the hyperelastic model of the DEA, 

geometry for numerical analysis was created. 

 

5.4.4 Analytical Modeling without Fixed End  
 

Geometrical modeling of the Kresling pattern introduces a new modeling method 

using different stretch ratios. Based on the geometry of the Kresling pattern, it was 

identified previously that the right angle triangle can be formed based upon the three 

different ratios of 3:4:5. Based on these sets of ratios, the length of the ratio 5 can be 

determined. The length is 3.5 inches where we use this as the stretch ratio of 3.5. Since 

the stretch is conducted diagonally along the hypotenuse, this refers to an equi-biaxial 

stretch. Now we consider that the model has been stretched in equi-biaxial ratio of 3.5 

compared to its initial length. The following equation can be determined, 

𝜎𝜎1,2 + 𝜀𝜀𝐸𝐸2 = 𝜆𝜆
𝑃𝑃
𝐷𝐷𝑇𝑇

+ 𝜀𝜀 �𝜆𝜆2
𝑉𝑉
𝑇𝑇
�
2

=
𝜇𝜇(𝜆𝜆2 − 𝜆𝜆−4)

1 − (2𝜆𝜆2 − 𝜆𝜆−4 − 3)
𝐽𝐽𝑒𝑒

     (83) 

where D stands for the diagonal length translated to the x and y axis. This will be used to 

determine how the hyperelastic model behaves under equi-biaxial stretch when stiffeners 

are applied. 
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5.5 Numerical Analysis of Kresling Pattern 
 

Numerical analysis was conducted by using different material parameters 

obtained by different hyperelastic models. The material parameter constants were derived 

from multiple literature studies based upon 3M VHB 4905/4910 material testing [9, 23, 

24, 30]. Material properties for thin polyester film and sheets were obtained from Mylar 

with modulus of elasticity of 710,000 psi and density of 1.39 [27]. Numerical analysis on 

Mooney-Rivlin, Neo-Hookean, and Ogden was conducted in comparison to the analytical 

results as well as the Gent model. In this paper, three different stretch ratios were used for 

analysis based on the dimensions of the Kresling pattern. The Kresling patterns can be 

cut diagonally forming a trapezoid with the 3 length ratios of 3:4:5. This can be converted 

to stretch ratios based on the three length of the Kresling pattern which results in 2.125, 

2.75 and 3.5 respectively.  

Four failure modes for DEA were mentioned in Suo’s paper [54]. Electrical 

breakdown, electromechanical instability, loss of tension and reaching the stretch limit. 

From the analytical solution, the local maximum displays the points where the loss of 

tension or electrical breakdown may occur [11]. Using the local maximum as a reference, 

numerical analysis was performed. For numerical analysis, different material parameters 

were determined through literature studies for different stretch ratios. Since the exact 

material parameters for the different stretch ratios used for the current study couldn’t be 

obtained, slight variation of material parameters were collected. For λ1 = 2.125, material 

parameters for λ1 = 2 was used. For λ2 = 2.75, material parameter for λ2 = 2.5 was 

used. For equi-biaxial stretch λ = 3.5, material parameters for λ = 3 was used [9, 23, 24, 

30].  
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Figure 5.15 (a) Theoretical curves for 𝜆𝜆1= 2.125 are represented in both plot along with the 
data points acquired from numerical analysis. The circular, square and diamond dots 
represent the numerical results without the stiffener. (b) Numerical results with the stiffener 
were obtained and are demonstrated as circular, square and diamond dots. Theoretical 
curves without the stiffener were plotted for reference.  

(a) 

(b) 
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The continuous solid and dotted lines indicate the theoretical curves of the four 

different hyperelastic models, Gent, Neo-Hookean, Mooney-Rivlin, and Ogden. The blue 

solid line indicates the theoretical Gent model. The numerical analysis results are 

displayed as points of circle, square and triangle based upon the three different 

hyperelastic models. From the Figure 4.15 (a), the peak of the theoretical curve can be 

observed. The voltage increases as the DEA experiences decrease in thickness direction. 

However, after the DEA reaches a certain point, which is the peak of the theoretical 

curve, the DEA experiences loss of tension or electromechanical instability [11]. From 

figure 4.15(b), more voltage is required due to the addition of the stiffener to the DEA 

structure. 
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Figure 5.16 (a) Theoretical curves for λ1= 2.75 are represented in solid lines. The circular, 
square and diamond dots represent the numerical results without the stiffener. (b) 
Numerical results with the stiffener were obtained and are demonstrated as circular, square 
and diamond dots. Theoretical curves without the stiffener were plotted for reference.  

(a) 

(b) 
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There is a constant increase in voltage whereas the theoretical curves experience a 

increase in voltage, reaches a short plateau, and then increase or decrease in voltage 

based upon different constitutive models. From Figure 4.15(b) and 4.16(b), the effect of 

stiffener can be observed. The addition of stiffener has caused increases in actuation 

pressure which resulted in increases in actuation voltage.   

Previously, equi-biaxial model using the stretch ratio of 3.5, which was obtained 

from the hypotenuse of the triangle illustrated in Figure 4.14 was discussed. Stiffener was 

added to the DEA model in order to determine the influence of the stiffeners to the 

overall structure with respect to the strain and actuation voltage. For larger stretch ratios, 

a monotonic behavior is expected where displacement increases steadily along with the 

increase in voltage. 
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Figure 5.17 (a) Theoretical curves for λ1= 3.5 are represented in solid lines. The circular, 
square and diamond dots represent the numerical results without the stiffener. (b) 
Numerical results with the stiffener were obtained and are demonstrated as circular, square 
and diamond dots. Theoretical curves without the stiffener were plotted for reference.  
 

(a) 

(b) 
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The result of finite element method (FEM) model by using ABAQUS can be seen 

below. FEA was conducted with and without stiffener to observe the behavior of 

actuation voltage, displacement and bending or folding of the actuator caused due to the 

stiffener. The following figure demonstrates a result obtained without the stiffener when 

the width was constrained and subjected to pressure equivalent to 12 kV. 

 

 

 

Figure 5.18 (a) FEA result without stiffeners when subjected to 12 kV along the thickness 
direction and the planar direction for stretch ratio along the vertical direction. (b) 
Approximately 10% strain was obtained. 

 

From numerical analysis, deformation strain was determined. The deformation 

strain was determined by comparing the initial length of the elastomer to the maximum 

displacement corresponding to actuation voltage. By determining the maximum 

displacement in the planar direction and assuming the DEA is incompressible, we can 

determine the overall deformation vs. voltage relationship. 

(a) (b) 
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Figure 5.19 λ1 = 2.125 Deformation vs. Voltage without stiffener.  

 
 
Figure 5.20  λ1 = 2.75 Deformation vs. Voltage without stiffener. The legend can be seen 
in Figure 5.19. 
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Due to the fact that voltage is constantly increased, we can determine the peak of 

the theoretical slopes. Based upon applying actuation voltage of 1500V, amount of 

deformation was compared through numerical analysis. The DEA experienced 15% strain 

for λ1 = 2.125 and 18% strain for  λ2 = 2.75 in average based upon different 

constitutive models. 

 

Figure 5.21 𝜆𝜆1 = 2.125 Deformation vs. Voltage with stiffener. The legend can be seen in 
Figure 5.19. 
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Figure 5.22 λ1 = 2.75 Deformation vs. Voltage with stiffener. The legend can be seen in 
Figure 5.19. 
 

 

Figure 5.23  λ1 = 3.5 Deformation vs. Voltage without stiffener. The legend can be seen 
in Figure 5.19. 
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The theoretical curve displayed a monotonic behavior where the displacement 

increased along with the actuation voltage. The value obtained from numerical analysis, 

have been showing a monotonic behavior. This shows that at higher stretch ratio, 

electromechanical instability can be eliminated as well as the loss in tension.  

 

Figure 5.24  λ1 = 3.5 Deformation vs. Voltage with stiffener. The legend can be seen in 
Figure 5.19. 
 

The failure modes are no longer present with high stretch ratio. The theoretical 

curve demonstrates a monotonic behavior where large strain can be observed as well as 

lower actuation voltage. Despite the fact addition of stiffener adds actuation voltage, at 

higher stretch ratio, the required actuation voltage was a lot less compared to the other 

two stretch ratios. 
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5.6 Results 
 

The spiral box pleat is made from repetition of Kresling pattern along the 

horizontal direction. In order to simplify the problem, 3 layers of DEA will be simplified 

into one rectangular geometry with the equivalent thickness of a 3 layered DEA. Bending 

of the stacked DEA was analyzed based upon the simplified geometry. 

  

 

Figure 5.25 (a) Location of the 4 points of stiffener based on the analytical solution of 
geometrical modeling of the stiffeners for the smooth folding surface. (b) The stiffener 
required more voltage for actuation however, the bending of the DEA occurred along the 
stiffeners.  
 
 

The bending of the DEA with stiffener is crucial to determine the performance of 

the Kresling spiral box pleat. Based upon the theoretical curves, the Ogden model best 

represented the theoretical curve of the Gent model. Bending angles were obtained based 

upon Ogden model by applying different voltages with the corresponding strain. In order 

to demonstrate how bending angle was obtained, actuation pressure equivalent to 6 kV 

was applied. By using ABAQUS Query, the angle of each element along the neutral axis 

of the Kresling DEA was determined. There are 32 elements along the width of the 

Kresling pattern and change in angle for each of the elements were obtained. By plotting 

the change in angle of each element, the bending from the stiffener to the tip of the DEA 

was obtained. Each element was plotted corresponding to the change in angle between 

(b) (a) 
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the nodes in the element. This is shown in Figure 4.26 (b) in different colors. In Figure 

4.26 (c) the bending geometry can be seen. The blue line represents the initial position of 

the DEA before actuation and the black line represents the change in angle which is 

interpreted as the bending of overall structure. 

  

Figure 5.26 (a) The bending angle of the origami DEA. The neutral axis is pointed by the 
extruded line. The bending angles were measured based on change in each element.  

 
Figure 5.27 Bending angle vs. voltage vs. tip displacement. The higher voltage, the more 
bending was observed. 

The capability of dielectric elastomer actuators for bending actuation was studied 

through the kinematics of origami folds and the hyperelastic material modeling. Ideal 

(a) 
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material parameter for origami DEA application was obtained by studying the stretch-

voltage relationship based on theoretical curve of different hyperelastic models. Numerical 

analysis was performed to determine the actuation voltage as well as the strain caused by 

the DEA. Later, stiffener was added to the DEA to determine the bending angle. The 

bending angle was obtained by applying different voltages. The bending occurred on each 

element of the DEA was examined to determine the overall bending angle of the DEA 

structure. The bending angle obtained by the numerical results was approximately 39.2 

degrees when 6 kV was applied. The DEA is suitable for bending or folding actuations 

where the DEA is applied to perform low to medium range of bending actuation. Thus, the 

numerical results support the idea that the DEA is capable of actuating active origami 

structures. 
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Chapter 6. Conclusion and Future Work 
 

Different structural DEAs were investigated in this study. The continuous HDEA 

structure poses multiple benefits but yet it has numerous obstacles when it comes to 

manufacturing. The procedures for manufacturing the complex shape of HDEA were 

tested but were unable to achieve a successful prototype. By far, the best method to 

manufacture a HDEA would be through 3-D printing. However, this also poses a lot of 

obstacles, and the current method requires different approaches to solve the problem of 

manufacturing. However, this research demonstrated that HDEA manufactured using 

silicone DEA would be feasible since no pre-stretching would be needed. As some 

literature reviews suggested, the amount of strain might be limited compared to acrylic 

DEA. 

Since large strain was one of the main objectives in this research, acrylic material 

VHB 4910 was investigated based on the massive amount of research conducted around 

this material for DEA applications. The literature review demonstrated 500% strain for 

DEA. DEA can be effective actuators for certain applications and the application that 

was focused on was origami structures. Origami structures can be deployed and packed 

in a confined area which modern robotic structures pose obstacles performing those 

tasks. Combining origami structures with soft materials that actuate the entire structure 

would be a novel design in robotics community.  

A continuous robotic structure was investigated and thus spiral box pleat origami 

structure was used along with DEAs. The first paper based on origami introduced the 

DEA just being a live system alike a living hinge. The next paper demonstrated the 

origami DEA where the entire structure was designed with elastomeric material with 
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stiffeners to maintain the shape of the elastomers after pre-stretch. Since there were 

multiple hyperelastic modeling methods, different types of modeling methods were 

investigated. Different modeling methods demonstrated varying results but the results of 

overall strain exerted by the elastomer were small (<50%). Different modeling methods 

inhibit the benefits of curve fitting based on small to large strains and since the strain of 

the model was small, different hyperelastic model possesses a small difference between 

each other.  

However, the spiral box pleat can move based on a small amount of strain to 

obtain up to 700% actuation. Based on the simulation result, the spiral box pleat can 

obtain up to 400% actuation, when compared to its non-deployed state of the overall 

structure. Therefore, the investigation of different structures with modern engineering 

principles can provide mutual benefits to successfully overcome obstacles possessed in 

the field. 

As future work, more origami and bio-inspired structures will be investigated as 

well as the optimization of spiral box pleat fiber locations. This can increase the overall 

performance of the actuator. Fabrication of the spiral box pleat is currently being worked 

on by introducing polyester film as the frame for DEA to be mounted upon. 
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